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Response to the Reviewer #3 
 

The subject of this paper is challenging and very timely; certainly, we would like to know 

how to monitor the spread of pollutants in the urban milieu as efficiently and accurately as 

possible. In order to accomplish this task, the Authors derive a method based on the 

combination of optimization techniques, inverse tracers transport modelling and 

Computational Fluid Dynamics. The subject is very difficult and there are very few papers 

addressing the problem in a comprehensive manner; for this reason it is justified to consider 

publication of this study. 

We would like to thank Dr. Pudykiewicz for his careful consideration of this manuscript and 

for his helpful and insightful comments. We have carefully considered his comments and 

worked to include them in the revised version of the manuscript according to the proposed 

suggestions. 

Please find below the responses to his comments. 

1) ‘The Authors attempt to analyze two canonical problems: - Identification of the unknown 

source - Optimization of the measuring network. These two problems are mutually exclusive. 

Furthermore, they have different cost functionals defined on different vector spaces and, 

consequently, the set of control parameters is not the same for each case. This important 

distinction is overlooked in the paper and it is advisable to modify the text by precisely 

defining the functionals and the control variables.’ 

Reply: In this study two canonical problems are considered: 

a) Identification of the unknown source: the source term estimation STE is studied in the 

framework of a parametric approach using the renormalization technique. Here the challenge 

is to determine the parameters of the source (intensity and position) using any measurements 

vector (in practice the number of measurements is limited). Based on retroplumes (using 

sensors locations and CFD model in backward mode), we first determine the optimal 

renormalized Gram matrix Hw, for which an optimal weight function is required. This optimal 

weight function that verifies the renormalization condition minimize the information retrieved 

from the observations thus avoiding inversion artifacts close to the detectors positions. As the 

renormalization is a data assimilation method, the cost function to minimize is defined as the 

quadratic distance between the observed and the simulated measurements according to the 

Hw norm.  

b) Optimization of the measuring network: here, the optimization consists of selecting the best 

positions to be instrumented by the sensors among potential locations. This choice is operated 

in a space of search constituted of all possible networks (of a specific size) and based on a 

cost function that describes quantitatively the quality of the networks. The optimal network 

has the lowest quadratic distance between the observed and the simulated measurements 

according to the Hw norm. This optimal (or near-optimal) network is obtained using the 
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Simulated Annealing (SA) algorithm. The data here are the measurements and the according 

sensors locations.  

These canonical problems are coupled at each iteration during the searching process. 

The text of the revised manuscript is accordingly modified to clarify this important point.  

2) ‘The problem of optimization of the network is solved using the simulated annealing 

algorithm. The technique has been introduced to the computational physics over sixty years 

ago in the classic paper: Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M.; Teller, A. H.; 

and Teller, E. "Equation of State Calculations by Fast Computing Machines." J. Chem. Phys. 

21, 1087-1092, 1953. Despite that the original formulation is rooted in the basic principles of 

physics, the reviewed paper, concerned with the network optimization, is missing the physical 

interpretation of the Simulated Annealing. The description of the technique can read as 

follows: The algorithm of simulated annealing is initiated by starting from an admissible 

network. At the subsequent steps, the system moves to another feasible network, according to 

a prescribed probability, or it remains in the current state. It is crucial to explain how this 

probability is calculated. The mobility of the random walk depends on a global parameter T 

which is interpreted as temperature. The initial values of T are large, allowing free exploration 

of large extents of the state space (this corresponds to the “melted state” in terms of the 

kinetic theory of matter). In the subsequent steps, the temperature is lowered allowing the 

algorithm to reach a local minimum.’  

Reply: The SA algorithm is a random optimization technique based on an analogy with 

thermodynamics. For the SA, each network of p sensors is considered as a state of a virtual 

physical system, and the objective function is interpreted as the internal energy of this system 

in a given state. According to statistical thermodynamics, the probability of a physical system 

to being in a state β follows the Boltzmann distribution 𝑃𝛽 =
1

𝑍
𝑒𝑥𝑝(

−𝛥𝐸𝛽

𝐾𝐵𝑇
) , where 𝑍 is the 

partition function, 𝐸𝛽is the internal energy, T is the temperature at the state β and 𝐾𝐵is the 

constant of Boltzmann. By analogy, the physical quantities (temperature, energy, etc.) become 

pseudo-quantities and during the minimization process, the probabilistic treatment consists to 

accept a new network selected in the neighborhood of the current network following the 

probability 𝑃 = 𝑒𝑥𝑝(
−𝛥𝐽

𝑇
), where 𝛥𝐽is the cost difference between the new and the current 

configurations. At high temperature, the SA performs a coarse search of the space of global 

states, avoids local minima and finds a good minimum. As the temperature is lowered, the 

search becomes fine in the neighborhood of the already determined minimum and the SA 

reaches a better minimum. 

As suggested, we have included this physical interpretation of the Simulated Annealing in the 

revised manuscript. 

3) The main characteristic of SA is relatively fast convergence but, unfortunately, it is not 

possible to prove that the minimum of the cost functional is global. There are several others 

stochastic minimization methods which can be explored; it is possible that they are potentially 

more applicable in the context of the monitoring of air pollutants. 
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Reply: It is clear that for all the metaheuristic algorithms (such as the SA), it is not possible 

to prove that the minimum of the cost functional is global. This question is crucial for us, for 

this reason, we plan in the future to study the degree of confidence on the ‘optimal networks’. 

Nevertheless, before retaining the SA as an optimization technique, we tested and compared 

the results obtained by Genetic Algorithm (GA) and SA based on the normalized error cost 

function (Kouichi, 2017). These algorithms of different search technics (SA probabilistic & 

GA evolutionary) are evaluated for the reconstruction of a source in a wind tunnel (DYCE 

experiment (Lepley et al., 2011). The optimization consisted in selecting the best positions for 

sensors implantation among 27 potential positions scattered in the Wind Tunnel. The results 

show that the optimal networks retained by the GA and the SA are quantitatively (figure 1) 

and qualitatively (figure 2) comparable. The errors in source parameters estimation by using 

the optimal networks of 3 to 13 sensors are presented in figure 1 below. The SA has 

advantageous because it is relatively easy to implement and takes smaller computational time 

in comparison to GA. Both SA and GA optimization algorithms in the framework of our 

approach (based in the renormalization theory) has little influence on the estimation of the 

parameters of a source. 

Figure 1: Error of source parameters estimation for (a) SA (b) GA in the DYCE wind tunnel 

experiment. Here m is the number of sensors, El and Eq respectively denote the location error (m) and 

the ratio of the estimated to true source intensity 
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Figure 2: Optimal networks (m = 3, 6, 9 and 12) obtained by (a) Simulated Annealing SA and (b) 

Genetic Algorithm GA 
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4) The problem of selection of the initial admissible network and the role of stratification 

should be discussed. It is well known that the flow around and above complicated structures is 

characterized by a complex topology. After some analysis of the literature, I’m convinced that 

the solution of the network optimization depends strongly on the flow Froude number. The 

relevant information on the flow in the vicinity of a structure is discussed in the literature, 

please see for example https://link.springer.com/article/10.1007/s10652-016- 9470-3. It would 

be interesting to present some figures describing both wind and potential temperature fields 

from the CFD model used in the study. 

Reply: The initial admissible network is selected following the trends of location error (El) 

and ratio of the estimated to true source intensity (Eq) with the number of sensors from 4 to 16 

are performed and the results are presented in Kouichi (2017). As already mentioned in the 

manuscript, the number of sensors in the optimized networks were reduced to 1/3rd (13 

sensors) and 1/4th (10 sensors) of the total number of sensors (40) originally deployed 

because for some cases a small number of sensors could not allow to correctly reconstruct the 

source and divergences of the calculations have been noted. As an example for Trial 14, 

reconstructing the source by using a small number on sensors is not appropriate since 4, 5, or 

6 sensors are not enough (El> 100 m and log(Eq) > 10E+17). Also, after a certain number of 

sensors in the network, the source term estimation is not improved significantly (see Figure 

3). Thus, selecting 10 (1/4th) and 13 (1/3rd) number of sensors in the optimal networks ensures 

an acceptable estimate of the source for all the trials. These points are more clearly discussed 

in the revised manuscript.  

 

Figure 3: Errors in the estimation of the source (a) position and (b) intensity in Trial 14. Here p is the 

number of sensors 

The atmospheric stability effects in the CFD model fluidyn-PANACHE were included through 

the inflow boundary conditions. We had already analyzed the importance of the proper inflow 

boundary conditions for wind and turbulence variables on forward and backward 

atmospheric dispersion in an urban area (Kumar et al., 2015). Accordingly, Gryning et al. 

(2007) wind profile and an approximate analytical solution of the one-dimensional k-ε 

prognostic equation (Yang et al., 2009) for the turbulence profiles were used for inflow 
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boundary. Gryning et al. (2007) wind profile is composed of the three different length scales 

in the surface, middle, and upper layers of the atmospheric boundary layer (ABL), and is 

applicable in the entire ABL. It was also noted that Gryning’s wind profile is not applicable 

in the trials (number 4, 5, and 6 of the MUST field experiment) of very stable atmospheric 

conditions. Thus, a wind profile based on the similarity function proposed by Beljaars and 

Holtslag (1991) was used in these trials. The Monin-Obukhov similarity theory-based 

logarithmic temperature profile was used to describe its vertical variation in neutral and 

stable conditions in the MUST field experiment. Since the coefficients in approximated 

analytical profiles of k and ε are estimated by fitting the observed values of k, the turbulence 

profiles follow the actual representation of k in each trial of the MUST experiment (Kumar et 

al., 2015). 

More generally, in pollutant dispersion problems, when a proper level of turbulence intensity 

is important at the upwind side of the obstacles, the commonly used techniques are based on 

setting up simplified forms of inlet TKE (Santos et al., 2009), dynamical recycling (Tomas et 

al., 2015) or smooth inflow with generic downwind roughness elements (Tomas et al., 2016). 

Such conditions mostly affect the intensity of vertical mixing and the rate of boundary layer 

growth, decisive factors in determining concentrations of pollutants emitted within the urban 

canopy (Korycki et al., 2016). We think that these effects are beyond the scope of this work 

and could be further explored for the future. These discussions are now included in the 

revised manuscript, 

We also present in the revised manuscript figures describing wind fields from the CFD model 

for the trials 4, 11 and 19. As an example, in figure 4 below is showed the wind velocity 

vectors around some containers for the trial 11. 

 
 

 
Figure 4: Wind velocity vectors for the trial 11 
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