
1 
 

Response to the Reviewer #2 

 

In this paper, the authors formulate a simulated annealing algorithm with a renormalization 

inversion algorithm coupled to a CDF flow and dispersion model and apply it to the Mock 

Urban Setting Test (MUST) tracer field experiment (which simulates an ‘urban-like’ 

environment). The aim of the work is to demonstrate how the inversion technique presented 

can be useful in optimally placing a smaller number of concentration samplers for quantifying 

a continuous point source with almost the same level of source detection ability as the original 

larger number of samplers. The paper is well written, but in my opinion requires a major 

revision. My comments are as follows: 

The authors are grateful to the reviewer’s remarks and thanking him/her for reviewing the 

manuscript. In light of the reviewer’s all suggestions, the manuscript is revised. Reviewer’s 

questions and remarks are repeated below (in red color) and our responses (in italic) follow 

each question. 

Main comments 

1) The MUST experiments took place under neutral to stable and strongly stable conditions. 

However, the CFD model used is for neutral conditions and does not include the effects of 

atmospheric stability over the urban area (the only stability effects included are through the 

specification of inflow boundary conditions). Atmospheric stability has a profound impact on 

dispersion and would thus influence the adjoint functions. The authors should discuss the 

consequences of its neglect on the results and the errors it introduces. 

Reply: We agree with the reviewer’s remark that the atmospheric stability effects in the CFD 

model fluidyn-PANACHE were included through the inflow boundary conditions. The used 

version of fluidyn-PANACHE was not capable of incorporating the atmospheric stratification 

through surface cooling or heating and whatever stability effects are included through the 

inflow boundary conditions. The fluidyn-PANACHE includes a Planetary Boundary Layer 

(PBL) model that serves as the interface between the meteorological observations and the 

boundary conditions required by the CFD solver. The PBL model is composed of two parts: 

(i) a micro-meteorological model that computes fundamental physical characteristics of the 

PBL from routine meteorological observations, and (ii) a boundary layer model for 

prescribing the vertical profiles of wind speed, temperature, and turbulence. However, as 

discussed in our previous study (Kumar et al., 2015a), even with the specification of the 

stability dependent inflow boundary conditions only, the predicting concentrations from the 

CFD model are in good agreement with the measured concentrations in the MUST 

experiment for all 20 trials in different atmospheric stability conditions. This may be due to 

that the scale and the urban geometry of the MUST field experiment are not large enough for 

the requirement to resolve the atmospheric stratification through surface cooling or heating. 

And the stability effects included through the inflow boundary conditions were enough to 

include the stability effects on the concentrations and adjoint functions at such a small scale 
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urban-like environment of the MUST field experiment.  However, at microscales also, small 

irregularities can break the repeated flow patterns found in a regular array of containers with 

identical shape (Qu et al, 2011). In addition, uncertainties associated with the thickness and 

the properties of the material of the container wall also affect flow pattern and the resulted 

concentrations and adjoint functions (Qu et al, 2011). Also, for a real urban environment at 

the larger scales, the atmospheric stability will have a profound impact on dispersion and 

would thus influence the adjoint functions. And the stability effects through the specification 

of inflow boundary conditions only, may not be appropriate for those environments. In these 

scenarios, the CFD model should be capable of incorporating the atmospheric stratification 

through surface cooling or heating in real urban environments.  

A brief discussion about these is now included in the revised manuscript. 

2) I have reservations about the usefulness of the methodology presented in real-world urban 

environments. The title of the paper states ‘urban monitoring network’ but there are no real 

urban configurations used. The MUST experimental domain was only 200 m x 200 m (with 

buildings represented by a grid of containers) which cannot quite represent an urban area in 

terms of scale, meteorological variability, or non-uniform terrain or roughness/canopy 

structure. So in a way the present study does not explore any aspects that are specific to urban 

environments. The authors should discuss this, particularly how their methodology could be 

applied and its limitations in real-world urban cases. Following on, the title of the paper 

should say ‘urban-like’ or something similar instead of ‘urban’. 

Reply: We agree with the referee’s remarks that the Mock Urban Setting Test (MUST) tracer 

field experiment was performed in an urban-like environment and cannot quite represent an 

urban area in terms of scale, meteorological variability, or non-uniform terrain or 

roughness/canopy structure. However, the MUST field experiment has been widely utilized for 

the validation of the atmospheric dispersion models in an urban-like environment. Although, 

as mentioned by the reviewer also, there are several limitations to utilize this experiment; but, 

the methodology presented here is general in nature to apply to a real urban environment 

also. The methodology involves the utilization of the CFD model which generally can include 

the effects of the urban geometry, meteorological variability, or non-uniform terrain or 

roughness/canopy structure in a real urban environment. Therefore the title that will appear 

on the revised version changed accordingly “Optimization of an Urban-like Monitoring 

Network for Retrieving an Unknown Point Source Emission”. Also, the limitations of the 

present methodology, for its application in real-world urban cases are discussed in the 

revised version.   

3) There were a total of 40 concentration samplers. In their optimisation, the authors 

arbitrarily fixed the number of samplers to 13 and 10 and then determined the optimum 

positions of these reduced number of samplers from the original 40 samplers. A better 

question to answer would have been “what is the minimum number of samplers required and 

what their positions are in order to quantify the source with a given degree of confidence or 

accuracy?” 
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Reply: The numbers of the sensors were not fixed arbitrarily. The trends of location error (El) 

and the ratio of the estimated to true source intensity (Eq) with the number of sensors from 4 

to 16 are performed and the results are presented in Kouichi (2017). As already mentioned in 

the manuscript, the number of sensors in the optimized networks were reduced to 1/3rd (13 

sensors) and 1/4th (10 sensors) of the total number of sensors (40) originally deployed 

because for some cases a small number of sensors could not allow to correctly reconstruct the 

source and divergences of the calculations have been noted. As an example for Trial 14, 

reconstructing the source by using a small number on sensors is not appropriate since 4, 5, or 

6 sensors are not enough (El> 100 m and log(Eq) > 10E+17). Also, after a certain number of 

sensors in the network, the source term estimation is not improved significantly (see Figure 

1). Thus, selecting 10 (1/4th) and 13 (1/3rd) number of sensors in the optimal networks ensures 

an acceptable estimate of the source for all the trials. These points are more clearly discussed 

in the revised manuscript.  

 

Figure 1: Errors in the estimation of the source (a) position and (b) intensity in Trial 14. Here 

p is the number of sensors 

The present optimisation is based on fixed meteorological conditions in a trial. In a real 

situation, the network design would also depend on diurnal and spatial variability in 

meteorological conditions (e.g. wind direction) which may increase or decrease the optimum 

number of sites. This, however, is not in the scope of the present study. Perhaps as a future 

study, the authors may consider using data from full scale field measurements such as Salt 

Lake City Urban 2000 experiment. 

Reply: As the problem is complex, in this first study each meteorological situation is assumed 

as stationary and described by wind speed and direction and stability class. However, we 

agree with the referee, the network design would also depend on diurnal and spatial 

variability in meteorological conditions which may increase or decrease the optimum number 

of sites and also may change the ‘best positions’ to be instrumented by sensors. Indeed, we 

envisage as continuity of this work, to study the effect of the variability of the meteorological 

conditions. As suggested by the reviewer, we would like to utilize and validate the present 
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methodology by using the data from full-scale field measurements such as Salt Lake City 

Urban 2000 experiment in a future study. 

4) Dense gas effects are included. How are they taken into account (or inverted) in the 

backward (i.e. retro plume) dispersion calculation for adjoint functions? 

Reply: Since the released tracer gas C3H6 in MUST field experiment is heavier than the air, a 

buoyancy model is used to model the body force term in the Navier-Stokes equations. The 

buoyancy model is suitable for the dispersion of heavy gases where density difference in the 

vertical direction drives the body force. Many attempts have been made in the literature to 

use CFD in simulating the dispersion of a negatively buoyant gas using a two-equation k-ε 

turbulence model (Sklavounos and Rigas, 2004; Tauseef et al., 2011, etc.). The fluidyn-

PANACHE implementation of the k-ε model is derived from the standard high-Reynolds 

number (Re) form with corrections for buoyancy and compressibility (Launder, 2004; 

Hanjalic, 2005). The k-ε model computes the length and time scales from the local turbulence 

characteristics. Thus, it can model the turbulent flows subjected to both mechanical shear 

(obstacles, terrain undulations, canopy) as well as buoyancy (stability and buoyant/heavy gas 

plumes). For more information, the fluidyn-PANACHE is a three-dimensional (3-D) 

diagnostic model that solves Reynolds-averaged forms of the Navier-Stokes dynamics 

equations along with the equations describing conservation of tracer concentration, mass, 

and energy in the atmosphere (Fluidyn-PANACHE, 2010). As already mentioned in the 

manuscript, a detailed description of the fluidyn-PANACHE and its evaluation for the 

forward dispersion with the MUST field experiment was presented in our earlier paper 

(Kumar et al., 2015). 

5) What is the uncertainty in the source estimation results in Table 2? Is the approach capable 

of providing uncertainty estimates (like the Bayesian one)? 

Reply: With the present method, at this moment we cannot derive uncertainties like the 

Bayesian methods. However, we calculated posterior uncertainties on the source parameters 

estimation due to the measurements errors. In order to quantify the uncertainty, a 10% 

Gaussian noise was added at each measurement. Using the optimal networks 50 simulations 

for source characterization are performed for each trial. The average and the standard 

deviation of Eq and El are calculated and the results are present in Table 1 below. For the 

optimal networks, there is not an obvious trend and the uncertainties are in the same order of 

magnitude compared to the original network (40 sensors). The Table 2 of the actual version 

of the manuscript will be replaced by the following table 1 accordingly. 
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Run  
No. 

𝑬𝒍
𝟒𝟎 

(m) 
𝑬𝒍
𝟏𝟑 

(m) 
𝑬𝒍
𝟏𝟎 

(m) 
𝑬𝒒
𝟒𝟎 𝑬𝒒

𝟏𝟑 𝑬𝒒
𝟏𝟎 

Skeleton 
Sensors 

1 3.3  ±1.3 19.6  ±12.13 33.76  ±5.30 0.92  ±0.08 1.04  ±0.23 1.24  ±0.22 3 

2 42.9   ±23.8 31.91  ±8.80 56.88  ±9.51 4.01  ±1.57 3.21  ±0.41 5.12  ±3.63 4 

3 10.8  ±1.6 9.01  ±2.47 9.01  ±3.02 1.17  ±0.27 0.71  ±0.16 0.71  ±0.16 7 

4 22.8  ±7.7 18.07  ±1.84 18.07  ±2.61 0.27  ±0.35 0.83  ±0.21 0.83  ±0.26 6 

5 21.9  ±2.1 2.13  ±2.54 11.56  ±4.21 0.57  ±0.07 0.95  ±0.05 0.67  ±0.05 6 

6 5.0  ±1.6 6.96  ±0.19 6.96  ±0.00 2.14  ±0.60 1.04  ±0.06 1.04  ±0.04 7 

7 12.4  ±9.1 18.85  ±9.08 12.99  ±1.67 0.41  ±0.49 3.11  ±0.51 1.06  ±0.07 4 

8 15.8  ±12.1 12.86  ±1.28 15.79  ±1.05 2.22  ±0.90 1.32  ±0.34 1.76  ±0.11 6 

9 7.7  ±1.2 8.20  ±0.35 8.08  ±0.00 1.37  ±0.07 3.06  ±0.17 7.55  ±0.39 5 

10 8.8  ±3.0 8.00  ±4.57 8.00  ±5.68 1.08  ±0.19 1.08  ±0.77 1.08  ±1.07 8 

11 19.8  ±5.0 17.19  ±12.00 17.19  ±7.06 1.67  ±0.12 1.62  ±0.40 1.62  ±0.26 3 

12 7.4  ±6.6 5.43  ±11.69 10.22  ±9.10 0.95  ±0.06 0.85  ±0.28 0.2  ±0.04 4 

13 7.7  ±0.6 8.63  ±4.36 8.63  ±3.86 0.97  ±0.07 0.78  ±0.18 0.78  ± 2.05 4 

14 2.2  ±1.9 5.50  ±2.98 5.50  ±3.88 1.42  ±0.17 0.88  ±0.24 0.88  ±0.40 7 

15 1.1  ±1.0 30.23  ±2.14 37.98  ±0.72 1.88  ±0.09 0.57  ±0.07 0.17  ±0.01 7 

16 26.7  ±4.9 63.04  ±6.84 29.80  ±9.86 1.70  ±0.06 0.29  ±0.06 0.67  ±0.23 5 

17 7.0  ±1.9 14.07  ±2.78 23.05  ±10.44 0.90  ±0.05 1.10  ±0.04 1.52  ±0.16 6 

18 14.3  ±11.0 12.83  ±4.18 12.83  ±4.61 1.15  ±0.46 1.15  ±0.16 1.15  ±0.21 6 

19 22.3  ±6.4 10.77  ±4.25 13.46  ±4.8 1.76  ±0.16 0.99  ±0.20 0.83  ±0.25 6 

20 32.5  ±1.8 45.23 ±1.78 44.29  ±0.31 0.83  ±0.04 1.68  ±0.06 1.56  ±0.06 7 

Table1. Source estimation results from the different monitoring networks for each selected trial of the MUST 

field experiment 

 

6) How does the uncertainty in the results in Table 2 change as the number of samplers is 

changed? Have you included model and measurement uncertainties in the methodology? 

Reply: A general relationship between the number of samplers and the uncertainties is not 

obvious. We noticed that changing size of the network (increasing or decreasing the number 

of sensors) can lead to the growth or diminution of the uncertainties in the source parameters 

estimation. As an example in Table 1, for Trial#7 uncertainties grow while for Trial#17 

uncertainties diminish. 

Accordingly to the answers of questions 5 and 6, results and interpretations of the effect of 

measurements errors on the source parameters estimation are included in the revised text. 

7) Section 2.3: Is there a sensitivity of the source estimation / optimisation to how the weight 

function is selected? Could there be any other choices of the weight function? 

Reply: The weight function is selected to minimize the information retrieved from the 

observations thus avoiding inversion artifacts close to the detectors positions. This optimal 

renormalizing function denoted ϕ(x) is unique as demonstrated by Issartel (2004). However, 

the sensitivity of the source estimation is essentially due to the information provided by each 

vector of measurements. 

8) Did you specify any a priori bounds on the estimated source position and source emission 

rate? If yes, what were they? 

Reply: In this study, we do not require to specify any a priori bounds on the estimated source 

position and source emission rate in the renormalization inversion technique. 
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9) What is the advantage of the present technique compared to, say, the Bayesian approach 

which also provides probability associated with the solution? 

Reply: The technique used in this study does not require a priori information about the 

source (i.e. location and intensity) or about the measurements (i.e. knowledge of the 

observation-Error Covariance Matrices). The renormalization is a deterministic inversion 

method compatible with upstream offline preparation for network implementation and 

compatible with rapid implementation for the monitoring operation phase for local-scale 

applications around sensitive sites. Also, this method can be used to estimate a point or 

distributed source which can expand the cases studied.  

10) Page 3, line 15: ‘The Gaussian models are unable to capture. . .’ While this may be 

generally true, a well formulated Gaussian plume model can describe idealised urban 

dispersion (e.g. Huq and Franzese, BLM, 147, 102-121, 2013). 

Reply: Corrected accordingly as ‘In general, the Gaussian models are unable to capture. . .’ 

11) Section 5: Was the CFD model validated using the MUST data for its ability to simulate 

the measured concentrations? 

Reply: As already mentioned in the manuscript, the ability of the CFD model to simulate the 

measured concentrations using the MUST data and the prediction errors of the forward 

simulations used in this study were discussed in our previous study (Kumar et al., 2015).  

12) Source position was calculated. Does it include the source height too? Was source height 

a free parameter or a fixed one? 

Reply: The source height was not calculated in this study. The computations were carried out 

in the 2-dimensional domain on a horizontal plane corresponds to an altitude of known 

source height Hs. Accordingly, the vertical dimension was eliminated in the formulations and 

the computations. Consequently, the adjoint functions were chosen as steady state 

retroplumes on the horizontal cross-section area passing through a plane z = Hs. The 

assumption with respect to the vertical structure of the problem is useful to estimate the 

ground level sources or the emission sources along a horizontal cross-section area passing 

through a fixed vertical level. However, in this study, the problem of vertical structure (i.e. the 

height of a source) in three-dimensional space of an urban area is not addressed. In reality, 

an altitude of a release (i.e. source height) is also not known and required to estimate along 

with the projected release location on the ground surface and the release rate (Kumar et al., 

2016).  We envisage to include the height of the source in a future study. 

Other comments 

13) Page 2, line 14: What is ‘an NP-hard problem’? 

Reply: The problem of sensors network optimisationis NP-Hard (i.e. Non-deterministic 

Polynomial-time hardness) as shown by (Ko et al., 1995), which means that it is difficult for 

an exhaustive search algorithm to solve all instances of the problem because it's need a 

considerable time.  

14) Page 2, line 35: ‘probabilities’ should be ‘probability’. 

Reply: Corrected. We have now carefully checked the manuscript to eliminate possible 

linguistic errors. 
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15) Page 3, line 8: ‘required’ should be ‘require’. 

Reply: Corrected. 

16) Page 3, line 10: ‘the continuous’ should be ‘continuous’. 

Reply: Corrected. 

17) Page 3, line 23: ‘was’ should be ‘is’. 

Reply: Corrected. 

18) Is the optimisation methodology presented only valid for a single source? 

Reply: In this study, the presented optimization methodology is only valid for a single source. 

Nevertheless, it is possible to consider the optimization for multiple sources. We envisage that 

evaluation in the future. 

19) Page 7, line 3: The term temperature should be put in quotes as this is not a real 

temperature in the present context. 

Reply: Changed accordingly. 

20) Page 9, line 2: ‘stopped’ should be ‘is stopped’. 

Reply: Corrected. 

21) Figures 1 and 3: Why some of the 40 samplers locations do not coincide in these figures? 

Reply: In the schematization of the MUST experiment, the position of the tenth detector of the 

fourth row was slightly shifted from its true position. Figure 1 in actual manuscript version is 

adjusted accordingly as shown in figure 2 below. 

 

Figure 2: Schematization of the MUST experiment: (a) correct version (b) adjusted version 

22) Is the code for simulated annealing algorithm with the renormalization inversion 

technique available? 

Reply: Yes the codes are available for one trial as an example. 
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