
Response to Reviewer #1 
 
P1, L10: "absent an increase" is odd wording. 
P1, L12: This statemetn seems redundant to line 4-5 P1, L14-15: What causes these shifts? 
P1, L15-16: So if the land surface model has limited effect on temperature evolution, is it 
updates to the forcings that cause the differences in climate sensitivity estimates? It’s not 
entirely clear what points the authors are trying to convey here. I suggest tightening up the 
abstract to highlight the significance. 
 
Response:  We attribute the observed shifts in the parameter distributions to the changes in 
model forcings.  The land surface model impacts other components of MESM (i.e., carbon 
fluxes), but in the climate component used here, it has little impact. 
 
Changes:  Per these comments, we have revised our abstract to make the summary clearer.  An 
explicit statement has been added that addresses the reason for changes to the distributions. 
 
P7, last paragraph: The authors raise interesting, but somewhat contradictory, points. They 
state that reducing the number of diagnostics from 3 to 2 has little impact on model parameter 
estimates, but then go on to state that CS estimates are lower when using 2 diagnostics. Why 
are the results insensitive to the upper-air diagnostic? Also, the constraint on Kv is not clear. Is 
there any update since what was shown their previous work (e.g. Libardoni and Forest 2011)? I 
suggest adding more details to these points to help the reader. 
  
Response:  The main reason for omitting the upper-air diagnostic is the significant correlation 
between the upper-air temperature pattern and the surface temperature pattern as a result of 
the lapse rate and water vapor feedbacks.  Each of these diagnostics reject similar regions of 
the parameter space for being inconsistent with the observed climate record, thus potentially 
double counting the same temperature response signal.  Removing the upper-air diagnostic 
removes the risk of bias due to treating it as a statistically independent diagnostic. 
 
There has not been any additional work on constraining Kv between our previous work and this 
manuscript.  Currently, a second publication is in review (Libardoni et al., 2018, ASCMO) that 
investigates how including additional data in the model diagnostics improves the model 
parameter estimates.  We show there that including additional data improves the model 
diagnostics and leads to better constraint on Kv.  We chose not to incorporate any changes to 
the model diagnostics in this manuscript to provide a clean comparison of changes resulting 
from changing only the model version. 
 
Changes:  We have cleared up these points by adding clarifying remarks into the manuscript.  In 
Section 3, we include a discussion of why multiple diagnostics are preferable and why 
independent diagnostics of model performance are important.  Further, we provide a reference 
study that addresses the correlation of the surface and upper-air diagnostics.  This point is 
highlighted further in Section 4 when discussing the changes in the PDFs resulting from the 



reduction in the number of diagnostics.  Contradictory language regarding the size and 
significance of the changes when moving from three to two diagnostics has been removed for 
clarity. 
 
P8, L10: Can you show a plot of the ECS pdf for IGSM and MESM for comparison? 
 
Response:  For each of the distributions derived from the individual surface temperature 
datasets, we plotted the marginal PDFs for the full IGSM and MESM ensembles.  In all five 
cases, the same changes are observed:  higher climate sensitivity, nearly unchanged ocean 
diffusivity, and weaker negative aerosol forcing. 
 
Changes:  We have added this figure (Figure 5) and supporting text in Section 4. 
 
P9, L3-4: How do these new estimates of net aerosol forcing compare with other recent 
estimates? 
 
Response:  For EMICs like MESM, the net aerosol forcing is a model-specific parameter, making 
a clear comparison between studies and direct observations challenging.  For example, the 
aerosol forcing pattern may account for different model forcings and be defined for different 
time periods.  For example, while Andronova and Schlesinger (2001) scale the natural and 
anthropogenic aerosol direct and indirect forcings by adjusting the amplitude in 1990, the 
aerosol parameter in Knutti et al. (2002) is scaled in 2000 and represents the indirect aerosol 
effect and any other forcing not explicitly represented in the model.  With these differences in 
mind, estimates of aerosol forcing from energy balance models and EMICs fall in the ranges -1.3 
to -0.54 Wm−2 (Andronova and Schlesinger, 2001), -1.2 to 0 Wm−2 (Knutti et al., 2002), -1.53 to -
0.33 Wm−2 (Kriegler, 2005), -0.83 to -0.19 Wm−2 (Libardoni and Forest, 2011), and -1.7 to -0.4 
Wm−2 (Skeie et al., 2014). 
 
Changes:  No major changes have been made to the manuscript in response to this comment.  
We have intentionally left the comparison of our parameter estimates with other groups for 
our other studies.  This is done to place the emphasis of this work on setting the baseline for 
how the change in the forcings and model impact the parameter and TCR estimates. 
 
P10: L14: I’m a little unclear how ocean diffusivity fits in with the analysis. Why did the old 
ensemble cut of high values of Kv? It is also relatively insensitive to the model updates 
compared to aerosol forcing and equilibrium climate sensitivity. Why is this? I recommend the 
authors streamline the results and discussion sections to include a summary of key points about 
each model parameter, the constraints and model sensitivities, and physical reasoning for the 
differences. 
 
Response:  Kv fits into the analysis because all three model parameters are estimated jointly, 
with the marginal PDFs calculated by integrating the joint PDF over the other two model 
parameters.  Thus, changes due to the model and forcings can impact any of the three marginal 
distributions.  As we point out in the edited manuscript, physical explanations for the changes 



in the ECS and aerosol distributions are more accessible than an explanation for Kv.  However, 
because all three parameters are estimated together, changes in the other two parameters can 
impact our Kv estimates. 
 
In both ensembles, values of Kv outside the of range of values sampled are assigned zero 
probability.  This meant assigning zero probability for regions greater than 5 cms-1/2 for the 
IGSM ensemble and 8 cms-1/2 for the MESM ensemble.  From the full MESM ensemble, we find 
non-zero, although small, probabilities of Kv between 5 and 8 cms-1/2.  By accounting for the 
extra mass in the tail regions for the MESM ensembles, the Kv quantiles are pulled towards 
higher values. 
 
Changes:  We have added text to the manuscript addressing the points above.  Beginning on 
Page 11, Line 20 of the revised manuscript, we provide discussions of each model parameter as 
suggested by the reviewer.  As part of the discussions, we give physical explanations to support 
the changes we observe in the parameter distributions.  We further strengthen the discussion 
by including the benefits and challenges of estimating the parameters together.  In particular, 
we highlight that the joint distribution allows us to identify correlations amongst the 
parameters, but also makes the attributing the changes in a single parameter to one cause less 
straightforward. 
 
An explicit explanation for the cut-off of high Kv values is given beginning on Page 11, Line 7 of 
the revised manuscript.  The insensitivity of the Kv distribution is addressed in the paragraph 
devoted to the parameter (Page 12, Line 6). 
 
P12, L7: Why choose a third-order polynomial here? Is there sensitivity in the fits to the 
functional form? Would you expect similar results in terms of model differences using a 2nd 
order polynomial? 
 
Response:  The third-order polynomial was chosen for consistency with previous work to 
provide the most direct comparison possible between the surfaces derived for IGSM and 
MESM.  In offline tests, we derived additional surfaces for first-, second-, and fourth-order 
polynomial fits and compared them to the TCR and SLR values calculated directly from the 
transient simulations.  The first-order approximation leads to an unsatisfactory fit with 
gradients of TCR and SLR in the Kv direction that are too weak.  The second-order fit produces 
curvature in TCR and SLR contours that are inconsistent with those calculated directly from the 
transient simulations.  In particular, the 1.5 oC contour for TCR using the second-order fit 
suggested that for a single Kv value, two different ECS values could be used.  Further, the 
second-order fit shows that sea level rise greater than 14 cm is possible within the sampled 
domain, whereas none of the transient simulations had SLR that high.  The third- and fourth-
order fits both showed good agreement with the simulated results but were not without their 
flaws.  The third-order fit showed some error in the 1.5 oC TCR contour, where the fourth-order 
fit led to regions of SLR greater than 14 cm within the domain.  Improving this fit is a potential 
avenue of future research. 
 



Changes:  We mention the reason for choosing the third-order fit and that other fits were 
explored in the revised manuscript (Page 14, Line 11). 
 
P12, L24-25: The authors state that the shift towards higher transient climate response is driven 
by higher climate sensitivity in MESM, but there is not enough explanation in my opinion as to 
why there is a larger CS in MESM compared to previous versions, how they compare (e.g. 
posterior distributions), and to what extent the updated forcings play a role. 
 
Response:  Through the points made to previous comments and the changes made to the 
manuscript, we believe that this has been more clearly addressed.  Looking at the response 
surfaces, for any Kv value, an increase in ECS leads to larger TCR.  Thus, given a constant Kv 
distribution, shifts towards higher ECS result in a shift towards higher TCR.  With the relatively 
small changes in the Kv distribution from the subsampled MESM ensemble (see Table 2 of the 
manuscript), we find the assumption of constant Kv distribution needed for this argument 
justifiable. 
 
Changes:  As mentioned in the responses/changes to the comments above, we have added a 
discussion for each parameter that explains how changes to the model forcings can lead to the 
shifts observed in the marginal distributions.  Furthermore, the addition of Figure 5 provides a 
direct comparison of the posterior distributions for each parameter derived from IGSM and 
MESM. 
 
P12-13: The conclusions provide a nice summary of the paper’s key points. I suggest expanding 
the results section to include more in-depth discussion along these lines. 
 
Response:  As noted above, we have expanded the results section to provide more in-depth 
discussions of the reasons for the changes in the parameter and TCR estimates. 
 
Changes:  Specific changes to the results section (Section 4) are given in responses to earlier 
comments. 



Response to Reviewer #2 
 
1) I miss a description of the basic components and parameterizations of the model in the 

method section 3. I miss a section that describes model spin-up and the setup for the different 

model simulations, including external forcing factors. Further, it is not evident from the 

description why the model is called “Earth System Model”. For example, are biogeochemical 

cycles included? Does dynamic vegetation affect albedo? Is it an ESM or rather an Earth System 

Model of Intermediate Complexity?  I also miss a brief description of the metric used to compare 

model and data and how they are used to derive probability distribution. It is not sufficient to 

refer the reader to the literature (Libardoni and Forest 2011). 

 
Response:  The MIT Earth System Model is an integrated model with sub-models for the 
atmosphere, ocean, land surface, atmospheric chemistry, ocean biogeochemistry, and the 
terrestrial ecosystem.  When all of these sub-models are turned on, the model is set up as an 
Earth system model.  However, under that set up, the model is too computationally expensive 
to be used for probabilistic studies of the model parameters like what is presented in this study.  
Turning off all components of the model except the atmospheric, ocean, and land surface 
models simplifies the model to an EMIC that can be used for probabilistic estimates of the 
model parameters investigated in this work. 
 
Changes:  A more detailed presentation of the EMIC (climate component of MESM) has been 
added to Section 2.  In that discussion, we describe the model components of the EMIC, the 
input forcings, and the model parameters.  In the discussion of the model parameters, we 
describe how each of the three are adjusted and how the model is being modified to make the 
changes. 
 
In Section 3, we have included a summary of the methods used to derive the probability 
distributions.  We present the goodness-of-fit statistic used to evaluate the model.  This statistic 
is the weighted sum-of-square residual between the model output and observed climate record 
for a given diagnostic.  A reference to the likelihood function is provided and we explain how 
the joint distribution is calculated from the goodness-of-fit statistic. 
 
2) Section 3: The authors vary three parameters – ocean diffusivity, an aerosol forcing scaling, 

and the strength of the cloud feedback determining ECS and constrain the models with two 

parameters. 

 

2a) There is little information in the method section what these parameters specifically 

influence. The aerosol forcing scaling is unclear. Does this mean that all aerosol forcings are 

lumped together and scaled with a constant time invariant factor? How are different 

uncertainties applying to different aerosol classes (e.g. sulfate versus soot) considered or not 

and what is the justification for this approach. Please discuss caveats related to your 

assumption of a scaling factor. 

 



Response:  In the description of the model parameters that was added to Section 2, we 
describe what each of the parameters influence.  For completeness, we summarize them again 
here.  ECS is modified by adjusting the strength of the net cloud feedback in the model.  More 
specifically, a number of simulations where CO2 concentrations have been doubled and the 
system brought to equilibrium have been run for different values of the cloud adjustment.  
These are used to provide a lookup table which gives the cloud adjustment needed for a 
specific ECS.  Ocean diffusivity is defined by a latitude-dependent pattern based off of tritium 
mixing into the deep ocean.  Kv represents the global mean value and specific diffusivity values 
are calculated by scaling the spatial pattern by the same value at all latitudes to achieve the 
desired global mean value. 
 
The forcing due to all aerosols except sulfate are held constant during historical simulations and 
the sulfate aerosol is parameterized through adjustments to the surface albedo based on 
changes in the historical emissions of SO2.  The historical emissions have both spatial and 
temporal components, with the aerosol parameter setting the amplitude of the pattern in the 
1980s.  Adjusting the forcing in this manner is not without its drawbacks.  As the only adjustable 
forcing component in the model, this forcing pattern also represents an estimate of all other 
forcings not included in the model.  Thus, this is not a pure estimate of the aerosol forcing. 
 
Changes:  We have added a description of the model parameters, what they represent, and 
how they are adjusted into Section 2. 
 
2b) Effective ocean diffusivity is a very loose term. Is this diapycnal, vertical or horizontal 

diffusivity or does the parameter refer to the diffusivity associated with Gent-McWilliams 

parameterization? The subscript v of Kv points to vertical diffusivity. I would hope that this 

parameter reflects diapycnal diffusivity as diapycnal diffusivity co- governs ocean overturning 

strength and thus surface-to-deep heat transport. In any case, I am puzzled about the range 

sampled. Diapycnal diffusivity in coarse resolution, dynamic ocean models is typically of order 

0.1 10-4 m2 s-1. Here diffusivity is varied in steps of 1 10-4 m2 s-1 and a very wide range up to 

64 10-4 m2 s-1 is used. The upper value is even much larger than applied in classical box-

diffusion models (1-2 10-4 m2 s-1 ); in box-diffusion models the entire vertical transport (mixing, 

advection, convection) is parameterized by diffusion only. What is the justification for this large 

sampling range? As a minor point, please use SI units for diffusivity. Further, I though Gent-

McWilliams parameterization is included in the MIT model. If yes, why is the Gent-McWilliams 

diffusivity not varied or is this parameter linked with the “effective diffusivity”? 

 
Response:  In the ocean model, horizontal heat transport is prescribed by the Q-flux calculation 
and the vertical mixing of heat into the deep ocean is prescribed by the spatial diffusivity 
pattern and scaled by Kv as discussed above.  As Kv represents the mixing of heat into the deep 
ocean by all processes, it is greater than diapycnal diffusion values found in the sub-grid scale 
parameterizations of dynamic ocean models. 
 
A wide range of Kv values was sampled to simulate many possible climate states, including 
those with very strong vertical ocean mixing.  Similarly, wide ranges were also chosen for 



climate sensitivity and the aerosol forcing.  For the most part, runs with extreme values of any 
parameter were rejected for being inconsistent with the model diagnostics.  In the case of Kv, 
this supports the claim that such high values should not have been sampled to begin with.  The 
penalty paid for this over sampling of the parameter ranges is a misallocation of computing 
resources. 
 
Changes:  We have added text to the manuscript in Section 2 to address these concerns.  We 
have clarified that a mixed-layer ocean model is used, that Kv represents the mixing due to all 
processes, and how the mixing is spatially distributed. 
 
2c) ECS is typically used to abbreviate Equilibrium Climate Sensitivity. Here, an effective climate 

sensitivity is introduced and termed ECS. What represents this effective climate sensitivity? 

 
Response:  We mistakenly expressed ECS as effective climate sensitivity, when it is, in fact, 
equilibrium climate sensitivity.  The lookup table for ECS is derived from runs brought to 
equilibrium, so that any equilibrium climate sensitivity can be obtained through the proper 
adjustment of the cloud feedback. 
 
Changes:  All references to effective climate sensitivity have been changed to equilibrium 
climate sensitivity. 
 
3) Section 3: I question somewhat the application of only two observational metrics to constrain 

ECS, TCR, and sea level rise. Namely, pattern of surface air temperature change and “linear” 

ocean heat uptake are used as constraints by the authors. In my opinion, there is a lack of 

observational constraints to probe the timescales of deep ocean overturning (e.g. 14C). Thus it 

appears not surprising that the diffusivity parameter remains not well constrained. There is also 

a lack of metrics to probe the spatial pattern of heat uptake. This is particularly important as the 

thermal expansion coefficient varies by almost an order of magnitude in the ocean. Thus it 

matters, where the heat is taken up to estimate sea level rise. As another focus of the study is 

on TCR, it would also be nice to invoke additional metrics on thermocline ventilation as for 

example available by observation-derived fields of CFCs and bomb-produced 14C. 

 
Response:  Given the mixed-layer ocean model that is coupled to the atmosphere, we are 
somewhat limited to the diagnostics that can be used to evaluate the ocean system.  As further 
explained above, the vertical mixing pattern is prescribed with latitudinal dependence, but also 
fixed throughout the run.  The vertically-integrated horizontal heat transport is also prescribed 
based on offline Q-flux calculation.  With these patterns fixed, incorporating ocean diagnostics 
with spatial dependence is not feasible at this time. 
 
As an aside, developing additional model diagnostics to constrain estimates of the model 
parameters, TCR, and sea level rise is a task that should be undertaken and is of interest to the 
authors.  Care should be taken to ensure that these metrics are independent of each other or 
that steps be taken to account for the correlation between metrics.  However, developing such 
metrics is beyond the scope of this work. 



 
Changes:  We have added a discussion to Section 3 that explains why we chose the model 
diagnostics that we did (Page 5, Line 24).  We include references to other work that helps justify 
our choices. 
 
4) Page 5 to page 7, results, The description of the difference in input forcing is useful, but in my 

opinion misplaced. Solar and ozone forcings are model drivers (or forcings) and distinct from a 

particular model version. These forcings should be described in the method section where the 

simulations and the applied external forcings are to be described. 

 
Response:  While we recognize that the presentation of the model forcings may be better 
placed in the methods section, we believe that keeping them in the results section is justifiable.  
The interpretation of the new forcings and their direct application to the model parameters are 
in themselves a finding in this study.  Much of the reasoning for the shifts in the parameter 
estimates centers around these changes in the model forcings and are essential to the 
explanation of the results.  In our opinion, keeping them together is appropriate. 
 
Changes:  No major changes have been made to the location of this discussion.  However, we 
have further clarified that only time variant changes to the forcings impact the historical 
simulations (Page 7, Line 4). 
 
5) P6, line 3ff; Q-flux adjustment: Does this mean that the authors apply temperature flux 

correction to their model? This should be explained in the method section. 

 
Response:  We have addressed the Q-flux adjustment, which represents the vertically-
integrated heat flux, earlier in this response. 
 
Changes:  An explanation of the Q-flux adjustment has been added to the manuscript and 
discusses how it is related to horizontal heat transport in the ocean (see Section 2). 
 
6) Section 4: I miss a figure comparing the modelled pattern of the median (or mean or best-

guess version) with the observed pattern of surface air temperature change and similar for the 

global ocean heat uptake and its spatial pattern (and may be for upper air temperature) to 

illustrate how well the model is able to capture the observations. 

 
Response:  A figure comparing the model output to the observed surface pattern used in our 
diagnostic does not yield a clean comparison.  As a result of weighting the model-to-
observation residuals by the noise covariance matrix, the temperature patterns are rotated into 
a coordinate space defined by a set of orthogonal basis functions defined by the internal 
variability estimate.  Thus, any attempt to compare the model output and observations in the 
unrotated space does not give a fair representation of an individual model run’s fit to the 
observed record.  A fairer assessment of the model fit to the observations is obtained by 
comparing the global mean temperature time series. 
 



Given the fixed mixing pattern used in the ocean model, the spatial pattern of heat uptake does 
not vary between the model simulations.  Only the magnitude changes, making a comparison 
between the model and observations for individual runs redundant. 
 
Changes:  We have included a figure where the global mean surface temperature of each of the 
1800 model runs is shown, along with the observed time series for each of the five datasets 
used in this study.  We have also highlighted the model runs where the parameter settings 
most closely match the median values from the marginal distributions derived from each of the 
surface datasets.  All anomalies are calculated based off of the 1906-1995 climatology used in 
the surface diagnostic. 
 
Similar to the global mean surface temperature results, we also include a figure to show the 
spread in the ocean heat content linear trends calculated from our ensemble.  We plot a 
histogram of the calculated trends from each individual run, while also showing the observed 
trend and highlighting the runs with parameter settings closest to the distribution medians. 
 
A discussion of these results begins on Page 12, Line 11.  In this discussion, we explain the 
model’s ability to match the observations and reasons for mismatches between the model 
output and the historical record. 
 
7) Page 12, line 7: How well does the polynomial fit represent the model results? 

 
Response:  In general, the polynomial fit represents the model results quite well, but is not 
without error.  In our response to Reviewer #1, we discussed using first-, second-, and fourth-
order fits, as well as some of the errors associated with the third-order fit. 
 
Changes:  We mention the reason for choosing the third-order fit and that other fits were 
explored in the revised manuscript (Page 14, Line 11). 
 
8) Page 12, line 14: Why is the PDF for the TCR not directly estimated from the 372-member 

ensemble? Does the fitting add additional uncertainties to the procedure of estimating TCR? 

 
Response:  It is possible to directly estimate the PDF for TCR from the 372-member ensemble.  
Doing such would represent estimating TCR from a joint distribution where all values of ECS and 
Kv are equally likely to occur.  In other terms, the ECS-Kv two-dimensional PDF would be 
uniform for all pairs within their respective domains.  We have shown in this study that ECS and 
Kv are not uniformly distributed and that some pairs are more likely to occur than others.  
Drawing from this more realistic distribution yields a probability-weighted sampling of 
parameter pairs from which to estimate TCR.  
 
Using the polynomial fit adds additional uncertainty to the procedure of estimating TCR by 
introducing interpolation error.  As described in the response to Reviewer #1, the polynomial fit 
is not an exact match to the model results, and any error in the estimation propagates as an 
error in the TCR distribution.  However, running the transient simulation for each ECS-Kv draw 



from the Latin Hypercube Sample is infeasible, so the fit is required to estimate TCR for the 
pairs where there is no corresponding run. 
 
Changes:  No major changes have been made to the manuscript. 
 
9) Discussion and conclusion: While the authors suggest that their approach should serve as a 

template for other groups, they fail to mention that similar, and sometime much more 

comprehensive approaches of parameter calibration, have been undertaken by other groups. 

They also fail to compare their estimate of TCR and ECS with published estimate and to put their 

findings in the context of the wider literature. See for example, Collins et al., IPCC, 2013 for the 

most recent assessment of TCR and ECS values by IPCC. Of course there are recent updates of 

these estimates and there are also many other studies that determine model parameters such 

as vertical ocean diffusivity. Examples that come immediately in my mind are Holden et al., 

Clim. Dyn., 2010, Richardson; Nat. Clim.Change, 2016, Schmittner et al., GBC, 2009, Steinacher 

et al., Science, 2013 or Steinacher and Joos, Biogeosciences 2016. It is the task of the authors to 

identify the recent literature to provide a relevant discussion. 

 
Response:  In both the abstract and the penultimate paragraph of the introduction, we state 
that the point of the study is to assess how the changes in the model can impact the 
distributions.  The paper is not intended to discuss how the results compare with recent 
estimates of ECS or TCR distributions or specific methodologies for estimating probability 
distributions.   We think the introduction's text reflects this and is included here.  
 
" In this study, we provide a transparent method of testing and accounting for how the simulated 
behavior and probability distribution functions change in response to the recent model development. 
We derive a new joint probability distribution by closely following the methods of Libardoni and Forest 
(2011) to show the impact that the new version of the model has on the parameter estimates and find 
that the new version of the model leads to higher climate sensitivity estimates in addition to shifts in the 
distributions of the other model parameters. The effects on the parameter distributions due to changing 
observations and temperature metrics will be addressed in future studies in order to separate their 
impacts from changes due to the model update alone” 
 

The future work will provide the appropriate discussion of other studies as suggested by the 
reviewer while this work only documents the impact of changes in the model framework.  
 
We are aware that other approaches exist and have avoided stating that our parameter 
estimation methodology is better.  We do think this approach can serve as a template for 
testing how new versions of models can directly impact parameter estimates and that such 
tests should be documented in a similar fashion. 
 
Changes:  Throughout the manuscript, we have made it clearer that we are only conducting the 
baseline test of the model in this study.  Examples include Page 3, Line 3 and Page 12, Line 11 of 
the revised manuscript.  These areas defer discussion of results that don’t compare the IGSM 
estimates to the MESM estimates to future/concurrent work. 
 



P1, Line 22: typo: sensitivity 

 
Changes:  We have fixed this typo in the manuscript. 
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Abstract. For over twenty years, the Massachusetts Institute of Technology Earth System Model (MESM) has been used exten-

sively for climate change research. The model is under continuous development with components being added or
::
and

:
updated.

To provide transparency in the model development, we perform a baseline evaluation of the newest version by comparing

model behavior and properties
:
in

:::
the

::::::
newest

::::::
version

:
to the previous model version. In particular, the impacts

::::::
changes

:
resulting

from updates to the land surface model component and the input forcings used in historical simulations of climate change5

are investigated. We run an 1800-member ensemble of MESM historical climate simulations where the model parameters that

set climate sensitivity,
:::
the

:::
rate

:::
of ocean heat uptake, and the net anthropogenic aerosol forcing are systematically varied. By

comparing model output to observed patterns of surface temperature changes ,
::
and

:
the linear trend in the increase in ocean heat

content, and upper-air temperature changes, we derive probability distributions for the three model parameters. Furthermore,

we run a 372-member ensemble of transient climate simulations where
::
all model forcings are held fixed , absent an increase in10

::::
fixed

:::
and

:
carbon dioxide concentrations

:::
are

::::::::
increased at the rate of 1% per year. From these runs, we derive a response surface

:::::::
response

:::::::
surfaces

:
for transient climate response and thermosteric sea level rise as a function of climate sensitivity and ocean

heat uptake. We compare the probability distributions and response surfaces derived using the current version of MESM to the

preceding version to evaluate the impact of the updated land surface model and forcing suite. We show that the probability

distributions shift towards higher climate sensitivities and weaker aerosol forcing in response to the new forcing suite. The15

::::
when

:::::
using

:::
the

::::
new

:::::
model

::::
and

:::
that

:::
the

:
climate response surfaces are relatively unchanged between model versions, indicating

that the updated .
::::::::
Because

:::
the

:::::::
response

:::::::
surfaces

::::
are

::::::::::
independent

::
of

:::
the

::::::::
changes

::
to

:::
the

:::::
model

::::::::
forcings

:::
and

::::::
similar

::::::::
between

:::::
model

:::::::
versions

::::
with

:::::::
different

::::
land

:::::::
surface

::::::
models,

:::
we

:::::::
suggest

:::
that

:::
the

::::::
change

::
in
:
land surface model has limited impact on

:::
the

temperature evolution in the model.
:::::
Thus,

::
we

:::::::
attribute

:::
the

:::::
shifts

::
in

:::::::::
parameter

::::::::
estimates

::
to

:::
the

:::::::
updated

:::::
model

::::::::
forcings.

1 Introduction20

Equilibrium climate sensitivity (ECS), the equilibrium global-mean surface temperature change due to a doubling of atmo-

spheric carbon dioxide concentrations, is a climate system property that has been widely studied and strongly influences future

climate projections. One of the complexities of ECS is that it is a function of many feedbacks and processes that act on different

1



spatial and temporal scales. In particular, the lapse rate, water vapor, cryosphere, and cloud feedbacks play especially critical

roles in determining the climate sensitiivty
::::::::
sensitivity

:
(Bony et al., 2006). Given its influence on future climate change, many

studies using a range of methods have attempted to estimate ECS.

One class of studies estimates ECS directly from observations using a global energy budget approach (Gregory et al.,

2002; Otto et al., 2013; Lewis and Curry, 2014; Masters, 2014). These studies calculate probability distributions of ECS from5

estimates of global mean surface temperature change, the heat stored in the ocean, and changes in radiative forcing, along

with the associated uncertainties in their measurements. A second class of studies use simplified climate models such as Earth

System Models of Intermediate Complexity
:::::
system

:::::::
models

::
of

:::::::::::
intermediate

:::::::::
complexity

:
(EMICs) or energy balance models

(e.g., Forest et al., 2002; Knutti et al., 2003; Forest et al., 2008; Libardoni and Forest, 2013; Olson et al., 2013; Johansson et al.,

2015). Taking advantage of the computational efficiency of the simplified models, these studies run large ensembles with
:::
over

:
a10

range of climate sensitivity values in addition to
::::::::
adjusting other relevant factors, such as the ocean diffusivity

:::
rate

::
of

:::::
ocean

::::
heat

:::::
uptake

:
and a measure of the net aerosol forcing. By comparing model runs to observations and evaluating how well individual

model runs match the past, estimates of ECS and other parameters are then presented
::::
given as probability distributions.

Transient climate response (TCR) provides a second metric for estimating future climate change and is defined as the global

mean surface temperature change at the time of carbon dioxide (CO2) doubling in response to CO2 concentrations increasing15

at the rate of 1% per year. CO2 doubling occurs in year 70 of this scenario, making TCR a shorter-term assessment of climate

change than ECS. Unlike ECS, which requires reaching an equilibrium state, TCR is estimated while the climate system is still

adjusting to a time-dependent forcing. There is a constant evolution in the strength and activity of processes and feedbacks in

both the atmosphere and the ocean as the climate system adjusts to reach equilibrium. Due to the long time scales required to

reach equilibrium, Allen and Frame (2007) argue that we should focus on estimating TCR, which is more policy-relevant than20

ECS. Estimates of TCR can be made from current historical observations and are more meaningful on the decadal time scale,

whereas even if the equilibrium response is known, it may never be reached. However, even if more focus is placed on TCR

than ECS, the two are still closely linked. Warming on time scales relevant to estimating TCR is related to the sensitivity of the

climate system to external forcings and the coupling between the atmosphere and the ocean. When considering atmosphere-

ocean interactions, we know that TCR depends
::::
TCR

:::
has

::::
been

:::::
shown

::
to
:::::::
depend on both climate sensitivity and the rate at which25

heat is mixed into the deep ocean (Sokolov et al., 2003; Andrews and Allen, 2008).

One EMIC that has been extensively used in studies estimating ECS and TCR is the Earth system
::::::
climate

:
component of

the Massachusetts Institute of Technology (MIT) Integrated Global Systems Model (IGSM, Sokolov et al., 2005). Forest et al.

(2002, 2006, 2008) and Libardoni and Forest (2011, 2013) estimated the joint probability distribution for climate sensitivity

and other model parameters in IGSM. Each study used similar, but not identical, versions of IGSM with changes both to key30

components of the model and to the input data used to force the model. Climate change diagnostics were also modified in the

studies. The Earth system component of IGSM has undergone further development and a new, updated version incorporated into

the integrated framework. This study serves as a baseline evaluation of how probability distributions for the model parameters

change as a result of updating the Earth system component. More specifically, we investigate the impact of (1) the structural

2



changes to the model, (2) the historical datasets used to force the model, and (3) the sampling strategy used to vary the model

parameters.

In the past, "IGSM" has been used to reference both the fully integrated model as well as the standalone Earth system

component. We follow this convention and refer to the older version of the Earth system model as IGSM, and we refer to the

updated version of the model as the MIT Earth System Model (MESM). In this study, we provide a transparent method of5

testing and accounting for how the simulated behavior and probability distribution functions change in response to the recent

model development. We derive a new joint probability distribution by closely following the methods of Libardoni and Forest

(2011) to show the impact that the new version of the model has on the parameter estimates and find that the new version of

the model leads to higher climate sensitivity estimates in addition to shifts in the distributions of the other model parameters.

The effects on the parameter distributions due to changing observations and temperature metrics will be addressed in future10

papers
:::::
studies

::
in
:::::
order

:
to separate their impacts from those due to changes to the model framework

:::::::
changes

:::
due

::
to

:::
the

::::::
model

:::::
update

:
alone. We also show here how the emergent behavior of MESM compares to the older IGSM by running a new set of

transient simulations and calculating how the response surfaces for TCR and thermosteric sea level rise depend on ECS and

ocean diffusivity
:::
the

:::
rate

:::
of

:::::
ocean

::::
heat

:::::
uptake.

In Section 2, we give a brief description of the MIT modeling framework and the differences between IGSM and MESM.15

We describe the process for deriving the joint probability distribution function used in Libardoni and Forest (2011) and the

modifications implemented in this study in Section 3. Parameter distributions and response surfaces are presented in Section 4.

In particular, we test whether changes in the distributions and responses are due to reducing the number of model diagnostics,

the sampling of the parameter space, or changes in the model structure and input forcings. We present our conclusions in

Section 5.20

2 Model

The coupled atmosphere-ocean-land model
::::::
climate

::::::::::
component

:
of the updated MIT Earth System Model (Sokolov et al.,

2018) replaces the version described in Sokolov et al. (2005) . The first update to the model
:::
and

::
is
:::
an

:::::
Earth

::::::
system

::::::
model

::
of

::::::::::
intermediate

::::::::::
complexity.

::
It
:::::::

consists
:::

of
:
a
:::::::::::::::

zonally-averaged
::::::::::
atmosphere,

:::::::::::::::
zonally-averaged

::::
land

::::::
model,

::::
and

:
a
:::::::::::

mixed-layer

:::::::
anomaly

:::::::
diffusing

::::::
ocean

::::::
model.

:::
The

::::::::::
mixed-layer

:::::
ocean

::::::
model

:::::::
includes

:::::::
specified

:::::::::::::::::
vertically-integrated

::::::::
horizontal

::::
heat

::::::::
transport25

::
by

:::
the

::::
deep

::::::
ocean,

:
a
::::::::
so-called

::::::::
"Q-flux".

::::
This

:::
flux

:::
has

:::::
been

::::::::
calculated

:::::
from

:
a
:::::::::
simulation

::
in

:::::
which

:::
sea

:::::::
surface

::::::::::
temperatures

::::
and

::
the

:::::::
sea-ice

:::::::::
distribution

:::::
were

::::::
relaxed

::::::
toward

:::::
their

:::::::::
present-day

:::::::::::
climatology.

::::
Heat

:::::::
mixing

:::
into

:::
the

:::::
deep

:::::
ocean

::
is

::::::::::::
parameterized

::
by

:::
the

::::::::
diffusion

::
of

:::
the

::::::::
difference

::
of

:::
the

::::::::::
temperature

::
at

:::
the

::::::
bottom

::
of

:::
the

::::::::
seasonal

::::::::::
thermocline

::::
from

::
its

:::::
value

::
in

:
a
::::::::::::
pre-industrial

::::::
climate

:::::::::
simulation

:::::::::::::::::::::::::::::::::::::::
(Hansen et al., 1984; Sokolov and Stone, 1998).

::::
Since

::::
this

:::::::
diffusion

:::::::::
represents

:::
the

:::::::::
cumulative

:::::
effect

::
of

::::
heat

::::::
mixing

::
by

:::
all

:::::::
physical

::::::::
processes,

:::
the

::::::
values

::
of

:::
the

::::::::
diffusion

:::::::::
coefficients

:::
are

:::::::::::
significantly

:::::
larger

::::
than

::::
those

:::::
used

::
in

:::
the

:::::::
sub-grid30

::::
scale

::::::::
diffusion

::::::::::::::
parameterizations

::
in
::::::
ocean

:::::
global

:::::::::
circulation

:::::::
models.

::::
The

:::::
spatial

::::::::::
distribution

::
of

:::
the

::::::::
diffusion

::::::::::
coefficients

::::
used

::
in

:::
the

::::::::
diffusive

:::::
model

::
is
:::::
based

:::
on

::::::::::
observations

:::
of

::::::
tritium

::::::
mixing

:::
into

:::
the

:::::
deep

:::::
ocean

:::::::::::::::::
(Hansen et al., 1988).

:
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:::
The

::::::::
radiation

::::
code

:::::
takes

:::
into

:::::::
account

:::::
major

::::::::::
greenhouse

::::
gases

::
(
:::
H2O

:
,
::::
CO2,

:::::
CH4,

::::
N2O

:
,
:::::
CFCs,

::::
and

:::
O3)

::::
and

:::::::
multiple

:::::
types

::
of

:::::::
aerosols

::::
(e.g.

:::
SO2:,:::::

black
:::
and

::::::
organic

:::::::
carbon).

::
In

::::::::
historical

::::::
climate

::::::::::
simulations,

:::::::
loading

:::
for

::
all

:::::::
aerosols

::::::
except

:::::
sulfate

:::
are

::::
kept

::
at

::::
their

::::::
default

::::::
values.

:::
The

:::::::
forcing

:::
due

::
to

::::::
sulfate

::::::
aerosol

::
is

::::::::::::
parameterized

::::::
through

:::::::
changes

::
in

::::::
surface

::::::
albedo

:::::
using

::::::::
historical

::::
data

::
on

::::
SO2 ::::::::

emissions.
::::::::
Historical

:::::::
climate

::::::::::
simulations

:::
are

::::::::
initialized

:::::
from

::::::::
conditions

::::::::
obtained

::::
from

::
a
::::
long

::::::::::
equilibrium

:::::::::
simulation

::
for

:::::
1860

:::::::::
conditions.

:
5

:::::
Three

:::::
model

::::::::::
parameters

:::
that

::::::
impact

:::
the

:::::::
climate

::::::
system

::::::::
response

:::
are

:::::
easily

::::::::
modified

::
in

:::::::
MESM.

:::::
These

::::::::::
parameters

:::
are

:::
the

:::::::::
equilibrium

:::::::
climate

:::::::::
sensitivity

::::::
(ECS),

:::
the

:::::::
effective

::::::
ocean

::::::::
diffusivity

::
(
::
Kv::

),
:::
and

:::
the

:::
net

:::::::
aerosol

::::::
scaling

:::::
factor

::
(
:::
Faer:).:::::

ECS
::
is

:::::::
changed

::
by

::::::::
adjusting

:::
the

::::::
strength

::
of

:::
the

:::::
cloud

::::::::
feedback

::
at

:::::::
different

:::::
levels

::
in

::
the

::::::
model

::::::::::::::::::::::::::::::::::::
(Sokolov, 2006; Sokolov and Monier, 2012).

:::
The

::::::::::
adjustment

:::::::
required

:::
for

::
a

::::::
specific

:::::
ECS

::
is

:::::::
obtained

:::::
from

:
a
:::::::

lookup
::::
table

:::::::
derived

::::
from

::::::
model

::::::::::
simulations

::::
with

::::::::
different

:::::::
feedback

::::::::
strengths

::::::
where

::::
CO2 :::::::::::

concentrations
:::::

have
::::
been

:::::::
doubled

::::
and

:::
the

:::::::
climate

::::::
system

:::::::
allowed

::
to

:::::
reach

::::::::::
equilibrium.

::::
Kv10

::::::::
represents

:::
the

::::::
global

::::
mean

:::::
ocean

::::::::
diffusion

:::::::::
coefficient

::
in

:::
the

::::::::::
mixed-layer

:::::
ocean

::::::
model.

::::
The

:::::
global

:::::
mean

:::::::::
diffusivity

::
is

:::::::
adjusted

::
by

::::::
scaling

:::
the

::::::
spatial

:::::::::
diffusivity

::::::
pattern

:::
by

:::
the

:::::
same

:::::
factor

::
at
:::

all
::::::::
locations.

:::
A

:::::
lower

:::::
global

:::::
mean

:::::::::
diffusivity

:::::::
implies

::::::
slower

::::::
mixing

::
of

::::
heat

:::
into

:::
the

::::
deep

::::::
ocean

:::
and

:
a
::::::
higher

::::::
global

::::
mean

:::::::::
diffusivity

::::::
implies

:::::
faster

:::::::
mixing.

::::
The

:::::
albedo

::::::::::
adjustment

::::
used

:::
for

::
the

::::::
sulfate

:::::::
aerosol

::::::
forcing

::
is

:::::::::
prescribed

:::
by

:
a
::::::::::::::::
latitude-dependent

::::::
pattern

:::
that

::::::
differs

::::
over

::::
land

::::
and

:::::
ocean

:::::::::::::::::
(Forest et al., 2001).

::::
This

::::::
pattern

::
is

::::
held

::::
fixed

:::::::
spatially

::::
but

:::::
scaled

:::::::::
temporally

:::
by

::::::::
estimated

:::::::::
emissions

::
of

:::::
sulfur

:::::::
dioxide.

::::
Faer :::

sets
:::
the

::::::::
amplitude

:::
of15

::
the

::::::
pattern

::
in
:::
the

::::::
1980s.

:::
By

::::::::
choosing

:
a
:::
set

::
of

:::
the

::::
three

::::::::::
parameters,

::::::::::::::::::
✓ = (ECS,Kv,Faer),:::

we
:::::::
simulate

::::::::
different

::::::
climate

:::::
states.

:

:::
We

::::
now

:::::::
highlight

::::
two

:::::
major

:::::::
updates

::::
made

::::::::
between

:::
the

::::::
current

::::::
version

::
of

:::::::
MESM

:::
and

:::
its

::::::::::
predecessor.

::::
The

:::
first

::::::
update

:
was

the incorporation of a new land surface model. The Community Land Model (CLM) version 3.5 (Oleson et al., 2008) replaced

CLM version 2.1 to improve estimates of the surface heat balance in the model. A second update to the model was an adjustment

to the radiative forcing of non-CO2 greenhouse gases in the radiation code. The adjustment was made to match the calculations20

used in the Intergovermental
:::::::::::::::
Intergovernmental Panel on Climate Change (IPCC) experiments and produces weaker forcing for

those constituents. Additionally, the forcings used to drive the model until now (Forest et al., 2006) were extended and, in some

cases, new data sources were used. Greenhouse gas concentrations and stratospheric aerosols from volcanic eruptions were

obtained from the National Aeronautics and Space Administration Goddard Institute for Space Studies modeling group forcing

suite. The procedure for updating the greenhouse gas emissions from Hansen et al. (2007) and the volcanic aerosol forcing25

from Sato et al. (1993) was described in Miller et al. (2014). Updates included incorporating data from more observational

sources and extending the length of the datasets. Sulfate aerosol loading from Smith et al. (2011) was extended to 2011 by

Klimont et al. (2013). The Kopp and Lean (2011) solar irradiance dataset replaced the Lean (2000) dataset. Lastly, the ozone

concentration database developed by the Atmospheric Chemistry and Climate initiative (AC&C) and Stratospheric Processes

and their Role in Climate project (SPARC) ozone concentration database (Cionni et al., 2011) that was developed in support of30

the Coupled Model Intercomparison Project phase 5 (CMIP5) replaced the concentration data used in Forest et al. (2006). The

concentrations in the dataset, hereafter referred to as AC&C/SPARC, drive the tropospheric and stratospheric ozone forcing in

the radiation code. In Section 4, we show the differences between the old and new datasets for those forcings where the data

sources have changed, namely solar and ozone.
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Three model parameters that impact the climate system response are easily modified in MESM. These parameters are the

effective climate sensitivity (ECS) , the effective ocean diffusivitiy (Kv), and the net aerosol scaling factor (Faer). ECS is

changed by adjusting the strength of the cloud feedback at different levels in the model (Sokolov, 2006; Sokolov and Monier, 2012).

Kvrepresents the vertical diffusion of heat anomalies into the deep ocean by all mixing processes and tends to be larger

than typical ocean diffusivity values which represent the diffusion of heat alone (Sokolov et al., 2003). The mixing pattern is5

prescribed spatially with stronger mixing in the polar regions and weaker mixing near the equator. Kvrepresents the global

mean diffusion rate and the spatial patternis scaled to obtain the desired value. The anthropogenic aerosol forcing used

in the model is prescribed by a latitude-dependent pattern that differs over land and ocean and is used as an estimate of

all unmodeled forcings in the simulations (Forest et al., 2001). This pattern is held fixed spatially but scaled temporally by

estimated emissions of sulfur dioxide. Faersets the amplitude of the pattern in the 1980s. By choosing a set of the three10

parameters, ✓ = (ECS,Kv,Faer), we simulate different climate states.

3 Methods

In this section, we present an outline of

::
In

:::
this

:::::::
section,

:::
we

::::::
present

::
an

::::::
outline

::
of
:::
the

:::::::::::
methodology

:::::
used

::
to

:::::
derive

:::
the

::::
joint

::::::::::
probability

:::::::::
distribution

:::::::
function

::::::
(PDF)

:::
for

::
the

::::::
model

:::::::::
parameters

::::
and

:::::::
highlight

:::
the

:::::::
changes

:::::::::::
implemented

:::::::
between

::::
this

::::
study

::::
and

:::::::
previous

::::::
studies

:::::
using

::::::
IGSM.

:::
We

::::::
follow15

::::::
closely

:::
the

:::::::
methods

::
of

:::::::::::::::::::::::
Libardoni and Forest (2011),

::::::
which

:::
we

:::::
briefly

:::::::::
summarize

:::::
here.

::
To

::::::
derive

:::
the

:::::
PDFs,

:::
we

:::::::
compare

::::::
output

::::
from

::::
each

::::::
model

:::::::::
simulation

::
to

::::
time

:::::
series

:::
of

:::::::
observed

:::::::
climate

:::::::
change.

::
A

:::::
given

:::::
model

::::
run

::
is

::::::::
evaluated

:::::::
through

:::
the

:::
use

::
of

::
a

::::::::::::
goodness-of-fit

:::::::
statistic

r2 = (x(✓)�y)TC�1
N (x(✓)�y),

:::::::::::::::::::::::::::
(1)

:::::
where

::::
x(✓)

::::
and

:
y

::
are

::
n
::::::
-length

::::::
vectors

::
of

::::::
model

::::::
output

:::
for

:
a
:::::
given

:::
set

::
of

::::::
model

:::::::::
parameters

::::
and

::::::::
observed

::::
data,

:::::::::::
respectively,20

:::
and

::::
C�1

N ::
is the methodology used to derive the joint probability distribution function for the model parameters and highlight the

changes implemented between this study and previous studies using IGSM. We follow closely the methods of Libardoni and Forest (2011) with

two notable changes
::::::
inverse

::
of

:::
the

::::::::::::::
noise-covariance

::::::
matrix.

::
In

:::
its

:::::::
simplest

:::::
form,

:::
the

::
r2

:::::::
statistic

:
is
:::
the

::::::::
weighted

::::
sum

::
of

:::::::
squares

::::::
residual

::::::::
between

:::
the

:::::
model

:::::::::
simulation

::::
and

:::
the

:::::::
observed

:::::::
pattern.

:::
The

:::::::
weights

::::::
applied

::
to

:::
the

::::::::
residuals

:::
are

::::::::
estimated

:::::
from

:::
the

:::::::
unforced

:::::::
climate

::::::::
variability

::
in

::
a
::::
fully

:::::::
coupled,

:::::::::::::::
three-dimensional

::::::
model

:::
and

::::::::
represent

:::
the

::::::::
observed

:::::::
patterns

:::
we

:::::
would

::::::
expect25

::
in

:::
the

:::::::
absence

::
of

:::::::
external

::::::::
forcings.

:::
In

:::::::::::::::::::::::
Libardoni and Forest (2011),

:::::::
surface

:::::::::::
temperature,

::::::::
upper-air

::::::::::
temperature,

::::
and

::::::
global

::::
mean

::::::
ocean

:::
heat

:::::::
content

:::::::
patterns

::::
were

:::::
used

::
to

:::::::
evaluate

:::::
model

::::::::::::
performance.

:::
We

::::
note

:::
that

::::
the

::::::::
definition

::
of

::
r2

:::::::::
presented

::::
here

:
is
::::::::
different

::::
than

:::
the

:::::::::
coefficient

::
of

:::::::::::
determination

:::
for

:::
the

:::::::::::::
goodness-of-fit

::
of

::
a

:::::
linear

::::::
model.

::
In

:
a
:::::
linear

::::::
model,

:::::
high

:::::
values

::
of

:::
r2

::::::
indicate

::
a
::::
good

:::
fit

::
to

:::
the

::::::
model.

::
In

:::
our

::::::::
weighted

:::::
sum,

:::
low

::::::
values

::
of

:::
r2

::::::
indicate

::
a
::::
good

:::
fit

:::::::
between

:::
the

::::::
model

:::::
output

::::
and

:::
the

:::::::::::
observations.30

:::
The

:::::::::::::
goodness-of-fit

:::::::
statistics

:::
for

::::
each

::::::
pattern

::::
used

::
to

:::::::
evaluate

:::
the

:::::
model

:::
are

::::::::
converted

::
to

:
a
:::::
PDF

::::
using

:::
the

:::::::::
likelihood

:::::::
function

:::::::
function

::::::::
described

::
in

::::::::::::::::::::::::::
Libardoni and Forest (2011) and

::::::::
modified

::
by

::::::::::::
Lewis (2013).

::::::::
Through

::
an

:::::::::
application

::
of

:::::::
Bayes’

::::::::
Theorem,
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Figure 1. Parameter pairings where the models have been run. Points in black are common to both the IGSM and MESM ensembles. Blue

points are unique to the IGSM ensemble and red points are unique to the MESM ensemble.

::
the

:::::::::
individual

:::::::::
likelihoods

:::
are

::::::::
combined

::
to

:::::
derive

::
a
::::
joint

::::
PDF

:::
for

::
the

:::::
three

:::::
model

::::::::::
parameters.

::
As

::
in

::::::::::::::::::::::::
Libardoni and Forest (2011),

::
we

:::::
apply

::
an

::::::
expert

::::
prior

::
to

::::
ECS

:::
and

:::::::
uniform

:::::
priors

::
to

:::
Kv::::

and
::::
Faer.

::::::::
Marginal

:::::::::
probability

::::::::::
distributions

:::
for

:::::::::
individual

:::::::::
parameters

::
are

:::::::::
calculated

:::
by

:::::::::
integrating

:::
the

::::
joint

::::
PDF

::::
over

:::
the

:::::
other

:::
two

::::::::::
parameters.

:::
We

:::::
make

:::
two

:::::::
changes

::
to

:::
the

:::::::::::
methodology

:::
of

:::::::::::::::::::::::::
Libardoni and Forest (2011) to

:::::
derive

:::::
PDFs

:::::
using

:::::::
MESM

::::::::::
simulations.

:
First,

we run the model for ✓
:
✓s that sample individual parameters over a wider range and on a more regular grid. Climate sensitivity5

is sampled from 0.5 to 10.0 �C in increments of 0.5 �C by adjusting the strength of the cloud feedback, the square root of ocean

diffusivity is sampled from 0 to 8 cm s�1/2 in increments of 1 cm s�1/2, and the aerosol forcing amplitude is sampled from

-1.75 to 0.5 Wm�2 in increments 0.25 Wm�2. By choosing this sampling strategy, we have increased the number of runs from

640 with IGSM to 1800 runs with MESM, widened the range of parameter values sampled, and increased the density of model

runs within the parameter space (Figure 1).10
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As a second change, we reduce the number of diagnostics used to evaluate model performance. We omitted the upper-air

temperature diagnostic because it is
:
In

:::::::
general,

::::::::::
independent

::::::::::
temperature

:::::::
patterns

::::::
should

::
be

::::
used

::
to

:::::::
evaluate

:::::
model

:::::::::::
performance

::::::
because

::::
they

::::
rule

::::
out

:::::::
different

:::::::
regions

::
of

:::
the

:::::::::
parameter

:::::
space

:::
for

::::::
being

::::::::::
inconsistent

::::
with

:::
the

::::::::
observed

:::::::
climate

::::::
record.

:::
In

::::::::
particular,

:::::::::::::::::::::::::
Urban and Keller (2009) show

:::
that

:::::::
surface

::::::::::
temperature

:::
and

:::::
ocean

::::
heat

::::::
content

::::
time

::::::
series

::::::
provide

:::::
good

:::::::::
constraints

::
on

:::::
model

::::::::::
estimation.

:::::::
Further,

::::::::::::::::
Lewis (2013) shows

::::::::
upper-air

:::::::::::
temperatures

::
to

::
be

:
highly correlated with the surface temperature5

::::::
surface

::::::::::
temperature

:::
via

:::
the

:::::
lapse

:::
rate

::::
and

:::::
water

:::::
vapor

:::::::::
feedbacks.

::::
For

::::
these

:::::::
reasons,

:::
we

::::
now

:::::
omit

:::
the

::::::::
upper-air

::::::::::
temperature

:::::::::
diagnostic.

::::
The

:::::::
removal

::
of

:::
the

::::::::
upper-air

:
diagnostic (Lewis, 2013). This leaves two temperature diagnostics for evaluating

model performance: (1) decadal mean surface air temperature anomalies from 1946-1995 with respect to a 1906-1995 clima-

tology in four equal-area zonal bands, and (2) the linear trend in global mean ocean heat content from 1955-1995 in the 0-3

km layer. As in Libardoni and Forest (2011), we use five surface temperature datasets (Jones and Moberg, 2003; Brohan et al.,10

2006; Smith et al., 2008; Hansen et al., 2010) and one ocean heat content dataset (Levitus et al., 2005) as observations.
::::
Five

:::::::
different

::::
joint

:::::
PDFs

:::
are

::::::
derived

:::
by

:::::::::
combining

:::
the

:::::::::
likelihood

::::
from

:::
the

:::::
ocean

:::::::::
diagnostic

::::
with

:::
the

:::::::::
likelihood

::::::
derived

:::::
from

::::
each

::
of

:::
the

::::::::
individual

::::::
surface

::::::::::
temperature

::::::::
datasets.

4 Results

Our results are presented as follows. We first identify the changes in the input forcings used in our historical simulations by15

comparing the solar and ozone components used in the IGSM runs with those used in the MESM runs. Second, we show

how the probability distribution functions change when reducing the number of model diagnostics from three to two through

the omission of the upper-air diagnostic. Third, we derive probability distributions using the MESM ensemble and directly

compare them to those derived using the IGSM ensemble using the full ensembles and the case where only runs with ✓
:
✓s

common to both ensembles are used.
::::::
Fourth,

:::
we

:::::::
evaluate

::::
how

::::
well

:::
the

::::::
model

:::::::
captures

:::
the

:::::::::::
observations

::
by

:::::::::
comparing

::::::
model20

:::::
output

::::
from

:::
the

:::::::
MESM

::::::::
ensemble

::
to

:::
the

:::::::
observed

:::::::
climate

::::::
record. Finally, we derive the response surfaces for transient climate

response and thermosteric sea level rise for MESM and compare them to the corresponding surfaces from IGSM.

To identify changes in the forcing time series used to drive the model, we compare the input forcings for the two components

for which we have changed datasets.
:::::
When

:::::::::
comparing

::::
the

::::::
forcing

::::
time

::::::
series,

::::
only

::::::::::
differences

::
in
::::

the
:::::::
changes

::::::
relative

:::
to

::::
1860

::::::
impact

:::
the

::::::::
historical

::::::::::
simulations.

:::::
Time

:::::::
invariant

::::::::::
differences

:::
are

:::::::::
accounted

::
for

::
in
:::

the
::::::

offline
::::::
Q-flux

:::
and

::::::
initial

::::::::
condition25

::::::::::
calculations,

:::
but

::::::::::
differences

::
in

:::
the

:::::::
changes

:::
are

::::
not. In Figure 2, we show the old and new solar forcing time series. We see

that the biggest difference observed in the solar irradiance time series is a bias towards lower values when using the Kopp

and Lean (2011) data. The bias is relatively constant at approximately 4.5 Wm�2 until 1920,
:::
but then increases towards 5.0

Wm�2 moving forward in time. The mean bias is accounted for in the Q-flux adjustment in the mixed-layer ocean model

which specifies the vertically-integrated horizontal heat transport in the mixed layer required to maintain historical sea surface30

temperatures (Sokolov et al., 2005). However, because the Q-flux is calculated offline from control simulations, the pattern is

fixed throughout the run. Any time-varying change to an input forcing cannot be accounted for in the Q-flux calculation. Thus,
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Figure 2. Annual mean total solar irradiance. The bias between the Lean (2000) and Kopp and Lean (2011) datasets leads to a reduction in

radiative forcing in the new forcing suite.

the growth of the low bias means that
::::::
growth

::
of

:::
this

::::
low

::::
bias

::::::::
introduces

::
a
:::::::::
weakening

::
of

:
the solar forcing weakens with time

beginning in 1920 in the new suite of forcings.

We observe that the ozone concentrations estimated from the AC&C/SPARC dataset differ in both space and time when

compared to the previous concentrations used with IGSM (Figure 3). One clear difference is that the AC&C/SPARC dataset

introduces more temporal variability in stratospheric ozone concentrations (which we approximate as pressure levels above 2005

mb) prior to 1950. Post-1950, AC&C/SPARC tends to have lower ozone concentrations in the stratosphere and slightly greater

concentrations in the troposphere (levels below 200 mb). However, similar to with the solar forcing, we are concerned with the

temporal change in the forcing imposed by the ozone concentrations, rather than the relative magnitude of the concentrations

across datasets. Beginning in 1900, tropospheric ozone concentrations increase less rapidly in the AC&C/SPARC dataset when

compared to the IGSM dataset. Differences in stratospheric ozone concentrations remain relatively constant until 1950, but then10

decrease at a slower rate in the AC&C/SPARC time series. These patterns are generally consistent in the global and hemispheric

means. When considered separately, increased tropospheric ozone concentrations tend to increase radiative forcing (Stevenson

et al., 2013) and decreased stratospheric concentrations tend to increase radiative forcing (Conley et al., 2013). Thus, the

less rapid increase in tropospheric ozone concentration and less rapid decrease in stratospheric ozone concentration in the

AC&C/SPARC dataset both contribute to a weaker radiative forcing over the historical period in the new suite of forcings.15
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Figure 3. Ozone concentration in the old IGSM time series (red) and the Cionni et al. (2011) AC&C/SPARC concentrations (black). (a-c)

Annual mean ozone mixing ratio in the total column in the global average (a), northern hemisphere (b), southern hemisphere (c). (d-f) As in

(a-c) but for the average above 200 mb. (g-i) As in (a-c) but for the average below 200 mb.

With the input forcings documented, we focus on deriving probability distributions for the model parameters. We first test

the impact of omitting the upper-air diagnostic.
::
As

:::::
noted

::
in
:::::::

Section
::
3,

:::
the

:::::::
surface

:::
and

::::::::
upper-air

::::::::::
temperature

::::::::::
diagnostics

:::
are

:::::
highly

:::::::::
correlated.

:::
As

:
a
:::::
result,

::::
they

:::::
reject

::::::
similar

::::::
regions

::
of

:::
the

:::::::::
parameter

::::
space

:::
for

:::::
being

::::::::::
inconsistent

::::
with

:::
the

:::::::
observed

:::::::
climate

::::::
record.

:::::
Thus,

:::::
those

::::::
regions

:::
are

:::::::
rejected

:::::
twice,

:::::
while

:::::::
regions

::::::::::
inconsistent

::::
with

:::
the

::::::
ocean

:::
heat

:::::::
content

:::::::::
diagnostic

:::
are

:::::::
rejected

::::
only

::::
once.

::::::::::
Multiplying

:::
the

::::::::
Bayesian

:::::::::
likelihood

:::::::
estimate

::
by

:::
the

:::::
same

::::::
pattern

:::::
twice

:::::
leads

::
to

:
a
::::::::
potential

:::
bias

::
in

:::
the

:::::::::::
distributions5

::::::
towards

:::::::
regions

:::
that

:::
are

:::::::::
consistent

::::
with

:::
the

::::::
surface

::::::::::
temperature

:::::::::
diagnostic.

:

Starting from the distributions calculated in Libardoni and Forest (2011), we derive new distributions based only on the sur-

face temperature and ocean heat content diagnostics presented in Section 3. We show that reducing the number of diagnostics

from three to two has little impact on
::::
leads

::
to

:::::
slight

:::::::
changes

::
in the parameter estimates (Table 1). We only present comparisons

for ECS and Faer because distributions of Kv were poorly constrained in Libardoni and Forest (2011) and no uncertainty10

bounds were given. In general, ECS estimates tend to be slightly lower when using only two diagnostics and aerosol estimates
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Table 1. 90-percent confidence intervals for
:::::
climate

::::::::
sensitivity

:
(ECS

:
) and

:::
net

:::::
aerosol

::::::
forcing

:
(Faer:

). Distributions that include the upper-air

diagnostic are from Libardoni and Forest (2011) and distributions with two diagnostics exclude the upper-air diagnostic.

Surface Temperature

Dataset
# Diagnostics

ECS Faer

(�C) (Wm�2)

5% 95% 5% 95%

HadCRUT21
3 2.0 5.3 -0.19 -0.70

2 1.9 5.2 -0.19 -0.71

HadCRUT32
3 1.9 5.1 -0.22 -0.74

2 1.7 5.0 -0.38 -0.79

NCDC3
3 1.8 4.7 -0.37 -0.78

2 1.6 4.8 -0.38 -0.79

GISTEMP2504
3 1.3 3.6 -0.32 -0.83

2 1.1 4.0 -0.35 -0.83

GISTEMP12005
3 1.2 3.4 -0.33 -0.80

2 1.0 3.7 -0.35 -0.83
1Hadley Centre Climatic Research Unit Temperature version 2 (Jones and Moberg, 2003)
2Hadley Centre Climatic Research Unit Temperature version 3 (Brohan et al., 2006)
3National Climatic Data Center merged land-ocean dataset (Smith et al., 2008)
4GISS Surface Temperature Analysis with 250 km smoothing (Hansen et al., 2010)
5GISS Surface Temperature Analysis with 1200 km smoothing (Hansen et al., 2010)

are nearly unchanged. Further, the relationships between the distributions with respect to surface dataset are unchanged. Be-

cause the changes using only two diagnostics are minimal and do not change any conclusions from the original study
:::
and

::::::::::::
conservatively

:::::::
removes

:::
the

:::
risk

::
of

::::::
double

::::::::
counting

:::
the

::::::
surface

:::::
signal, we justify the removal of the upper-air diagnostic.

We next evaluate the impacts that changing the model from IGSM to MESM and updating the forcing suite have on the pa-

rameter distributionsby comparing model output from each ensemble member against the temperature diagnostics discussed in5

Section 3. Following the methods outlined in Libardoni and Forest (2011), we calculate goodness-of-fit statistics across all runs

for each diagnostic and convert them to a joint probability distribution function for the model parameters. Marginal probability

distributions for individual parameters are then calculated by integrating the joint distribution over the other two parameters.

:
. We present the new distributions

::::::::
marginal

::::::::::
distributions

:::
for

::::
each

:::::::::
parameter

:
in Figure 4 and observe significant differences

between distributions
::::
those

:
derived using IGSM and those derived using MESM with the updated forcings (Table 2). Across10

all datasets, climate sensitivity distributions shift towards higher values and the uncertainty bounds encompass a wider range.

When considering the 90-percent confidence intervals from across the distributions derived from each surface dataset, we find

climate sensitivity now lies between 1.3 and 5.7 �C, as opposed to the estimated interval of 1.2 to 5.3 �C from Libardoni and

Forest (2011). While the uncertainty bounds are still wide compared to other parameters, we observe that Kv is now better

constrained with MESM. The distributions of Kv derived using the GISTEMP datasets are still unconstrained with upper tails15
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Figure 4. Marginal probability distribution functions and TCR cumulative distribution functions derived from MESM simulations using the

HadCRUT2, HadCRUT3, NCDC, GISTEMP 250, and GISTEMP 1200 surface temperature datasets as observations. :
:
(a) ECS, (b) Kv , and

(c) Faer . Whisker plots indicate boundaries for the 2.5-97.5 (dots), 5-95 (vertical bar ends), 25-75 (box ends), and 50 (vertical bar in box)

percentiles. Distribution means are represented by diamonds and modes are represented by open circles. (d) TCR CDFs are derived from

1000 member Latin Hypercube samples
:::::
drawn from the joint parameter distributions and the TCR (ECS,

p
Kv) functional fit.

extending to the edge of the parameter domain, but all other datasets now show an upper bound well within the ensemble range.

We also observe a marked shift in the aerosol estimates. When MESM is used with the updated forcing suite, there is a sizable

shift towards weaker aerosol forcing across all datasets. Whereas past estimates put
:::
the net aerosol forcing between -0.83 and

-0.19 Wm�2, our new estimate of aerosol forcing is between -0.53 and -0.03 Wm�2.

The shifts we observe in the parameter estimates are consistent with the changes in the input forcings. Both the solar and5

ozone forcing patterns lead to a reduction in their contribution to the global radiation budget and decrease the net radiatiave

forcing on the planet. Because the diagnostics do not change, model runs with a weaker external forcing are compared against

the same observed temperature patterns. Weaker increases in external forcing require higher climate sensitivity to match
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the same warming trend. In the model, the aerosol forcing pattern is a negative term in the global energy budget. It should

follow that if, as noted previously, there is weaker net forcing due to the changes in forcing datasets, our estimates of the

aerosol amplitude should become less negative. From these arguments, combinations of higher climate sensitivity and weaker

aerosol forcing offset the impact of a weaker external forcing. Further, these results are consistent with the weakening of the

non-CO2greenhouse gas forcing introduced by the new radiation code in MESM. We observe these shifts in the distributions5

when comparing the distributions derived from the old and new models (Table 2).

To test whether the differences observed in the parameter estimates were due to the model update, rather than the increased

density of model runs, we subsampled each ensemble at the 480 ✓s where they overlap (see Figure 1). We summarize the
::::
these

distributions in Table 2 and see that there is very little sensitivity when the ensembles are subsampled. Across all datasets,

the distributions we derive using the full 640-member IGSM ensemble and those we derive using the 480-member IGSM10

ensemble are nearly identical for all three parameters. The same is true for the MESM ensemble, except for the distributions

we derive for Kv . We consistently estimate a smaller upper bound for Kv in the subsampled MESM ensemble compared to

when the full MESM ensemble is used. This arises because the wider range of
::
we

::::::
assign

::
a
:::::::::
probability

:::
of

::::
zero

::
to

:::::::
regions

::
of

:::
the

::::::::
parameter

::::::
space

:::
that

:::::
have

:::
not

::::
been

::::::::
sampled.

:::::
Thus,

:::
for

:::
the

::::::::::
subsampled

:::::::
MESM

:::::::::
ensemble,

:::
we

:::::
assign

::
a
:::::::::
probability

:::
of

:::
zero

:::
for

:
Kv ::::

p
Kv sampled in the MESM ensemble

::::::
between

::
5
:::
and

::
8
::::::::
cm s�1/2,

:::
but

:::
the

:::::::::
likelihood

:::::::
function

::::
does

::::
not

:::::::
evaluate

::
to15

:::
zero

:::
in

:::
this

::::::
region

:::::
when

:::::
using

::::::::::
information

::::
from

:::
the

::::
full

::::::::
ensemble.

:::
As

:
a
::::::

result,
:::
the

:::
full

:::::::::
ensemble does not artificially cut off

the distribution for values of
:
at
:

p
Kv greater than

:::::
equal

::
to

:
5 cm s�1/2 . Thus, the

:::
and

::::
leads

:::
to

:::::
higher

::::::
upper

::::::
bounds

:::
on

:::
the

::::::::::
distributions.

::::::::
Knowing

::::
this,

:::
we

::::
can

:::::::
conclude

:::::
from

:::
the

::::::::
similarity

:::::::
between

:::::::::::
distributions

::::::
derived

:::::
from

:::
the

:::
full

::::
and

::::::::::
subsampled

::::::::
ensembles

::::
that

:::
the

:
differences we observe between the old and new

:::::
IGSM

:::
and

:::::::
MESM ensembles are due to the differences

between the model and forcing themselvesand ,
:
not the increased density of model runs.20

::
To

::::::
further

:::::::::::
demonstrate

:::
the

::::
total

:::::
effect

::
of

:::::::
changes

:::
to

:::
the

::::::
model,

:::::::
forcings,

::::
and

::::::::
ensemble

::::::
design,

:::
we

::::::::
compare

:::
the

::::::::
marginal

::::::::::
distributions

:::::::
derived

::::
from

:::
the

::::
full

::::::
IGSM

:::
and

:::::::
MESM

:::::::::
ensembles

:::::
using

::::
each

:::::::
surface

::::::::::
temperature

::::::
dataset

:::::::
(Figure

:::
5).

:::
For

:::
all

:::
five

:::::::
datasets,

:::
we

:::::::
observe

::::
shifts

:::::::
towards

::::::
higher

::::::
climate

:::::::::
sensitivity,

::::::
slightly

::::::
higher

:::::
ocean

:::::::::
diffusivity,

::::
and

::::::
weaker

::::::
aerosol

:::::::
forcing,

::::::::
consistent

::::
with

:::
our

:::::::
previous

::::::::::
discussion.

::::::
Further,

:::
we

::::::::::
demonstrate

::::
that

:::
the

:::::
higher

:::::
ocean

::::::::::
diffusivities

:::::
using

:::
the

::::::
MESM

:::::::::
ensembles

::
are

:::
the

:::::
result

:::
of

:::
not

::::::::
assigning

::::
zero

:::::::::
probability

:::
for

:::::

p
Kv :::::::

between
:
5
::::
and

:
8
::::::::
cm s�1/2

:
.
::::
This

::
is

::::::
clearly

::::::
evident

::
in

:::
the

:::::::::::
distributions25

::::::
derived

:::::
using

:::
the

:::::::::
GISTEMP

::::::
datasets

:::::::
(Figure

:::
5b),

::::::
where

:::
the

:::::
IGSM

::::::::::
distributions

:::::
drop

::::::
sharply

::
to

:
0
::
at
:::::

p
Kv:::::

equal
::
to

:
5
::::::::
cm s�1/2

:
.

To estimate
:::::::
Because

:::
the

::::::::::
parameters

:::
are

:::::::::
estimated

::::::
jointly,

::::::::::
identifying

:::
the

:::::::
causes

:::
for

:::::::
specific

:::::::
changes

::
in
::::

the
::::::::
marginal

::::::::::
distributions

:::
are

:::
not

::::::
always

:::::::::::::
straightforward.

::::
With

:::
this

::::::
caveat,

:::
we

::::
now

::::::
present

:::::::
reasons

::
for

:::
the

::::::::
observed

:::::::
changes

:
in
:::
the

:::::::::
parameter

::::::::::
distributions.

::::
We

:::::
begin

::::
with

::::
Faer:.:::

As
::::::::
discussed

::::::
earlier

::
in

:::
this

:::::::
section,

:::::::
changes

::
to

::::
both

:::
the

:::::
solar

:::
and

::::::
ozone

::::::
forcing

::::
lead

::
to

::
a30

::::::::
reduction

::
in

::::
their

::::::::::
contribution

::
to

:::
the

:::::
global

::::::::
radiation

::::::
budget.

:::::::::::
Additionally,

::::
there

::::
has

::::
been

:
a
:::::::::
weakening

::
of

::::
non-

::::
CO2 :::::::::

greenhouse

:::
gas

::::::
forcing

:::::::::
introduced

:::
by

:::
the

::::
new

:::::::
radiation

:::::
code

::
in

:::::::
MESM.

:::::
These

::::::
factors

:::::
result

::
in

::
a

:::::::
decrease

::
in

:::
the

:::
net

::::::::
radiative

::::::
forcing

:::
on

::
the

::::::
planet.

:::::
With

:::
the

::::::
surface

::::::::::
temperature

:::
and

::::::
ocean

:::
heat

:::::::
content

:::::::::
diagnostics

::::::::::
unchanged,

:::
the

:::::
same

::::::::::
temperature

::::::
patterns

:::::
need

::
to

::
be

:::::::
matched

::::::
despite

:::
the

:::::::
weaker

:::
net

::::::
forcing.

::::
One

::::::::::
adjustment

::
to

:::
the

::::::
climate

::::::
system

::::
that

:::
can

::::
help

::::::::::
accomplish

:::
the

::::::::
matching

::
is

::
to

12



Table 2. 90-percent confidence intervals and means for climate sensitivity (ECS), ocean diffusivity (Kv), and net aerosol forcing (Faer).

Surface temperature datasets are the same as in Table 1.

Surface Temperature

Dataset
Model and Runs

ECS
p
Kv Faer

(�C) (cm s�1/2) (Wm�2)

5% 95% Mean 5% 95% Mean 5% 95% Mean

HadCRUT2

Full IGSM 1.9 5.2 3.0 0.1 2.1 0.9 -0.19 -0.71 -0.46

Subsampled IGSM 1.9 5.2 3.0 0.1 2.1 0.9 -0.16 -0.71 -0.45

Full MESM 2.1 5.7 3.5 0.1 2.3 1.0 -0.03 -0.39 -0.22

Subsampled MESM 2.1 5.7 3.4 0.1 2.2 1.0 -0.03 -0.39 -0.22

HadCRUT3

Full IGSM 1.7 4.0 2.8 0.2 2.9 1.2 -0.22 -0.75 -0.50

Subsampled IGSM 1.7 4.0 2.8 0.2 2.9 1.2 -0.20 -0.75 -0.49

Full MESM 1.9 5.4 3.2 0.2 3.6 1.3 -0.05 -0.43 -0.24

Subsampled MESM 1.9 5.4 3.2 0.2 3.0 1.2 -0.05 -0.42 -0.24

NCDC

Full IGSM 1.6 4.8 2.7 0.3 3.7 1.6 -0.38 -0.79 -0.59

Subsampled IGSM 1.6 4.8 2.7 0.3 3.7 1.6 -0.36 -0.79 -0.58

Full MESM 2.0 5.4 3.2 0.3 3.7 1.6 -0.15 -0.45 -0.29

Subsampled MESM 2.0 5.3 3.2 0.3 3.2 1.5 -0.15 -0.45 -0.29

GISTEMP 250

Full IGSM 1.1 4.0 2.1 0.7 4.8 2.7 -0.35 -0.86 -0.61

Subsampled IGSM 1.1 4.0 2.1 0.6 4.8 2.7 -0.35 -0.86 -0.60

Full MESM 1.3 4.8 2.6 0.8 7.3 3.5 -0.13 -0.53 -0.34

Subsampled MESM 1.4 4.7 2.6 0.8 4.7 2.6 -0.13 -0.51 -0.33

GISTEMP 1200

Full IGSM 1.0 3.7 1.9 0.8 4.9 3.1 -0.35 -0.83 -0.56

Subsampled IGSM 1.0 3.7 1.9 0.7 4.9 3.1 -0.35 -0.82 -0.56

Full MESM 1.3 4.8 2.6 0.8 7.3 3.5 -0.14 -0.49 -0.33

Subsampled MESM 1.3 4.7 2.6 0.8 4.7 2.6 -0.14 -0.49 -0.32

:::::::
increase

:::
the

::::::
forcing

::::
from

:::::::
another

::::
term

::
in

:::
the

::::::
energy

::::::
budget.

:::
Of

:::
the

:::::
three

:::::
model

::::::::::
parameters,

::::
Faer :

is
:::
the

::::
only

::::
one

:::
that

:::::::
directly

::::::
changes

:::
the

::::::::
radiative

:::::::
forcing,

:::
and

:::
we

::::
thus

::::::
observe

:::
the

::::
shift

:::::::
towards

::::
less

:::::::
negative

::::::
aerosol

:::::::
forcing.

::
An

:::::::::::
explanation

::::::
similar

::
to

::::
that

::::
used

::::
for

:::
the

::::::
aerosol

::::::::::
distribution

::::
can

:::
be

::::::
applied

:::
to

:::::::::
explaining

:::
the

::::::::
observed

:::::
shifts

::
in
::::

the

::::::
climate

:::::::::
sensitivity

::::::::::
distribution.

:::
In

::
its

:::::
most

:::::
basic

:::::
sense,

:::::::
climate

:::::::::
sensitivity

::
is

:
a
:::::::::::

temperature
::::::
change

:::
per

::::
unit

:::::::
forcing.

::::::
When

::::::
holding

:::
the

::::::::::
temperature

:::::::
patterns

:::::
fixed,

:::
the

::::::
change

::
in

::::::::::
temperature

:
is
::
a
:::::::
constant.

::::::
When

::::::::
explaining

:::
the

::::::
aerosol

::::::::::
distribution

::::::
above,5

::
we

:::::::::
implicitly

::::
fixed

:::
the

:::::::
climate

:::::::::
sensitivity,

::::::::
requiring

:::
the

:::::::
aerosol

::::::
forcing

::
to

:::
be

:::
less

::::::::
negative

::
to

::::
keep

:::
the

:::
net

:::::::
forcing

::::::::
constant.

::::::::
However,

:
if
:::
we

:::
fix

::::
Faer:,:::

the
::::
same

:::::::::::
temperature

::::::
change

:::::
needs

::
to

::
be

:::::::
realized

::::
with

:::
the

:::::::
weaker

::::::
forcing

::::
due

::
to

:::
the

:::::::
changes

::
in

:::
the

::::
solar

:::
and

::::::
ozone

:::::::
forcings.

:::::
This

::::::
implies

::
a

:::::
higher

:::::::
climate

:::::::::
sensitivity

::
is

:::::::
required

:::
and

::::::::
explains

:::
the

:::::
shifts

::
we

:::::::
observe

::
in
:::

the
:::::

ECS

:::::::
marginal

::::::::::
distribution.

:

::
In

:::::::
practice,

:::
the

::::::
model

:::::::::
parameters

:::
are

::::
not

::::::::::
independent

::
of

:::::
each

:::::
other

:::
and

::::
can

::::::
change

:::::::::::::
simultaneously.

:::::
Many

::::::::::::
combinations10

::
of

:::::
higher

:::::::
climate

::::::::
sensitivity

::::
and

::::::
weaker

::::::
aerosol

:::::::
forcing

::::
lead

::
to

::::::
similar

:::::::::
agreement

::::
with

:::
the

:::::::
observed

::::::::::
temperature

:::::::
record.

::::
This

:::::::
suggests

:
a
::::::::::

correlation
:::::::
between

:::::
these

::::
two

::::::::::
parameters

:::
and

:::::::::
highlights

::
a

:::::::
strength

::
of

:::::::::
estimating

::::
the

::::
joint

:::::
PDF

:::
for

:::
the

::::::
model

:::::::::
parameters:

:::
the

::::::::::::
identification

::
of

:::::::::::
relationships

:::::::
between

:::
the

:::::
model

::::::::::
parameters.

:::::::::
However,

::::
these

:::::::::::
relationships

::::
also

::::::::
highlight

:::
the

::::::::
challenge

::
in

:::::::::
attributing

::::::
changes

:::
in

:
a
:::::
single

:::::::::
parameter

::
to

:
a
:::::::
specific

:::::
cause.

:

:::::
Unlike

:::
the

:::::::
climate

::::::::
sensitivity

::::
and

::::::
aerosol

::::::
forcing

:::::::::::
distributions,

::
a
::::
clear

:::::::
physical

::::::::::
explanation

:::
for

:::
the

::::::::
observed

:::::::
changes

::
in

:::
the15

:::
Kv :::::::::

distribution
::

is
:::::

more
:::::::
difficult

::
to
::::::::

identify.
::::
One

::::::
reason

:::
for

:::
this

::::::::
difficulty

::
is

:::
the

:::::::
relative

::::::::::
insensitivity

::
of

::::
the

:::
Kv :::::::::

distribution

13
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Figure 5. Model response surfaces for
::::::
Marginal

:::::::::
probability

:::::::::
distribution

::::::::
functions

::::::
derived

::::
from

:::
the

::::
full

:::::
IGSM

:
(a
:::::
dashed) TCR and

:::::
MESM

:
(
::::

solid)
::::::::
ensembles

::::
using

:::
the

::::::::::
HadCRUT2,

:::::::::
HadCRUT3,

:::::::
NCDC,

::::::::
GISTEMP

::::
250,

:::
and

::::::::
GISTEMP

::::
1200

::::::
surface

:::::::::
temperature

:::::::
datasets

:
as
:::::::::::

observations:
::
(a)

::::
ECS,

:
(b) thermosteric sea level rise

:::
Kv ,

:::
(c)

::::
Faer . Contours

::::::
Whisker

::::
plots

::::::
indicate

:::::::::
boundaries for the MESM response

surfaces are shown
::::::
2.5-97.5

::::::
(dots),

::::
5-95

::::::
(vertical

:::
bar

:::::
ends),

:::::
25-75

:::
(box

:::::
ends),

::::
and

::
50

::::::
(vertical

:::
bar

:
in black

::::
box)

::::::::
percentiles.

::::::::::
Distribution

:::::
means

::
are

:::::::::
represented

:::
by

:::::::
diamonds

:
and contours for the IGSM surfaces

::::
modes

:
are shown in red

:::::::::
represented

::
by

::::
open

:::::
circles. Differences

between
::
For

::
a

::::
given

::::::
dataset,

:
the fits are also shown (c

::
top

:
and d)

:::::
bottom

::::::
whisker

::::
plots

:::::::::
correspond

::
to

:::
the

::::::
MESM

:::
and

:::::
IGSM

:::::::::
ensembles,

:::::::::
respectively.

::
to

:::
the

:::::
model

:::::::
updates.

:::::
This

:::::::
suggests

::::
that

:::::
either

:::
the

:::::
ocean

::::::::
response

::
is

:::::::::
insensitive

::
to

:::::::
changes

::
in

:::
the

::::::
model

:::::::
forcings

::
or

::::
that

:::
the

:::::::::
diagnostics

::::
used

::
in
::::

this
:::::
study

:::
are

::::::
unable

::
to

::::::::
constrain

:::
the

:::::::::
parameter.

::::
The

::::
latter

::
is
::::::::
explored

::
in

::
a

:::::::
separate

:::::
study

::
by

:::
the

:::::::
authors

:::::::::::::::::::
(Libardoni et al., 2018).

:

::
To

:::::::
evaluate

::::
how

::::
well

:::
the

:::::
model

:::::::
captures

:::
the

::::::::
observed

::::::
record

:::
and

::::::::::
demonstrate

:::
the

:::::
wide

:::::
range

::
of

::::::
climate

:::::
states

::::::::
simulated

:::
by

::
the

:::::::
MESM

:::::::::
ensemble,

:::
we

:::::::
compare

:::
the

::::::
model

:::::
output

:::
to

:::
the

:::::::
observed

:::::::
climate

::::::
record

:::::::
(Figures

::
6

:::
and

:::
7).

::
In

::::::
Figure

::
6,

:::
we

:::::
show5

::
the

::::::
global

:::::
mean

::::::
surface

:::::::::::
temperature

::::
time

:::::
series

:::
for

:::
all

::::::::
ensemble

::::::::
members,

:::::
along

:::::
with

::::
each

::
of

:::
the

::::
time

::::::
series

::::
from

::::
each

:::
of

::
the

::::
five

:::::::::::
observational

:::::::
datasets

:::::
used

::
in

:::
the

::::::
surface

::::::::::
diagnostic.

::
In

::::::
Figure

::
7,

:::
we

:::::::
compare

:::
the

::::::
linear

::::
trend

:::
in

:::
the

:::
0-3

:::
km

::::::
global

::::
mean

:::::
ocean

::::
heat

:::::::
content

::::::::
estimated

::::
from

:::
the

:::::::
MESM

:::::::::
simulations

::::::
against

:::
the

::::::::
observed

::::::::
estimate.

:::
For

::::
both

:::
the

::::::
surface

::::
and

:::::
ocean

:::::::::::
comparisons,

:::
we

::::::::
highlight

:::
the

::::::::
estimates

:::::
from

:::
the

::::::
MESM

:::::::::
ensemble

::::::::
members

:::::
which

:::::
have

::::::::
parameter

:::::::
settings

::::::
closest

:::
to

:::
the

::::::
median

:::::
values

:::::
from

:::
the

:::
full

::::::::
ensemble

:::::::
MESM

::::::::::
distributions.

:
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Figure 6.
:::::::
Observed

:::
and

:::::::
simulated

::::::
global

::::
mean

::::::
surface

:::::::::
temperature

:::::::::
anomalies.

:::
The

:::::::
observed

::::
time

:::::
series

::::
(red)

:::
are

::::::
derived

::::
from

::::
each

::
of

::
the

:::
five

::::::
surface

:::::::::
temperature

::::::
datasets

::::
used

::
in

:::
the

:::::
surface

:::::::::
temperature

:::::::::
diagnostic.

::::
Also

:::::
shown

::
are

:::
the

::::
time

::::
series

:::
for

::::
each

::::::
MESM

::::::::
simulation

::::::
(black).

::::
Runs

:::
with

::::::::
parameter

::::::
settings

:::::
closest

::
to

:::
the

:::::
median

:::::
values

::::
from

::::
each

:::::::::
distribution

::
are

:::::::::
highlighted

:::::
(blue).

:::
All

:::::::
anomalies

:::
are

::::::::
calculated

:::
with

::::::
respect

::
to

::
the

::::::::
1906-1995

::::::::::
climatology

:::
used

::
in

:::
the

:::::
surface

:::::::::
diagnostic.

:::
For

::::
both

:::
the

:::::::
surface

::::::::::
temperature

:::
and

::::::
ocean

::::
heat

::::::
content

::::::
trends,

:::
we

:::::
have

:::::::
sampled

:::::
many

:::::::
climate

:::::
states

::
on

:::
the

::::::
colder

::::
and

::::::
warmer

:::::
sides

::
of

:::
the

::::::::
observed

::::::
values.

::::
We

::::
note

::::
here

:::
that

:::
the

::::::::
negative

:::::
ocean

::::
heat

:::::::
content

:::::
trends

:::
are

:::
the

::::::
result

::
of

::::::::::
simulations

::::
with

:::::
strong

:::::::
cooling

:::
that

:::
lie

::::
well

::::::
outside

:::
the

:::::::::
acceptable

:::::
range

::
of

:::
the

:::::::::
parameter

:::::
space.

::::
All

:::::::::
simulations

::::
with

::::
this

:::::::
negative

:::::
trend

::::
have

::::
Faer :::

less
::::
than

::
or

:::::
equal

::
to

:::::
-0.75

::::::
Wm�2

:
,
:
a
:::::::::::::
zero-probability

::::::
region

::
in

:::
the

:::::::
MESM

::::::::
ensemble.

::::
For

:::
the

:::::
global

:::::
mean

:::::::
surface

::::::::::
temperature

::::
time

::::::
series,

:::
the

::::::
median

::::::::::
simulations

::::::::
compare

::::::::
favorably

::
to

:::
the

::::::::
observed

::::
time

::::::
series.

::::
For

:::
the

:::::
ocean

::::
heat

:::::::
content5

:::::
trend,

:::
the

::::::
median

::::::::::
simulations

::::
tend

::
to

:::::::::::
overestimate

:::
the

:::::
trend

::::::::
compared

::
to
:::

the
::::::::

observed
::::::
value.

::::::
Perfect

:::::::
matches

::::::
should

:::
not

:::
be

:::::::
expected

:::::
when

:::::::::
comparing

:::
the

:::::::
median

::::::::::
simulations

::
to

:::
the

:::::::::::
observations,

::::::::
however.

:::::::
Because

:::
we

:::::::
derived

:::
the

:::::::::::
distributions

:::::
using

::
the

:::::::
surface

:::
and

::::::
ocean

:::::::
records,

::::
only

:::::
those

::::
runs

::::
that

:::::
agree

::::
with

::::
both

::::::::::
diagnostics

:::
are

:::
not

:::::::
rejected

:::
for

:::::
being

::::::::::
inconsistent

:::::
with

::
the

:::::
data.

:::::
Thus,

:
a
::::::
model

:::::::::
simulation

:::
that

:::::::::
reproduces

:::
the

::::::
global

:::::
mean

::::::
surface

::::::::::
temperature

::::::::
perfectly

::::
may

::::
have

:::
too

::::
little

::::::::
warming

::
in

:::
the

::::
deep

::::::
ocean.

::::::::
Similarly,

::
a
:::::
model

:::::
with

:::
the

::::::
perfect

:::::
ocean

::::
heat

::::::
content

:::::
trend

::::
may

:::
not

::::::
match

:::
the

::::::
surface

:::::::::::
temperature

::::
time10

:::::
series.

:::::
Small

::::::::::
deficiencies

::
in
:::

the
:::::::

median
::::
runs

::::::::
compared

:::
to

:
a
:::::
single

::::::::
observed

::::::
record

:::
are

:::
the

:::::
result

::
of

:::::::::::::
simultaneously

::::::::
matching

::
the

:::::::
surface

:::
and

:::::
ocean

:::::::
records.

:
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Figure 7.
:::::::
Histogram

::
of
:::::

linear
:::::
trends

::
in

:::
the

:::
0-3

:::
km

:::::
global

::::
mean

:::::
ocean

::::
heat

::::::
content

:::::::
estimated

::::
from

::::
each

::::::
MESM

:::::::
ensemble

:::::::
member.

::::
The

::::::
observed

:::::
trend

::::
(red)

:::
and

:::::
trends

:::::::
estimated

::::
from

:::
the

:::::
MESM

:::::::::
simulations

::::
with

::::::::
parameter

:::::
values

:::::
closest

::
to

:::
the

::::::
medians

::::
from

::::
each

:::::::::
distribution

::::
(blue)

:::
are

:::::
shown

::
as

::::::
vertical

::::
lines.

::
To

:::::::
estimate

:
TCR in MESM, we run a 372-member ensemble where all forcings are held fixed and carbon dioxide concentra-

tions are increased by 1% per year. We calculate TCR by estimating the global mean temperature change from the beginning of

the simulations
::::::::
simulation

:
to the time of CO2 doubling. Concentrations double in year 70 and we estimate TCR as the average

global mean temperature change in years 60-80 of the simulation. Temperature changes are calculated with respect to a control

simulation with the same model parameters and all forcings held fixed. In a similar manner, we also estimate thermosteric sea5

level rise (SLR) at the time of doubling. Because all forcings except those attributed to CO2 are fixed, each ECS-
p
Kv pair

yields a single TCR value and a single SLR value, independent of Faer.

We fit a third-order polynomial in ECS and
p
Kv to the TCR and SLR values calculated from each run to derive a functional

fit for all parameter pairs within the domain. From these
:::
The

:::::::::
third-order

::::::::::
polynomial

::
fit

:::
is

::::::
chosen

::
to

:::
be

::
of

:::
the

:::::
same

:::::
form

::
as

:::
the

:::
fits

::::::
derived

:::
for

::::
the

:::::
IGSM

::::::
model.

:::::::
Further,

:::
an

:::::::::::
investigation

::
of

::::::::
different

:::::
order

:::
fits

::::
(not

::::::
shown)

::::::::
indicated

::::
that

::
at

::::
least

::
a10

:::::::::
third-order

::
fit

::
is

:::::::
required

:::
to

:::::::::::
satisfactorily

::
fit

:::
the

:::::
data.

:::::
From

:::
the

:::::::::
functional fits, we derive response surfaces for each of the

transient properties (Figure 8). For comparison, we also show the fit derived using the IGSM and its corresponding 1% per

year runs, in addition to the differences between the two. Outside of the region where ECS is greater than 4 �C and
p
Kv is less

than about 0.5 cm s�1/2 , and away from the edges of the domain, TCR values from IGSM and MESM agree quite well. There
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Figure 8.
:::::
Model

:::::::
response

::::::
surfaces

:::
for

::
(a)

::::
TCR

:::
and

:::
(b)

:::::::::
thermosteric

:::
sea

::::
level

::::
rise.

:::::::
Contours

::
for

:::
the

::::::
MESM

:::::::
response

::::::
surfaces

:::
are

:::::
shown

::
in

::::
black

:::
and

:::::::
contours

::
for

:::
the

:::::
IGSM

::::::
surfaces

:::
are

:::::
shown

::
in

:::
red.

:::::::::
Differences

::::::
between

:::
the

::
fits

:::
are

:::
also

::::::
shown

:
(c
:::
and

:::
d).

is a similar pattern of agreement in the SLR response surface, with the biggest discrepancies occurring in the high ECS-high
p
Kv region and near the edges of the parameter domain.

We use the response surface to derive probability distributions for TCR. From each of the joint probability distributions

derived from
::::
using

:
the subsampled MESM ensemble, we draw a 1000-member Latin Hypercube Sample (McKay et al., 1979)

of model parameters. The subsampled distributions are chosen so that we restrict the domain to that of the IGSM ensemble,5

allowing for a more direct comparison of the distributions. Otherwise, high Kv ::::

p
Kv values that are within the domain of the

functional fit to the MESM runs would be selected, for which there is no fit using the IGSM function. We map each of the
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ECS-
p
Kv pairs onto the response surface to provide an estimate of TCR values. Binning the responses in a histogram with bin

size = 0.1 �C allows a PDF to be calculated, and the resulting cumulative density functions derived using MESM are displayed

in Figure 4d. Comparing TCR distributions for the IGSM and MESM ensembles shows a shift towards higher TCR with the

latest results. When comparing the range of 90-percent confidence intervals derived using MESM to those from Libardoni and

Forest (2011), we find that TCR estimates increase from 0.87-2.31 �C using IGSM to 0.90-2.72 �C using MESM. We have5

shown previously that the marginal distributions of
p
Kv are similar between the two models, indicating that this shift towards

higher TCR is driven by the higher ECS estimates derived from MESM.

5 Conclusions

In this study, we have provided an open, transparent means of testing the changes in model response and parameter estimation

to changes in the MIT Integrated Global Systems Model modeling framework. Not only does this systematic accounting of the10

impacts give a reference point moving forward for studies involving MESM, it proposes a template for assessing the impact that

changes in other simplified climate models have on the calibration of their own model parameters. It hoped
::
We

:::::
hope that this

study motivates similar investigations moving forward that produce
::::
other

:::::::::
modeling

::::::
groups

::
to

:::::::
perform

::::::
similar

::::::::::::
investigations

:::
that

::::::
provide

:
documented accountings of model updatesand that lead to a

:
,
::::::
leading

::
to

:
a
:::::
more robust understanding of the impacts

:::
that the changes have on the parameter calibration

::::::::
parameter

:::::::::
estimation

:::
and

::::::
model

:::::::
behavior.15

By updating the model and its input forcings, we identify the impact that the switch from the MIT Integrated Global Systems

Model to the MIT Earth System Model has on the probability distributions of model parameters. The decreases in radiative

forcing due to the change in radiative forcing code, the new solar radiation data, and the new ozone concentrations used to

estimate the ozone forcing lead to a net energy deficit when compared to the replaced forcings. This drives an upward shift

in our estimates of the 90-percent confidence interval for climate sensitivity from 1.2 to 5.3 �C to 1.3 and 5.7 �C, a better20

constraint on ocean diffusivity, and a decrease in the 90-percent confidence interval for the net anthropogenic aerosol forcing

from between -0.83 and -0.19 Wm�2 to between -0.53 and -0.03 Wm�2. One caveat of our analysis is that because we changed

the forcings and CLM simultaneously, we cannot fully attribute the parameter shifts to the model forcings alone. We have
::::
thus

shown the total effect of changing both the model and forcings on the parameter distributions, not the effects of the changes

individually.25

Because TCR is independent of the input forcings, the only difference between the IGSM and MESM configurations in the

transient simulations is the land surface model. By showing that the transient climate response surfaces derived from the two

models differ only slightly, we provide evidence that the switch to CLM3.5 does not greatly impact the temperature evolution

in the model. We have drawn Latin Hypercube Samples
::::::
samples

:
from the parameter distributions to provide estimates of TCR

from the new response surface. Due to the shift towards higher climate sensitivity and slightly weaker ocean diffusivity, we30

observe an increase in our 90-percent confidence interval of transient climate response from 0.87-2.31 �C to 0.85-2.73 �C. By

investigating the impact that the new forcings and a newer version of CLM have on the estimates of model parameters and

18



TCR, we have shown the inherent differences that are present when comparing distributions derived using IGSM and those

derived from MESM.
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