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We commend the WIP for the rigorous and thoughtful assessment of the global data
infrastructure needed to support CMIP6 and beyond. This paper identifies many im-
portant challenges related to CMIP data replication, provenance, and scientific repro-
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ducibility. Absent, however, is a discussion of the computational challenges associated
with the analysis of CMIP datasets and the relationship between data archives and
computing resources. Our overall recommendation for revising the paper is to give
more attention to this important question. The authors of this comment believe that
enabling efficient, accessible, scalable computation on CMIP data should inform the
design of the global infrastructure. Instead of encouraging users to download the data
to their local systems, we should be encouraging users to bring their computing to the
data. This can be achieved by working more closely with national computing centers
and by placing CMIP data in cloud storage, where it is directly accessible to distributed
computing.

As recognized in the manuscript, many of the most valuable science results from the
CMIP project come from global comparisons across many models, scenarios, and en-
semble members. To obtain these results, scientists must run analysis on significant
fractions of the multi-petabyte CMIP archives. As anyone who performs such calcula-
tions knows, they rarely work on the first try–interactive exploration and visualization
of the data is a crucial part of the scientific process. However, the computing systems
deployed for the analysis of CMIP data generally fall far short of producing interac-
tive speeds; instead researchers wait for weeks to test new ideas (we know this from
personal experience). Most of these computing systems are what the manuscript calls
“dark repositories,” mirrors of CMIP data on servers and computing clusters owned and
managed by individual research groups. In addition to disrupting the chain of tracking,
provenance, and curation (as discussed in the manuscript), dark repositories are po-
tentially financially wasteful, since the data is transmitted and duplicated over and over
just for the purpose of exposing it to computation. Scientists must make an up-front
judgement on which fractions they wish to mirror; they may not even use everything
they download. In addition, such a priori decisions create an insidious pressure to look
for "things you expect to see, in places you expect to see them."

These dark repositories are ultimately funded by agencies such as the US National
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Science Foundation and its international counterparts, via equipment purchases and
technical support staff salaries. No one really knows how many dark repositories there
are and how much they cost in aggregate. Despite the prevalence of dark reposito-
ries, users are probably frustrated with their performance on terabyte-scale, let alone
petabyte-scale calculations.

A key technical consideration is that, on standard servers and workstations, most
CMIP-style data analysis is heavily I/O bound rather than compute bound i.e. it is lim-
ited strongly by the rate at which data can be read from storage. Fortunately, more scal-
able ways for climate scientists to interact with large datasets are starting to emerge.
Intelligent subsetting and lazy loading can circumvent the need for bulk downloads.
Furthermore, when such datasets are placed on distributed storage attached directly
to distributed computing, the time-to-result for a given analysis can be reduced by
orders of magnitude, ultimately resulting in faster scientific progress. NCAR’s CMIP
analysis platform is a good example, with CMIP data stored on GLADE (Globally Ac-
cessible Data Environment), a high performance parallel filesystem accessible from
the compute nodes of the Cheyenne supercomputer. Users with access to this plat-
form are much less likely to want to create their own dark repositories, since they enjoy
the combination of high performance computation and comprehensive data access.
Although storage on GLADE is expensive compared to a single dark repository, it’s
probably cheaper than ten dark repositories in aggregate.

While traditional supercomputers can meet some of the data-analysis needs of CMIP
users, they were not designed for this purpose and are probably overkill for it. We
believe that an ideal data analytics system for these problems has the following prop-
erties:

1. Low administrative hurdles to sign up and log in, even for new, junior, or industry
users

2. Easy web access for popular interactive environments like Jupyter notebooks
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3. Easy web access on the open internet for automated web services and mobile
apps

4. Dynamic and immediate allocation of interactive compute resources at modest
sizes (hundreds rather than millions of cores) even if those sessions may have to
grow or shrink during the allocation, depending on external use

5. Cheap costs, sacrificing the high performance network and rich CPU/Memory
ratio of super-computing centers, and replacing them with commodity networking
and locally attached storage

6. Co-location with the relevant datasets

Data analytics clusters are growing within existing computing facilities today that have
some (but rarely all) of the properties above. Cloud computing, however, is ide-
ally suited to the storage, processing, and distribution of extremely large, shared
datasets today. Both, government-sponsored cloud-style data centers, and the com-
mercial cloud (e.g. Amazon Web Services, Google Cloud Platform, Microsoft Azure,
etc.) merit consideration. Data stored in cloud storage is directly accessible from
cloud computing instances within the same network, providing effectively infinite data
bandwidth to distributed processing systems. In this paradigm, no data needs to
be downloaded at all; if the CMIP data were already in cloud storage, users would
pay only for the compute time they need to do their analysis. The cost of host-
ing 2PB of data on any of the commercial cloud providers is roughly $500K USD
per year (https://cloud.google.com/products/calculator/id=8ee0d849-a19b-44ab-b546-
1b0c0dbe775d). This is no small sum, but it is likely much less than the collective
operating budget of the ESGF nodes. The overall financial cost to funding agen-
cies might even turn out to be less if individual research groups were persuaded to
abandon their dark replicas and associated local data storage and computation costs
in favor of cloud computing. Furthermore, commercial cloud providers might also
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provide hosting for free, as they already do for many other scientific datasets (e.g.
https://aws.amazon.com/public-datasets/, https://cloud.google.com/public-datasets/), if
they think it will bring them customers from academia and industry.

Beyond academic research, CMIP data hold strong commercial value in sectors such
as insurance and energy. If CMIP datasets can be liberated from closed institutional
infrastructure, such consumers can more easily combine them with co-located domain
specific datasets to gain insights and derive economic benefits. NOAA (an agency
already contributing model development and simulation resources to CMIP) has re-
cently adopted such an approach to power their Big Data Project through Cooperative
Research and Development Agreements and could provide an example for future de-
velopment within the climate science community.

The scientific payoff from co-locating CMIP data with distributed computing resources
would be immense, both accelerating reproducibility and driving innovation in data
analysis methodologies–including new machine learning and artificial intelligence tech-
niques. But leveraging full advantage of distributed systems for analyzing climate data
requires more than raw hardware; it also requires software which allows climate scien-
tists to parallelize their calculations in a simple, efficient and transparent way, permitting
them to focus on science rather than the details of the underlying computing system. A
central focus of the Pangeo project is to develop these tools on distributed computing
systems and deploy them on high-impact geoscience problems. The building blocks
for such software exist, for example, in the scientific Python community in the form
of packages such as xarray (https://xarray.pydata.org), Iris (http://scitools.org.uk/iris/),
Dask (https://dask.pydata.org), and Jupyter (https://jupyter.org/), but require engage-
ment from the broader climate science community to reach their full potential for our
field. We stand ready to work with WCRP and ESGF to help our community transition
to a cloud-based future.
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