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Abstract. In climate reanalyses for multi-decadal or longer scales with coupled atmosphere-ocean General Circulation models

(CGCMs) it can be assumed that the growth of prediction errors arises chiefly from imprecisely known model parameters,

which have a nonlinear relationship with the climate observations (paleoclimate proxies). Also, high-resolution CGCMs for

climate analysis are extremely expensive to run, which constrains the applicability of assimilation schemes. In a model frame-

work where we assume that model dynamic parameters account for (nearly) all forecast errors at observation times, we compare5

two computationally efficient iterative schemes for approximate nonlinear model parameter estimation and joint flux estima-

tion (taking the specific shape of freshwater from melting in the Greenland ice sheet), and its physically consistent state. First,

a trivial adaptation of the strong constraint incremental 4D-Var formulation leads to what we refer to as the parameter space

iterative extended Kalman smoother (pIKS); a Gauss-Newton scheme. Second, a so-called parameter space fractional Kalman

smoother (pFKS) is an alternative controlled-step line search, which can potentially be a more stable approach. While these10

iterative schemes have been used in data assimilation, we revisit them together within the context of parameter estimation in

climate reanalysis, as compared to the more general 4D-Var formulation. Then, the two schemes are evaluated in numerical ex-

periments with a simple 1D energy balance model (Ebm1D) and with a fully-coupled Community Earth System Model (CESM

v1.2). Firstly, with Ebm1D the pFKS obtains a cost function similar to the adjoint method with highly reduced computational

cost, while an ensemble transform Kalman filter with an m= 60 ensemble size (ETKF60) behaves slightly worse. The pIKS15

behaves worse than the ETKF60, but an ETKF10 (m= 10) is even worst. Accordingly, with CESM we evaluate the pKFS

and the ETKF60 along with an ETKF with Gaussian Anamorphosis (ETKF-GA60). From all the options, the pFKS has the

lowest cost function and seems the favored overall option under heavy computational restrictions, but the ETKF obtains better

estimates of the flux term.

1 Introduction20

The issue of fusing data into models arises in all scientific areas that enjoy a profusion of data. In the geophysical community

this is referred to as inverse methods and data assimilation (DA), and it has the goal of estimating an unknown true state

(Ide and Jones, 2007). Such methods can be considered as an approach for interpolating or smoothing a data set in space and

time where a model acts as a dynamical constraint (Evensen, 1994a). DA is predominantly used for state estimation, combining
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observational data with model predictions to produce an updated model state that most accurately approximates the true system

state whilst keeping the model parameters fixed. However, even with perfect initial conditions, inaccurate model parameters

will lead to the growth of prediction errors. Thus to generate reliable forecasts and reanalyses, we need good estimates of

both the current system state and the model parameters. Unknown parameters can be estimated as part of the assimilation by

using state space augmentation (Friedland, 1969), and recent developments are being done in this sense. For example, Smith5

et al. (2011), by applying the technique of state augmentation, propose a hybrid sequential 3D-Var for joint state-parameter

estimation. In either case, the parameter estimation problem is essentially nonlinear and may become extremely difficult to

solve. Thus, care must be taken to have a consistent estimation of poorly known parameters in a model, and Evensen et al.

(1998) showed that a basic rule is that all parameters which will be estimated should be added in a penalty function as weak

constraints measuring their distance from a first guess in some norm.10

Specifically, in contrast to short-term and medium range operational weather prediction, multi-decadal and longer climate

forecasts depend strongly on parameterisations rather than initial conditions. Although the model’s trajectory through state

space is highly sensitive to initial conditions, the climate of a sufficiently long trajectory (for example, temporal means of

particular model variables) is typically much less sensitive to initial conditions, being essentially a sample of the underlying

true model climate (i.e. the limit as integration time tends to infinity) contaminated by a small (and controllable) amount of de-15

terministic noise due to the finite integration interval (Annan et al., 2005b). Other geophysical applications share this relevance

of model parameters on the assimilation problem, as the estimation of distributed parameters and state for multiphase flow in

petroleum reservoirs (e.g.; Gu and Oliver, 2007; Oliver et al., 2011), or hydraulic tomography for groundwater applications

(e.g.; Schöniger et al., 2012).

A related issue is the enforcement of physically based conservation laws, which by default is not taken into account by (en-20

semble) Kalman filters. The importance of physical consistency has long been acknowledged in numerical weather prediction

(NWP). Accordingly, the conservation of mass with ensemble-type Kalman filter algorithms has been the subject of recent

research (e.g.; Janjíc et al., 2014, and references therein). If the control variables are the model dynamical parameters, once

these parameters are estimated in the analysis, an additional confirming re-integration of the nonlinear forward model provides

physically consistent estimates of the corresponding state variables along the assimilation window.25

DA has been used as a technique for climate field reconstruction (CFR) in a number of studies without explicit consideration

of parameter uncertainty. For example, Marchal et al. (2016) use marine sediment records of sea surface temperature (SST)

and a regional model of ocean circulation with an extended Kalman filter (EKF) and a related smoother to analyse the transient

movements of the North Atlantic subpolar front at the termination of the Younger Dryas (YD) cold interval. Here, we focus on

the model parameter estimation problem under the assumption the errors in model parameters carry the bulk of the uncertainty30

for multi-decadal or longer timescales. The number of adjustable parameters in Global Circulation Models (GCM) is large,

and these are known to have a significant impact on the simulated climate. Thus, perturbed physics experiments, with several

configurations, are profusely used for understanding climate model responses to uncertain parameters controlling the model’s

physical processes and in order to design improved models.
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Early work in ensemble parameter estimation for climate analysis was done by Hargreaves and Annan (2002), who use

a Monte Carlo Markov Chain (MCMC) method with a simple Earth system model. Later, Annan et al. (2005a) and Annan

et al. (2005b) conduct identical twin experiments with a formulation based on an ensemble Kalman filter (EnKF) with state

augmentation for model parameters in an intermediate complexity earth system model and with an atmospheric GCM coupled

to a slab ocean, respectively, both with generally positive results. The approach proposed in Annan et al. (2005a) and further5

described in Annan et al. (2005b) is closely related to the scheme we describe in section , where we summarise their relation.

Also, early paleoclimate work by Paul and Schäfer-Neth (2005) addresses the problem of CFR with an Earth system model

of intermediate complexity via (manual) parameter tuning, with the specific constraint of having sparse observations. More

recent and automated work has been done by the use of the adjoint method, which is termed four dimensional variational

DA (4D-Var) in the NWP field. In this line, Paul and Losch (2012) use 4D-Var with a conceptual climate model, and more10

recently Kurahashi-Nakamura et al. (2017) use 4D-Var with the Massachusetts Institute of Technology general circulation

model (MITcgm) for ocean state estimation via a perturbed-physics experiment combined with uncertain initial conditions to

reanalyse the global ocean state during the Last Glacial Maximum (LGM). However, an issue with 4D-Var is the need for

an adjoint code, which hampers the application of variational methods when the model is not directly suited to automatic

differentiation (AD), and the tangent linear model and the adjoints need to be hand-coded. Apart from this issue, an advantage15

of Kalman methods is its flow-dependent nature with explicit propagation and update of the model error covariance. Thus,

opposed to variational methods, the solution provides an a posteriori uncertainty, resulting from the uncertainties in both the

observations and in the a priori parameter dataset.

This study is motivated by the use of high-resolution CGCMs for a) past climate reanalysis (or CFR) and b) improved model

parameter estimation in order to constrain future climate projections. Given the computational constraints imposed by this20

type of models, our focus is on keeping a low computational cost and the primary goal of obtaining long term past climate

reconstructions under the assumption that model uncertainty can be encapsulated in a relatively small set of parameters whose

error covariance can be efficiently stored and manipulated. The use of the term smoother, as opposed to filter, is chosen in this

paper, as observations posterior to a time tk are used to estimate the model parameters and corresponding climate at tk. Other

than that the formulation is identical than it would be for the corresponding filtering versions.25

The rest of this article is organised as follows. In section 2 we give the conditions and assumptions for the given problem

from a general point of view. In section 3, within the broader context of the joint state-parameter estimation problem, we sum-

marise the strong constraint incremental 4D-Var formulation (Courtier et al., 1994) from a perspective where the state vector

is augmented with the model parameters to arrive, under given assumptions, to the parameter-space iterative Kalman smoother

(pIKS). Then we describe the two evaluated schemes in a concise, algorithmic, format: the pIKS and a so-called parameter30

space fractional Kalman smoother (pFKS). In sections 4 and 5 we evaluate two experiments, describing the experimental setup

and giving and discussing results in each case. We finish with conclusions in section 6.
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2 Problem definition

In nonlinear filtering problems as well as in the linear ones, we are interested in computing the not only the conditional mean or

mode, but also the conditional uncertainty. Frequently, the dynamical system depends on certain parameters whose values are

imprecisely known. Our goal is to estimate the joint state-parameter mean/mode and covariance of a high-dimensional discrete

representation of a dynamical process in the case that all sources of uncertainty can be assumed as coming from a small number5

of model parameters, θ. These parameters are considered to be uncertain but not time varying. However, the estimates of these

parameters will change as new data are assimilated.

By high-dimensional state vector, we refer to not only a) that whose covariance matrix is too big to be explicitly stored and

manipulated with current supercomputers, but also to b) that whose dynamic integration is also a big computational burden

for the given requirement, such that ensemble integration, in order to work with a sufficient ensemble representation of the10

covariance matrix, is also severely limited. By small vector, we refer to that whose covariance matrix can be explicitly and

efficiently stored and manipulated with today’s computational capabilities. Generally, we assume that θ is a set of model

parameters (or dynamical parameters), which may be regarded as random variables with known a priori statistics. The vector

θ, along with dynamical parameters, may include uncertain initial and boundary conditions or a parameterized version of their

uncertainty. Other than the sources of uncertainty explicitly included in θ, the model is considered a perfect representation of15

the (discrete) real dynamical system. Also, the non-linear forward operator H(·), which maps the state into the observation

space, will usually depend on a number of parameters, which can be jointly estimated. However, we consider these parameter

fixed in this study. So H is deterministic, which is the so-called perfect forward model assumption. We also assume that the

model is weakly nonlinear, such that it can be linearized.

In general, with the restriction that θ is small, this problem definition limits the inclusion of initial conditions in the control20

vector in high-dimensional models, unless these initial conditions can be described with a reduced set of parameters. The

range of problems is then narrowed down to specific cases. The specific one, motivating this study, is multi-decadal (or longer)

paleoclimate reanalysis with high-resolution CGCMs. If initial conditions are reasonably unbiased, we can assume that the

uncertainty in the multi-decadal climate integrations originates chiefly from the dynamical parameters for model physics after

some model warming time.25

3 Assimilation schemes

3.1 Analysis approach

The problem is to fit three spatial dimensions in time. For variational schemes, this is referred to as four-dimensional variational

data assimilation (4D-Var) in Numerical Weather Prediction (NWP), where the initial conditions of a model integration are

estimated subject to model dynamics and according to background and observation uncertainties within a data assimilation30

window (DAW). The background (or prior) is normally given by a previous model forecast. In this article, time tk and its index

k measure time relative to the start of the DAW, which is t0, using conventions similar to those of 4D-Var. Here we formulate
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the broader context of our estimation problem. We consider the discrete non-linear time invariant dynamical system model

xk+1 =M(xk,θk), k = 0,1, . . . (1)

The vector xk ∈ Rn is the state vector at time tk, θk ∈ Rq is a vector of uncertain model parameters, andM : Rn→ Rn is its

corresponding non-linear dynamics operator. We assume that specification of the model state and parameters at time tk uniquely

determines the model state at all future times, and that model parameters are constant during the DAW (i.e., θ ≡ θk+1 = θk).5

That is, that the system can be represented on a discrete grid, and the model gives an exact description of the true behaviour of

the system on the grid. We now consider an augmented state vector z, which includes x and the model parameters:

z =


x

θ


 , (2)

so an equivalent augmented model is

zk+1 = M̃(zk), k = 0,1, . . . , (3)10

where M̃ : Rn+q→ Rn+q includes the static model parameters. Observations at time tk are represented by the vector yk ∈ Rpk

and related to the model state by

yk =Hk(xk) + εk ≡ H̃k(zk) + εk, (4)

where Hk : Rn→ Rpk is a deterministic non-linear observation operator that maps from model to observation space, and

εk ∈ Rpk is a realisation of a noise process, which consists of errors in the instrument, errors in the observation operator,15

and representativeness errors (those due to difference in spatial resolution between the measurement and the model state).

H̃k : Rn+q→ Rpk is an equivalent augmented observation operator from the augmented state zk to the observation space. We

assume εk is a Gaussian variable with mean 0 and covariance matrix Rk. The error covariance matrix of a state zk = [xT
k ,θ

T]T,

where the superscript “T” denotes matrix transposition, at any time tk within the DAW is

Pk =


 Pxxk Pxθk

(Pxθk)T Pθθ


 , (5)20

where Pxxk ∈ Rn×n is the error covariance matrix for xk, Pθθ ∈ Rq×q is the error covariance matrix of the parameter vector

θ, and Pxθk ∈ Rn×q is the error covariance between xk and θ. Within a Gaussian assumption for the various error terms, the

joint state and parameter estimation goal in 4D-Var then to find the initial state z0 that minimises a non-linear cost function

given by

J1(z0) =
1
2

[z0− zb0]T(Pb
0)−1[z0− zb0]+

1
2

[
ŷ−Ĥ(z0)

]T
R̂−1

[
ŷ−Ĥ(z0)

]
, (6)25
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where ŷ ∈ Rp (with p=
∑nk
k=0 pk) is a column vector of all observations throughout the DAW, R̂ is the corresponding ob-

servation error covariance matrix, Pb
0 is the error covariance of the background zb0, and Ĥ(z0) : Rn+q→ Rp is a generalised

observation operator maping from the augmented initial state to all the observations variables and times. The maximum a

posteriori estimation in 6 is also known as conditional mode estimation, or maximum of the conditional density. Ĥ(·) differs

from the observation operatorHk(·), which maps the model state at time tk to observation variables at time tk. The cost func-5

tion (6) is subject (constrained) to the states satisfying the nonlinear dynamical system (3) and is known as strong constraint

variational formulation, while the additional inclusion of model errors would lead to a weak constraint variational formulation.

The solution to the functional J1(z0) is za0 , referred to as the analysis. In general, an exact solution cannot be found. In the

incremental formulation of 4D-Var, the solution to the nonlinear minimization problem (6) is approximated by a sequence

of minimizations of linear quadratic cost functions. These minimizations (inner loops) use gradient descent algorithms (e.g.;10

Lawless, 2013). Let us consider here the incremental approach, where zl0 provides the current approximation, and initially, for

l = 1, z1
0 = zb0. The innovations are then given by the residual between the observations and the mapping of the initial state in

the current approximation into observation space

δŷl = ŷ−Ĥ(zl0), (7)

where the computation of the initial state mapped to observation space, Ĥ(zl0), has the following way:15
[
Ĥ(zl0)

]
k

= H̃k
[
M̃(zl0, t0, tk)

]
=Hk(xlk). (8)

The assumption that H̃k is linear, such that

H̃k(zk)−H̃k(zlk)≈ H̃k(zlk)(zk − zlk), (9)

where H̃k(zlk) is the Jacobian of H̃k(·) evaluated at zlk, is the so-called tangent linear hypothesis (TLH), and H̃k is referred to

as the tangent linear operator in the DA literature. The incremental 4D-Var considers a further tangent linear (TL) approxima-20

tion by including linearization of the model dynamics about the background as

Ĥ(z0)−Ĥ(zl0)≈ Ĥ(zl0)δz0, (10)

where δz0 = z0− zl0 is the increment.

By considering (7) and (10), the generalised error term ε̂ in (6) for all observations in the DAW can be expressed as

ε̂ = ŷ−Ĥ(z0)

= δŷl−Ĥ(z0) + Ĥ(zl0)

≈ δŷl− Ĥlδz0, (11)25

where Ĥl ≡ Ĥ(zl0). In the inner loop, this approximation of ε̂ is introduced in (6) leading to a linear quadratic cost function as

a function of the increment δz0

J2(δz0) =
1

2
[δz0− (zb

0− zl
0)]T(Pb

0)−1[δz0− (zb
0− zl

0)]+

1

2

[
δŷl− Ĥlδz0

]T

R̂−1
[
δŷl− Ĥlδz0

]
, (12)
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Once the minimization of J2(δz0) has met a given criterion, the outer loop takes control, where the estimate of the initial

state is updated with the estimated increment: zl+1
0 = zl0 + δz0. Incremental 4D-Var has been shown to be an inexact Gauss-

Newton method applied to the original nonlinear cost function (Lawless et al., 2005). As we assume Gaussian R̂ and Pb
0 and

a perfect-model framework except for the sources of model uncertainty in z0, the conditional mode given by the linear least5

squares minimization (12) is the same that the conditional mean (also called the minimum variance estimate) given by the

explicit solution

δzl+1
0 = zb0− zl0 + Kl[δŷl− Ĥl(zb0− zl0)], (13)

where Kl is known as the Kalman gain matrix, given by

Kl = Pb
0(Ĥl)T[ĤlPb

0(Ĥl)T + R̂]−1. (14)10

So, the state vector is explicitly updated, without using an inner loop, as

zl+1
0 = zl0 + δzl+1

0

= zb0 + Kl(ŷ−Ĥ(zl0)− Ĥl(zb0− zl0)), (15)

which actually is the formulation for the Iterative Kalman Smoother (IKS) with a neglected model error (see Bell, 1994). For

the first loop (l = 1⇒ zb0− zl0 = 0) Eq. (15) is reduced to the mean update of an extended Kalman filter (EKF) (see e.g.;

Jazwinski, 1970) (but using future observations). So, in the same way that incremental 4D-Var, IKS gives an approximation to15

the conditional mode or maximum likelihood of the cost function (6), as shown by Bell (1994).

However, the climate of a sufficiently long trajectory is typically much less sensitive to initial conditions than the short and

medium-range NWP. If model initial conditions are reasonably unbiased, after some time to a quasi-equilibrium, it is likely safe

to assume that their influence on the climate forecast at multi-decadal (or longer) scales is negligible. Specifically, we assume

that (a) there are no model errors apart from those considered in θ and (b) either the influence of the initial conditions on the20

state estimates is negligible at the observation space (given times and locations) or the initial conditions of the model state are

correct (xb0 = xt0, Pb
xx = 0, where xt0 is the true system state). The optimization is then restricted to estimate the uncertain

model parameters included in θ. If assumption (a) does not hold or none in (b) holds, the parameter estimation will attempt

to compensate for these situations. For example, this does not imply that the deep ocean has reached its full equilibrium if no

corresponding observations are available for the analysis.25

With the above considerations, we define G(·) as a generalised (deterministic) observation operator mapping a vector θ into

the observation space; G : Rq 7→ Rp, which follows

[G(θ)]k =
[
Ĥ(z0)

]
k

∣∣∣∣
tk≥tq

, (16)

7

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-48
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 6 March 2018
c© Author(s) 2018. CC BY 4.0 License.



where tq represents the time to quasi-equilibrium; i.e. limit of the memory of the initial conditions mapped into the available

observations. This leads to a reduced problem, where (6) is replaced by the non-linear cost function

J (θ) =
1
2

[θ−θb]T(Pb
θθ)−1[θ−θb]+

1
2

[ŷ−G(θ)]TR−1[ŷ−G(θ)]. (17)

This is what we call here a parameter space formulation, as only the vector of parameters θ is then updated in the analysis.

To avoid confusion, note that this has been called the model space in other contexts (e.g.; Tarantola, 2005). Here, within the5

context of climate (and weather), we choose the parameter space term as it explicitly avoids the inclusion of the time-varying

state vector x in the space of the solutions. Once the parameters are estimated, forward integration with the updated parameters

leads to their physically consistent climate estimates. The trivial substitutions into the incremental formulation (12) and its

solution (15) lead to the parameter space iterative Kalman smoother (pIKS) that we summarize later in a specific section. An

alternative approximation to the non-linear problem follows then as the parameter space Fractional Kalman smoother (pFKS).10

Importantly, a potential drawback of the conditional mean estimation, as given by the En(KF) methods including the EKF,

arises when the density conditioned to the observations is multimodal. For long-term climate analysis this arises by the pos-

sibility of multiple equilibria (e.g.; see Evensen, 1994b; Ghil, 1997). While it the availability of dense observations should

counteract this problem by constraining the attractor basin in which the state lies (Cohn, 1997), paleoclimate proxies are gener-

ally sparse. On the other hand, the IKF (as incremental 4D-Var) estimate obtain an approximate maximum likelihood estimate15

instead. Thus, the possibility of multiple equilibria has to kept in mind and a careful analysis of estimated states should be

conducted in either case.

The following section is devoted to the estimation of G ∈ Rp×q , the Jacobian of G. Both iterative schemes described later

need to estimate G, or climate sensitivities to the parameter space, to obtain θ as approximation to the minimization in (17).

3.2 Estimation of background sensitivities and error covariances20

G, the Jacobian of G, is needed in the iterative schemes described later. The explicit calculation of the Jacobian of complex

functions can be difficult, requiring complicated derivatives if done analytically or being computationally costly if done nu-

merically. While the relation between G and Pk is implied in the previous section, it is instructive to look at it in some detail.

Let us consider the case of a specific observation time tk. The Kalman gain matrix (disregarding the loop index, if any) for the

components of the model parameters, which we denote in this section as Kkθ
, can be expressed in the two following ways:25

Kkθ
= PkH̃T

k [H̃kPk(H̃k)T + Rk]−1

= PθθGT
k [GkPθθ(Gk)T + Rk]−1, (18)

where the first way is the standard one in Kalman smoother expressions including parameter estimation via state vector aug-

mentation, and the second one is the parameter space formulation. Both are equivalent, but the covariance information in Pk

has been transferred to Gk, or sensitivity matrix, in the second expression. Let us further consider the case that at tk there is a

8
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single observation y of a state variable within the vector zk, denoted as xky , and we focus on the gain for a single parameter

θi. The covariance between θi and the observation y is expressed in both cases as

(PkH̃T
k )[θi,y] = σxkyθi

∂y

∂xky
,

(PθθGT
k )[θi,y] =

q∑

j=1

σθjθi

∂y

∂θj
, (19)

which, as ∂y
∂θj

= ∂y
∂xky

∂xky
∂θj

, indicates that the linear equality

σxkyθi =
q∑

j=1

σθjθi

∂xky
∂θj

, (20)5

is taken from a bottom-up approach in the parameter space formulation, where all sources of uncertainty are specifically evalu-

ated to compose the covariance σxkyθi . Interestingly, Gu and Oliver (2007) introduced a scheme called Ensemble Randomized

Maximum Likelihood Filter (EnRML) for on-line nonlinear parameter estimation, which was later adapted as a smoother, the

batch-EnRML, by Chen and Oliver (2012). The EnRML and the batch-EnRML, oriented towards history matching in reservoir

engineering, were also formulated in the parameter space, but designed for cases where the parameter vector is too big, such10

that an ensemble representation of the parameter error covariance is used. Thus, they estimated an ensemble-based average

sensitivity matrix Ḡl at each iteration based on model integrations with parameter sets from a m-member multivariate random

sample drawn from the full Pθθ:

∆Yl = Ḡl∆θl, (21)

where ∆θl ∈ Rq×m is the matrix of random model parameter perturbations drawn from Pθθ, around the estimate for the15

current loop (i.e.; ∆θl = θl− θ̄
l), and ∆Yl ∈ Rp×m are the resulting perturbations in the observation space. As ∆θl is not

generally invertible, the EnRML uses a singular value decomposition (SVD) of ∆θl to solve for Ḡl. It should be noted that

the sensitivies estimated in such a way result from a sampling from the (Gaussian) background multivariate probability density

function of the parameters.

Here, given the size of θ in our problem definition, we do not need to resort to ensemble covariances, and we follow the com-20

putationally less expensive and direct approach of doing one-at-a-time (OAT) sensitivity experiments to explicitly obtain the

entries in G, where each parameter is perturbed independently to obtain the corresponding sensitivity to that specific parame-

ter. As the sensitivity of the climate variables to the individual parameter perturbation is not necessarily linear, the perturbation

tests may in general be conducted by generating a random sample of perturbations for the individual parameter and evaluating

the model climate response to the perturbed parameter sample. Positively, this approach is not subject to the development of25

spurious correlations by the ensemble representation of the covariance matrix. However, the computing requirements are lin-

early proportional to the number of estimated parameters. Also, in contrast with the EnKF approach (as the batch-EnRML), this

OAT estimation of sensitivities to each parameter is evaluated by sampling from the background univariate probability density

function for each parameter conditioned to the rest of the parameters being fixed to their background mean. The corresponding

9
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column, or estimate of the local (conditional) sensitivity of the observations to that parameter, in G is then the slope of the

linear regression of the ensemble model equivalent of the observations against the parameter sample. This requires mθ × q
model integrations, where mθ > 1 is the ensemble size for each parameter, and q the number of parameters. Also, it requires

p× q linear regressions. Note this is different than the slope of the linear regression of a variable against the same parameter

for a sample drawn from the whole multivariate distribution (as the EnKF), which is also affected by the sensitivity to other5

parameters even in a linear situation if Pθθ is not diagonal, as shown in (20).

The model integrations for all the sensitivity experiments can be done in parallel as a general ensemble approach, but the

parameter error covariance Pθθ is explicitly represented. The integration of the model with the mean background parameters is

required to calculate the innovations, and its output can be used as additional sample for each linear regression. If computational

constraints are severe, in the limit the estimation of the OAT (or conditional) sensitivities reduces to a single perturbation10

experiment for each parameter; that is to get a local finite difference approximation. In this case, the columns G:,i of G are

estimated by computing

G:,i ≈
G(θb + δθi)−G(θb)

δθi
, i= 1, . . . , q, (22)

where for each parameter, δθi is a small perturbation (or variation) to the current approximation of θi and δθi is the vector

0 ∈ Rq but with element θi replaced by δθi. As indicated above, the estimation of sensitivities by local finite difference ap-15

proximations is still a result from sampling the conditional distributions in the parameter space. The fact that sensitivities are

evaluated at the time of the observations is relevant regarding the assumed decorrelation time between the initial conditions

and the observation vector.

3.3 Parameter space iterative Kalman smoother

Iterative linear methods are now common for DA applications in nonlinear systems. As approximate nonlinear filters, Jazwinski20

(1970) considers local (conducted over a single assimilation cycle) and global (conducted over several assimilation cycles)

iterations of the EKF. Local iterations of the Kalman filters are designed to deal with nonlinear observation operator and non-

Gaussian errors. The locally iterated (extended) Kalman filter (IKF) is a Gauss-Newton method for approximating a maximum-

likelihood estimate Bell and Cathey (1993), and actually it is algebraically equivalent to nonlinear three dimensional variational

(3D-Var) analysis algorithms (Cohn, 1997). Later, Bell (1994) showed that the iterated Kalman smoother (IKS) represents a25

Gauss-Newton method to obtain an approximate maximum likelihood, as was shown later for incremental 4D-Var (Lawless

et al., 2005) and has been summarised in section 3.1 above. Thus, the IKF (as the IKS) circumvents the need for choosing a step

size, which is sometimes a source of difficulty in descent methods. However, being a Gauss-Newton method, not even local

convergence is guaranteed. The scheme we use here, which we call the parameter space iterative Kalman smoother (pIKS),

is a Gauss-Newton scheme as the IKS and the EnRML. It is formulated in the parameter space as the EnRML, but despite30

sensitivities are derived via numerical perturbations of the parameter space, it is not an ensemble method. The computational

demand will be lower than that of the EnRML if the number of parameters to be estimated is less than the ensemble size of the

EnRML. For a high number of parameters (e.g.; inclusion of distributed initial conditions in θ), explicit management of the

10
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Pθθ would not be feasible and one should resort, for example, to an ensemble scheme as the batch-EnRML. For any natural

number l, the pIKS provides the update

θa = θl, Pa
θθ = Pl

θθ.

The sequences {θl : l ≥ 0} and {Pl
θθ : l ≥ 0} are defined inductively as follows

θ0 = θb, P0
θθ = Pb

θθ,5

θl+1 = θb + Kl[y−G(θl)−Gl(θb−θl)], (23)

Pl+1
θθ = (I−KlGl)Pb

θθ, (24)

where for notational convenience10

Gl ≡G(θl), (25)

and

Kl = Pb
θθ(Gl)T

(
GlPb

θθ(Gl)T + R
)−1

. (26)

Equations (23) and (26) show that, as in the IKS and incremental 4D-Var, the pIKS uses the initial background error statistics

Pb
θθ during all iterations. The updated Pa

θθ is just based on the sensitivity evaluated at the last iteration.15

3.4 Parameter space fractional Kalman smoother

Here, contrary to the pIKS, a step size is chosen with the idea of potentially being able to deal with higher nonlinearity. By

fractional step assimilation we refer to a first order line search strategy, whereby once a descent direction is estimated, a step

size in that direction is conducted by inflating the observational error covariance matrix R and applying a standard Kalman

filter (KF) with the inflated R. The approach of inflating R and using repetitive assimilations of the same observations was20

termed multiple data assimilation (MDA) by Emerick and Reynolds (2013) to propose an ensemble smoother based on an

iterative scheme, and was also advocated by Bocquet and Sakov (2014) in their iterative ensemble Kalman smoother (IEnKS).

We apply a parameter space formulation of the MDA concept with the KF. The scheme considers the total increment in the

state vector that would result from the linear assimilation of one specific observation, and alternatively conduct a sequence of

repeated assimilations of the same observation whose sum of fractional increments equals the total increment. This is achieved25

by considering that the observation error variance at loop l is the product of an inflation factor βl and the variance of the

“complete” observation: σ2
yl

= βlσ
2
y . As the (linear) increment is inversely proportional to the observation error variance, for

11
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the total increment to be the same in both situations the condition that (σ2
y)−1 =

∑Nl
l=1(σ2

yl
)−1 =

∑Nl
l=1(βlσ2

y)−1 must be

fulfilled. This leads to the constraint

Nl∑

l=1

β−1
l = 1. (27)

Without specific consideration of constraint (27), the idea of inflating the observation error covariance matrix has also

been considered by previous studies within the context of petroleum reservoir history matching, whose parameter-dominated5

uncertainty is a similar situation to that of the long-term climate analysis. Thus R has been inflated to improve initial sampling

for the EnKF (Oliver and Chen, 2008), and also to damp model changes at early iterations in Newton-like methods (Wu et al.,

1999; Gao and Reynolds, 2006). With the specific focus on parameter estimation in climate models, the idea of inflating R for

repeated assimilation of the same observations was proposed by Annan et al. (2005a) and further clarified and applied by Annan

et al. (2005b) for an atmospheric GCM using the EnKF with parameter augmentation. Their approach, also formulated within10

a perfect-model framework, differs from the iterative scheme described here in that they use a sequence of model integrations

and assimilation steps advancing in time, where the observations at each assimilation time are inflated by a factor. The scheme

is such that in a linear case, after the predefined sequence of integrations/assimilations, the attained solution is identical to that

of the single step scheme along the whole DAW. Thus, their approach is designed for steady-state cases, where time-averaged

climate observations corresponding to a long DAW can be assumed as constant during each of the smaller assimilation windows15

in which the problem is divided. The model parameters are then sequentially updated in smaller increments (with respect to a

single step scheme) so the loss of balance in a more general nonlinear model should be reduced with the multi-step approach

(Annan et al., 2005b). On the other hand, the iterative scheme used here, where the complete DAW is considered repeatedly, is

not restricted to steady-state conditions.

Here, the sensitivities between the observations and the control vector, Gl, are evaluated at each fractional step, similarly20

to the pIKS. However, opposite to the pIKS, we will see that the parameter error covariance is also updated at each iteration.

Thus, even if the background covariance Pb
θθ is diagonal, as the iterations proceed covariances among the parameters develop.

Hence, as indicated in (20), the covariance between any climatic variable and a parameter θi (σxkyθi ) is also affected by the

sensitivity of the climatic variable to other parameters. We refer to this iterative scheme as parameter space fractional Kalman

smoother (pFKS). Contrary to the pIKS, the analysis in the pFKS is just defined after a complete set of pre-specified iterations25

Nl is conducted;

θa = θNl , Pa
θθ = PNl

θθ.

The sequences {θl : l = 0, . . . ,Nl} and {Pl
θθ : l = 0, . . . ,Nl} are defined inductively as follows

θ0 = θb, P0
θθ = Pb

θθ,

30

θl+1 = θl + Kl[y−G(θl)], (28)
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Pl+1
θθ = (I−KlGl)Pl

θθ, (29)

where for notational convenience

Gl ≡G(θl), (30)

and5

Kl = Pl
θθ(Gl)T

(
GlPl

θθ(Gl)T + βlR
)−1

. (31)

Regarding β, a possible step size approach is to set the inflation weight constant for all the iterations, which given (27)

leads to β =Nl1, where the column vector 1 ∈ RNl has all values set to 1. However, as the iterations proceed, the updated

background covariance decreases so the fractional increments get smaller. With high nonlinearity between the observations and

the control vector, mostly the first fraction/s could still make the process diverge (as in the IKS) by setting the model to unstable10

conditions for the next iteration. A more even distribution of fractional increments, with likely reduced risk of instability, can

be given by decreasing inflation weights as the iterations proceed, so initial weights are relatively higher. Thus, among other

possible solutions for the inflation factor at fractional step l, here we adopt the expression

βl = (Nl− l+ 1)
Nl∑

n=1

n−1, (32)

which satisfies requirement (27). We do not consider here more adaptive strategies. For example, the increments obtained for15

a truncated solution (described in the next section) could potentially be used to guide the size of βl at each loop. A further

advantage of inflating (the normally diagonal) R is that it reduces the condition number of the matrix to be inverted for the KF

application at each loop.

3.5 Truncated solutions for the pFKS

Given the problem definition in section 2, the computational cost for model integrations should be much higher than that of the20

analysis steps for each iteration of the pFKS (or the pIKS). If required, an approximate solution can be found at each iteration

of the pFKS by using the weight required to fulfil the condition (27) as alternative to βl in (31):

βcl =


1−

l−1∑

j=1

β−1
j



−1

, (33)

where the completion weight βcl satisfies (27) and serves to yield an approximate solution at any iteration l. The truncated

solution to the pFKS, using βcl in (31), can be computed simultaneously to the fractional step of the pFKS, which uses βl25

instead. In addition to be a temporal solution, comparison of the sequences given by the fractional steps of the pFKS with

the simultaneous truncated solutions may also be used to detect linearity assumptions and support early decision to stop
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the fractional process, taking a truncated solution as acceptable approximation to the nonlinear minimisation. Here we do

not explore this, nor the further possibility of intermediate schemes between the pIKS and the pFKS as, e.g., a Levenberg-

Marquardt approach.

3.6 ETKF and Gaussian anamorphosis

The ensemble Kalman filter (EnKF) was introduced by Evensen (1994a). It makes it possible to apply the Kalman filter to high-5

dimensional discrete systems, when the explicit storage and manipulation of the system state error covariance is impossible or

impractical. The EnKF methods may be characterized by the application of the analysis equations given by the Kalman filter to

an ensemble of forecasts. One of the main differences among the several proposed versions of ensemble Kalman filters is how

the analysis ensemble is chosen. Ensemble square-root filters use deterministic algorithms to generate an analysis ensemble

with the desired sample mean and covariance (e.g.; Bishop et al., 2001; Whitaker and Hamill, 2002; Tippett et al., 2003; Ott10

et al., 2004). For comparison with the above iterative schemes, we use here the LETKF version of this deterministic approach,

as described by (Hunt et al., 2007), including state augmentation with the vector of parameters. While we use localization for

state variables, this is not shown in this paper. Thus, as we do not apply any localization for the scalar model parameters in this

study, we denote it as ETKF hereafter.

Still, for the En(KF) to be optimal, three special conditions need to apply: (1) Gaussianity in the prior, (2) linearity of the15

observation operator, and (3) Gaussianity in the additive observational error density. In order to better deal with non-linearity,

a number of studies have addressed the use of transformation of the model background and observation to obtain a Gaussian

distribution, in a way that the (En)KF can be applied under optimal conditions. This preprocessing transformation step is known

as Gaussian Anamorphosis (GA) (e.g.; Chìles and Delfiner, 2012). The GA procedure was introduced into the context of data

assimilation by Bertino et al. (2003), and has been applied for many years in the field of geostatistics (e.g.; Matheron, 1973;20

Deutsch and Journel, 1998).

It is not standard, however, how the GA should be applied in the context of DA. The process of GA involves transforming

the (augmented) state vector and observations {z,y} into new variables {z̃, ỹ} with Gaussian statistics. The (En)KF analysis

is computed with the new variables, and the resulting analysis is mapped back into the original space. For the transformations,

the GA makes use of the integral probability transform theorem. In a theoretical framework and with simple experimental25

analysis, Amezcua and Leeuwen (2014) evaluated several approaches to deal with the various nonlinearities using univariate

GA transformations. While they proposed a bivariate method where both a state variable x and and observation y could be

jointly transformed by the GA, the bivariate method requires a good knowledge of the likelihood, which it not common in

real cases. Thus they concluded that when ensemble sizes are small and the knowledge of the conditional py|x(y|x) is not too

precise, it is perhaps better to rely on independent marginal transformations for both. This is likely the general case of long30

term climate analyses, and the approach we evaluate here along with an ETKF for the joint state-parameter estimation problem

via direct augmentation of the state vector with the model parameters.

In our specific implementation of the ETKF we further augmented the state vector with the model equivalent of the ob-

servations. Then we estimated the marginal distribution of the observations based of the background statistics of these model
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equivalent. The transformation then operates in the marginals in independent way:

x̃= Φ−1
x̃ (Px(x)) g1(·) = gx→x̃(·) = Φ−1

x̃ (Px(·))

ỹ = Φ−1
ỹ (Py(y)) g2(·) = gy→ỹ(·) = Φ−1

x̃ (Px(·)), (34)

where Pξ(ξ) denotes the cumulative density function (cdf), and Φξ̃(·) explicitly indicates that the cdf in the transformed space

is that of a Gaussian random variable. For example, this marginal transformation approach was followed by Simon and Bertino

(2009). A thorough discussion of this transformation is given by Amezcua and Leeuwen (2014). Tests with standard ETKF are5

included in the two experiments below. A test with ETKF including GA is included in experiment 2, with the CGCM.

4 Experiment 1: 1D energy balance model

4.1 Experimental setup

Paul and Losch (2012) conduct an evaluation of the adjoint method (4D-Var) for parameter estimation in a conceptual climate

model. While our focus here is on high-resolution CGCMs, as a first test we conducted an extension of their analysis via the10

comparison of one of their scenarios with the adjoint method with the iterative schemes described here. The model is a one-

dimensional energy-balance model, where the meridional resolution was set to 10◦. The reader is referred to Paul and Losch

(2012) (PL2012 hereafter) for a description of the model and their adjoint scheme. PL2012 evaluated the adjoint approach

with several climate conditions and uncertain parameter scenarios, including preindustrial and Last Glacial Maximum (LGM)

climate states. Then, with the model constrained by the preindustrial and LGM parameter estimates, they conduct climate15

projections under several CO2 forcing scenarios. Here we make a comparison with their PD1 scenario; a preindustrial test in

which they estimate the parameters described in Table 1. PD2012 give a thorough description of all model parameters. The

target for PD1 is the surface air temperature (SAT) from the NCEP/NCAR reanalysis data (Kalnay et al., 1996). As PL2012,

we integrate the model for 100 years at daily time steps, and use monthly climatic means of the last 10 years for calculating

the cost function.20

The cost function in PL2012 does not include any regularization for the model parameters. Thus, they just consider a term

Jy(θ), which is a weighted sum of squared errors (SSE) between the 10-year climatic means for both winter and summer from

the observations and the model. In our implementation we include the departure from the background as a penalty, as it is more

standard 4D-Var applications. So, the cost function can be written as J (θ) = Jy(θ) +Jb(θ), representing the two terms in

(17). We assumed Gaussian background statistics of the parameters errors and a diagonal Pb
θθ, with standard deviations given25

in Table 1. After optimization with the full cost function, for comparison purposes we indicate a Jy(θ) cost function term as

PD2012, which by design is necessarily higher in our regularized set up. Similarly, we obtain a full J (θ) for the adjoint method

by adding to the Jy(θ) term in PL2012 the deviations from the background, Jb(θ). The general purpose of the benchmarking

is to test if parameter convergence goes in the same direction as with the specific use of an adjoint code. The prior uncertainties

were taken as sensible values, and other than the parametric uncertainty we considered a perfect-model framework.30
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In this specific case the perfect-model assumption is overly optimistic, as in addition to the 1D Earth climate representation,

there are strongly simplified physics of the used energy balance model. While PL2012 also assume this perfect-model frame-

work in their strong constraint 4D-Var implementation, they point out to a number of specific structural model errors. Thus, it

is clear that the parameter estimation will attempt to compensate for the unaccounted uncertainties in either of the evaluated

estimation approaches.5

In this experiment, we evaluate the convergence of pFKS and pIKS as compared with the estimate of PL2012. Specifically,

based on previous experiments, we observed that the model SAT is highly sensitive to some parameters in some regions of the

parameter space (see results below). Thus, in order to obtain robust estimates of the local sensitivity matrix, we used a small

ensemble of perturbation experiments, withmθ = 3 members for each parameter to obtain G by linear regression, as described

in section 3.2. Thus, including the background (i.e. its update at each loop) as additional sample, each linear regression was10

calculated with four samples. To further improve the robustness of the estimation we conducted weighted linear regressions,

where the weights were inversely proportional to the values of the cost function at the corresponding loop. So statistically better

models have a higher weight in the regression. For clarification, this strategy is not directly related to Particle Filters (e.g.; Ades

and van Leeuwen, 2013), where the likelihood of the observations are actually used to weight the conditional density. Here,

once the local sensitivity is obtained, the weights are not used elsewhere. In addition, we include a test with a standard ETKF15

augmented with the model parameters using two different ensemble sizes (m= 10 and m= 60). The evaluation of the cost

function for the ETKF (as a smoother) is conducted with a single forward integration of the mean of the estimated parameters.

To emulate the computational constraints of large CGCMs we set up the number of iterations in the pFKS to Nl = 3. Also, we

include the results for the extended Kalman smoother formulated in the parameter space, pEKS, which is the first loop of the

pIKS. For a broader explanation of the influence of estimated parameters on the resulting model climate we refer to PL2012.20

Here we provide a succinct summary of the estimation process. Table 2 in section 4.3 compares results from the evaluated

methods.

4.2 Observations

As indicated, we took SAT observations derived from the NCEP/NCAR reanalysis data. From the reanalysis data we first

calculated as worldwide zonal means of SAT. Then, we obtained SAT means for preindustrial climate at each (latitude) grid25

cell for winter (January, February and March; JFM) and summer (July, August and September; JAS). The mean of the last

10 years of the model integration were taken as model equivalent of the observations. That is, each grid cell in the 1D model

has only one value for winter (JFM) and one value for summer (JAS) in the cost function. As PL2012, we assumed that

observation errors are uncorrelated (R is a diagonal matrix), and that their variance is inversely proportional to the area of

the zonal band; i.e., σ2
Tλ

= a−1
λ σ2

T0
, where aλ is the area at the corresponding latitude band relative to a 10◦ latitudinal band30

centered at the Equator. That is, aλ is close to one near the Equator and approaches zero toward the poles. As PL2012, we

chose the base standard deviation σT0 = 1◦ C.
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4.3 Results

The background sensitivity of the 10-yr mean SAT to the evaluated parameters is shown in Fig. 1, where for comparison the

sensitivity matrix G is scaled by multiplying each of its columns by the assumed background standard deviation of the corre-

sponding parameter. Each scaled column is a line in the plot. Note the original (unscaled) sensitivities in G are independent

of the background standard deviation. Except for the linearized longwave radiation, which is negatively correlated with SAT5

at all latitudes but with a relatively low sensitivity, the rest of the parameters show a rather neutral, but negative, sensitivity in

the tropical belt and a positive sensitivity increasing toward the poles (nearly symmetrical off the Equator), with weaker scaled

sensitivities for the ocean mixed-layer depth, Ho. The pattern is similar for summer months (not shown).
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Figure 1. Ebm1D experiment. Background sensitivity of winter surface air temperature to the background parameter vectors. Sensitivities

are scaled by the standard deviation of parameters, so they are in units of temperature, and each line refers to the corresponding column G:,i.

The adjoint method took 190 iterations and 236 simulations to converge (see Table 3 in PL2012), which indicates the

difficulty of approaching the (possibly local) minimum of the cost function in this scenario. More simulations than iterations10

of the adjoint formulation were needed, as in some instances the cost function did not decrease, and a perturbation to the

parameters had to be added to help the iteration finding an alternative convergence path towards the minimum. This difficulty

seems to be related with the possible overshooting of parameter values along the iterations in the quasi-Newton method used in

the adjoint approach. The possibility of overshooting can lead to regions of the parameter space to which the modelled climate

is too sensitive as well as excessive departure from the minimum, and the method has to fight back with these situations. This15

chance is, for example, evidenced in the pEKS (which equals a one-loop pFKS or the first loop of the pIKS) estimate where, as

shown in Table 2, the mean estimate of the ocean mixed-layer depth reaches an excessively low value resulting from the prior

sensitivity and generally negative innovation values in the first loop. Note we set Pb
θθ as a diagonal matrix, so no covariance

between parameters affected the analysis step in the pEKS, or the pIKS iterations. On the other hand, the estimation with
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the pFKF, via inflation of R, never reached these extreme low values for the ocean mixed layer depth in any iteration. The

parameter values estimated with pFKS converged all in the same direction that they did with the adjoint method.

As expected the posterior values from the pFKS lie between the values obtained by the adjoint method and the background

values, because of the regularization we imposed in the cost function J (θ). Accordingly, the cost function Jy(θ) obtained

by reintegration with the mean updated parameter estimates is slightly higher for the pFKS than for the adjoint. However the5

value of total cost function for the posterior from the pFKS was lower than for the adjoint. This does not necessarily mean that

the pFKS behaved better than the adjoint regarding the final estimate of the minimum. Had the adjoint method been applied

to minimize the complete cost function J (θ), instead of Jy(θ), it would have very likely obtained parameter values closer

to those estimate by the pFKS, and also a value of J (θ) lower than 20.49 [at the expense of a higher Jy(θ)]. In summary, it

seems that both approaches behaved similarly regarding the estimate of the posterior mode. However, the computational cost10

of the adjoint method was higher, as we conducted 48 model integrations [(1 +mθ × q)Nl] with the pFKS (and the pIKS),

versus the 236 forward integrations plus 190 adjoint integrations for the adjoint convergence indicated in PL2012. That is, the

computational cost for the pFKF was 11.5% of that of the adjoint method. We note, however, that for other scenarios PL2012

report quite higher convergence rates for the adjoint method.

An advantage of the pFKS and the pIKS with respect to the adjoint method for parameter estimation is the estimation15

of a posterior parameter covariance. Table 2 also indicates the posterior standard deviations for the pFKS and the pIKS. Non-

diagonal values of Pa
θθ are not shown. Overall, the posterior standard deviations for both, the pFKS and the pIKS, are about one

order less of magnitude than the respective background values, resulting from the dense observation dataset in the experiment.

To further evaluate the consistency of the estimated mean and covariance, we conducted a new ensemble model re-integration

with a sample of parameters drawn from the posterior statistics for the pFKS. Values for Jy(θ) for this ensemble were in the20

range [16.23,17.44], and values for J (θ) were in the range [19.51,20.59].

The pIKS, limited to three loops in this test, was not able to obtain a lower cost function than the background, as a result

of the imposed limit in the number of loops and initial overshooting of the Gauss-Newton approach. As shown in Table 2, its

first loop (the pEKS) obtained some extreme values, with three parameters out of the range given by the background and the

adjoint analysis: Ho, K2, and K4, which resulted in extremely high cost function values for this first loop. In the second and25

third loops, the pIKS was very able to recover from this situation, but still not reaching the low cost function values obtained

by the pFKS. Further iterations of the pIKS (not shown) did not improve these estimates up to Nl = 6, which can be taken as

the convergence being trapped in a local minimum, as seemed to happen in the adjoint approach. The addition of perturbations

to the parameters estimates along the iterations could have helped the pIKS to reach the minimum, as it did for the adjoint.

However, with our focus on big CGCMs we decided to disregard this strategy. The mean estimate given by the ETKF with30

m= 60 members (computationally similar to the pFKS configuration) was better than the pIKS regarding the cost function

values. However, it was not as good as the pFKS. Also, the deterioration of the ETKF was very significant with the reduced

ensemble size m= 10. In view of the results in this experiment, we decided to just evaluate the pFKS in the experiment with

the CGCM described in the next section.
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5 Experiment 2: CESM

5.1 Experimental setup

The experiment 2 is a synthetic test where we use a coupled ocean-atmosphere-land GCM; the Community Earth System

Model (CESM1.2) with the following components: the Community Atmosphere Model version 4 (CAM4), the Parallel Ocean

Program version 2 (POP2), the Community Land Model (CLM4.0), the Community Ice CodE (CICE 4) as sea-ice component,5

the River Transport Model (RTM) and the CESM coupler CPL7. Land ice is set as boundary conditions. We use a ∼ 4◦

horizontal resolution regular finite volume (FV) grid for the atmospheric and land components, a FV grid with a displaced

pole centered at Greenland ∼ 3◦ (version 7) for the ocean and sea ice components, and a 0.5◦ FV grid for the river runoff

component. For comparison with recent ensemble experiments with CESM, this is a coarser set up than the CESM Last

Millennium Ensemble (Otto-Bliesner et al., 2016).10

The experimental setup is designed to emulate a case of past climate reconstruction with sparse observations, as the sparse

availability of observations is a usual constraint in paleoclimate analysis. Specifically, we take the distribution of available

observations of near sea surface temperature for the Last Glacial Maximum (LGM) from the “multiproxy approach for the

reconstruction of the glacial ocean surface” (MARGO) database (MARGO Project Members, 2009). The LGM has received

great attention in the paleoclimate community for its relevance to understand climate feedbacks and future climate projections.15

For the purpose of this study, it is not so important that the actual climate of the model matches that of the LGM but that

the case study is realistic from the estimation point of view. Thus we just make use of the MARGO database characteristics

(locations and uncertainties), but conduct a synthetic experiment for preindustrial climate conditions. To do so, before starting

the experiment we spun up CESM for 1200 yr starting from Levitus climatology with preindustrial conditions to reach an

equilibrium state. We used then restart files from the end of the spin up time to create a 60 yr control simulation (as synthetic20

truth) with the same parameters as used for the spin up.

Also, we added an extra small influx of water into the North Atlantic from melting in the Greenland ice sheet (GIS) to the

true simulation as additional variable to be simultaneously estimated. This flux was homogeneously distributed along the coast

of Greenland and at the ocean surface. We decided to include this freshwater flux in the North Atlantic as control variable

because the Atlantic meridional overturning circulation (AMOC) plays a critical role in maintaining the global ocean heat25

and freshwater balance, and it is commonly acknowledged that the North Atlantic deep-water (NADW) formation is key in

sustaining the AMOC (e.g.; Delworth et al., 1997), while in turn freshwater flux in the North Atlantic, along with surface

wind forcing, ocean tides and convection, provides the energy for the NADW formation (e.g.; Gregory and Tailleux, 2011).

Adding this freshwater flux from the GIS (or freshwater hosing) as simultaneous uncertain variable makes the identification

of the model parameters more complicated, but we understand it is realistic to expect that current melting estimates for past30

climate can hold some bias and it is useful to know how the various estimation methods evaluated deal with this possibility.

Also, the addition of this melting can be considered as the inclusion of a (constant) flux correction term. So, the estimated flux

term attempts to correct the mean state towards the observations along with the model parameters. The experiment serves as

an example of joint estimation of parameters and flux terms for CFR.
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Then we initiated the background with biased parameters with respect to the truth and a zero mean freshwater flux from

GIS. We used standard deviations for the selected parameters as reasonable values derived from previous publications, and all

simulations were branched from the same simulation than the truth. Thus, as initial conditions are the same for both the true

and the runs with perturbed physics, it is guaranteed that the initial conditions do not have an influence in the analysis, which

allows to use short integration times for the experiment. In a real situation integration times should be longer to ensure that5

errors in the initial conditions will not affect the analysis (or they should be accounted for, otherwise).

Separate re-analyses for different model components (atmosphere, ocean, land) may be inconsistent. Thus, in our coupled

setup, observations from any component of the Earth system are allowed to directly impact model parameters from any compo-

nent. This is known as multi-component data assimilation experiment. As other GCMs, the atmosphere and ocean components

of CESM include a variety of empirical parameterizations to model processes occurring at subgrid space and time scales. As10

in the previous experiment, we considered as uncertain a number of physical parameters, in both the atmosphere and ocean,

relevant to the global energy budget of the Earth system. The set of control variables used for the experiment is summarised

in Table 3, and sections 5.2 and 5.3 give a brief information of the CAM and POP2 components of CESM as used in this

experiment. As indicated, in view of the experiment in section 4, in order to save computing time we decided to just evaluate

a 3-loop pFKS, along a pEKS. Also, we evaluated the ETKF with 60 members (ETKF60), and the ETKF including Gaussian15

anamorphosis (ETKF60-GA) as alternative non-linear approach.

5.2 CAM

Cumulus convection is a key process for producing precipitation and redistributing atmospheric heat and moisture (Arakawa,

2004). Then, precipitation and the associated latent heat release drive the Earth’s hydrological cycle and atmospheric circula-

tions. Also, cumulus convection can affect the distribution of clouds and, consequently, the global radiative budget (Yang et al.,20

2013). However, since GCMs are unable to resolve the convective processes, various convection parameterization schemes

(CPSs) have been developed based on different types of assumptions. CPS usually includes multiple tunable parameter, which

are related to the subscale internal physics and are thought to have wide ranges of possible values (Yang et al., 2012, e.g.;).

Also, the dependence of CPS parameters on model grid size and climate regime is an important issue for weather and cli-

mate simulations (Arakawa et al., 2011). The CPSs are generally developed with the assumption that the scale of a convective25

cloud is much smaller than the grid scale, which allows one to formulate the statistical effects of cloud ensembles. When a

locally unstable condition exists, precipitation will be generated if the convective updrafts can penetrate the unstable layers to

some height (Zhang and McFarlane, 1995). In addition, atmospheric GCMs also include parameterization of macrophysics,

microphysics, and subgrid vertical velocity and cloud variability to simulate the subgrid stratiform precipitation. Many model

processes, including deep convection and stratiform cloud micro- and macrophysics, are responsible for the partitioning of30

precipitation through competition for moisture and cooperation for precipitation generation (Yang et al., 2013).

Here we used the Community Atmosphere Model version 4 (CAM4) with the Zhang-McFarlane (ZM) deep convection

scheme. For represention of stratiform microphysics we used the scheme by Rasch and Kristjánsson (1998); a single-moment
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scheme that predicts the mixing ratios of cloud droplets and ice. Regarding cloud emisivity, clouds in CAM 4.0 are grey bodies

with emissivities that depend on cloud phase, condensed water path, and the effective radius of ice particles.

In this study we decided to perturb parameters related to the deep convection in the ZM scheme and the relative humidity

thresholds for low and high stable cloud formation. Also, we included the volume mixing ratio of greenhouse gases CO2 and

CH4 as control variables. We did not evaluate any parameter in relation with indirect effects of aerosol to cloud nucleation5

and autoconversion, despite the overall effect of aerosol to cloud albedo and cloud lifetime, and so to climate, remains largely

uncertain (Chuang et al., 2012). Table 3 shows the evaluated parameters in both CAM and POP2, and Table 4 shows the

parameter values for the true simulation in column xt.

5.3 POP2

Several vertical mixing parameterizations are available within the POP2 model. Here, we used the K-profile parameteriza-10

tion (KPP) of Large et al. (1994). For KPP, we assumed a depth-constant vertical diffusivity and viscosity. Vertical viscos-

ity (υ) is implemented in the KPP mixing as the function υ = Prκ, where Pr, is the dimensionless Prandtl number (set to

Pr = 10 by default in the model), and κ is vertical diffusivity, for which we set the default value in POP2 as the true value

(POP2.bckgrnd_vdc1 in Table 3).

For horizontal mixing we chose an anisotropic mixing of momentum, and the Gent and Mcwilliams (1990) parameterization,15

which forces mixing of tracers to take place along isopycnic surfaces, with activated submesoscale mixing. The main drawback

in the Gent and Mcwilliams (1990) scheme is that it nearly doubles the running time with respect to other simpler schemes.

The third control variable in POP2 was the freshwater influx from the GIS, which we distributed homogeneously along the

coast of Greenland and only at the ocean surface. The true value, xt, for the POP2 control variables is shown in Table 4.

5.4 Observations20

The observational dataset is composed of point samples of climate averages for the last 20 years out of a total 60 yr integration

time of a true simulation. To emulate a realistic past climate estimation problem, the synthetic observations were located at the

sampling points of the MARGO database (MARGO Project Members, 2009), and the sampling characteristics reproduce those

of the MARGO. The MARGO database is a synthesis of six different proxies and is considered to represent the combined ex-

pertise of at least a sizeable fraction of the LGM paleocommunity. Along with model simulations, it has been recently used for25

comparison with model ensembles (Hargreaves et al., 2011), or within the adjoint method for dynamical reconstruction of the

global ocean state during the LGM with the adjoint method (Kurahashi-Nakamura et al., 2017). The observational uncertainty

was taken from the MARGO database as input to the assimilation, but we did not add any error to the synthetic observations.

MARGO provides observations (or reconstructions) of near sea surface temperature (SST), evaluated at 10 m depth, for the

Last Glacial Maximum (LGM). The proxy types on which the SST estimates are based are a) microfossil-based: planktonic30

foraminifera, diatom, dinoflagellate cyst and radiolarian abundances, and b) geochemical palaeothermometers: alkenones un-

saturation ratios (UK
′

37 ) and planktonic foraminifera Mg/Ca. Details of the database are given in MARGO Project Members

(2009).
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In summary, MARGO provides seasonal means for January, February and March (JFM, or winter observations), and July,

August and September (JAS, or summer observations), as well as annual means. However, the availability of data for each of

the three temporal means (winter, summer, and annual) is different for each proxy type. Specifically, diatoms are just available

for winter; dinoflagelates, foraminifera, and Mg/Ca are available for the three temporal means; and UK
′

37 are only available

as annual means. The observation errors are assumed uncorrelated, but each individual record in MARGO contains a specific5

uncertainty. Mapped into the SST space, the range of standard deviations in MARGO is within 0.79 and 4.87 ◦C, with relatively

homogeneous uncertainty ranges among proxy types. Figure 2 shows the type and location of the proxy data. In addition to the

locations and uncertainty, we emulated the temporal mean availability of the observations, with all temporal means calculated

over the last 20 yr of the integration time of the true simulation. Thus, the synthetic observations in the experiment, as well as

those in MARGO, impose a less rectrictive constraint not only in areas in which observations are more sparse, but also in those10

locations for which just one season or just annual means are available. Below we see the impact of the uneven observation

coverage on the analyses.
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Figure 2. MARGO data coverage (MARGO Project Members, 2009).

5.5 Results

Table 4 shows the model parameters for the true simulation, xt, the prior (or background) parameters, xb, and the analysis

results, or updated paramater estimates, xa, for the evaluated filters, as well as the value of the cost function J (θ) for the15

background and each estimation. The observational term in the cost function, Jy(θ), is also shown to give an indication of

the relative contribution from each term in the cost function to its total value. The component Jy(θ) of the cost function is

calculated by reintegration of the mean analysis parameters in the ensemble for the ETKF60 and the ETKF60-GA, and by

reintegration of the explicit parameter estimates in the pEKS and the pFKS.

In general, all schemes obtained a substantial reduction in the value of the cost function with respect to the background,20

which had a J (θ) = 373.39. Within the evaluated schemes, the pFKS obtained the lowest values for both Jy(θ) (50.24) and
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J (θ) (51.85) with a substantial reduction with respect to the other schemes. The pEKS was the scheme with higher cost

function (66.83), which was expected as, in addition to be linear, it is the scheme with a more reduced exploration of the

parameter space and corresponding sensitivity estimation. The cost function for the EKTF60+GA is very similar to that of

the EKTF60 with no transformation. So, the transformation given by the anamorphosis does not show a general benefit over

a standard ETKF for this kind of problem. An analysis for higher temporal resolution (e.g., annual) could, however, have5

shown different results. Still, it is possible that a more detailed screening of nonlinearities could have led to just apply the

anamorphosis to some selected parameters and improved results. For example, Table 4 shows that the ETKF60-GA approaches

the true parameter values clearly more closely than the ETKF60 in the case of the CAM minimum relative humidity for

high stable cloud formation, cldfrc_rhminh, and the autoconversion coefficient over land in deep convection; zmconv_c0_lnd.

However, for the autoconversion coefficient over the ocean, zmvonv_c0_ocn, the ETKF gets closer to the truth. Thus, it does10

not seem possible to derive any general conclusion about the benefit of the Gaussian anamorphosis for multidecadal climate

analysis at the view of this experiment.

The lower cost function value of the pFKS with respect to the ETKF60 (with/without GA) suggests a benefit in the more lim-

ited but repetitive sensitivity estimation and incremental approach of the pFKS, which allows for mild nonlinear relationships,

with respect to a (linear) single step but more thorough exploration of the mean sensitivities of the ETKF60. Again, an increase15

in the ensemble size of the ETKF could change this results, as it is also possible that an increase in the number of steps in the

pFKS could further reduce the cost function value. However, in the experiment, the computing effort of the pFKS was already

half of the ETKF60, which has to be taken into account regarding the estimation possibilities.

Regarding the estimation of specific parameters, all of the evaluated schemes had some parameters for which the estimation,

starting from the background, went in the wrong direction with respect to the true values. For example, while the closest20

estimate to the true value of the relative humidity threshold for high stable cloud formation (cldfrc_rhminh) was given by the

pFKS, with a slight overshooting (0.81 versus 0.80 for the truth). It may have been that this slight overshooting has partially

compensated for the effect of other parameters. Thus, the pFKS estimates of the freshwater flux from the GIS went in the

wrong directions, as were the estimates for the autoconversion coefficients in the Zhang-McFarlane deep convection scheme.

The ETKF60 did not show any overshooting, but had some parameter increments going in the wrong direction. For the ocean25

background vertical diffusitivity, the only scheme for which there was some, albeit minor, improvement in the estimate was the

EKTF60. Still, the improvement is so light in this case that is could be random. It is possible that the parameter perturbations

imposed for the estimation of the Jacobian were too low to have a significant effect on the model sea surface temperature

(SST) at the locations, including depth, of the observations given the short integration times. Table 5 shows the corresponding

standard deviation for the background and the analyses. The column for the EKTF60+GA has been omitted as it was similar30

to that of the EKTF60, and it is not shown to lead to improved parameter estimates. In general, the spread of the posterior

parameter ensemble was higher for the EKTF60, while the pEKS and the pFKS had a more similar reduction in the spread with

respect to the background, with the pFKS slighty higher general reduction.

The OAT (or conditional) sensitivity exploration by the pEKS affects the estimation of the various parameters in different

degrees. For comparison, with a prescribed SST, Covey et al. (2013) evaluated the sensitivity of the radiation balance at the top35
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of the atmosphere in CAM to a large number of input parameters with both an OAT exploration, similar to the pEKS, and an al-

ternative Morris one-at-a-time (MOAT) sampling. For example, they found with both methods that the highest sensitivity of the

upward shortwave flux (solar energy reflected back to space by the atmosphere and surface) was with respect to cldfrc_rhminl,

out of 21 evaluated CAM parameters. As cldfrc_rhminl is the threshold of the relative humidity value at which low-level water

vapor starts to condense into cloud droplets, their result is consistent with the role of thick stratus clouds in reflecting sunlight.5

More generally, they found that for both OAT and MOAT sampling, most of the parameters received a similar rank sensitivity,

despite the MOAT perturbations occur through a baseline traversing the multidimensional parameter space.

This study does not attemp to give an in-depth analysis of the assimilation results for the corresponding CFR. However,

we summarise some results of the spatial patterns shown in the climate reconstructions and give examples of sensitivities as

estimated by the pFKS and the ETKF60. Figure 3 shows, in general, a similar absolute bias reduction for the pFKS and the10

ETKF60 in both general magnitude and spatial patterns for both SST and SSS. For SST, the most problematic area is that

where most of the observations come from the diatom locations in the MARGO database. A reason for that seems to be that

observations for diatoms locations are just the 20 yr means for winter (seasonal mean of January, February and March), which

reduces its impact on the climate analysis with respect to other observation types. Still, in general the pFKS has slightly less

areas where the absolute bias in the SST could not be reduced. Also the negative effect of the assimilation, regarding absolute15

bias reduction, on SSS which is shown for the ETKF60 for the North Atlantic, the Bering strait, and in some areas of the

Artic ocean is negligible in the pFKS. While these unobserved areas (from the point of view of the MARGO database) remain

largely unconstrained, the pFKS seeems generally more able to correct for the biases in areas with more observations and

simultaneously not having a negative effect in areas far from the observations.

As an example of estimated sensitivities in our CGCM experiment, Fig. 4 shows the sensitivity of the sea surface temperature20

(SST) and sea surface salinity (SSS) to cldfrc_rhminl in CAM, as mean sensitivity estimated by the background ensemble for

the ETKF60 and conditional sensitivity in the first loop of the pFKS (i.e. also the pEKS). In the case of SST the general pattern

of both sensitivities is quite similar, except for the negative sensitivity shown at the North Atlantic ocean above 50◦ of latitude

for the ETKF60. The second loop of the pFKS (not shown) shows a similar pattern to the first loop. However the sensitivity

in the third loop (not shown), approaches more the sensitivity of the ETKF60 and also shows a similar negative sensitivity25

area, in extent and magnitude, in the North Atlantic. Something similar happens to the sensitivity estimates for the SSS, where

the conditional sensitivity estimates in the first and second loops of the pFKS are reasonably similar to the mean one from

the ensemble background for the ETKF60, with the major differences being in the Artic ocean, around the Bering strait, and

the North Atlantic. The third loop of the pFKS (not shown) also shows the more homogeneous band of sensitivity between

the coasts of Canada and Europe shown for the ETKF60. As a further example, we find also interesting to show a sensitivity30

example for the deeper ocean considering the short integration time (60 years) of the experiment. For this integration time the

deep ocean is far from reaching equilibrium. Figure 5 depicts the sensitivity of the Atlantic meridional overturning circulation

(AMOC) to the background vertical diffusity (κ; POP2 parameter bckgrnd_vdc1) for the ETKF60 and the three iterations

of the pFKS. It can be seen that the general pattern have some similarities in all case, but also noticeable differences. The

first iteration of the pFKS (pFKS.f01) is quite close to the mean estimate of the ETKF60, except for the high sensitivity area35
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around 30◦N and 1.5 km deep, which is mostly missing in the pFKS.f01. The pattern of the sentitivity in the second iteration

(pFKS.f02) is similar to that in the first iteration but with much higher values. The third loop again has reducded sensitivities

and keeps missing the deeper high sensitivity area given by the mean sensitivity of the background ensemble for the ETKF60.

This warrants further study to analyse with more detail why, despite being sampling different regions of the parameter space,

the conditional parameter sampling of the pFKS does not show in any case the deeper high value area estimated by the mean5

sensitivity.

An important last consideration is that the assimilation will just attempt to minimise (or get the first moments) of the cost

function. So the assumed background uncertainties and the background term in the cost function are instrumental in controlling

the parameter increments in the assimilation and the resulting CFR. In this synthetic experiment the source of errors is known,

and we assume a perfect-model framework expect for the assumed uncertainties in the chosen parameters. However, online10

parameter estimation with real data does not know about real model errors. Potentially, the parameters can have a compensating

effect for non-accounted errors. Although the minimization of the cost function via parameter estimation can highly reduce

the value of a cost function and improve the corresponding CFR, it does not necessarily imply that the updated parameters (or

their moments) actually correspond to improved model physics. That is, the updated model parameters can potentially lead to

improved climate simulations for other prospective climatic conditions, but not neccessarily. Thus, it is important to distinguish15

between the use of the assimilation methods for CFR including parameter estimation, and the trust one can have in the estimated

model parameters for future climate projections under very different climatic conditions. A fair caveat note was recently given

by Dommenget and Rezny (2017) regarding the use of flux corrections as an alternative to parameter estimation in CGCMs.

As they indicated, the compensating error risk when using parameter estimates for one specific observation dataset for future

projections can be eliminated by using flux corrections instead to estimate the CFR. Still, the flux corrections do not improve20

the climate projections either. Also parameter estimates may be strictly needed, for example, when model configurations which

have not been scientifically validated are newly evaluated, as the parameterisation of the model physics may change, e.g., for

different model resolutions. All in all, our experiment with CESM is an example of joint estimation of flux correction and model

parameters. The flux correction (to represent some specific model error) must have some specific shape. If properly estimated,

it can potentially be used for CFR in unobserved climates (e.g., future projections). The estimation of the flux correction in25

our example has not succeed for the pFKS. However, the ETKF60, despite its higher cost function value, has very adequately

estimated the freshwater flux from GIS, in a consistent way with its background uncertainty and the true observations. More

study is also neeed to provide deeper insight into the specific factor leading to the different estimates.

6 Conclusions

This study focuses on the online estimation of model parameters for multi-decadal past climate reanalysis (or climate field30

reconstructions, CFR) with CGCMs, under the assumption that the main sources of model uncertainty can be encapsulated

in a relatively small number of model parameters. By parameters we also refer to jointly estimated flux terms if these are

deemed a) uncertain and b) having a significant impact on the model climate. Given this assumption and the restrictions of
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Figure 3. CESM experiment. Absolute bias reduction for SST and SSS as a result of a new integration with the parameters estimated with

the ETKF60 and the pFKS. The statistics are the absolute bias between the background and the truth minus the absolute bias between the

analysis and the truth. Thus, positive values are a net bias reduction.

big computational demand, we evaluate two relatively low-cost iterative schemes based on the Kalman filter and compared the

schemes with a number of other alternatives in two experiments. The two iterative schemes are based on one-at-a-time (OAT,

or sampling from the conditional parameter distributions) estimation of the observation sensitivities to model parameters.

The first scheme is the iterated Kalman filter formulated in the parameter space, which is here termed the parameter-space

iterative Kalman smoother (pIKS). The second scheme is a fractional (by inflation of the observation error covariance) and5

multiple assimilation of the observations in an iterative fashion, which is here termed as parameter-space fractional Kalman

smoother (pFKS). In a first simple experiment, with a one-dimensional energy balance model, for which an adjoint model is

available, the pFKS obtained the lowest cost function of the two schemes, with cost function values comparable to that of

a 4D-Var scheme (or adjoint method) and with a much reduced computational effort. The pIKS showed instead an unstable
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Figure 4. CESM experiment. Sensitivity of SST [◦C] and SSS [PSU] to the minimum relative humidity for low stable cloud formation

(CAM.clrfrc_rhmin) estimated from the ETKF60 background ensemble and the first iteration of the pFKS.

behavior resulting in a substantially higher cost function. Thus, in a second experiment with the CESM model as example of

CGCM, only the pFKS was evaluated. Given the lack of an adjoint code for CESM, we included an ETKF with 60 members

(ETKF60) and an ETKF60 with Gaussian Anamorphosis (ETKF60-GA) for benchmarking. As far as the authors know, this is

also the first time that the ETKF-GA is evaluated for online parameter estimation with a comprehensive coupled climate model

as CESM. Regarding the cost function as performace criterion, the ETKF60-GA was not clearly better than a standard ETKF60,5

although this might change in climate analyses with a higher temporal resolution. The pFKS (with 3 iterations) again obtained

lower values of the cost function than the ETKF60 and with half the computational cost. However, the results are not strongly

conclusive about whether the 3-loop pFKS or the ETKF60 behaved significantly different in the study case. While the ETKF

uses a more thorough sampling of the parameter space for the evaluation of the mean sentivities, the simpler pFKS seems

more able to account for a (mild) nonlinear relation between the modelled climate and the model parameters. Thus, apart from10
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Figure 5. CESM experiment. Sensitivity of the Atlantic meridional overturning circulation (AMOC) to the background vertical diffusion

parameter (κ; POP2.bckgrnd_vdc1) of the KPP scheme in the ocean model estimated from the ETKF60 background ensemble and during

the three iterations of the pFKS.

reduced cost function values, the pFKS seems generally more effective in controlling negative effects that the assimilation

may have in areas far from any observation, which remain largely unconstrained. This, along with the reduced computing

requirements, favors the use of the pFKS if the number of parameter is relatively low when computational contraints are an
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issue. However, the ETKF60 has shown to behave better in the joint estimation of a flux term; a freshwater flux from melting

in the Greenland ice sheet. Under severe computational restrictions given the size of comprehensive Earth system model, the

experiments here show that the pFKS can be a relatively efficient strategy for dealing with the nonlinear climate-parameter

relation and conduct online parameter and state estimation for climate reanalyses. Nevertheless, as exemplified by the better

estimates by the ETKF60 of the flux term, further study is warranted towards the joint estimation of model parameters and flux5

terms for climate field reconstructions and potential related improvements in climate projections.

Data availability. Data from CESM v1.2 model simulations conducted for the analyses in this paper are available upon request to the
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Table 1. 1D energy balance model. Parameter definition and first-guess values.

Symbol (µ,σ)a Units Description References1

Ho (70.0, 20.0) m Ocean mixed-layer depth (Hartmann, 1994, p. 84)

Linearized longwave radiation

A (205.0, 20.0) W m−2 Constant term (Hartmann and Short, 1979, set 2)

Diffusion coefficients

K0 (1.5× 105, 5.0× 105) m2s−1 Constant term

K2 (-1.33, 0.75) Second-order coefficient (North et al., 1983)

K4 (0.67, 1.00) Fourth-order coefficient (North et al., 1983)
1References just for the mean values.
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Table 2. Parameter estimation results for Ebm1D model.

Parameter Background Adjoint1 pFKS pIKS pEKS ETKF2
60 ETKF2

10

Ho 70.0± 15.0 27.4 41.0± 1.3 29.8± 1.7 2.1 27.6 32.2

A 205.0± 7.0 209.6 209.9± 0.5 211.7± 0.6 206.2 210.4 212.6

K0 1.5E05± 1.5E05 3.8E05 2.4E05± 2.9E03 3.6E05± 3.8E04 3.4E05 4.2E05 1.9E05

K2 −1.33± 0.75 -0.64 −0.79± 0.07 −1.6± 0.08 -0.49 -1.34 -0.40

K4 0.67± 0.6 -0.32 −0.04± 0.07 1.4± 0.02 -0.51 0.39 0.51

Jy(θ) 28.44 13.27 16.51 26.08 1180.2 19.57 29.69

J (θ) 28.44 20.49 19.70 32.01 1193.8 25.58 34.28
1Adjoint results from PL2012. See text for explanation.
2ETKF subindex indicates the ensemble size. Cost function obtained by re-integration of the model with the mean updated parameters.
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Table 3. CESM parameter definition.

COMP.name1 Description Units

CAM.cldfrc_rhminh minimum relative humidity for high stable cloud formation [-]

CAM.cldfrc_rhminl minimum relative humidity for low stable cloud formation [-]

CAM.ch4vmr greenhouse gases, CH4 volume mixing ratio ppb

CAM.co2vmr greenhouse gases, CO2 volume mixing ratio ppm

CAM.zmconv_c0_lnd autoconversion coefficient over land in ZM deep convection [-]

CAM.zmconv_c0_ocn autoconversion coefficient over ocean in ZM deep convection [-]

CAM.zmconv_ke evaporation efficiency in ZM deep convection [-]

POP2.bckgrnd_vdc1 KPP mixing: background vertical diffusivity (Ledwell) cm2s−1

POP2.hmix_gm_nml.ah Gent-Williams isopycnic tracer diffusion (Redi)2 cm2s−1

POP2.freshwater_gis freshwater influx homogeneously distributed around Greenland Sv
1COMP:name CESM component and parameter name.
2POP2.hmix_gm_nml.ah_bolus constrained to equal POP2.ah.hmix_gm_nml.ah.
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Table 4. CESM parameter estimation.

COMP.name xt xb xa – ETKF60 xa – ETKF60+GA xa – pEKS xa – pFKS

CAM.cldfrc_rhminh 0.80 0.75 0.76 0.82 0.76 0.81

CAM.cldfrc_rhminl 0.91 0.88 0.91 0.90 0.90 0.90

CAM.ch4vmr 791.6 800.0 801.0 798.2 797.4 798.7

CAM.co2vmr 284.7 300.0 300.0 301.2 301.4 298.8

CAM.zmconv_c0_lnd 0.0035 0.0202 0.0208 0.0167 0.0238 0.0287

CAM.zmconv_c0_ocn 0.0035 0.0202 0.0155 0.0230 0.0327 0.0290

CAM.zmconv_ke 1.0e-06 5.0e-06 2.3e-06 4.6e-06 3.75e-06 4.1e-06

POP2.bckgrnd_vdc1 0.16 0.19 0.18 0.19 0.19 0.19

POP2.hmix_gm_nml.ah 4.00e+07 4.20e+07 4.17e+07 4.3e+07 4.3e+07 4.17e+07

POP2.freshwater_gis 0.0075 0.0 0.0038 0.0144 6.28e-05 -8.4e-04

Jy(θ) 373.39 64.95 61.23 91.81 50.24

J (θ) 373.39 66.43 66.83 93.13 51.85
1Units as described in Table 1.
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Table 5. CESM estimates of standard deviations.

COMP.name σ(xb) σ(xa) – ETKF60 σ(xa) – pEKS σ(xa) – pFKS

CAM.cldfrc_rhminh 5.00e-02 2.91e-02 1.63e-02 8.93e-03

CAM.cldfrc_rhminl 5.00e-02 6.99e-03 1.98e-03 2.13e-04

CAM.ch4vmr 4.00 3.37 1.39 1.12

CAM.co2vmr 3.00 2.67 1.40 1.69

CAM.zmconv_c0_lnd 1.20e-02 1.03e-02 5.69e-03 3.68e-03

CAM.zmconv_c0_ocn 1.20e-02 9.34e-03 4.51e-03 3.79e-03

CAM.zmconv_ke 2.20e-06 1.28e-06 6.14e-07 3.68e-07

POP2.bckgrnd_vdc1 2.00e-02 1.76e-02 4.84e-03 3.31e-03

POP2.hmix_gm_nml.ah 2.00e+06 1.54e+06 8.79e+05 6.95e+05

POP2.freshwater_gis 5.00e-03 3.17e-03 1.84e-03 1.56e-03
1Units as described in Table 1.
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