10

15

20

25

30

MP CBM-Z V1.0: design for a new CBM-Z gas-phase chemical
mechanism architecture for next generation processors

Hui Wang!, Junmin Lin?", Qizhong Wu!, Huansheng Chen®, Xiao Tang?®, Zifa Wang3, Xueshun Chen?,
Huagiong Cheng!, Lanning Wang!

!College of Global Change and Earth System Science, Joint Center for Global Changes Studies, Beijing Normal University,
Beijing 100875, China

2Intel (China) Corporation, Beijing 100013, China

3State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics,
Chinese Academy of Sciences, Beijing 100029, China

*Now in Artificial Intelligence Research Department, JD Corp.

Correspondence to: Qizhong Wu (wqizhong@bnu.edu.cn) & Huansheng Chen(chenhuansheng@mail.iap.ac.cn)

Abstract. Precise and rapid air quality simulations and forecasting are limited by the computational performance of the air
quality model used, and the gas-phase chemistry module is the most time-consuming function in the air quality model. In this
study, we designed a new framework for the widely used the Carbon Bond Mechanism Z (CBM-Z) gas-phase chemical kinetics
kernel to adapt the Single Instruction Multiple Data (SIMD) technology in the next-generation processors for improving its
calculation performance. The optimization implements the fine-grain level parallelization of CBM-Z by improving its
vectorization ability. Through constructing loops and integrating the main branches, e.g. diverse chemistry sub-schemes,
multiple spatial points in the model can be operated simultaneously on vector processing units (VPU). Two generation CPUs,
Intel Xeon E5-2680 V4 CPU and Intel Xeon Gold 6132, and Intel Xeon Phi 7250 Knights Landing (KNL) are used as the
benchmark processors. The validation of the CBM-Z module outputs indicates that the relative bias reaches a maximum of
0.025% after 10-h integration with -fp-model fast=1 compile flag. The results of the module test show that the Multiple-Points
CBM-Z (MP CBM-Z) resulted in 5.16x and 8.97x speedup on a single core of Intel Xeon E5-2680 V4 and Intel Xeon Gold
6132 CPUgs, respectively, and KNL got a speedup of 3.69x comparing with the performance of CBM-Z on Intel Xeon E5-2680
V4 platform. For the single node tests, the speedup on the two generations CPUs can reach 104.63x and 198.50x using Message
Passing Interface (MPI) and 101.02x and 194.60x using OpenMP, respectively, and the speedup on the KNL node can reach
194.60x using MPI and 167.45x using OpenMP. The speedup of the optimized CBM-Z is approximately 40% higher on a 1-
socket KNL platform than on a 2-socket Broadwell platform and about 13-16% lower than on a 2-socket Skylake platform.
We also tested a three-dimensional chemistry transport model (CTM) named Nested Air Quality Prediction Model System
(NAQPMS) equipped with the MP CBM-Z. The tests illustrate an obvious improvement on the performance for the CTM after
adopting the MP CBM-Z. The results show that the MP CBM-Z leads to a speedup of 3.32 and 1.96 for the gas-phase chemistry
module and the CTM on Intel Xeon E5-2680 platform. Moreover, on the new Intel Xeon Gold 6132 platform, the MP CBM-
Z gains 4.90x and 2.22x speedups for the gas-phase chemistry module and the whole CTM. For the KNL, the MP CBM-Z

enables a 3.52x speedup for the gas-phase chemistry module, but the whole model lost 24.10% performance compared to the
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CPU platform due to the poor performance of other modules. In addition, since this optimization seeks to improve the
utilization of the VPU, the model is more suitable for the new generation processors adopting the more advanced SIMD
technology. The results of our tests already show that the benefit of updating CPU improved by about 47% by using the MP
CBM-Z since the optimized code has better adaptability for the new hardware. This work improves the performance of the
CBM-Z chemical kinetics kernel as well as the calculation efficiency of the air quality model, which can directly improve the

practical value of the air quality model in scientific simulations and routine forecasting.

1 Introduction

Air pollution and its impacts on human health have attracted widespread attention all over the world, especially in developing
countries (Gurjar et al., 2016;Zhang et al., 2017). As a useful tool for air quality problems, Chemistry Transport Models (CTM)
is widely used in studies of air quality (Gao et al., 2016;Chen et al., 2015;Wu et al., 2014) and in establishing air quality
forecasting (AQF) systems. As the core of the AQF system, a CTM requires a large number of computational resources to
simulate the complex chemical and physical processes. To satisfy the demand of routine air quality forecasting in a timely
manner, coarse spatial resolution and relatively simple processes are adopted in CTMs to minimize the use of computational
resources. Meanwhile, other simulation studies with more complex processes are also limited by computational resources.
Therefore, air quality studies can benefit significantly by improving the performance of the CTM used.

In a CTM, the most time-consuming module is the gas-phase chemistry module (Wang et al., 2017). The gas-phase chemistry
module is described as a system of ordinary differential equations (ODEs) to simulate the chemical kinetics of trace gases in
an atmosphere model (Seinfeld and Pandis, 2012). Linford (2013) reported that the Regional Acid Deposition Model version
2 (RADM2) (Zimmermann and Poppe, 1994;Chang et al., 1987), a chemical kinetics kernel, accounted for 90% of the
computational time in the Weather Forecasting and Research/Chemistry (WRF-chem) model (Grell et al., 2005). Another
widely used chemical kinetics kernel, the Carbon Bond Mechanism version Z (CBM-Z) (Zaveri and Peters, 1999), accounts
for approximately 68% of the computation time in the Global Nested Air Quality Prediction Model System (GNAQPMS)
model(Chen et al., 2015;Wang et al., 2017). Therefore, accelerating the gas-phase chemistry module can directly improve the
performance of the CTM as well as the whole AQF system. The AQF system can also benefit from the performance
improvement by adopting a higher model resolution and improving the frequency of air quality forecasting.

The performance of models improves with updated hardware. However, reaching the bottleneck of power density and the
thermal limitation of the silicon technology for a single-core design, frequent updating has not been an efficient way to improve
the scientific model’s performance. Additionally, multi-core architecture and a heterogeneous computing architecture such as
a Many Integrated Core (MIC) and a Graphic Processing Unit (GPU) have become the hardware trend for high-performance
computing (Xu et al., 2015;Lawrence et al., 2018). Meanwhile, to take full advantage of the advanced features of new processor
architecture, the applications or the models must be redesigned or rewritten. Xu et al. (2015) rewrote the Princeton Ocean

Model (POM) using CUDA-C to port it from a CPU to a GPU platform. Linford (2013) also tried to solve the computation
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bottleneck of RADM2 mentioned above by using a heterogeneous platform such as GPU-CPU. In addition, our previous work
showed the primary optimizations we performed to accelerate the GNAQPMS model on the new generation CPU and Intel
MIC platforms (Knights Landing, KNL(Sodani et al., 2016)), and had a significant performance improvement on both
platforms, a 2.77x speedup on CPU, and a 3.51x speedup on the KNL node (Wang et al., 2017). In this study, we redesign the
code structure of the chemical kinetics kernel CBM-Z to improve its vectorization performance on the CPU and KNL platforms,
which significantly improves its performance by fully utilizing the Single Instruction Multiple Data (SIMD) technology. We
tested the performance of this optimized CBM-Z module as well as a regional CTM equipped with it. The code test only
contained this single module, making it easier to let the CTM developers to reuse the code.

Section 2.1 in this paper introduces the CBM-Z scheme, and section 2.2 describes the new architecture we designed for CBM-
Z. Since multiple spatial points were operated on simultaneously in the optimized CBM-Z scheme, the optimized CBM-Z
scheme was called the Multiple-Points CBM-Z Version 1.0 (MP CBM-Z V1.0). In section 3.1, we present our benchmark
platforms. In section 3.2 and 3.3, we introduce the test cases and present the test results of single model tests and CTM tests

separately. The conclusions and discussions are given in section 4.

2 Method Description

CBM-Z is a core module in CTMs that simulates the complex gas-phase chemical processes in the atmosphere. In this module,
too many options and poor load balancing within the model grid boxes make it a challenge to improve its performance on a
vectorization level. This leads to poor performance of CBM-Z on the new generation processors that are highly dependent on
powerful vector processing units (VPU). In our previous work, we conducted several optimizations on CBM-Z to enhance its
vectorization and parallel performance(Wang et al., 2017). In this work, we attempt to further enhance its vector calculation
ability by constructing a new structure, which makes the CBM-Z module suitable to be vectorized. The CBM-Z module was

extracted as an individual box model to test its performance and improve code reusability.

2.1 Description of CBM-Z

CBM-Z is a lumped-structure photochemical mechanism that was developed to meet the needs of city-scale to global-scale
tropospheric chemical simulations (Zaveri and Peters, 1999). The original scheme contains 67 species and 132 reactions. CBM-
Z has been widely used in CTMs, e.g., the WRF-Chem (San Jos¢ et al., 2015), the Nested Air Quality Prediction Model System
(NAQPMS) (Wang et al., 2001) and the GNAQPMS model. In the NAQPMS and GNAQPMS models, CBM-Z was further
modified by Li et al. (2012). It was updated to 76 species, and 28 heterogeneous reactions were added. The CBM-Z solver
uses the Modified Backward Euler (MBE) solver developed by Feng et al. (2015), a faster and more robust algorithm which
overcomes inflexibility and preserves the non-negativity.

The main control flow of CBM-Z is shown in Figure 1. The IntegrateChemistry function is treated as the core-function of the

module. CBM-Z contains five chemistry sub-schemes. They are the Common Chemistry Scheme (COM), the Urban Chemistry
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Scheme (URB), the Biogenic Chemistry Scheme (BIO), the Marine Chemistry Scheme (MAR) and the Heterogeneous
Chemistry Scheme (HET). The integration of different sub-schemes is used to satisfy the simulation of diverse scenarios and
scales. The combination of sub-schemes relies on the concentration and emission of each chemical species in the specific
model grid, which is implemented in the SelectGasRegime function. The variable iregime stores the return-value of
SelectGasRegime and controls the subsequent calculation processes of CBM-Z. The possible values and the sub-schemes
represented are shown in Table 1. The combinations include the COM and HET schemes, while other schemes are added when
the concentration or emission of a corresponding species in a certain scheme are greater than zero. Compared with the
algorithm computing all chemical interactions, this algorithm is helpful in saving computational resources on a simple core,

while such irregular and unbalanced calculations lack well-structured loops and impede the vectorization of code. Besides the
chemistry sub-schemes mentioned above, CBM-Z uses other functional branches, e.g. nocturnal and diurnal chemistry, and
they impede the vectorization of the computation. The CBM-Z also contains multiple unconstructed scalar operations. We
partially integrated the scalar operations by using indirect indexing to construct loops for vectorization (Wang et al., 2017).
However, this method required significant effort, and it only reconstructed a limited number of scalar operations. The CBM-
Z module still contains many scalar operations. With multi-level control flow divergences and many scalar calculations, it is
not feasible to perform automatic vectorization with an Intel compiler.

Fortunately, contiguous model grid boxes may have similar chemical processes in air quality simulations, which provides the
opportunity to integrate the grid boxes with similar or the same chemical processes to implement vectorization to calculate the
processes of multiple grid boxes simultaneously. The following section introduces the details about integrating the chemistry

sub-schemes to implement the vectorization.

2.2 Algorithm Description

The new generation Intel CPU (e.g., Skylake) and Intel MIC chips are equipped with the AVX-512 or more advanced
vectorization instructions, which supports a maximum of eight double precision and sixteen single precision operations with
512-bit-wide vector registers. It is critical to peak performance of the next generation CPUs and MICs to fully reach the
potential of the AVX-512 (Mielikainen et al., 2014). As mentioned in section 2.1, automatic vectorization using a compiler is
impeded by the features of CBM-Z, and the common manual measures including constructing loops, avoiding the loop/data
dependence and aligning the data with directives are needed to further vectorize CBM-Z. On the other hand, to implement
vectorization of the module, the general design allowed the CBM-Z module to handle multiple grid boxes in one citing cycle,
and the functions in CBM-Z were reconstructed by adding a regular loop for these grid boxes. Subsequently, these loops can
be vectorized to implement the fine-grained parallelization on a VPU.

All of the model grid boxes are distributed to multiple cores using a Message Passing Interface (MPI) and OpenMP, which is
a type of coarse-grain parallelization. Our goal is to implement fine-grained parallelization based on the SIMD and the grid
boxes that are distributed to a specific processor operate in parallel using the VPUs on each core. As shown in Figure 2, the

calling method of the CBM-Z module changes from calculating one model grid box calculation at a time to multiple model
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grid boxes at the same time. The step length (VLEN in Figure 2) of the loops represents the number of the grid boxes operated
simultaneously, and it is determined by the length of the vector register. The VLEN was set to 16 since the 512-bit-wide vector
of AVX-512 can support 16 single-precision operations at the same time. Using this framework, the functions in CBM-Z
construct an extra loop to manage the point number dimension, and the corresponding variables require an extra dimension to
store the information of multiple grid boxes. Using the structure with an extra loop, it was easier to implement vectorization.
Meanwhile, to avoid multiple remaining points which cannot satisfy the VLEN, we set a common variable array, pmask(VLEN)
as shown in Figure 2, to store the availability label of the model grid boxes. When the number of remaining grid boxes did not
reach VLEN, the corresponding pmask value of excessive grid boxes was set to False to mask these grid boxes in the
calculation. Furthermore, the latitude and longitude dimensions loops were merged, from nested loops to a single loop, to
reduce the number of unavailable points as shown in Figure 2. Achieving such a large-scale vectorization also requires load
balancing of the calculation processes, but the calculation branches in CBM-Z are an obstacle to this. Therefore, the branches
in CBM-Z should be taken into consideration in constructing the loops, especially the chemical schemes chosen in Table 1.
As mentioned in section 2.1, the contiguous model grid boxes may have similar chemical processes in the atmosphere. This
provides an opportunity to integrate the sub-schemes by masking the heterogeneous model grid boxes, and this type of masking
operation can be used in the functions GasRateConstants and ODEsolver (Figure 1). Figure 3 shows the flowchart for masking
the model grid boxes to satisfy the vectorization of the grid array. A set of grid boxes with the number of VLEN (16 in this
study) would perform the operation simultaneously, and the variable pmask signed the valid grid boxes. Meanwhile, the
variable iregime described in Table 1 and representing the combination of sub-schemes, is used to determine whether the
model grid must perform the subsequent operation or not. The grid boxes with the same property or calculation are kept by
setting the variable bmask to True. The COM and HET schemes are common for all grid boxes, and the mask operation for
COM and HET schemes only determine the availability of the grid boxes. As shown in Figure 3, for the URB, BIO and MAR
schemes, the iregime value and pmask are both used to filter the heterogeneous grid boxes and the bmask stores the results.
To improve the efficiency of vectorization, the bmask does not prevent the calculation of heterogeneous grid boxes but prevents
the calculation results from being copied back to the return value. Thus, all computations are performed on all grid boxes, but
only the results of the valid grid boxes are returned. This improves the utilization of data as well as the efficiency of
vectorization. Because of the independence of the grid boxes, the computation process of VLEN arrays are independent and
satisfy the requirement of vectorization, and the corresponding directives were added to declare the independence of the arrays
and force the compiler to perform the data alignment and vectorization after the reconstruction of the code. Overall, by
constructing the loops, the computations of the independent grid boxes were integrated with the fine-level parallel
implementation through the SIMD. In addition, the efficiency of such algorithms is linearly improved with the development

of the width of the vector in the VPU.
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3 Test Results

The validation and evaluation of the improvement of the new method were conducted using the box model of CBM-Z as well
as aregional CTM named Nested Air Quality Prediction Model System (NAQPMS) model with the optimized CBM-Z scheme.
We tested the theoretical performance of vectorization by using the box model, and the CTM tests illustrate its potential in

three dimensions with varying chemical regimes.

3.1 Benchmark Platform Description

The computation cluster for tests was provided by Institute of Atmospheric Physic (IAP), Chinese Academy of Sciences (CAS).
The CPU and KNL platforms were used for testing the code. The CPU platforms in this study include two generation CPUs,
2-socket CPU nodes with Broadwell architecture 2.4 GHz 14-core Intel Xeon E5-2680 V4 processors and 2-socket CPU nodes
with 2.6 GHz Skylake architecture 14-core Intel Xeon Gold 6132. To the vector instructions, the previous generation of V4
adopted the AVX-2 vector instructions and the new generation used the AVX-512 vector instructions. The AVX-512 and
AVX-2 instructions support 16 and 8 single precision floating-point calculations simultaneously, respectively. Comparing the
two generation CPUs helped to present the potential of new MP CBM-Z to fully use the development of hardware. The KNL
node contained one 1.40 GHz 68-core Intel Xeon Phi 7250 processor, which also adopted the AVX-512 vector instructions.
The operating system was Cent OS Linux 7.4.1708 for all platforms. The code was all compiled using the Intel FORTRAN
Compiler 2017 update 4, and the compile flags for vectorization and float-pointing accuracy of the CBM-Z module and the
NAQPMS model are shown in Table 2 and Table 3, respectively. The corresponding flags for vectorization (e.g., -xCORE-
AVX2, - xCOMMON-AVX512, -xMIC-AVX512, -align array64byte) were adopted for MP CBM-Z. We also tested the code
using diverse options for the compile flag -fp-model, which controls the balance between accuracy and performance of
floating-point calculations, to investigate its impact on code. We mainly consider the two options of -fp-model precise and -
fp-model fast=1. The fast=1 is the default option when -fp-model flag is not selected. Comparing with the option precise, the
Jfast=I improves the computational performance but reduces the accuracy of the floating-point calculations. Using precise is a
safer option and forces the compiler to avoid vectorization of some calculations to improve accuracy. We compare the results
of the two options, including the outputs and the performance of models, to investigate its impact and discuss the suitable

choice of compile flag.

3.2 Box Model Test

The box model of MP CBM-Z was used to validate the model outputs and investigate the ideal parallel performance of the
single module. We also tested the results using different parallelization techniques, e.g. MPI and OpenMP. Each test was

repeated 10 times to reduce the impact from any platform variability.
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3.2.1 Test Case Description

There are two cases that were used for the CBM-Z box model. One was a 10-h single grid box case with all species to validate
the outputs of the model, and the other was a 1-hour simulation with 160*148*20 grid boxes to test the performance of the
module under a more realistic scenario. The initial values for the single grid box are shown in Table S1. The meteorological
conditions were constant and emissions were set to zero to test the error of the algorithms. The time step was 5 seconds for the
two cases. For validation purposes, output every 5 minutes was used, while the computational performance test did not include
the output function to eliminate any impact form I/O. The different compiling flags for the precision of floating-point
calculations are presented in Table 2. We test the baseline and the optimized model on two different platforms of CPU and

KNL, and the computational time was counted using the system_clock function.

3.2.2 Box model validation

We evaluate the chemical species including ozone (O3), nitrogen dioxide (NOz), nitrogen monoxide (NO), hydrogen peroxide
(H202), sulfur dioxide (SO2), sulfuric acid (H2SO4), hydroxyl (OH) radical, hydroperoxyl (HOz) radical, and alkyl peroxy (ROz)
radical. These species important for tropospheric gas-phase chemistry and sulphate aerosol formation and hence, suitable for
validating whether the optimization significantly changed the simulated results or not. Figure 4 shows the time-series of the
simulated concentrations of the species above from the baseline (base) and the optimized (opt) model with precise and fast=1
compile flags. The results with the baseline code with precise compile flag is the benchmark, and there is no difference between
the results from the baseline and optimized code with the same precise compile flag. The precise compile flag is a relatively
safe compile flag and prohibits optimizations that can affect the accuracy. The fast=I compile flag can lead to errors even with
the same code, but the relative error (RE) of the baseline code with fast=1 compile flag relative to the benchmark is extremely
small (<0.0002%). As shown in Figure 4, with the optimized code, the fast=I compile flag results in a maximum RE of 0.025%
for NO and NO:; at the end of simulation. We find that the error caused by the fast=I compile flag did not become obvious for
species with low concentrations OH and RO2. We will further discuss the impact of the fast=I compile flag in Section 3.3.2

in the context of CTM simulations.

3.2.3 Box model computational performance

The case with 160*148*20 grid boxes was used to test the computational performance. Both the baseline and the optimized
version of CBM-Z contained the same 76 species. The computational time of the baseline version on a single core of E5-2680
V4 CPU with the precise compile flag was considered as the benchmark time. The tests were done with two generations of
CPUs and KNL.

The option of -fp-model could directly affect the performance. As shown in Table 4, the benchmark performance was 1014.67
seconds on the E5-2680 V4 platform. By using the new platform with Intel Gold 6132, the baseline version code gets 1.52x
speedup with the precise compile flag. The fast=I compile flag leads to 1.28x and 2.04x speedups for the baseline code on
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both CPUs. Meanwhile, updating the CPU enables the original CBM-Z module to gain a speedup of about 1.52 ad 1.59 with
precise and fast=I compile flags, respectively.

The MP CBM-Z module shows good performance on both CPUs. On the E5-2680 V4 CPU with Broadwell architecture, the
optimized code with two different compile flags consumed 581.14 seconds and 153.32 seconds, respectively; meanwhile, the
speedups reach 1.75x and 6.62x compared with the benchmark performance, respectively. In regard to Intel Gold 6132 platform,
the optimized version CBM-Z consumed 352.00 seconds and 55.42 seconds with precise and fast=1 compile flags, respectively.
Compared with the benchmark time, the speedups reach 2.88x and 18.31x. By using the same fast=1I compile option, the MP
CBM-Z shows 5.16x and 8.97x speedups on two generations of CPU compared with the original CBM-Z code.

The results also illustrate that the optimized code could better utilize the updating of cores through good vectorization ability
compared with the baseline code. Comparing the performance of the optimized code, we find that updating the CPU could
lead to about 1.65 times and 2.76 times acceleration with precise and fast=1 compile flags, respectively, which is higher than
the 1.5x speedup gained with the baseline code.

Compile flags largely affect the code performance on KNL. On the Xeon Phi 7250 platform, the optimized code took 3454.9
seconds with the precise compile flag since the majority of vectorizations were forbidden, and it’s even slower than the
benchmark performance; it only took 214.09 seconds and obtained a speedup of 4.74x with the fast=I compile flag. Comparing
with the baseline CBM-Z on Intel Xeon E5-2680 V4, KNL gains a 3.69x speedup with the MP CBM-Z.

In addition, the baseline and optimized code with fast=1 were also analyzed by using the HPC Performance Characterization
from the Intel VTune tools on the CPU platform. On the Intel Gold 6132 platform, the single precision giga-floating point
operations calculated per second (GFLOPS) increased from 4.81 to 21.37 comparing with the original CBM-Z module, and
the vector capacity usage improved from 14.3% in the baseline CBM-Z to 89.4% in the MP CBM-Z, which implies that the
majority of floating-point instructions in CBM-Z were vectorized.

In addition, we also tested the parallel version of the MP CBM-Z by compiling with the fast=I option and with MPI and
OpenMP separately. We evaluated the speedups based on the performance of the baseline CBM-Z on Intel Xeon E5-2680 V4
platform with fast=1 option. The results are shown in Table 5. The MPI and OpenMP version of CBM-Z had 104.63x speedup
and 101.02x speedup on the Intel Xeon E5-2680 V4 platform. On the new Intel Xeon Gold 6132, the MP CBM-Z got a speedup
0f 198.50x and 194.6x with MPI and OpenMP. For the KNL, the speedup reached 175.23x by using MPI and 167.45x by using
OpenMP, which was approximately 40% faster than those on the 2-socket Broadwell platform with AVX2 vectorization
instruction and about 13~16% slower than those on the 2-socket Skylake platform with the same AVXS512 vectorization
instruction. The combination of the fine-grain vectorization and the coarse-grain parallelization of OpenMP/MPI results in a
significant performance improvement on the new generation processors. The enhancement of the vectorization performance
may be the key to fully using the new generation processors equipped with advanced and wider vectors, and can be important

in making full use of the new MIC architecture processors such as KNL.
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3.3 CTM Test

The regional CTM, the Nested Air Quality Prediction Model System (NAQPMS) model (Wang et al., 2001;ZiFa et al., 2006),
was used to test the MP CBM-Z module under more realistic conditions. The following sub-sections will describe the CTM

test case, and will present results from the scientific validation as well its computational performance.

3.3.1 CTM test case description

The NAQPMS is a regional CTM developed by IAP, CAS (Li et al., 2011, 2013), and has been widely used in air quality
research (Wang et al., 2018) and routine air quality forecasting (Wu et al., 2010;Chen et al., 2013). NAQPMS involves all
essential processes including diffusion, advection, dry and wet deposition, and multi-phase chemistry reactions. More details
can be found in Li et al. (2013). In a similar way to the box model test case, the NAQPMS model with the baseline and
optimized CBM-Z modules were compiled with various compile flags as shown in Table 3.

The test case is a 72-h simulation covering the East Asia region. The horizontal resolution is 15 km with 339*432 grid boxes.
The model adopted 20 vertical layers. The meteorological fields driving the NAQPMS model were provided by the Weather
Research and Forecasting (WRF) model (Skamarock et al., 2008). The anthropogenic emission inventory was from the
Hemispheric Transport of Air Pollution (HTAP) V2 and the biogenic emission inventory was provided by results from
Sindelarova et al. (2014) using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 20006,
2012). The simulation started at 00:00 UTC, August 17, 2015 and ended at 00:00 UTC, August 20, 2015. We only used one
node for testing to exclude the interference of network communication. Each experiment was repeated 5 times and the

performance was assessed on the basis of the average value.

3.3.2 CTM Validation

We chose four major gas pollutants including NOz, O3, SOz and CO after 72h integration to evaluate the optimized code. The
simulation results of the baseline NAQPMS code compiled by precise flag were as the benchmark results, and we mainly
compared the simulation results of the baseline NAQPMS code with the fast=1 flag and the optimized NAQPMS with precise
and fast=1, respectively.

Figure 5 and Figure 6 present the spatial distributions of NO2, O3, SOz and CO as well as the absolute errors (AEs) of their
concentrations from other experiments relative to the baseline. We find that all model results show the same spatial distribution
of pollutants. In general, for NO2, O3 and SOz, the AEs in the majority of grid boxes are in the range of + 0.02 ppbv for the
three experiments; for CO, the AEs of baseline and optimized NAQPMS with the same fast=I are larger out that range shows
the more obvious AEs.

The precise option enables the results of the two versions to be more consistent. Figure 7 shows the distribution of AEs and
relative error (REs) for four species in the near surface model layer. For the majority of points, the AEs and REs are in a

relatively small range. However, some points show exceptional and obvious errors. The maximum AEs for NO, O3, SOz and
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CO are 0.166, 0.197, 0.001 and 0.03 ppb over the whole map after 72-h of integration, and the fast=I option shows more
obvious errors for both versions. For the baseline NAQPMS code, using fast=1I leads to maximum AEs of 0.23, 4.5, 0.17 and
2.6 ppbv for NOz, O3, SO2 and CO, respectively. To NAQPMS with the MP CBM-Z, using the fast=1 option leads to maximum
0.13, 0.93, 0.76 and 0.64 ppbv AEs for NOz, O3, SOz and CO over the whole domain, which is relatively better than the
baseline NAQPMS.

In addition to considering the accuracy mentioned above, the impact of the —fp-model option on performance should be
considered. In some pragmatic applications like routine air quality prediction, it’s reasonable to sacrifice the accuracy to gain
computational performance. Conversely, applications like long term climate simulations, choosing safer compile flags or

adopting double-precision for calculations are to avoid accumulation of errors.

3.3.3 CTM Computational Performance

The performance of the baseline NAQPMS with precise was the benchmark for comparison with other tests. As shown in
Table 6, in the original version NAQPMS, the CBM-Z module accounts for 72.26% of the wall-clock time for the whole
simulation. Changing the compile option of -fp-model to improve performance by sacrificing accuracy leads to 1.34x and
1.25x speedups for the module CBM-Z and the whole model on Intel Xeon E5-2680 platform, respectively. By updating the
CPU from Intel Xeon E5-2680 to Intel Xeon Gold 6132, the module CBM-Z and whole model gains 1.28x and 1.29x speedups,
respectively. The speedups improve to 1.68x and 1.58x for CBM-Z and the whole model, respectively, by using the fast=1
compile flag on Xeon Gold 6132 platform. The benefit from updating hardware is limited with the baseline code and supports
the need for optimizing code to adapt to the new hardware features.

The computational performance of the gas-phase chemistry module and the NAQPMS model are largely improved after
adopting the MP CBM-Z, as described in this paper. As shown in Table 6, the CBM-Z model and the whole NAQPMS model
shows speedups of 1.59x and 1.40x on the old Xeon E5-2680 platform with the same precise compile flag, and the speedups
are improved to 4.45x and 2.44x by using the fast=I compile flag. With the same fast=1I flag, the MP CBM-Z showed 3.32
and 1.96 times acceleration compared with the baseline CBM-Z for gas-phase chemistry module and whole NAQPMS model.
Such results illustrate that the optimization for vectorization improves the potential on existing hardware and the performance
is highly improved even with the relatively strict precise compile flag, which prevents most vectorizations.

The new generation CPU further improves the performance of the MP CBM-Z. Using the platform with new generation
processor Xeon Gold 6132, the speedups reach 1.84x and 1.66x for the CBM-Z and the NAQPMS model with the precise
compile flag, respectively, and adopting the fast=I compile flag improves the speedups to 8.22x and 3.50x compared with the
benchmark performance. On the same Xeon Gold 6132 platform with fast=I compile flag, the MP CBM-Z gains 3.32 and 2.22
times acceleration compared with the baseline CBM-Z for the gas-phase chemistry module and the whole NAQPMS model.
Moreover, the proportion of time taken by the gas-phase chemistry declined to 30.74% compared to 72.26% in the baseline

model.
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In addition, the MP CBM-Z extends the benefit gained from advanced hardware. Using the same fast=1 compile option, the
performance of the baseline CBM-Z on AVX-512 platform is about 1.25 times that on the AVX-2 platform, and the
performance of the MP CBM-Z is about 1.84 times of that on AVX-2 platform. The efficiency of using the new CPUs improved
by about 47% by adopting the MP CBM-Z. Therefore, enhancing the vectorization of code ensures that applications, like the
CTM in this paper, could further utilize the improvement of processors on vectorization in the future.

KNL are more reliant on SIMD for performance according to the test results. The CBM-Z module is accelerated on KNL with
a speedup of 5.9x, but the whole model only got a 1.27 times acceleration compared with the benchmark performance.
Comparing the baseline CBM-Z on Intel Xeon Gold 6132 platform, the MP CBM-Z gets a speedup of 3.52x for gas-phase
chemistry on KNL, however, the performance of the whole model declined by 24%. Therefore, the MP CBM-Z largely
improved the efficiency of CBM-Z on KNL by improving its vectorization, but further optimizations are required for greater

efficiency of the whole CTM on the KNL architecture.

4 Conclusions and Discussion

A new framework was designed for helping the chemical kinetics kernel CBM-Z to adapt to the next generation processes by
improving its vectorization. Through packing multiple spatial points, the optimized CBM-Z module handled these
simultaneously. The functions in the original CBM-Z were re-structured with loops, which provided the opportunity to
implement the fine-grain level parallelization of vectorization. Meanwhile, we masked the heterogeneous grid boxes to
integrate the chemistry sub-schemes in the CBM-Z to perform the calculation of multiple grid boxes simultaneously. Since the
contiguous grid boxes have similar chemistry processes, the impact of this on the scientific performance was largely limited,
and the code was highly vectorized.

The computation cluster equipped with two generations CPUs (Intel Xeon E5-2680 V4 and Intel Xeon Gold 6132) and KNL
(Intel Xeon Phi 7250) provided by IAP, CAS, were used to test the performance. We tested the code with two different compile
options of -fp-model precise and -fp-model fast=1I to present its impact on the accuracy of single-precision computation and
performance. The validation test ensured the reliability of our optimization on the model results, and the errors in all diagnostic
chemical species caused by the single float calculations were lower than about 0.025% after 10-h integration with the fasr=1
option. Based on the HPC Performance Characteristic from the Intel Vtune tools on the Intel Xeon Gold 6132, the GFLOPS
of CBM-Z increased from 4.81 to 21.37, and the vector capacity usage improved from 14.30% in the baseline CBM-Z to 89.40%
in the optimized CBM-Z.

The tests using the single core showed that the vectorization optimization led to speedups of 5.16x and 8.97x on Intel Xeon
E5-2680 V4 and Intel Xeon Gold 6132 CPUs, respectively, and KNL gets a speedup of 3.69x compared with the baseline
CBM-Z on the Intel Xeon E5-2680 V4 platform. It highlights the importance of vectorization on the KNL platform. Meanwhile,
we also tested the MPI and OpenMP version of CBM-Z. The speedup on the two generations CPUs can reach 104.63x and
198.50x using Message Passing Interface (MPI) and 101.02x and 194.60x using OpenMP, respectively, and the speedup on
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the KNL node can reach 194.60x using MPI and 167.45x using OpenMP. The speedup on the KNL node can reach 194.60x
using MPI and 167.45x using OpenMP. The speedup of the optimized CBM-Z is approximately 40% higher on a 1-socket
KNL platform than on a 2-socket Broadwell platform and about 13-16% lower than on a 2-socket Skylake platform.

The regional CTM NAQPMS was also used to test the practical improvement of the MP CBM-Z in more realistic scenarios.
The baseline and optimized code of NAQPMS compiled with the precise and fast=1 options, respectively, were tested on
diverse platforms. The model outputs after 72-h simulation were used to evaluate the error by the code as well as the compile
flags. The difference between the baseline and optimized code are generally in the range of + 0.02 ppbv using the precise. The
maximum discrepancy over the whole map is about 0.166, 0.197, 0.001 and 0.03 ppbv for NOz, O3, SOz and CO. The fasr=1
option leads to larger errors; however, computational performance could benefit a lot through adopting this option.

The results of CTM test with the fast=I option show that the MP CBM-Z leads to a speedup of 3.32 and 1.96 for the gas-phase
chemistry module and the CTM on Intel Xeon E5-2680 platform, respectively. Moreover, on the new Intel Xeon Gold 6132
platform, the MP CBM-Z gains 4.90x and 2.22x speedups for the gas-phase chemistry module and the whole CTM. For the
KNL, the MP CBM-Z enables a 3.52x speedup for the gas-phase chemistry module, but the whole model lost 24.10%
performance compared to the CPU platform due to the poor performance of other modules. Since this optimization seeks to
improve the utilization of the VPU, the model is more suitable for the new generation processors adopting the more advanced
SIMD technology. The results of our tests already show that the benefit of updating CPU improved by about 47% by using the
MP CBM-Z since the optimized code has better adaptability for the new hardware.

In general, the choice of -fp-model compile flag decides the balance between accuracy and performance. According to our test,
after using the fast=1 option, the performance of the code is largely improved by sacrificing some accuracy. However, the loss
of accuracy is relatively small, and in some practical applications that do not require high accuracy floating-point calculations,
it’s acceptable to use the fast=1I option.

Besides the CBM-Z chemical scheme, this algorithm is also suitable for models with a similar code structure to improve its
vectorization. In addition, in this study, CBM-Z was treated as an example to describe this simple optimization strategy to
implement the optimization on new generation processors, which emphasizes the importance of vectorization. However, some
specific strategies should also be considered before adoption. The optimizing methods such as constructing loops from the
discrete scalar calculations as described in Wang et al. (2017), would diminish the readability of the source code by using
indirect indexing and could cause problems to subsequent developers. Therefore, it is essential to adopt good practice, e.g.

commenting code well and controlling the compile process, for ease of maintenance and development.

Code Availability.
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The source code of the baseline and optimized version CBM-Z box model, including OpenMP and MPI versions, is available

online via ZENODO (https://doi.org/10.5281/zenodo.1161576).
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Table 1. The possible values of iregime and the combination of chemical schemes.

iregime 1 2 3 4 5 6
COM COM COM COM COM COM
HET HET HET HET HET HET
Sub-schemes URB URB URB URB
BIO BIO
MAR MAR MAR

Table 2. Compile flags of the different versions of CBM-Z.

Version of CBM-Z

Intel Compiler Flags

Baseline CBM-Z

Processor Flags for Floating-point
Flags for Vectorization
Accuracy
—xCORE-AVX2 -fp-model precise
Xeon E5-2680 V4
—xCORE-AVX2 -fp-model fast=1
—xCOMMON-AVX512 -fp-model precise

Xeon Gold 6132

—xCOMMON-AVX512

-fp-model fast=1

MP CBM-Z

—xCORE-AVX2 -fp-model precise

Xeon E5-2680 V4
—xCORE-AVX2 —fp-model fast=1
—xCOMMON-AVX512 —fp-model precise

Xeon Gold 6132
—xCOMMON-AVX512 —fp-model fast=1
Xeon Phi 7250 —xMIC-AVX512 —fp-model fast=1

Table 3. Compile flags of the different versions of NAQPMS

Version of NAQPMS

Processor

Intel Compiler Flags
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Flags for Vectorization

Accuracy
—xCORE-AVX2 -fp-model precise
Xeon E5-2680 V4
—xCORE-AVX2 -fp-model fast=1
Baseline NAQPMS
—xCOMMON-AVX512 -fp-model precise
Xeon Gold 6132
—xCOMMON-AVX512 -fp-model fast=1
—xCORE-AVX2 -fp-model precise
Xeon E5-2680 V4
—xCORE-AVX2 —fp-model fast=1
NAQPMS with ]
—xCOMMON-AVX512 —fp-model precise
MP CBM-Z
Xeon Gold 6132
—xCOMMON-AVX512 —fp-model fast=1
Xeon Phi 7250 —xMIC-AVX512 —fp-model fast=1

Table 4. The performance tests of the baseline and optimized code on different CPUs and KNL platforms with one physical cores.

The unit of the wall-times for the tests is second (s).

Vector
Processor ] -fp-model Wall-Time Speedup
Instruction
precise 1014.67 1.00
Xeon E5-2680 V4 AVX2
Baseline fast=1 792.03 1.28
CBM-Z precise 665.44 1.52
Xeon Gold 6132 AVX512
fast=1 497.64 2.04
precise 581.14 1.75
Xeon E5-2680 V4 AVX512
fast=1 153.32 6.62
MP CBM-Z precise 352.00 2.88
Xeon Gold 6132 AVX512
fast=1 55.42 18.31
Xeon Phi 7250 AVXS512 precise 3454.90 0.29
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fast=1

214.09

4.74

Table 5. The performance tests of the optimized code on different CPUs and KNL platforms with MPI and OpenMP. The unit of
the wall-times for the tests is second (s).

MP CBM-Z

Single Core Test

Processor Veetor Number of Cores Wall-Time Speedup
Instruction
Xeon E5-2680 V4 AVX2 1 792.03 1.00
MPI with Vectorization
Xeon E5-2680 V4 AVX2 28 7.57 104.63
Xeon Gold 6132 AVX512 28 3.99 198.50
Xeon Phi 7250 AVX512 68 4.52 175.23
OpenMP with Vectorization

Xeon E5-2680 V4 AVX2 28 7.84 101.02
Xeon Gold 6132 AVX512 28 4.07 194.60
Xeon Phi 7250 AVX512 68 4.73 167.45

Table 6. The performance tests of the baseline and optimized code on the diverse platforms with different compile flags. The unit of
the wall-times for the tests is second (s).

Vector Wall-Time Wall-Time Speedup  Speedup
Processor ] -fp-model
Instruction (CBMZ) (Total) (CBMZ)  (Total)
precise 17675.86 24460.54 1.00 1.00
Xeon E5-2680 V4 AVX2
Baseline fast=1 13201.56 19619.20 1.34 1.25
NAQPMS precise 13817.24 18950.95 1.28 1.29
Xeon Gold 6132  AVXS512
fast=1 10544.60 15502.39 1.68 1.58
precise 11127.90 17454.95 1.59 1.40
NAQPMS | Xeon E5-2680 V4 AVX2
fast=1 3971.48 10019.21 4.45 2.44
with
precise 9584.59 14698.38 1.84 1.66
MP CBM-Z | Xeon Gold 6132  AVX512
fast=1 2150.20 6994.43 8.22 3.50
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Xeon Phi 7250 AVX512 fast=1 2997.96 19239.20 5.90 1.27

]
]
[ SetRunParameters ] [ ]
[ | J
Teur_sec<tbeg_plus_trun_sec E i
: | )
s I
[ UpdateTime ] 9 [ ]
= 7
1 |
et
Msolar .eq. 1 = [ ] ]
i
[ SolarzentihAngle ]— [ ]
I
I
[ DoMassBalance ]

Return ]

Figure 1. The framework of the CBM-Z gas-phase chemistry module. The functions in the yellow font represent the inner function
of IntegrateChemistry.

Y

(a) (b) Real, dimension(76) :: cppb |Concentrations of species
doi=1,n do k=1,nzz ! Vertical layer loop
—_— 0 doj=l,m ! Longitude loop
- doi=l,n ! Latitude loop
- .
E call cbmz ( cppb(:),***)
- oy
I end do
. end do
o end do
=
(C) Integer, parameter :: VLEN=16 ! The length of vector for AVX512
Logic, dimension(VLEN) :: pmask |Mask Array
L. . Integer :: ilen ! Index for valid grids
Merging i and j loops Real, dimension(VLEN,76) :: cppb ! Two dimensions array for concentrations of species
x
do k=1,nzz ! vertical layer loop
ngrids = n*m ! Total number of grids
do i=1, ngrids, VLEN | Merged loops of longitude and latitude grids
ilen = min(ngrids-i, VLEN) | Decide the length of this vector
s — pmask = False
doi=1,nxm, VLEN .
— lexclude the invalid grids
Length of Vector (VLEN)

do j=1, ilen
ok

— pmask = true, true, ..., false pmask(j) = True

DN [ [ [ [[[] 7

call cbmz ( cppby(:,)) ,***)
ey

end do
end do
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10

Figure 2. A schematic diagram of the changes of the calling method of CBM-Z. The calling method of the CBM-Z module changes
from calculating one model grid calculation at a time to multiple model grid boxes at the same time. The VLEN represents the
number of points operated simultaneously, which is determined by the length of the register in the Vector Processing Unit (VPU).
The i and j loops, equaled latitude and longitude loops, were merged to construct one vector to reduce the number of unfilled vectors.
(b) and (c) illustrate the sample code before and after integrating grid boxes.

(@)

Total valid grids

bmask(i) = pmask(i)

Valid grids for COM and HET related operations

bmask(i) = (i) ne. 1 .and. (i) .ne. 4 .and. pmask(i)

Valid grids for URB related operations

E

bmask(i) = (i) .eq. 3 .and. (i) .eq. 6 .and. pmask(i)

Valid grids for BIO related operations

i

bmask(i) = (i) .gt. 4 .and. pmask(i)

Valid grids for MAR related operations

ﬁ

(b)

()

Goto (1,2,3,4,5.,6) \different branches of chemical schems
1 call ODE_COM(***) Iwhen iregime equals 1
call ODE_HET(***)
do i=1igas
total_p(i)=p_com(i) +p_het(i)+emit(i) ! Return the results of above functions
total (i) = 1_com(i) + |_het(i)
end do

2 call ODE_COM(***) Iwhen iregime equals 2
call ODE_HET(***)
call ODE_URB(***)
doi=1igas
total_p(i)=p_com(i) + p_het(i) + p_urb(i)+emit(i)
total_I(i) =1_com(i) + |_het(i) + 1_urb(i)
end do

call ODE_COM(***) Ino branches, all processes are integrated.

call ODE_HET(***)

doig=1igas

doi=1,VLEN
total_p(i, ig)= p_com(, ig) + p_het(i, ig) + emit(i, ig) ! Return the results of above functions
total_1(i, ig) = 1_com(i, ig) + | het(i, ig)

end do

end do

if (has_urb) then Iwhether the URB scheme
doi=1,VLEN
bmask(i) =
end do
call ODE_URB(***) lcall the function for all grids
doig=1igas
doi=1,VLEN
if (bmask(i)) then
total_p(i, ig)= total_p (i, ig) + p_urb(i, ig) ! Return the results of ODE_URB for valid grids
total_1(i, ig) = total 1, ig) +1_urb(i, ig)

(i) .ne. 1 .and. (i) .ne. 4 and. pmask(i)

end if
end do
end do
end if

Figure 3. The flowchart (a) shows the way to mask the heterogeneous girds to integrate grid boxes to perform the vectorization
operations according to the iregime values. (b) and (c) illustrate the sample code before and after integrating grid boxes. In figure
(b), iregime leads different calling processes; in figure (c), the calling processes are integrated in one flow, and the function are
called for all grid boxes but only the values of valid grid boxes would be returned.
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Figure 4. Comparison of the time-series concentrations of O3, NO, NO», H;03, SO,, OH, HO», RO; and H,SO4 ((a)-(i)) from the
baseline and optimized CBM-Z simulation with diverse -fp-model options. The simulation results by the baseline code with the -fp-
model precise compile flag was as the benchmark. The solid lines show the time-series concentrations of the species from different
experiments and the dashed lines showed the Relative Errors (RE) of simulated concentrations between the benchmark and the

results by other combinations of the code and -fp-model options.
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Figure 5. NO; and O3 concentrations outputted by baseline and optimized code with different accuracy compile flags. (a) and (h)

are from baselines code compiled by precise option, which are treated as benchmark for comparison. (b) and (i) are from
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optimized code compiled by precise option. (¢) and (j) are from basline codse compiled by fasr=I flag. (d) and (k) are from
optimized code compiled by fast=I flag. (e)-(g) and (I)-(m) are the output concentration differences of optimized code (precise),
baseline code (fast=1) and optimized code (fast=1) compared with baseline code (precise).
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5 Figure 6. SO; and CO concentrations outputted by baseline and optimized code with different accuracy compile flags. (a) and (h)
are from baselines code compiled by precise option, which are treated as benchmark for comparison. (b) and (i) are from
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optimized code compiled by precise option. (¢) and (j) are from basline codse compiled by fasr=I flag. (d) and (k) are from
optimized code compiled by fast=I flag. (e)-(g) and (I)-(m) are the output concentration differences of optimized code (precise),
baseline code (fast=1) and optimized code (fast=1) compared with baseline code (precise).
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5 Figure 7. The distributions of Absolute Errors and Relative Errors for O3, NO2, SO, and CO in near surface model layer. The
reference points are 1%, 25%, 50%, 75% and 99%.
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