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    We would like to thank the editor and referees for their thorough reviews, comments and 
suggestions. Below is a summary of modifications to the original manuscript,  in response to the 
editor and referees' comments/suggestions. 
 
    We hope that with these modifications, the present manuscript will be found suitable for 
publication in Geoscientific Model Development. 
  

 



Editor's comment 
Please note GMD’s strong preference for the code to be uploaded as a supplement 
or to be made available at a data repository with an associated DOI (digital object 
identifier) for the exact model version described in the paper. Could you please add 
this modification to your manuscript? 
 
Reply: 
The COMPSYN code used in this paper was originally developed by Spudich and Xu (2003) 
(see below). We are in the process of seeking permission from the authors to make the code 
publicly available. We hope to make the code available on a dedicated site/repository in the 
near future (as stated in the revised manuscript). 
 
In addition, we point to the online manual for the code at: 
https://www.researchgate.net/publication/260423574_Documentation_of_Software_Package_C
ompsyn_sxv311_Programs_for_Earthquake_Ground_Motion_Calculation_Using_Complete_1-
D_Green's_Functions. 
 
Regarding the code for polynomial chaos expansion framework, we have added additional 
references, as well as a link to an open source toolkit available at 
http://www.sandia.gov/UQToolkit/ 
 
 

 

  

 

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.researchgate.net_publication_260423574-5FDocumentation-5Fof-5FSoftware-5FPackage-5FCompsyn-5Fsxv311-5FPrograms-5Ffor-5FEarthquake-5FGround-5FMotion-5FCalculation-5FUsing-5FComplete-5F1-2DD-5FGreen-27s-5FFunctions&d=DwMF-g&c=imBPVzF25OnBgGmVOlcsiEgHoG1i6YHLR0Sj_gZ4adc&r=QFpHvPgA8LYKSf49Cjovdw&m=oEbG-9uB2dSQ7Dd57gMwL0VFQZJfrrlzBhmmjQFdu8A&s=2j5WAVrGKwhf4xTET9j1lrnlUARZMa_UN7vsGcDwJmI&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.researchgate.net_publication_260423574-5FDocumentation-5Fof-5FSoftware-5FPackage-5FCompsyn-5Fsxv311-5FPrograms-5Ffor-5FEarthquake-5FGround-5FMotion-5FCalculation-5FUsing-5FComplete-5F1-2DD-5FGreen-27s-5FFunctions&d=DwMF-g&c=imBPVzF25OnBgGmVOlcsiEgHoG1i6YHLR0Sj_gZ4adc&r=QFpHvPgA8LYKSf49Cjovdw&m=oEbG-9uB2dSQ7Dd57gMwL0VFQZJfrrlzBhmmjQFdu8A&s=2j5WAVrGKwhf4xTET9j1lrnlUARZMa_UN7vsGcDwJmI&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.researchgate.net_publication_260423574-5FDocumentation-5Fof-5FSoftware-5FPackage-5FCompsyn-5Fsxv311-5FPrograms-5Ffor-5FEarthquake-5FGround-5FMotion-5FCalculation-5FUsing-5FComplete-5F1-2DD-5FGreen-27s-5FFunctions&d=DwMF-g&c=imBPVzF25OnBgGmVOlcsiEgHoG1i6YHLR0Sj_gZ4adc&r=QFpHvPgA8LYKSf49Cjovdw&m=oEbG-9uB2dSQ7Dd57gMwL0VFQZJfrrlzBhmmjQFdu8A&s=2j5WAVrGKwhf4xTET9j1lrnlUARZMa_UN7vsGcDwJmI&e=
http://www.sandia.gov/UQToolkit/


Referee 1  
General comments 
This manuscript investigates an earthquake rupture model subject to 7 random fault plane 
properties. Polynomial chaos surrogates are built and validated to reproduce the uncertain Peak 
Ground Velocity (PGV), obtained from a discrete wavenumber/nite element method, at a set of 
56 (virtual) stations. A sensitivity analysis is conducted to identify the main inuent parameters: 
a partition of the uncertain input parameters into two groups highlights the strong impact of the 
hypocenter location. A Bayesian inference is then performed by using a Ground Motion 
Prediction Equation (GMPE) as observational measures. The results emphasize that additional 
physical constraints are valuable to increase the sampling efciency. 
 
The manuscript is clearly constructed and it would be suitable for the readership of the 
Geoscientic Model Development after the following revisions to clarify some aspects of the 
paper. 
 
Specic comments 

● page 6: one sentence is missing between line 4 and 5 to provide the number of terms Np                  
in the PC series as a function of the stochastic space dimension nd and the total                
polynomial order d, Np = (d + nd)!/(d!nd!). 

 
Reply: As suggested by the referee, the revised manuscript specifies the truncation strategy             
and provides an explicit formula for the size of the truncated basis. 

 
● page 6, line 19: the cross-validation process needs more details (leave-one-out or k-fold 

version, initial range of variation of the parameter γ with the discretization strategy to find 
the optimal value) with a citation (e.g. the book of Seber and Lee,Linear regression 
analysis, 2003). 

 
Reply: We used k-fold (k=5) cross-validation to determine the optimal γ. As suggested by the               
referee, the manuscript has been revised to provide details concerning the determination of the              
optimal γ value.  In addition, reference to the suggested citation has been incorporated.  

 
● page 7, section 3.1: the computation of the empirical error (8) with the training set 

PLHS (blue dots) has only a minor interest because it simply shows that regression is a 
non-interpolating technique. A comparison between the empirical error estimated with 
the validation set (red dots) and a cross-validation error obtained with the training set is 
more relevant. 

 
Reply: In our analysis of representation errors, we have examined both the cross-validation             
error, as well as the empirical error estimated using the training set, and have observed that the                 

 



two error estimates are close to each other. A statement highlighting this observation has been               
added in the revised manuscript (specifically the caption of Fig. 3). 
  

● page 8, line 12 (middle): the sentence "The overall tendency of PC prediction 
uncertainty (...) seems to decrease with increasing RIJ distance as well" relies on Fig. 6. 
This figure is hard to read and a new figure plotting only the (PC) standard deviations 
should be valuable (with a reminder in the text about the log-scale) to support the 
statement. 

 
Reply: As suggested by the referee, we have attempted to plot the PC standard deviations               
independently, but this did not lead to dramatic improvement in the presentation, namely             
because the distant stations are clustered (in Rjb distance measure). On the other hand, the               
referee’s suggestion concerning the log-scale has been incorporated (caption of Fig. 6). 

 
● page 8, line 16 (top): two stations are selected for plotting the PGV. Their locations must 

be indicated (for instance with labels on Fig. 2). 
 
Reply: The referee’s comment has been implemented. (See Fig. 2) Note, in the revised 
manuscript, we decided to show PC statistics on Station #3 and #22 (instead of #3 and #21 in 
the original manuscript). The reason for this switch is the following: Station #21 turns out to be 
very close to station #3. To better illustrate the validity of our PC surrogates over a distance, we 
decided to select a station (#22) that is a bit far from station #3. (Fig. 4 and Fig. 5 are updated 
accordingly.) 
 

● page 8, line 12 (middle): The first sentence of the paragraph is incomplete since the 
complex dependency of PGVs to random inputs is not only due the mappings between 
the physical parameters and the standardized RVs fξig1≤i≤7. We can speculate that the 
complexity of the propagation model (discrete wavenumber/finite element method) plays 
a major role. 

 
Reply: We agree with the referee that the sentence in question is confusing. Our intention was                
to highlight that the conditional mapping between canonical rv’s and physical parameters makes             
it difficult to isolate the impact of individual parameters, but that this difficulty can be effectively                
addressed using global sensitivity analysis. The manuscript has been revised to clarify this             
aspect.  

 
● page 11: in Fig. 6, the GMPE standard deviation exhibits a higher level than the PC 

ones. A short discussion would be interesting to explain the causes/sources of this 
difference. 

 
Reply: It turned out that in our original Fig. 6, we have plotted 2 times the GMPE standard                  
deviation bounds. We apologize for the confusion, and have updated the Fig. 6 with one               
standard deviation GMPE bounds. The new Fig.6 shows similar standard deviation bounds            

 



between GMPE and PC statistics in general. However, one should not expect exact match              
between GMPE and PC statistics, due to difference in random sources underlying the two              
approaches, and the uninformative PC random variable distribution used to calculate the            
statistics. 

 
● page 13: a prediction error, defined as the discrepancy between the GMPE and PC 

series is introduced. This is confusing in Bayesian inference framework where 
observations (or measured data) are used to infer the model parameters. As GMPE 
predicted PGVs serve as observational data (see page 11), it would be more clear to 
replace GMPE by observational data (and to replace prediction error by observational 
error) in section 4.1. 
 

Reply: We agree with the referee’s comments.  The manuscript has been revised accordingly. 
 
Technical Corrections 

● page 2, line 9: replace is by are in “data is sufficient”. 
● page 2, line 16: replace Mw 6.5 by magnitude 6.5. 
● page 5, Table 2, line 3: replace yh by zh. 
● page 6, line 18: “that” is missing, “note that [Ψ] is station invariant”. 
● page 8, line 6 (top): the word “indeed” is useless. 

 
Reply: The suggested corrections above have been implemented in the revised manuscript. 
 
Suggestions 

● page 5, line 11: “number of stochastic dimensions” sounds weird. “stochastic space 
dimension” or “number of uncertain input parameters” are more usual 

 
Reply: As suggested by the referee, we replaced “number of stochastic dimensions” with 
“stochastic space dimension” 
 

● page 5, line 16: “instead of” seems to be inappropriate here and could be replaced by 
”which parameterize". 

● page 6, line 13: the set of LHS realizations could be written, "… NLHS = 8000 
earthquake rupture model realizations through fξkg1≤k≤NLHS".  

● page 8, line 16: replace “with different PC truncation orders” by “with increasing odd 
PC truncation orders up to a degree nine”. 

● page 8, line 17: replace “PC library is sufficient ...” by “PC expansions are sufficiently 
accurate ...”. 

 
Reply: The suggestions above have been implemented in the revised manuscript. 

 
● pages 9 and 10: Fig. 4 and 5. represent distributions obtained with kernel density 

estimation. It should be mention in the captions or in the text. 
 

 



Reply: The captions of Figs. 4 and 5 have been modified as suggested. 
 

● page 11, line 5: Move the group of words “for the same magnitude and focal 
mechanism” in section 3.2 (page 8), line 10 after the reference Boore and 
Atkinson (2008). 

 
Reply: This suggestion has been implemented.  
 

● page 13: explain a little bit more the partitioning of the data into four concentric groups 
(e.g. uniform discretization of the RJB interval). 

 
Reply: As suggested by the referee, additional details have been added to the revised              
manuscript to explain the partitioning of the data into four groups. This partition is motivated by                
the observation of PGV variability decaying with Rjb distance (Figure 6), and is to ensure that                
the inference appropriately accounts for different PGV variance at different Rjb distances. (The             
4-group partition criterion is added to the legend of Fig. 2). 

 
● There is a huge number of ground motion predictions equations (see for example the 

report http://www.gmpe.org.uk/gmpereport2014.pdf). A short description of the GMPE 
model (for instance in an appendix) could be worthwhile to have a self-contained paper. 

 
Reply: In addition to the original reference, the GMPE model [BA2008] used has been              
discussed in a number of accessible references, which have been incorporated in the revised              
manuscript, more specifically, the following three resources have been added in the revised             
manuscript (footnote in the discussion of Fig. 6): 

1) http://www.opensha.org/glossary-attenuationRelation-BOORE\_ATKIN\_2008 
2) http://www.gmpe.org.uk/gmpereport2014.pdf 
3) Mai (2009) 

Consequently, we feel that addition of an Appendix is not necessary, and may dilute the focus of                 
the work. 

  

 

http://www.opensha.org/glossary-attenuationRelation-BOORE%5C_ATKIN%5C_2008
http://www.gmpe.org.uk/gmpereport2014.pdf


Referee #2 
General comments  
The authors develop a polynomial chaos (PC) expansion representation to provide a 
surrogate model for a probability distribution of Mw 6.5 strike-slip earthquakes with a 
fixed fault geometry. Seven parameters are used to describe a particular realization, 
including the hypocenter location and parameters describing an elliptical asperity, a 
region of relatively high slip, defining a 7-dimensional stochastic space. The surrogate 
model allows the rapid estimation of the peak ground velocity (PGV) at each of 56 virtual 
observation points. The PC expansion is computed using synthetic seismogram 
observations at these points for a set of 8000 realizations. A second set of 8000 realizations is 
used for validation, to confirm that the surrogate model constructed from the 
first set agrees well with the direct simulation results for the second set of realizations.The 
surrogate model is then used to rapidly compute the PGV for millions of additional 
realizations in order to gather statistics on the decay of PGV with respect to distance 
from the fault (measured using the Joyner-Boore distance RJB, the minimal distance 
to the fault plane as projected to the surface), at the 56 observation points. The mean 
PGV and standard deviation at each observation point are plotted vs. the distance 
RJB, and this data compared with the ground motion prediction equation (GMPE) of 
Boore and Atkinson (2008). The GMPE was derived based on observations of past 
earthquakes and so it is interesting to see that the statistics generated by the PC expansion 
generally follows this prediction and lie within one standard deviation of the 
GMPE as determined by Boore and Atkinson. This suggests that a simplified fault 
model consisting of a single asperity and a small set of parameters can perhaps predict PGV 
statistics well, and hence may be useful for predicting other GMPE curves, 
or for probabilistic seismic hazard analysis more generally. The first 3 sections of the 
paper give a nice development of these ideas. 
 
I had more trouble understanding the goal of Section 4, which concerns the use of 
Bayesian inference to determine a probability distribution on the space of PC parameters that 
yield an event to best match the GMPE. It seems to me that the GMPE is 
only intended to predict the average and standard deviation of the PGV over a large 
set of potential earthquakes, and so I do not understand the point of this statistical 
inversion to try to determine the characteristics of one particular earthquake that best 
matches the average. The authors conclude that the best match is more likely to have 
the hypocenter located in the lower right quadrant of the fault plane, and the elliptical 
patch centered in the lower left quadrant. Why is this useful to know? Is this meant to 
have geophysical significance, e.g. that real strike-slip earthquakes of this magnitude 
tend to have their hypocenter and asperities located in this way? How does this relate to the 
actual slip patterns of the real events that went into the Boore and Atkinson 
GMPE model, to the extent those are known? There is no discussion in the paper 
of these topics. I also wonder about the way this inversion is used in Section 4.5, as 

 



discussed in one of my specific comments below. I think the paper would be stronger if the 
motivation for doing this inversion was better explained, since I found it hard to 
assess the usefulness of this part of the paper. 
 
Reply: 

1. The referee stated: "It seems to me that the GMPE is only intended to predict the 
average and standard deviation of the PGV over a large set of potential earthquakes, 
and so I do not understand the point of this statistical inversion to try to determine the 
characteristics of one particular earthquake that best matches the average." However, 
this interpretation is incorrect. This paper focus on the class of earthquakes of magnitude 
M=6.5 with strike slip focal mechanism. It is true that GMPE predictions for the same 
class of earthquakes are statistical averages over many earthquakes and regions, the 
amount of available data for GMPE predictions are still sparse. On the other hand, this 
paper aimed at exploring the capability of our PC approach in reproducing 
ground-motions of the same class of earthquake; and our rupture model simulations and 
PC analyses show that we don't need such GMPE in principle. 

2. The referee expressed his/her concern in understanding the conclusion of "the best 
match is more likely to have the hypocenter located in the lower right quadrant of the 
fault plane, and the elliptical patch centered in the lower left quadrant." We point out that 
this particular interpretation/conclusion (hypocenter on the right while elliptical patch on 
the left of the fault plane) results from the station distribution; if we had put an exactly 
regular/symmetric station distribution, the patch could also be in the right and the 
hypocenter in the left. The important message here is that hypocenter and slip patch 
cannot be in near-surface area of the fault, and they need to have some distance from 
each other in order to produce the proper seismic radiation pattern, including on-fault 
directivity. Otherwise, the near-source waveforms, and hence PGVs, would not match. 
This is consistent with the findings of Mai et al (2005). 

3. The referee raised more follow up questions in understanding our conclusions on the 
most likely fault plane configuration, e. g. "Why is this useful to know? Is this meant to 
have geophysical significance, e.g. that real strike-slip earthquakes of this magnitude 
tend to have their hypocenter and asperities located in this way? How does this relate to 
the actual slip patterns of the real events that went into the Boore and Atkinson GMPE 
model, to the extent those are known?" We would like to point out that the GMPE 
(BA2008) relations are based on many earthquakes. Unfortunately, there exist no such 
detailed source information (i.e. fault plane configuration as considered in our paper) for 
most of those earthquakes. Furthermore, the GMPE (BA2008) relations do not 
parameterize any of the source complexity considered in our paper. The important 
message again is that our finding is backed up by independent observations and 
physical arguments in Mai et al (2005).  

4. Revision has been made to clarify our main conclusions in the conclusion section. 
 
Specic comments 

 



● Page 3, line 2: The fault plane geometry is fixed with width 10 km and length 27 km. It is 
stated that this is obtained from 100 realizations following the scaling relation in Wells 
and Coppersmith (1994). How are 100 realizations used to determine these dimensions? 

 
Reply: Following scaling relations, e.g. Wells and Coppersmith (1994), Mai and Beroza (2000) 
and Thingbaijam et al (2017),  we obtained 100 possible values of rupture lengths for a M=6.5 
strike-slip event and found that L=27 km had the highest population in our histogram. We did the 
same for the rupture width and obtained W=10km. Revision has been implemented to clarify our 
choice of the fault plane width and length. 
 

● Page 3, lines 5–7: Why is the slip set to Smax/e outside the asperity? How is the slip in 
the asperity set? Since the area of the asperity varies with the input parameters, the slip 
must also vary to keep the magnitude fixed. It is stated that Smax varies with the ellipse 
size but it is not clear how. 

  
Reply: We noticed that the referee might misunderstand our description about the way we set 
the slip in the whole fault plane.  

1) For the slip inside the asperity, we state that “the ellipse is the asperity with Gaussian 
slip distribution inside”.  

2) We pointed out in the manuscript that  “The maximum slip Smax is chosen such that the 
mean slip remains constant (0.71 m) when varying the ellipse size.” It is important to 
note that the the moment magnitude Mw depends on the mean slip of the whole fault 
plane, and not only from the slip of the area of the asperity. 

3) The slip between the elliptical patch boundary and dashed rectangle is set to Smax/e, 
the minimum value at the patch boundary from the Gaussian slip distribution; 

 
● Page 3, line 15–17: For completeness it would be good to state the grid resolution used 

in the COMPSYN simulation of the seismic signals, and the domain size, boundary 
conditions imposed, etc. 

 
Reply: As suggested by the referee, the following details have been added to our revision: 
 
COMPSYN solves the equation of motion considering initial conditions of zero displacement and 
velocity at a reference time t0 and specifying traction or displacement on the bounding surface 
of the medium (boundary conditions) using the unit outward normal vector (details about the 
scheme can be seen in Olson et al., 1984). The grid resolution used in COMPSYN is variable 
and uses a spacing of 1/6 of the minimum shear wavelength at depth z. The grid extends a total 
depth that depends on the wavenumber, which means that the maximum depth decreases 
when the wavenumber  increases. 
 

● Page 3, Figure 2: The 56 observation stations surround the fault plane on all sides. 
Since the fault plane is vertical and the velocity model is vertically layered, shouldn’t the 
observations be symmetric about Y = 0? If so, it would seem clearer to simply use points 
in the upper half plane, for example, rather than asymmetric points scattered on both 
sides.  

 



 
Reply: We thank the referee for this important observation. In principle this observation is              
correct, and it is possible to use points in the upper half plane only, as pointed out by the                   
referee, however the stations are not exactly symmetrically arranged, for the very reason to              
somewhat disturb the symmetry of the problem. 
 

● Page 11, Figure 6: The points here are presumably the mean PGV observed at each of 
the 56 observation points, plotted vs. the distance RJB. These points are calculated by 
evaluating the PC expansion at 1,000,000 sample points and are presumably quite 
accurate estimates of the mean at each observation point. But this figure shows that two 
points that have very similar RJB can have quite different PGV, presumably because the 
two points have quite different azimuthal orientation relative to the fault, even though 
they are the same distance away. This is interesting to observe, but since the GMPE 
curve ignores orientation it seems like it might also be interesting to try to average over 
different orientations for each distance. This could be facilitated if a number of 
observation points were placed at each distance, for a discrete set of distances, i.e., 
place the observation points on concentric rings with fixed RJB. It also seems like a 
much larger set of observation points could be used than 56, since the PC model is so 
quick to evaluate. If many points were placed on many different concentric rings, then 
one could average over all points at a given distance to get points that might be 
expected to agree better with the GMPE curve in Figure 6. It would then also be possible 
to explore in more detail how the PGV varies with orientation along each ring. 
   

Reply: This is a very good observation. We thought about this already: variations in PGV at a                 
given distance are likely due to radiation-pattern effects, in particular directivity. As pointed out              
by the reviewer, one could now do many more detailed tests, including using the PC approach                
to explore the ground motion dependency on azimuthal orientation. However, it would require             
the construction and validation of additional PC representations for a large number of             
observation stations, which are beyond the scope of this study. 
 
Instead we refer to recently published study by Vyas et al (2016) that exactly addresses this                
question in great detail, with a range of simulations and 3000 randomly distributed sites. 
 
The following sentences have been added to the discussion of Fig. 6 in our revised manuscript.                
“It is noted that two stations with similar Rjb distance can have very different PGV values. This is                  
likely due to radiation-pattern effects, in particular directivity, which is addressed in great details              
by Vyas et al (2016).” 
 

● In Figure 2 there are sets of points that have different colors/symbols that are arranged 
somewhat in rings, but the distance for each color do not seem to be constant. The use 
of colors/symbols is not explained anywhere I could find, and should be. 

 
Reply: We have updated Figure 2 to provide details concerning the grouping of observation              
stations into four sets, and to indicate that the color/symbols are used to highlight this grouping.                
In addition, we also indicate the locations of two selected stations in Figure 4 and 5. 

 



 
● Page 5, Table 2: The caption says that “(*) denotes dependent parameters”. It is not 

clear what this means. Does this refer to the comment in line 5 of this page, where it is 
noted that “These restrictions lead to nonlinear dependency between feasible ranges of 
different physical parameters”? 

 
Reply: In the revised manuscript, we have modified the caption of Table 2 as follows:               
"Parameters governing fault plane configurations, (*) denotes parameters whose feasible          
ranges are dependent on others." 
 

● The fact that some of these parameters are constrained based on the choice of other 
parameters means that the probability distribution of parameters is not really given by (1) 
on page 5 as is stated. Some choices from this 7-dimensional box have probability zero 
due to the constraints, while others have greater probability due to several non-allowed 
choices mapping to the same set of modified parameters when the asperity falls near the 
edge of the fault plane. Does this affect the validity of the PC expansion and/or results? 
At any rate, this should be discussed. 

 
Reply: A brief discussion has been added in the revised manuscript (beginning of section 3) in                
order to highlight the distinction between canonical random variables, which are iid uniform over              
the 7-dimensional hypercube, and physical parameters whose ranges may be interdependent.           
The PC expansion is constructed in terms of the canonical random variables, and its validity is                
tested using cross-validation and empirical error estimates. 
 

● Page 17, Section 4.5: In this section it is stated that a uniform distribution of parameters 
over the 7-dimensional space ignores various geophysical constraints suggested by 
previous work. This is discussed in the context of choosing a prior for the Bayesian 
inference, but it seems like it would be even more important to incorporate these 
constraints into the analysis of Section 3, where the PC expansion is used to generate 
statistics on the PGV for comparison with the GMPE. Why should the statistics obtained 
with the uniform distribution be expected to match the GMPE well if it is known that this 
is the wrong distribution? This is addressed to some extent in Section 4.5 where the 
inversion that incorporates these constraints is then used to generate statistics that are 
compared to the GMPE curve in Figure 15. But at this point the inversion process has 
been used to to further constrain the posterior distribution based on trying to match the 
GMPE curve, so comparing the result to the GMPE curve does not seem to provide any 
validation that the PC expansion could predict the GMPE curve for other scenarios, for 
example. I may be missing the point here, but I think it needs more explanation.  

 
1. "Why should the statistics obtained with the uniform distribution be expected to match the 
GMPE well if it is known that this is the wrong distribution?" 
 

 



Reply: The PC statistics and GMPE results were compared to ensure that the model predictions 
describe a similar range, which consequently enables us to use the GMPE results as 
“observation data” for the purpose of parameter inference.  Without this, it wouldn't be 
reasonable to use GMPE reference curve as ``observation’’ in the Bayesian framework. 
 
2. "so comparing the result to the GMPE curve does not seem to provide any validation that the 
PC expansion could predict the GMPE curve for other scenarios" 
 
Reply: As pointed out earlier, the PC expansion was designed to provide an efficient 
representation of the rupture model behavior.  In building the PC representation, we relied on 
uninformative prior, that spans a wide range of feasible scenarios.  In Section 3, we verified the 
capability of the PC surrogate in reproducing the rupture model predictions over the considered 
parameter ranges.  As discussed in Alexanderian et al. (2012), one of the advantages of having 
a suitable representation over a wide range of parameters is that the restriction of parameter 
ranges can be efficiently performed a posteriori, namely without the need of performing new 
model simulations.  This advantage was specifically exploited in section 4.  
 
As suggested by the referee, additional explanation has been incorporated in the revised             
manuscript concerning the construction and validation of the PC expansion, and later on the              
restrictions explored in the Bayesian analysis.  
 
 
Technical Corrections 

● Page 3, line 2: Presumably the rake is fixed at 0 degrees for a strike-slip event, but this 
should perhaps be stated? 

 
Reply: As pointed out by the referee, the rake value has been added in the revised manuscript. 
 

● Page 7, line 27: What are the index sets Si and Ti? The sets are used in the summations 
of (7a) and (7b) respectively, but not really defined. 

 
Reply: As suggested by the referee, Si and Ti have been specified in the revised manuscript. 
 

● Proper latex fonts for trig functions should be used in expressions such as (A1), e.g. a 
cos β rather than acosβ. 

 
Reply: This comment has been incorporated. 
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Abstract. In this paper we employed polynomial chaos (PC) expansions to understand earthquake rupture model responses to

random fault plane properties. A sensitivity analysis based on our PC surrogate model suggests that the hypocenter location

plays a dominant role in peak ground velocity (PGV) responses, while elliptical patch properties only show secondary impact.

In addition, the PC surrogate model is utilized for Bayesian inference of the most likely underlying fault plane configuration

in light of a set of PGV observations from a ground motion prediction equation (GMPE). A restricted sampling approach is5

also developed to incorporate additional physical constraints on the fault plane configuration, and to increase the sampling

efficiency.
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1 Introduction

One of the most important challenges seismologists and earthquake engineers face to design large civil structures (e.g. build-

ings, dams, bridges, power plants) and response plans, especially in highly populated cities prone to large damaging earth-

quakes, is the reliable estimation of ground-motion characteristics at a given location. Ground-motion prediction equations

(GMPEs), which are one of the most important elements for Probabilistic Seismic Hazard Analysis (PSHA), are designed15

for this purpose. These are obtained from regression analysis by fitting a dataset (empirical and simulated) and are mainly

expressed in terms of the site conditions, source-site distance (e.g. rupture distance or Joyner-Boore distance, denoted as RJB

distance hereafter1), magnitude and mechanism, although other terms such as directivity and hanging wall effect are also con-

sidered (Abrahamson et al., 2014). The equations can be derived for peak ground displacement (PGD), peak ground velocity

(PGV), peak ground acceleration (PGA), and spectral acceleration (SA) for a damping of 5% at different periods. Ideally,20

an optimal GMPE has to be robust, and include physical terms to avoid over fitting
:::::::::
overfitting the data, which can result

1The Joyner-Boore distance is defined as the shortest distance from a site to the surface projection of the rupture plane.
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in the inclusion of too many parameters. When other effects are considered (such as amplitude and duration of rupture di-

rectivity (Somerville et al., 1997);
:::::::::::::::::::
Somerville et al., 1997) or more data is available (Atkinson and Boore, 2011), GMPEs are

modified to better explain attenuation patterns.

Many efforts have been made to characterize the seismic ground-motion considering both real and simulated data. For

example, using real data, five research groups under the Pacific Earthquake Engineering Research Center Next Generation At-5

tenuation (PEER NGA) project derived GMPEs for shallow crustal earthquakes considering an extensive database of recorded

ground-motions (Chiou et al., 2008). Later, Arroyo and Ordaz (2010a, b) obtained GMPEs using both synthetic data and two

subsets of accelerograms of the NGA database (Chiou et al., 2008). Arroyo and Ordaz (2010b) highlighted the necessity to

merge finite fault modeling (Atkinson and Silva, 2000) with observations to obtain GMPEs that better predict the amplitudes in

zones where data is insufficient
:::
data

:::
are

::::::::::
insufficient. Verification and validation studies (Maufroy et al., 2015, 2016) were also10

conducted in a large effort to understand ground motions and showed the importance of both accurate source parameters and

the geological description of the medium to reproduce observed ground motions. Singh et al. (2017) improved the agreement

between observed ground motions and GMPEs by including site effects of the area. Numerical simulations have also helped to

explain ground-motion characteristics. For instance, Furumura and Singh (2002) described attenuation patterns for both deep

in-slab and shallow interplate earthquakes, while Cruz-Jiménez et al. (2009) explained ground-motion amplification due to a15

volcanic layer. Mahani and Atkinson (2012) modeled the decay of spectral amplitudes in several locations in North America.

In this study we investigate the level of complexity needed in kinematic rupture models of Mw
::::::::
magnitude 6.5 strike-slip

events to produce ground-motions similar to a reference GMPE. To this end, we utilize the PC approach (Ghanem and Spanos,

1991; Xiu and Karniadakis, 2002; Le Maître and Knio, 2010) to build functional representations of PGVs responses of an

original source model. Thanks to the significant reduction in computational cost of the PC surrogate models (in comparison20

with both the original source model and a Bayesian analysis based on MCMC sampling, which requires a prohibitive number

of model runs (Minson et al., 2014)
:
;
::::::::::::::::
Minson et al., 2014), it is suitable to utilize the PC surrogates in a Bayesian inference

framework (Sudret and Mai, 2013; Sraj et al., 2016; Giraldi et al., 2017). This enable
::::::
enables us to quantitatively rank different

kinematic source models given by the PGVs they produce and identify the most likely one that fits a chosen reference GMPE

(expectation). The ranking considers uncertainties in both the GMPE and model parameters. This provides useful insight on the25

level of complexity needed in kinematic source models for ground-motion simulations to satisfy both observational constraints

and engineering/design requirements for seismic safety.

This paper is organized as follows. In Section 2 we provide detailed descriptions of the source model configurations, in-

cluding the calculation of synthetic seismograms. In section 3, we present the PC analysis of PGVs as a function of random

variations of the kinematic models, including the validation of PC surrogate models and discussions of various statistical quan-30

tities. In section 4, we conduct a PC based Bayesian inference analysis to identify the most likely kinematic rupture model that

best fits a chosen GMPE reference curve. Finally, we conclude our key findings and propose potential improvements for future

work in section 5.
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Figure 1. Example of fault plane configuration, the red star denotes hypocenter location, and the ellipse is the asperity with Gaussian slip

distribution inside. The slip distribution is tapered in the area between the dashed and solid rectangles.

2 Source Model

A magnitude Mw = 6.5 strike-slip earthquake (seismic moment 6.31× 1018 Nm)
:::::::::
6.31× 1018

:::::
Nm;

::::::::::
rake= 0◦) on a single-

segment vertical fault plane is considered. The fault plane is chosen to be a rectangle with fixed length L= 27 km and

width W = 10 km(obtained from ,
::::::
which

:::
are

:::
the

::::
most

:::::::
frequent

::::::
values

::::::
among

:
100 realizations following the scaling relation

in Wells and Coppersmith (1994)
::::::
sample

::::::::::
realizations

::::::::
following

::::::
scaling

:::::::
relations

::::
(e.g.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Wells and Coppersmith, 1994; Mai and Beroza, 2000; Thingbaijam et al., 2017).5

The top of the fault plane is located 2 km below the ground surface. Figure 1 shows an example configuration of the fault plane,

in which the red star denotes the hypocenter and the ellipse is the asperity with Gaussian slip distribution inside. The maximum

slip Smax is chosen such that the mean slip
::::
(over

:::
the

:::::
entire

:::::
fault

:::::
plane) remains constant (0.71 m) when varying the ellipse

size
:::::::

(which
::::::
ensures

::::
that

:::
the

:::::::
moment

:::::::::
magnitude

:::::::
remains

:::::::
constant,

::::::::::
Mw = 6.5). The slip between the elliptical patch boundary

and dashed rectangle (Figure 1) is set to be Smax/e (where e is the Euler’s number),
:::
the

::::::::
minimum

:::::
value

::
at

:::
the

:::::
patch

::::::::
boundary10

::::
from

:::
the

::::::::
Gaussian

:::
slip

::::::::::
distribution. The slip between the solid and dashed rectangles (the horizontal and vertical gaps are 5%

of the length and width of the fault plane, respectively) is tapered to avoid non-physical slip patterns. The entire fault plane

is discretized in along-strike and down-dip directions with grid size of 0.02 km. We use a regularized Yoffe function (Tinti

et al., 2005) with a rise time Tr = 1.25 s following source-scaling relations (Somerville et al., 1999) and slip acceleration time

tacc = 0.225 s, as suggested by Tinti et al. (2005). At each node of the discretized fault plane we assign Tr, tacc, slip-rate in15

along-strike and down-dip directions, and rupture time. We consider a rupture speed of 0.75Vs km/s in all source models.

PGVs at a virtual network of Nobs = 56 stations (Figure 2) are calculated from synthetic seismograms of the two horizontal

components of ground motion at each site for a large set of source rupture models. We use COMPSYN (Spudich and Xu, 2003),

3
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Figure 2. A virtual network of Nobs = 56 stations where PGV responses are reported by the source model. The solid black line at the center

denotes the length and location of the fault plane.
::::
Note,

:::
the

::
56

::::::
stations

:::
are

:::::::
grouped

:::
into

:::
four

::::
sets

::::::::
(indicated

::
by

:::::::
different

::::::::::::
colors/symbols)

:::::::
according

::
to

::::
their

:::
Rjb

:::::::
distances

:::
(see

:::::
details

::
in

::::::
section

::
4).

Table 1. Velocity model used in this study, modified from Boore et al. (1997).

Depth (km) Vp (km/s) Vs (km/s)

0 2.4 1.5

0.5 4.4 2

1.5 5.3 2.7

2.5 5.5 2.9

4 5.7 3.3

8 6.1 3.5

14 6.8 3.9

16.6 7.1 4.1

27 8 4.6

350 8.2 4.65
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Table 2. Parameters governing fault plane configurations, (*) denotes dependent parameters
::::
whose

::::::
feasible

:::::
ranges

:::
are

::::::::
dependent

::
on

:::::
others.

Index Parameter Physical Interpretation

1 AR Area ratio, AR= πab
L∗W ∈ [0.05,0.29]

2 xh (km) x-coordinate of the hypocenter xh ∈ [−13.5,13.5]

3 zh (km) z-coordinate of the hypocenter yh ∈ [−5,5]
:::::::::
zh ∈ [−5,5]

4 a (*) (km) Semi-major axis a ∈ [
√

AR·L·W
π

,L/2]

5 θ (*) Inclination angle of the elliptical patch

6 xc (*) (km) x-coordinate of the center of elliptical patch

7 zc (*) (km) z-coordinate of the center of elliptical patch

a code based on the discrete wavenumber/finite element method proposed by Olson et al. (1984) to calculate the synthetic

seismograms up to a maximum frequency of 1.5 Hz at each station of the virtual array.
::::::::::
COMPSYN

::::::
solves

:::
the

::::::::
equation

::
of

::::::
motion

::::::::::
considering

:::::
initial

:::::::::
conditions

:::
of

::::
zero

:::::::::::
displacement

::::
and

:::::::
velocity

::
at

:
a
:::::::::

reference
::::
time

::
t0::::

and
:::::::::
specifying

::::::
traction

:::
or

:::::::::::
displacement

::
on

:::
the

:::::::::
bounding

::::::
surface

:::
of

:::
the

:::::::
medium

:::::::::
(boundary

::::::::::
conditions)

:::::
using

:::
the

::::
unit

:::::::
outward

::::::
normal

::::::
vector

:::::::
(details

::::
about

::::
the

::::::
scheme

::::
can

::
be

::::
seen

:::
in

::::::::::::::::
Olson et al., 1984).

:::
The

::::
grid

:::::::::
resolution

::::
used

::
in
:::::::::::

COMPSYN
::
is

:::::::
variable

:::
and

::::
uses

::
a
:::::::
spacing

::
of

:::
1/6

::
of

:::
the

:::::::::
minimum

::::
shear

::::::::::
wavelength

::
at

:::::
depth

::
z.
::::

The
::::
grid

:::::::
extends

:
a
::::
total

:::::
depth

::::
that

:::::::
depends

:::
on

:::
the

:::::::::::
wavenumber,

::::::
which5

:::::
means

::::
that

:::
the

:::::::::
maximum

:::::
depth

::::::::
decreases

:::::
when

:::
the

:::::::::::
wavenumber

:::::::::
increases. This approach considers a layered 1D velocity

structure. We apply the velocity model shown in Table 1, which corresponds to a slightly modified version of the generic

model by Boore et al. (1997) for California.
:::
The

:::::::
resulting PGVs serve as our quantities of interest (QoIs, each denoted as Qj ,

for j = 1,2, ...,Nobs). We aim at understanding stochastic source model PGV responses to random fault plane configurations of

the source process (slip distributions and hypocenter location). To this end, we consider variations in seven physical parameters10

listed in Table 2, which parameterize the fault plane configurations, i.e. locations of both the hypocenter and elliptical asperity

patch, as well as its shape and orientation. We restrict the hypocenter and elliptical patch to be inside the fault plane, and limit

the area aspect ratio (AR) of the elliptical patch to the entire fault plane (L×W ) between 5% and 29%. These restrictions lead

to nonlinear dependency between feasible ranges of different physical parameters (see Appendix A for more details).

3 Polynomial Chaos Framework15

PC expansions (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Le Maître and Knio, 2010) 2 are used in this study to

understand earthquake rupture model responses (in terms of PGVs) to random configurations of slip distribution and hypocen-

ter location. We associate each of the physical parameters with a
:::::::
canonical

:::
PC random variable ξi (i ∈ {1,2, ...,nd}, where

nd = 7 is the number of stochastic dimensions
::::::::
stochastic

:::::
space

:::::::::
dimension) and assume all ξi’s are independent and uniformly

2
::
An

:::
open

:::::
source

:::::
toolkit

::
for

::
the

::
PC

::::::::
framework

:
is
::::::
available

::
at
:::::::::::::::::::::::
http://www.sandia.gov/UQToolkit/

:::::::::::::::::::::
(Debusschere et al., 2004, 2016)
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distributed over [−1,1]. That is, the joint distribution of the random parameter vector ξ is20

p(ξ) =

2−7 if ξ ∈Ξ≡ [−1,1]7,

0 otherwise.
(1)

Each random parameter vector ξ ∈Ξ can be linked uniquely to a realization of the physical parameter vector (See mapping

details in Appendix A). We thus focus on constructing functional representations of PGV responses at each station with respect

to
:::
the

::::::::
canonical

:::::::
variable ξ, instead of

:::::
which

:::::::::::
parameterize the physical parameters in Table 2.

::
It

::
is

:::::
worth

::::::::::
mentioning

::::
that

::
the

::::::::
mapping

:::::
from

::::::::
canonical

:::::::
random

:::::::
variable

::
ξ
::
to
::::::::

physical
::::
fault

:::::
plane

::::::::::::
configuration

:::::::::
parameters

:::::
does

:::
not

::::
lead

:::
to

:::::::
uniform5

::::::::::
distributions

:::
for

:::::::
physical

::::::::::
parameters,

::::
due

::
to

::::
their

::::::::::::::
interdependency

:::
as

::::::::
indicated

::
in

:::::
Table

::
2.

:::::::::::
Nevertheless,

::::
the

::::::
validity

:::
of

:::
PC

::::::::
expansion

:::::
based

:::
on

::::::::
canonical

:::::::
random

:::::::
variable

:
ξ
::

is
::::

well
::::::::::

maintained,
:::

as
::::::::
suggested

:::
by

:::
the

:::::::::::::
cross-validation

::::
and

:::::::
emprical

:::::
error

:::::::
analyses

::::
later

::
in

:::
this

:::::::
section.

Let Qj(ξ) be the PGV response to ξ at the j-th station (j ∈ {1,2, ...,Nobs}), and assume each Qj is a second-order random

variable, i.e. Qj(ξ) is in the Hilbert space L2(Ξ,p) and10

E
[
Q2
j

]
=

∫
Ξ

Qj(ξ)2p(ξ)dξ <+∞, ∀j ∈ {1,2, ...,Nobs}. (2)

One can approximate Qj(ξ) using a truncated PC expansion as follows:

Qj(ξ)≈ Q̃j(ξ) =

Np∑
α=0

cαΨα(ξ), ∀j ∈ {1,2, ...,Nobs}. (3)

where Np is a truncation parameter and (Np + 1) is the number of expansion terms retained in the PC surrogate models. In

this study, we truncated the PC expansion at total polynomial order of nine, which leads to 11440 polynomials
:::::
q = 9.

:::::
Given15

::::::
nd = 7,

:::
one

::::
can

:::::::
calculate

:::
the

::::
total

:::::::
number

::
of

:::::::::::
polynomials

::
via

:

Np + 1 =
(q+nd)!

q!nd!
= 11440.

::::::::::::::::::::::::

(4)

By adopting the classical convetion of Ψ0(ξ) = 1, the mean and variance of a PC surrogate Qj(ξ) can be expressed as:

E
[
Q̃
]

=

Np∑
α=0

cα 〈Ψα,1〉= c0, (5)

and20

V
[
Q̃
]

= E
[
(Q̃−E

[
Q̃
]
)2
]

=

Np∑
α,β=1

cαcβ 〈Ψα,Ψβ〉=

Np∑
α=1

c2α‖Ψα‖2L2
, (6)

where 〈·〉 denotes the inner product in the Hilbert space L2(Ξ,p) with respect to the joint distribution p(ξ) (Le Maître and

Knio, 2010).
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To determine the expansion coefficients (cα’s) in Eq. (3), we rely on a Latin Hypercube Sample (LHS) (McKay et al., 1979)

set (denoted as PLHS hereafter) of NLHS = 8000 earthquake rupture model realizations
::::::
through

:::::::::::::
{ξk}1≤k≤NLHS

and solve25

the following Basis Pursuit Denoising (BPDN) problem (Van Den Berg and Friedlander, 2007, 2008) 3 at each station:

c∗ = arg min
c∈RNp+1

||c||l1 s.t. ||Qj − [Ψ]c|| ≤ γ||Qj ||l2 , ∀j ∈ {1,2, ...,Nobs}, (7)

where Qj = (Qj(ξ1),Qj(ξ2), ...,Qj(ξNLHS
))T is the model PGV realization vector at the j-th station, and c ∈ RNp+1 is

the coefficient vector for the corresponding PC surrogate model. [Ψ] ∈ RNLHS×(Np+1) denotes the polynomial matrix with

each element [Ψ]i,α = Ψα(ξi). Note
:::
that [Ψ] is station invariant. The scalar parameter γ indicates the model noise level5

and is determined numerically via a
:::::
k-fold

:::::::
(k = 5)

:
cross-validation process.

:::::::::::::::::::::::
(Seber and Lee, 2012) over

:
a
:::::::

discrete
::::

grid
:::

of

::::::::::::::::::::::::::::::
γ = {10−4,10−3,10−2 : 0.005 : 0.2}.

Following Sobol (1993), Homma and Saltelli (1996), variance-based first-order and total order sensitivity indices associated

with a subset of random variables (i⊂ {1,2, ...,nd}) can be calculated respectively as follows:

Si =

∑
α∈Si c

2
α‖Ψα‖2L2∑Np

α=1 c
2
α‖Ψα‖2L2

. (8a)10

Ti =

∑
α∈Ti c

2
α‖Ψα‖2L2∑Np

α=1 c
2
α‖Ψα‖2L2

, (8b)

where Si (first-order sensitivity) is the relative variance contribution of those polynomials
:::::::
(denoted

::
as

:::::
index

::
set

:::
Si) exclusively

related to random variables in the subset i; while Ti (total order sensitivity) is the relative variance contribution of polynomials

:::::::
(denoted

::
as

:::::
index

:::
set

:::
Ti) involving any of the random variables in i (including cross polynomials between variables in i and15

its complement i∼, i∪ i∼ = {1,2, ...,nd}). Note that by definition the two polynomial index sets satisfy Si ⊂ Ti.

3.1 Validation of PC Models

We first validate our PC surrogate models for PGVs at all stations. To this end, we introduce a second independent source

model simulation ensemble (again an 8000 member LHS set PvalidLHS ⊂Ξ) for the purpose of validation. (Note that PvalidLHS is

independent of the training set PLHS). The following relative l2 error is then examined for PGVs at each station.20

εj =

√√√√∑NLHS

k=1 (Q̃j(ξk)−Qj(ξk))2∑NLHS

k=1 Qj(ξk)2
, ∀j ∈ {1,2, ...,Nobs}, (9)

where Q̃j(ξk) and Qj(ξk) denote PC and source model responses, respectively, to ξk at the j-th station. ξk ∈ PLHS or

ξk ∈ PvalidLHS depending on the sample set used to estimate the errors.

Figure 3 shows relative error estimates of PC surrogate models over the training set (PLHS , blue dots) and the validation

set (PvalidLHS , red dots). It is not surprising to see slightly larger error estimates on the validation set, as the PC reconstruction25

3
::
The

::::::::::
corresponding

::::
source

::::
code

:
is
::::::
available

::
at
:::::::::::::::::::
https://github.com/mpf/spgl1

7
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Figure 3. Relative l2 errors of PC surrogate models.
:::
The

::::::::::::
cross-validation

:::::
errors

:::
are

::::
close

::
to
:::
the

::::
error

::::::::
estimated

::::
from

::::::::
validation

:::
set.

:::
For

:::::
brevity,

:::
we

::::
omit

::
the

::::::::::::
cross-validation

:::::
errors

::
in

::
the

::::
plot.

process is unaware of this data set. However, because almost all error estimates fall below 10% range, and in light of the close

agreement (about 4% difference) between the blue and red dots, our PC surrogate models are deemed to suitably reproduce

source model PGV responses throughout the entire station network.

Apart from the above error estimates, the convergence of PC surrogate models with respect to truncation order is also

investigated from a statistical point of view. Figure 4 shows PGV distributions from PC re-sampling on a one-million-member

LHS set (P1E6
LHS) at two selected stations, with different

::::
with

:::::::::
increasing

:::
odd

:
PC truncation orders

::
up

:::
to

::::::
degree

:
9. It is seen

that when the truncation order is larger than five, the difference in the PGV prediction distributions becomes relatively small,

suggesting that our ninth-order PC library is sufficient
:::
PC

:::::::::
expansions

::::
are

:::::::::
sufficiently

::::::::
accurate for the source model under

consideration.5

We finally compare distributions of PC and source model predictions, see Figure 5. It is observed that our PC surrogate

models are indeed capable of reproducing PGV distributions produced from source model realizations of the validation set

PvalidLHS . Besides, the excellent agreement between the two PC predicted distribution curves in Figure 5 suggests that our existing

8000 model simulation ensemble is statistically representative, which provides additional confidence in our PC representations.
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1Figure 4. PC predicted PGV distributions at two selected stations . (Top) Station # 3 (Bottom
::
as

:::::::
indicated

::
in
::::::

Figure
:
2)Station # 21.

:
.

Distribution curves are generated
::::::
obtained

:::::
using

::::
kernel

::::::
density

::::::::
estimation

::::::::::::::::::::
(Sheather and Jones, 1991) from PC realizations on a one-million-

member LHS set P1E6
LHS .
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1Figure 5. Comparison of PGV distributions predicted by the source model (blue solid curve) and PC surrogate model (red dashed curve)

respectively at selected stations
::
(as

:::::::
indicated

::
in
::::::
Figure

::
2) over the validation sample set PvalidLHS . The black dash-dotted curves are PC

::::
PGV

prediction distributions obtained from
::
PC

:::::::
surrogate

:::::
model

:
realizations on a one-million-member LHS set P1E6

LHS .
:::::::::
Distributions

:::
are

:::::::
obtained

::::
using

:::::
kernel

:::::
density

:::::::::
estimations

:::::::::::::::::::::
(Sheather and Jones, 1991).
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3.2 PC Statistics10

The PC surrogate models obtained in the previous section provide immediate access to prediction statistics, as given by Equa-

tions (5) and (6). Figure 6 shows means and standard deviations of PC PGV predictions at different stations, along with a

reference PGV curve provided
::::::
median

::::
PGV

:::::
curve

::::::::
predicted

:
by the GMPE in Boore and Atkinson (2008). It is seen that our 4

:
.

:
It
::
is

:::::
noted

:::
that

::::
two

::::::
stations

::::
with

::::::
similar

::::
RJB:::::::

distance
:::
can

:::::
have

::::
very

:::::::
different

::::
PGV

::::::
values.

::::
This

::
is

:::::
likely

:::
due

::
to

::::::::::::::
radiation-pattern

::::::
effects,

::
in

::::::::
particular

:::::::::
directivity,

::::::
which

::
is

::::::::
addressed

:::
in

::::
great

:::::
detail

:::
by

:::::::::::::::
Vyas et al. (2016).

::::::::
Besides,

:
it
::

is
::::::::
observed

::::
that PC pre-

dictions generally scatter around the GMPE curve. The
:::::::
Though

:::
one

::::::
should

:::
not

::::::
expect

:::::
exact

:::::
match

:::::::
between

::::
PC

::::::
statistic

::::
and

::::::
GMPE

::::::::::
predictions,

:::
due

::
to
:::

the
:::::::::

difference
::
in
:::::::

random
:::::::
sources

:::::::::
underlying

:::
the

::::
two

::::::::::
approaches,

::::
and

:::
the

::::::::::::
uninformative

:::::::
uniform5

::::::::
canonical

:::
PC

::::::::
parameter

:::::::::::
distributions

::::
used

::
to

:::::::
generate

:::
PC

::::::::
statistics,

::
it

::
is

:::::
worth

:::::
noting

::::
that

:::
the

::::::
similar

:::::
range

::
of

:::
PC

::::
and

::::::
GMPE

:::::::::
predictions

::::::
enables

:::
us

::
to

:::
use

:::
the

::::::
GMPE

:::::
results

::
as

:::::::::::::
“observations”

::
for

:::
the

:::::::
purpose

::
of

:::::::::
parameter

::::::::
inference

::::::::
discussed

::
in

::::::
section

::
4.

:::
One

::::
also

:::::::
observe

:::
that PGVs are generally largest near the fault plane, and decrease with increasing RJB distance. The over-

all tendency of PC prediction uncertainty (quantified by the standard deviation bars) seems to decrease with increasing RJB

distance as well.10

The conditional mapping from random PC parameter
::::::::
canonical

:::
PC

::::::
random

::::::::
variables

:
(ξ

:
) to physical fault plane configuration

leads to complex dependency of PGV responses to random inputs. To identify
:::::::::::
configurations

::::::
makes

::
it

:::::::
difficult

::
to

::::::
isolate the

relative impact of each random parameter (each component of ξ) on model responses
::::::::
individual

::::::::::
parameters.

:::
To

::::::
address

::::
this

:::::::
difficulty, we rely on the global sensitivity analysisin (Homma and Saltelli, 1996; Sobol, 1993).

::::::::::::::::::::::::::::::::::
(Homma and Saltelli, 1996; Sobol, 1993),

:::
and

::::::
discuss

:::
the

::::::::
statistical

::::::::::
significance

::
of

:::::
each

::::::::
canonical

::::::
random

::::::::::
parameters

::
in

:::
the

::::::
rupture

::::::
model.

Figure 7 shows both the first and total order sensitivity indices associated with each random parameter at different stations.

These sensitivity indices reveal that the model PGV response is most sensitive to the location of the hypocenter (xh is dominant

and zh plays a secondary role) throughout all stations, whereas the remaining random parameters (associated with elliptical5

asperity patch) are relatively insignificant. While it might be reasonable to neglect the elliptical patch parameters’ impact on

PGV response variability at far stations (with RJB distance roughly more than 10 km away from the center), it is evident that

at near-the-center stations, those elliptical patch parameters can still lead to a considerable impact on PGV response.

To better illustrate the above sensitivity observation, we divided the parameters into the following two groups ξhypo =

{ξxh
2 , ξzh3 } and ξellip = {ξAR1 , ξa4 , ξ

θ
5 , ξ

xc
6 , ξzc7 } (the superscripts denote the corresponding physical parameters), and calculate10

the first order sensitivity indices associated with ξhypo and ξellip using Equation (8a), denoted as Shypo and Sellip, respectively.

Note the combined effect (interaction) of hypocenter location and elliptical patch parameters is simply given by Shypo×ellip =

1−Shypo−Sellip. The resulting group sensitivity indices are shown in Figure 8. It is now clear that the hypocenter location alone

is responsible for 80-90% of the variability in PGVs at distant stations. Meanwhile near the center, the hypocenter location

alone is associated with only 55-75% of the PGV variability, suggesting that the elliptical patch parameters play important15

roles with about 25-45% contribution to the total PGV variability.

4
::
The

:::::::::
interested

::::::
reader

:::
is
::::::::

referred
:::

to
::::::::::

Mai (2009),
::::::::::::::::::::::::::::::::::::::::::::::::::::

http://www.opensha.org/glossary-attenuationRelation-BOORE_ATKIN_2008
:::::

and

:::::::::::::::::::::::::::::
http://www.gmpe.org.uk/gmpereport2014.pdf

::
for

::::
more

:::::
details

::
on

::
the

:::::
GMPE

:::::::
employed

:
in
:::
this

::::
paper.
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Figure 6. Comparison of PC statistics (based on uniform distribution assumption of
::
the

::::::::
canonical PC random parameter

::::::::
parameters) with

GMPE results. Dashed
:::
Solid

:::::
black

::::
curve

::::::
denotes

::
the

::::::
median

:::::
GMPE

::::::::
prediction,

:::::
while

::
the

::::::
dashed lines are

:::::
GMPE

:
standard deviation boundsof

GMPE predictions.
::::
Note

:::
that

::::::::
log-scales

::
are

::::
used

::
in

:::
the

:::
plot.

4 Bayesian Inference

In this section, we utilize a Bayesian approach (Bernardo and Smith, 2001; Berger, 2013; Gelman et al., 2014) to find the most

likely fault plane configuration, in the sense that the resulting earthquake rupture model produces PGVs best match the refer-

ence GMPE curve by Boore and Atkinson (2008) for
:::
for the same magnitude and focal mechanism

:::::::::::::::::::::::
(Boore and Atkinson, 2008).

To this end, we first obtain the GMPE predicted PGVs at the stations shown in Figure 2, denoted as d, which serves as observa-5

tional data in our Bayesian inference, and compare dwith our PC surrogate model predictions d̃(ξ) = (Q̃1(ξ),Q̃2(ξ), ...,Q̃Nobs
(ξ))T .

4.1 Bayesian Formulation

To formulate the Bayesian problem, we start with Bayes’ formula

p(η|d) =
p(d|η)p(η)

p(d)
∝ p(d|η)p(η), (10)

where η is the parameter vector to be inferred, p(η) is the prior probability distribution of η, and p(d|η) is the likelihood10

of observing d given η. The denominator p(d) is the marginal distribution known as evidence. (Note this evidence can be

12
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Figure 7. First (top) and total (bottom) order sensitivity indices at each station.
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neglected, as the Markov Chain Monte Carlo (MCMC) sampling method (Haario et al., 2001; Roberts and Rosenthal, 2009)

utilized below solely relies on the proportionality). We adopt the assumption of independent Gaussian prediction error
::::::::
Gaussian

::::
error at each station location, i.e. the discrepancy between GMPE

::::::::::
observations

::::::
(GMPE

::::::::
predicted

::::::
PGVs) and PC predictions at

each station is an independent Gaussian variable:15

p(εj) = p(dj − d̃j) =
1√

2πσ2
exp
[
− (dj − d̃j)2

2σ2

]
, ∀j ∈ {1,2, ...,Nobs}. (11)

Recall that the PC prediction uncertainty
:::::::::
variability seems to decrease with RJB distance according to Figure 6, which

motivates us to
:
.
::
To

:::::::
account

:::
for

:::
this

:::::
decay

:::
of

::::
PGV

:::::::
variance

::::
with

:::::
RJB :::::::

distance
::
in

:::
the

:::::::
Bayesian

::::::::
inference

::::::::
analysis,

::
we partition

the Nobs stations into four concentric groups , namely
:::::
groups

:
according to their corresponding RJB distances as colored

:::::::
indicated

:
in Figure 2, and associate each group of stations with a hyper-parameter σ2

l(j) (l(j) ∈ {1,2,3,4} , depending on the20

RJB distance of the j-th station). As a result, the likelihood can be expressed as:

p(d|η) =

Nobs∏
j=1

1√
2πσ2

l(j)

exp
(
− (dj − d̃j(ξ))2

2σ2
l(j)

)
, (12)

and accordingly the inference parameter vector η reads

η = (ξ1, ξ2, ..., ξ7,σ
2
1 ,σ

2
2 , ...,σ

2
4)T . (13)

Our numerical experiments suggest that the 4-σ2 model above outperforms the model with only one hyper-parameter for all25

stations. It is noted that we limit the number of uncertainty hyper-parameters (σ2
i ’s) to four in this study, due to the limited

14



number of observations (PGVs at limited number of stations). If more observations are available, it might be beneficial to

increase the number of hyper-parameters.

The prior distribution of η, without additional information on the model parameters, is usually given by assumptions of

uniform distribution for
::::::::
canonical

:
PC parameters ξ, and Jeffrey’s priors (Sivia and Skilling, 2006) for hyper-parameters σ2

l (as

σ2
l is always greater than zero); consequently,5

p(η) =


(

1
2

)7∏4
l=1

1
σ2
l

∀ξ ∈Ξ and ∀σ2
l > 0,

0 otherwise,
(14)

and Bayes’ rule reduces to

p(η|d)∝ p(d|η)p(η) =
∏Nobs

j=1
1√

2πσ2
l(j)

exp
(
− (dj−d̃j(ξ))2

2σ2
l(j)

)[(
1
2

)7∏4
l=1

1
σ2
l

]
∀ξ ∈Ξ and ∀σ2

l > 0,

0 otherwise.
(15)

We rely on the adaptive metropolis MCMC approach (Haario et al., 2001; Roberts and Rosenthal, 2009) to sample the

above posterior distribution. It is worth noting that MCMC methods, despite the improved efficiency against the traditional10

MC approaches, generally require a large number of samples (typically tens of thousands, and even larger depending on the

dimensionality of the problem). This is one of the main reasons why we utilize PC techniques, as the use of the corresponding

::
PC

:
surrogates in the MCMC simulation leads to significant reduction in computational cost. In this study, the MCMC sample

size for inference is set to 106.

4.2 Inference Results

As mentioned above, we exploit the PC surrogate models in Bayesian inference analysis and update the posterior distribution of

random parameters (ξ ∈Ξ), as well as PGV prediction uncertainties (σ2
l ’s), in light of the GMPE predicted PGVs

::::::::::
observations.

Figure 9 shows the posterior probability distributions of hyper-parameters σ2
l (l ∈ {1,2,3,4}). It is evident that σ2

l decreases

with RJB distance (from l = 1 to l = 4), which supports our previous ansatz from Figure 6.5

Similarly, we examine the sampling chains of PC random parameters ξi (i ∈ {1,2, ...,7}). While some parameters (e.g. ξ1, ξ2, ξ3

and ξ6) yield very informative posterior distributions (not shown here), others look relatively less informative. It is noted that

our goal is to estimate the posterior distributions of the physical parameters in Table 2, instead of the PC parameters. Thus, it

is desired to map the ξ chain into the corresponding physical configuration chain, before inferring the most likely fault plane

configuration.10

Figure 10 shows the posterior distributions of the physical parameters after mapping from the PC parameter chain of ξ(for

brevity, the chain plots of physical parameters are not shown here), as well as the corresponding inference of the fault plane

configuration (bottom right panel). It is observed that in light of the GMPE PGV predictions
::::::::::
observations: 1) the hypocenter

location (xh and zh) is well identified; 2) The size of the elliptical patch seems to be more likely near the lower bound of the

15
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Figure 9. Posterior probability distributions of prediction uncertainty parameters (each PDF curve is scaled to have unit peak height for better

comparison).

prior; 3) The inclination angle of the elliptical patch, as well as the location of the patch, is
:::
are less conclusive. For example,15

despite the clear peak in the inclination angle plot, the posterior distribution is relatively flat, suggesting limited information

gain comparing with the prior knowledge. Furthermore, the xc distribution only shows the fact that the ellipse tends to be in

the left half of the fault plane; the definite location of the elliptical patch (either xc or yc :
zc) is ambiguous. These findings

are generally consistent with the results of the sensitivity analysis. Since the model is primarily sensitive to the hypocenter

location, perturbing the hypocenter location leads to more effective adjustment in PGV responses. On the other hand, elliptical20

patch parameters have relatively small impact on PGV variance, which calls for more observational data to pin down those

parameters.

One needs to be cautious about the Bayesian inference results discussed above. From the physical point of view, the spatial

distribution of those stations (see Figure 2) where PGVs are reported is almost ‘symmetric’ about the center of the fault plane

(x= 0 and y = 0), ;
:
as a result, one would expect to see a ‘symmetric’ twin configuration that are roughly equally plausible25

from the Bayesian inference. However, this ‘symmetric’ counterpart is clearly missing in the above inference results. This

is probably because when MCMC chain converges to the high probability region of hypocenter location in the bottom right

quadrant of the fault plane, it becomes more and more difficult to escape from this high probability region and explore the

other side of parameter space. In other words, there could be bi-modal structures in the distributions of xh (as well as xc)

which the previous MCMC process fails to identify (e.g. the configuration in which the hypocenter located on the bottom30

left quadrant of the fault plane, and the ellipse centered at somewhere in the right half of the fault plane). While in theory

it is possible to identify the missing multi-modal distributions of random parameters by further increasing the number of

16
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Figure 10. Prior (dashed black, derived from uniform ξ distribution in Ξ) and posterior (solid blue) distributions of physical fault plane

configuration parameters. The bottom right panel shows the inferred fault plane configuration.
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Figure 11. Inferred fault plane configuration with MCMC chain starting from the ‘symmetric’ counterpart configuration.

MCMC samples, the computational cost can be excessive. Alternatively, we verify our expectation of seeing the ‘symmetric’

counterpart configuration by re-running the MCMC simulation starting with the ‘symmetric’ counterpart configuration (i.e.

with hypocenter being in the bottom left quadrant of the fault plane, and elliptical patch being in the right side of the fault plane).

The resulting fault plane configuration inference is shown in Figure 11. As expected, the new MCMC process ended up with

a fault plane configuration that is roughly ‘symmetric’ to the previous inference result, especially for the hypocenter location.

The asymmetric behavior of the elliptical patch stems from the fact that: 1) the Nobs stations are not exactly symmetrically5

distributed, thus one should not expect exact symmetry; 2) as discussed before, the PGV responses are less sensitive to the

elliptical patch properties, leading to ambiguity in inferring these properties.

4.3 Inference with Restricted Prior

The previous inference results are all based on almost complete ignorance of dependency between hypocenter location and the

slip area (asperity). However, previous studies (Mai et al., 2005; Irikura and Miyake, 2011) suggested some constraints on the10

relative hypocenter location (Mai et al., 2005) with respect to the asperity, and size of the asperity (Irikura and Miyake, 2011).

In this section, we consider the following restrictions in our inference analysis:

R-1. The elliptical patch is inside the dashed rectangle ([L′,W ′] = 0.9× [L,W ]) shown in Figure 1;

R-2. The area ratio of the elliptical patch (AR) is between 15% and 29% of the fault plane area, i.e. 0.15<AR< 0.29;

R-3. The elliptical patch is not too elongated, i.e. the axis ratio a
b ≤ 3;

18



R-4. The hypocenter is located outside but near the elliptical patch, i.e. xh = (a+ 3ζh1
)cos(2πζh2

) and zh = (b+ b 3aζh1
)sin(2πζh2

)

:::::::::::::::::::::::
xh = (a+ 3ζh1

)cos(2πζh2
)

:::
and

:::::::::::::::::::::::
zh = (b+ b 3aζh1

)sin(2πζh2
)
:
∀(ζh1

, ζh2
) ∈ [0,1]2.

The above
:::
One

:::
of

:::
the

:::::::::
advantages

::
of

::::::
having

::::::::
previous

:::
PC

::::::::
surrogate

::::::
models

::::::
(which

:::::
were

::::
built

:::::
based

::
on

::::::::::::
uninformative

:::::
prior

:::
that

:::::
spans

:
a
:::::
wide

:::::
range

::
of

::::::
feasible

:::::::::
scenarios,

:::
i.e.

:::::::
minimal

:::::::::
restrictions

::
as

:::
in

::::
Table

:::
2)

:
is
::::
that

:::
the

:::::
above

::::
four

::::::::
additional

:::::::::
parameter5

restrictions can be conveniently incorporated
::::::::
efficiently

:::::::::
performed

:
a
:::::::::

posteriori,
:::::::
namely

::::::
without

::::
the

::::
need

::
of

::::::::::
performing

::::
new

:::::
model

:::::::::::
simulations

::::::::::::::::::::::
(Alexanderian et al., 2012).

::
To

:::::
begin

:::::
with,

:::
we

:::
first

::::::::::
incorporate

:::
the

:::::
above

::::::::::
restrictions into the Bayesian framework, namely by modifying the previous

prior distribution (Equation (14)) as follows:

p∗(η) =


(

1
2

)7∏4
l=1

1
σ2
l

∀ξ ∈Ξ , ∀σ2
l > 0 and all restrictions are satisfied,

0 otherwise.
(16)10

However, due to the strong restrictions listed above, the support of the above prior probability distribution (Equation (16)) turns

out to be extremely limited in the parameter space Ξ, leading to computationally inefficient MCMC sampling (since most of

the samples drawn from a proposal distribution will end up not satisfying at least one of the restrictions and thus zero prior

probability). To mitigate the difficulty of inefficient sampling due to restricted prior distribution, we introduce a new layer of

parameterization, mapping from Ξ to restricted physical configurations. (Details on this new mapping mechanism are given in15

appendix B.)

Figure 12 shows the MCMC process of drawing random samples from proposal distributions and calculate the resulting

posterior probability. Without additional restrictions (orange path), the parameter vector ζ = ξ, and the whole process reduces

to the standard MCMC process we used in the previous section. By introducing the new parameterization process (see algo-

rithm 2), we are transforming the original problem, which is based on PC parameter vector ξ, into a new inference problem20

based on ζ (we denote ζ as auxiliary random parameter vector hereafter, to distinguish it from the PC parameter vector ξ).

This transformation is based on the mapping from ζ to ξ (i.e. ξ = ξ(ζ)) via their commonly associated physical configuration.

For clarity, we formulate the new ζ based Bayesian problem as follows:

p(η∗|d)∝


[(

1
2

)7∏4
l=1

1
σ2
l

]∏Nobs

j=1
1√

2πσ2
l(j)

exp
(
− (dj−d̃j(ξ(ζ)))2

2σ2
l(j)

)
∀ζ ∈Ξ, ∀σ2

l > 0,

0 otherwise.
(17)

where η∗ = (ζ1, ζ2, ..., ζ7,σ
2
1 ,σ

2
2 , ...,σ

2
4)T .25

Following the same analysis as discussed before, we show the inference results under restrictions in Figure 13. Note that

the prior distributions of those physical parameters are different from those in Figure 10, as the new ones are derived from

uniformly distributed auxiliary random vector ζ ∈Ξ, instead of PC parameters ξ ∈Ξ. Nevertheless, we see very consistent

results of hypocenter location, as well as the location of the elliptical patch, comparing with those in Figure 10. The area aspect

ratio AR, though larger than the previous inferred value, still favors the lower end of the prescribed parameter range. The30

elliptical patch ends up with a larger area and longer semi-major axis (compared to the results in Figure 10 and 11). These

differences are directly stemming from restrictions R-2 and R-3.
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Figure 12. Flow chart demonstrating the random sampling process and the calculation of posterior probability in MCMC. The orange path

corresponds to unrestricted sampling process, whereas the blue path incorporates additional restrictions on fault plane configurations. Note

Y denotes the fault plane configuration vector in the physical domain, e.g. Y = (AR,xh,zh,a,θ,xc,zc)
T .
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Figure 13. Prior (dashed black, derived from uniform ζ distribution in Ξ) and posterior (solid blue) distributions of physical fault plane

configuration parameters in restricted inference. The bottom right panel shows the inferred fault plane configuration.
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Figure 14. Restricted Bayesian MCMC sample chains of the hypocenter (top) and elliptical patch center (middle); the bottom panel shows

the correspondence between xh and xc chains
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Figure 15. Comparison of PC predicted PGV responses with aforementioned three inferred fault plane configurations with the reference

GMPE curve. Dashed lines are standard deviation bounds of GMPE predictions.

Though it is not obvious to see from Figure 13, the restricted Bayesian MCMC process is indeed aware of the existence of the

‘symmetric’ counterpart configuration. Figure 14 shows the restricted Bayesian MCMC sample chains of both the hypocenter

(top panel) and elliptical patch center (middle panel). It is seen that despite the fact the hypocenter samples are mostly clustered

around xh = 5 km, there is a sample cloud on the opposite side (xh =−5 km), corresponding to the ‘symmetric’ counterpart5

configuration discussed before. The sample cloud of elliptical center also shows bi-modal distributions, with primary cloud on

the left (xc < 0) and secondary ‘symmetric’ counterpart on the right (around xc = 5 km). The correspondence between xh and

xc is shown in the bottom panel of Figure 14, from which it is seen that when xh is positive, xc is more likely to be negative

and vice versa, suggesting that hypocenter and ellipse center are in the opposite side of the fault plane, as previous inference

results suggested. Note that in this restricted Bayesian MCMC sampling, the total number of samples remains 106. The ability10

to observe the ‘symmetric’ counterpart clouds is probably due to the fact that by introducing the auxiliary parameter ζ, we

dramatically shrunk the sampling space (it is only a small subspace of the original unrestricted parameter space). As mentioned

before, introducing the auxiliary parameter ζ leads to significant efficiency improvement in MCMC sampling process.
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Table 3. Comparison of PC predicted PGVs of different inferred configurations with the reference GMPE curve. Unrestricted-1 and 2

correspond to inferences in Figure 10 and Figure 11, respectively.

Inference ε=

√∑Nobs
j=1 (Q̃j−QGMPE

j )2

Nobs
r =

√
1

Nobs

∑Nobs
j=1

( Q̃j−QGMPE
j

QGMPE
j

)2
Unrestricted-1 (blue) 1.1135 0.3395

Unrestricted-2 (red) 1.7413 0.3993

Restrict (green) 1.4564 0.3702

4.4 Comparing PGVs

We summarize the Bayesian analysis by comparing PC predicted PGV responses to the three inferred fault plane configurations

discussed above with the reference GMPE curve (see Figure 15 and Table 3). We observe that all three configurations lead to

relatively close match between PGV responses
:::
PC

:::::::::
predictions and the reference GMPE curve. By comparing either the root-

mean-square (rms) error or the relative rms error
:::
(see

:::::
Table

::
3), we conclude that the red dots (corresponding to the unrestricted5

inference in Figure 11) clearly show larger discrepancy from the GMPE curve, suggesting smaller likelihood compared to the

other two, consistent with our Bayesian analysis. When comparing the blue and green dots (unrestricted inference in Figure 10

versus restricted inference in Figure 13), the former seems to be slightly better, which is expected because of the additional

flexibility in fitting the GMPE curve. Nevertheless, it might be better to report the restricted inference results (configuration

in Figure 13), as it satisfies all the restrictions learned from previous studies while retaining plausible agreement with the10

reference GMPE curve.

5 Conclusions

An earthquake rupture model was adopted to explore the stochastic dependence of ground motions (in terms of PGVs) on

random fault plane configurations. Thanks to the ability to generate two independent source model simulation ensembles with

8000 members each, we were able to build successful PC surrogate models to assess PGV responses over the virtual network15

of Nobs = 56 stations from one ensemble, and then to validate the quality of PC models on the other. Our statistical analysis

showed that the two 8000-member LHS ensembles of source model simulations are adequate to represent the underlying PGV

distributions at all stations, as they closely match with PC predicted distributions over a much larger sample set.

A global sensitivity analysis of PC surrogate models was conducted. The analysis revealed that the source model PGV

response is primarily sensitive to the hypocenter location, and much less sensitive to properties of the asperity patch, especially20

at stations far away from the fault plane (in terms of the RJB distance). While this holds true for all stations, it is noted that

asperity patch properties still carry considerable impact (20-30% associated variability) on PGV responses at stations close to

the fault plane, and even more influence (additional 10% variability) if one takes into consideration the interaction between

asperity patch and hypocenter location.
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Our analysis of PGV variabilities indicated that one needs to be cautious when interpreting PGVs at near fault plane stations,

as they are more prone to higher model noise. This is supported by the Bayesian inference analysis, in which four independent

model noise parameters (σ2
l for l = 1,2,3,4) were introduced and assigned to four concentric groups of observational stations,

depending on their RJB distances away from the fault plane. The Bayesian inference results clearly showed the decreasing

trend of noise parameters (σ2
l ’s) when moving away from the fault plane (see Figure 9). Further refinement of the noise5

parameter profile along the RJB distance, though desired, is prohibited by the limited number of available observational

stations.

We conducted both unrestricted and restricted Bayesian inference analyses to identify the chosen GMPE reference curve.

The key findings are as follows: 1) due
:::::
Given

:::
the

::::::
station

::::::::::
distribution

:::::::
(Figure

::
2)

::
in

::::
this

:::::
study,

:
it

::
is

:::::
more

:::::
likely

::
to

:::::
have

:::
the

:::::::::
hypocenter

::::::
located

::
in

:::
the

:::::
lower

::::
right

::::::::
quadrant

::
of

:::
the

::::
fault

:::::
plane,

::::
and

:::
the

:::::::
elliptical

:::::
patch

:::::::
centered

::
in
:::
the

:::::
lower

::::
left

::::::::
quadrant;

::
2)10

:::
Due

:
to the considerable ‘symmetry’ presented by those Nobs stations, the most profound fault plane configuration, which

:::
best

reproduce the reference GMPE predictions, can potentially have a ‘symmetric’ twin configuration, especially for the hypocenter

location; 2) it is more likely to have the hypocenter located in the lower right quadrant of the fault plane, and the elliptical patch

centered in the lower left quadrant; 3) the
:::
The restricted inference results remain consistent with the unrestricted ones, with

slightly more deviation from the chosen GMPE reference curvebut closer agreement with the previous study (Mai et al., 2005)
:
;15

::
4)

::::
Most

:::::::::::
importantly,

:::
our

:::::::
analyses

:::::::
suggest

::::
that

:::
the

:::::::::
hypocenter

::::
and

:::
slip

:::::
patch

::::::
cannot

:::
be

::
in

::::::::::
near-surface

::::
area

::
of

:::
the

:::::
fault,

::::
and

:::
they

:::::
need

::
to

::
be

:::::
some

:::::::
distance

::::
away

:::::
from

::::
each

::::
other

::
in

:::::
order

::
to

:::::::
produce

:::
the

:::::
proper

:::::::
seismic

:::::::
radiation

:::::::
pattern,

::::::::
including

:::::::
on-fault

:::::::::
directivity.

:::::::::
Otherwise,

:::
the

::::::::
resulting

::::::::::
near-source

::::::::::
waveforms,

:::
and

:::::
hence

::::::
PGVs,

::::::
would

:::
not

::::::
match

::::
with

::::::
GMPE

:::::::
results.

::::
This

::
is

::::::::
consistent

::::
with

:::
the

:::::::
findings

::
of

::::::::::::::
Mai et al. (2005).

The analyses and findings in this study provide useful insights on how near-source ground shaking (and its variability)20

depend on random fault rupture configurations. Interestingly, even very simple source models (with elliptical slip patches)

are able to generate shaking distributions that well reproduce empirical predictions. To better reproduce the chosen GMPE

reference curve, it might be beneficial to consider two or more asperity patches, instead of one in this study, in order to reduce

the hypocenter location influence and in return increase the impact of asperity properties. Another potential improvement can

be made by refining the station network. As mentioned earlier, the Bayesian inference is primarily limited by the number of25

available stations at which PGVs are reported. By increasing the number of PGV reporting stations, one may improve the

Bayesian inference results (e.g. removing the ambiguity in inferring the elliptical patch location).

Code and data availability. The COMPSYN code (Spudich and Xu, 2003) employed in this study, along with the simulation data are avail-

able upon request, and will be made available in the near future on a dedicated site/repository.
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Appendix A: Mapping from PC Random Parameters to Physical Parameters

Let a and b be the lengths of semi-major and minor axes, respectively, of the elliptical patch considered in the fault plane

configuration discussed in Section 2, and AR be the area aspect ratio defined by AR= πab
LW (here L= 27km and W = 10km

are the length and width of the fault plane). The elliptical patch centered at the origin (xc = 0 and zc = 0, note the z-axis is

pointing downwards as shown in Figure 1), when not rotated (meaning θ = 0, the semi-major axis align with x-axis), can be5

expressed as:x
z

=

acosβ

bsinβ

 where −π ≤ β ≤ π (A1)

If the elliptical patch is rotated by θ ∈ [−30◦,+30◦] (a positive angle denotes clockwise rotation), then the ellipse is given

by:xr
zr

=

cosθ −sinθ

sinθ cosθ

x
z

=

cosθ −sinθ

sinθ cosθ

acosβ

bsinβ

=

acosθ cosβ− bsinθ sinβ

asinθ cosβ+ bcosθ sinβ

 (A2)10

To ensure the resulting elliptical patch is completely confined within the fault plane, we first find the maximum extent of the

ellipse in both x- and y-directions. We first calculate the following two β∗’s,

∂xr

∂β
=−acosθ sinβ− bsinθ cosβ = 0 ⇒ β∗x = tan−1

(
− b

a
tanθ

)
∂zr

∂β
=−asinθ sinβ+ bcosθ cosβ = 0 ⇒ β∗z = tan−1

( b
a

1

tanθ

)
(A3)

Next, by substitute the above β∗x and β∗z into Equation (A2), we have

xrmax = |acosθ cosβ∗x− bsinθ sinβ∗x|

zrmax = |asinθ cosβ∗z + bcosθ sinβ∗z | (A4)15

These are the maximum extents of the ellipse in x- and y- directions, respectively.

When the ellipse is not centered at the origin (xc 6= 0 and/or zc 6= 0), the following conditions need to be satisfied.

|xc|+xrmax ≤
L

2

|zc|+ zrmax ≤
W

2 (A5)

which leads to:

|xc| ∈ [0,
L

2
−xrmax]

|zc| ∈ [0,
W

2
− zrmax]

(A6)20
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Note the above constraint on xc is always valid, since xrmax ≤ a≤ L
2 ; while the zc constraint requires more treatment as zrmax

can be greater than W
2 under some rotation angle θ and semi-major axis a. To ensure that zrmax ≤ W

2 , we first check if the

prescribed upper bound rotation (30◦) is feasible. If not, we solve the following equation for θ∗, which corresponding to the

maximum feasible rotation angle given a and AR.

zrmax = |asinsin
::
θ∗coscos

::
β∗z (θ∗,a,AR) + bcoscos

::
θ∗sinsin

::
β∗z (θ∗,a,AR)|= W

2
(A7)

and define the upper bound of the rotation angle as

θ̂ =min(θ∗(PE,a),30◦) (A8)

The resulting rotation angle parameter θ is then assumed to be uniformly distributed over [−θ̂, θ̂].5

The mapping from ξ to physical parameters is outlined in the Algorithm 1. With the prior assumption of uniform distribution

of ξ in Ξ, the corresponding prior distributions of each physical parameter are show in Figure 10 (dashed black curves).

Algorithm 1 Unrestricted mapping - PC random parameter ξ to physical parameters: Y =M1(ξ)

1: Input ∀ξ = (ξ1, ξ2, ..., ξ7)
T ∈Ξ

2: AR= 0.05+ 1
2
(ξ1 +1)(0.29− 0.05) {Map ξ1 to area ratio}

3: xh =−L
2
+ 1

2
(ξ2 +1)L {Map (ξ2, ξ3) to hypocenter location (xh,zh)}

4: zh =−W
2
+ 1

2
(ξ3 +1)W

5: amin =
√

AR·L·W
π

{Calculate the lower bound of a from AR above}

6: a= amin+
1
2
(ξ4 +1)(L

2
− amin) {Map ξ4 to a, and calculate b}

7: b= AR·L·W
πa

8: if zrmax(a,b,30◦)> W
2

then

9: Solve Equation (A7) for θ∗

10: let θ̂ = θ∗ {Calculate maximum feasible rotation angle θ̂}

11: else

12: let θ̂ = 30◦ {Prescribe maximum feasible rotation angle otherwise}

13: end if

14: θ =−θ̂+ θ̂(ξ5 +1) {Map ξ5 to rotation θ}

15: Plug (a,b,θ) into Equation (A4) to calculate xrmax and zrmax

16: xc ∈ [xminc ,xmaxc ] = [−L
2
+xrmax,

L
2
−xrmax]

17: zc ∈ [zminc ,zmaxc ] = [−W
2
+ zrmax,

W
2
− zrmax]

18: xc = xminc + 1
2
(ξ6 +1)(xmaxc −xminc ) {Map (ξ6, ξ7) to ellipse center (xc,zc)}

19: zc = zminc + 1
2
(ξ7 +1)(zmaxc − zminc )

20: return Y = (AR,xh,zh,a,θ,xc,yc)
T {Return parameter vector in the physical domain}
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Appendix B: Restricted Mapping

We introduce the auxiliary parameter vector ζ ∈Ξ, and design the following mapping process to generate fault plane configu-

ration samples that satisfy our prior configuration restrictions. For clarity, we list again the four restrictions below:10

R-1. The elliptical patch is inside the dashed rectangle ([L′,W ′] = 0.9× [L,W ]) shown in Fig. 1;

R-2. The area of the elliptical patch (AR) is between 15% and 29% of the fault plane area, i.e. 0.15<AR< 0.29;

R-3. The elliptical patch is not too elongated, i.e. ab < 3;

R-4. The hypocenter is located outside but near the elliptical patch, i.e. xh = (a+ 3ζh1
)cos(2πζh2

) and zh = (b+ b 3aζh1
)sin(2πζh2

)

:::::::::::::::::::::::
xh = (a+ 3ζh1

)cos(2πζh2
)

:::
and

:::::::::::::::::::::::
zh = (b+ b 3aζh1

)sin(2πζh2
)
:
∀(ζh1

, ζh2
) ∈ [0,1]2;

The mapping process is similar to the one in Algorithm 1, with necessary modifications to satisfy the above conditions. We5

outline the constrained mapping in Algorithm 2. Note there is one additional condition needs to be verified, i.e. whether or not

the hypocenter is inside the fault plane, as it is not guaranteed by the mapping process (this is also indicated in Figure 12).
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Algorithm 2 Restricted mapping - auxiliary parameter vector ζ to physical parameters: Y =M2(ζ)

1: Input ∀ζ = (ζ1, ζ2, ..., ζ7)
T ∈Ξ

2: [L′,W ′] = 0.9× [L,W ] {Set the restricted rectangle dimension}

3: [AR∗l ,AR
∗
u] = [ 0.15

0.81
,0.29] {Calculate area ratio range w.r.t [L′,W ′], the upper bound (0.29) corresponds to the

maximum circle in [L′,W ′]

}

4: AR∗ =ARl+
1
2
(ζ1 +1)(AR∗u−AR∗l ) {Map ζ1 to temporary area ratio AR∗}

5: amin =
√

AR∗·L′·W ′
π

{Calculate the lower bound of a from AR∗}

6: a= amin+
1
2
(ζ4 +1)(L

′

2
− amin) {Map ζ4 to a, and calculate b}

7: b= AR∗·L′·W ′
πa

8: AR= πab
L·W {Calculate area ratio w.r.t the original rectangle [L,W ]}

9: xh = (a+3 ζ2+1
2

)cos(2π ζ3+1
2

)
::::::::::::::::::::::::
xh = (a+3 ζ2+1

2
)cos(2π ζ3+1

2
)

10: zh = (b+ b 3
a
ζ2+1

2
)sin(2π ζ2+1

2
)

::::::::::::::::::::::::
zh = (b+ b 3

a
ζ2+1

2
)sin(2π ζ2+1

2
) {Map (ζ2, ζ3) to hypocenter location (xh,zh), note the resulting (xh,zh) can

be outside the fault plane, in which case the posterior probability is set to zero.

}

11: if zrmax(a,b,30◦)> W ′

2
then

12: Solve Equation (A7) for θ∗ (using AR∗) {Calculate maximum feasible rotation angle θ̂}

13: let θ̂ = θ∗

14: else

15: let θ̂ = 30◦ {Prescribe maximum feasible rotation angle otherwise}

16: end if

17: θ =−θ̂+ θ̂(ζ5 +1) {Map ζ5 to rotation θ}

18: Plug (a,b,θ) into Equation (A4) to calculate xrmax and zrmax

19: xc ∈ [xminc ,xmaxc ] = [−L
′

2
+xrmax,

L′

2
−xrmax]

20: zc ∈ [zminc ,zmaxc ] = [−W
′

2
+ zrmax,

W ′

2
− zrmax]

21: xc = xminc + 1
2
(ζ6 +1)(xmaxc −xminc ) {Map (ξ6, ξ7) to ellipse center (xc,zc)}

22: zc = zminc + 1
2
(ζ7 +1)(zmaxc − zminc )

23: return Y = (AR,xh,zh,a,θ,xc,yc)
T {Return parameter vector in the physical domain}

References

Abrahamson, N. A., Silva, W. J., and Kamai, R.: Summary of the ASK14 ground motion relation for active crustal regions, Earthquake

Spectra, 30, 1025–1055, 2014.10

Alexanderian, A., Winokur, J., Sraj, I., Srinivasan, A., Iskandarani, M., Thacker, W. C., and Knio, O. M.: Global sensitivity analysis in an

ocean general circulation model: a sparse spectral projection approach, Computational Geosciences, 16, 757–778, 2012.

Arroyo, D. and Ordaz, M.: Multivariate Bayesian regression analysis applied to ground-motion prediction equations, part 1: theory and

synthetic example, Bulletin of the Seismological Society of America, 100, 1551–1567, 2010a.

Arroyo, D. and Ordaz, M.: Multivariate Bayesian regression analysis applied to ground-motion prediction equations, Part 2: Numerical15

example with actual data, Bulletin of the Seismological Society of America, 100, 1568–1577, 2010b.

29



Atkinson, G. M. and Boore, D. M.: Modifications to existing ground-motion prediction equations in light of new data, Bulletin of the

Seismological Society of America, 101, 1121–1135, 2011.

Atkinson, G. M. and Silva, W.: Stochastic modeling of California ground motions, Bulletin of the Seismological Society of America, 90,

255–274, 2000.20

Berger, J. O.: Statistical decision theory and Bayesian analysis, Springer Science & Business Media, 2013.

Bernardo, J. M. and Smith, A. F. M.: Bayesian Theory, Measurement Science and Technology, 12, 221, http://stacks.iop.org/0957-0233/12/

i=2/a=702, 2001.

Boore, D. M. and Atkinson, G. M.: Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-

Damped PSA at Spectral Periods between 0.01s and 10.0s, Earthquake Spectra, 24, 99–138, https://doi.org/10.1193/1.2830434, http:25

//dx.doi.org/10.1193/1.2830434, 2008.

Boore, D. M., Joyner, W. B., and Fumal, T. E.: Equations for estimating horizontal response spectra and peak acceleration from western

North American earthquakes: a summary of recent work, Seismological research letters, 68, 128–153, 1997.

Chiou, B., Darragh, R., Gregor, N., and Silva, W.: NGA project strong-motion database, Earthquake Spectra, 24, 23–44, 2008.

Cruz-Jiménez, H., Chávez-García, F. J., and Furumura, T.: Differences in attenuation of ground motion perpendicular to the mexican subduc-30

tion zone between Colima and Guerrero: An explanation based on numerical modeling, Bulletin of the Seismological Society of America,

99, 400–406, 2009.

Debusschere, B., Sargsyan, K., Safta, C., and Chowdhary, K.: Uncertainty quantification toolkit (UQTk), Handbook of Uncertainty Quantifi-

cation, pp. 1–21, 2016.

Debusschere, B. J., Najm, H. N., Pébay, P. P., Knio, O. M., Ghanem, R. G., and Le Maıtre, O. P.: Numerical challenges in the use of35

polynomial chaos representations for stochastic processes, SIAM journal on scientific computing, 26, 698–719, 2004.

Furumura, T. and Singh, S.: Regional wave propagation from Mexican subduction zone earthquakes: The attenuation functions for interplate

and inslab events, Bulletin of the Seismological Society of America, 92, 2110–2125, 2002.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.: Bayesian data analysis, vol. 2, Chapman & Hall/CRC Boca Raton, FL, USA, 2014.

Ghanem, R. G. and Spanos, P. D.: Stochastic finite elements: a spectral approach, Springer-Verlag New York, 1991.

Giraldi, L., Le Maître, O. P., Mandli, K. T., Dawson, C. N., Hoteit, I., and Knio, O. M.: Bayesian inference of earthquake parameters from5

buoy data using a polynomial chaos-based surrogate, Computational Geosciences, pp. 1–17, 2017.

Haario, H., Saksman, E., and Tamminen, J.: An adaptive Metropolis algorithm, Bernoulli, pp. 223–242, 2001.

Homma, T. and Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety,

52, 1–17, 1996.

Irikura, K. and Miyake, H.: Recipe for predicting strong ground motion from crustal earthquake scenarios, Pure and Applied Geophysics,10

168, 85–104, 2011.

Le Maître, O. P. and Knio, O. M.: Spectral methods for uncertainty quantification: with applications to computational fluid dynamics, Springer

Science & Business Media, 2010.

Mahani, A. B. and Atkinson, G. M.: Evaluation of functional forms for the attenuation of small-to-moderate-earthquake response spectral

amplitudes in North America, Bulletin of the Seismological Society of America, 102, 2714–2726, 2012.15

Mai, P. M.: Ground motion: Complexity and scaling in the near field of earthquake ruptures, in: Encyclopedia of Complexity and Systems

Science, pp. 4435–4474, Springer, 2009.

30

http://stacks.iop.org/0957-0233/12/i=2/a=702
http://stacks.iop.org/0957-0233/12/i=2/a=702
http://stacks.iop.org/0957-0233/12/i=2/a=702
https://doi.org/10.1193/1.2830434
http://dx.doi.org/10.1193/1.2830434
http://dx.doi.org/10.1193/1.2830434
http://dx.doi.org/10.1193/1.2830434


Mai, P. M. and Beroza, G. C.: Source scaling properties from finite-fault-rupture models, Bulletin of the Seismological Society of America,

90, 604–615, 2000.

Mai, P. M., Spudich, P., and Boatwright, J.: Hypocenter locations in finite-source rupture models, Bulletin of the Seismological Society of20

America, 95, 965–980, 2005.

Maufroy, E., Chaljub, E., Hollender, F., Kristek, J., Moczo, P., Klin, P., Priolo, E., Iwaki, A., Iwata, T., Etienne, V., et al.: Earthquake ground

motion in the Mygdonian basin, Greece: the E2VP verification and validation of 3D numerical simulation up to 4 Hz, Bulletin of the

Seismological Society of America, 2015.

Maufroy, E., Chaljub, E., Hollender, F., Bard, P.-Y., Kristek, J., Moczo, P., De Martin, F., Theodoulidis, N., Manakou, M., Guyonnet-Benaize,25

C., et al.: 3D numerical simulation and ground motion prediction: Verification, validation and beyond–Lessons from the E2VP project,

Soil Dynamics and Earthquake Engineering, 91, 53–71, 2016.

McKay, M. D., Beckman, R. J., and Conover, W. J.: Comparison of three methods for selecting values of input variables in the analysis of

output from a computer code, Technometrics, 21, 239–245, 1979.

Minson, S., Simons, M., Beck, J., Ortega, F., Jiang, J., Owen, S., Moore, A., Inbal, A., and Sladen, A.: Bayesian inversion for finite fault30

earthquake source models–II: the 2011 great Tohoku-oki, Japan earthquake, Geophysical Journal International, 198, 922–940, 2014.

Olson, A. H., Orcutt, J. A., and Frazier, G. A.: The discrete wavenumber/finite element method for synthetic seismograms, Geophysical

Journal International, 77, 421–460, 1984.

Roberts, G. O. and Rosenthal, J. S.: Examples of adaptive MCMC, Journal of Computational and Graphical Statistics, 18, 349–367, 2009.

Seber, G. A. and Lee, A. J.: Linear regression analysis, vol. 329, John Wiley & Sons, 2012.35

Sheather, S. J. and Jones, M. C.: A reliable data-based bandwidth selection method for kernel density estimation, Journal of the Royal

Statistical Society. Series B (Methodological), pp. 683–690, 1991.

Singh, S., Srinagesh, D., Srinivas, D., Arroyo, D., Pérez-Campos, X., Chadha, R., and Suresh, G.: Strong Ground Motion in the Indo-Gangetic

Plains during the 2015 Gorkha, Nepal, Earthquake Sequence and Its Prediction during Future Earthquakes, Bulletin of the Seismological

Society of America, 2017.

Sivia, D. and Skilling, J.: Data analysis: a Bayesian tutorial, OUP Oxford, 2006.

Sobol, I.: Sensitivity estimates for nonlinear mathematical models, Math. Model. Comput. Exp., 1, 407–414, 1993.5

Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., and Kowada, A.: Charac-

terizing crustal earthquake slip models for the prediction of strong ground motion, Seismological Research Letters, 70, 59–80, 1999.

Somerville, P. G., Smith, N. F., Graves, R. W., and Abrahamson, N. A.: Modification of empirical strong ground motion attenuation relations

to include the amplitude and duration effects of rupture directivity, Seismological Research Letters, 68, 199–222, 1997.

Spudich, P. and Xu, L.: 85.14-Software for Calculating Earthquake Ground Motions from Finite Faults in Vertically Varying Media, Interna-10

tional Geophysics, 81, 1633–1634, 2003.

Sraj, I., Mandli, K. T., Knio, O. M., Dawson, C. N., and Hoteit, I.: Quantifying Uncertainties in Fault Slip Distribution during the T\= ohoku

Tsunami using Polynomial Chaos, arXiv preprint arXiv:1607.07414, 2016.

Sudret, B. and Mai, C.: Computing seismic fragility curves using polynomial chaos expansions, in: Proc. 11th Int. Conf. Struct. Safety and

Reliability (ICOSSAR’2013), New York, USA, 2013.15

Thingbaijam, K. K. S., Martin Mai, P., and Goda, K.: New Empirical Earthquake Source-Scaling Laws, Bulletin of the Seismological Society

of America, 107, 2225–2246, 2017.

31



Tinti, E., Fukuyama, E., Piatanesi, A., and Cocco, M.: A kinematic source-time function compatible with earthquake dynamics, Bulletin of

the Seismological Society of America, 95, 1211–1223, 2005.

Van Den Berg, E. and Friedlander, M.: SPGL1: A solver for large-scale sparse reconstruction, 2007.20

Van Den Berg, E. and Friedlander, M. P.: Probing the Pareto frontier for basis pursuit solutions, SIAM Journal on Scientific Computing, 31,

890–912, 2008.

Vyas, J. C., Mai, P. M., and Galis, M.: Distance and azimuthal dependence of ground-motion variability for unilateral strike-slip ruptures,510

Bulletin of the Seismological Society of America, 106, 1584–1599, 2016.

Wells, D. L. and Coppersmith, K. J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface

displacement, Bulletin of the seismological Society of America, 84, 974–1002, 1994.

Xiu, D. and Karniadakis, G. E.: The Wiener–Askey polynomial chaos for stochastic differential equations, SIAM journal on scientific

computing, 24, 619–644, 2002.515

32


