
Letter of Response 
 

Dear Dr. Tomomichi Kato 

 

We are re-submitting the manuscript entitled “Evaluating the E3SM Land Model version 0 

(ELMv0) at a temperate forest site using flux and soil water measurements” to be considered for 

publication in Geoscientific Model Development. We appreciate the opportunity to re-submit the 

manuscript, which has been thoroughly revised based on the reviewer’s comments. We are 

submitting a letter of point-by-point responses to reviewers’ comments, as well as a marked-up 

revision. We hope you will find our revision thorough and satisfactory. 

 

Sincerely, 

Junyi Liang 

 

Author Note: The reviewers’ comments are in black and the responses follow in blue. Page 

numbers and line numbers in the responses are those in the marked-up revision following the 

response letter. 

 

Review: Liang et al., MOFLUX site, soil respiration  

 

In general, the authors have addressed my main points from the initial review. This paper can be 

published, with the minor comments from below addressed. I do not need to see this paper again.  

 

Response: We appreciate all the reviewer’s comments, which are very helpful to improve the 

manuscript. 

 

Specific comments:  

Page 6, last line: It looks to me like C+H overestimates SMP when moisture is below 15% for 

depth below 30cm.  

 

Response: All measured volumetric soil water content (VWC) for the soil water retention curve 

for the depth below 30 cm was greater than 15% (x-axis in Fig. 1b). Within the measured VWC 

range (i.e., 15% to 40%), the default ELM (which is C+H in the reviewer’s comment) 

overestimated soil water potential (Fig. 1b). Thus, in the previous version, we described the 

results as “For soil below 30 cm, the ELMv0 showed a consistent overestimation of SWP when 
VWC exceeded 15%”. 

 

The reviewer’s comment suggests that the sentence may result in misunderstanding. In the 

revision, we have rephrased the sentence as (page 6, line 28): 

 

“For soil below 30 cm, the ELMv0 showed a consistent overestimation of SWP (Fig. 1b).” 
 

Page 10, line 4: There is no range on the GPP plot of Figure S5. Also, it looks like SR and GPP 

plots are reversed (a and b) when compared to their referencing in the text.  

 

Response: We have added the range on the GPP panel and shifted the two panels corresponding 

to the citation in the text. Please see the revised Fig. S5. 



 

Page 12, line 5: “First, the Hanson Model significantly increased GPP.” This is an incorrect 

statement. The Hanson model does not calculate GPP. The Hanson model determines SMP, and 

SMP is related to GPP through the ability of the model to capture soil moisture for use in 

transpiration. Interestingly, the Hanson SMP is only higher than the C+H SMP in the top 30cm 

of soil when VWC is < 15%. Everywhere else (top 30 cm, VWC > 15%, all VWC below 30cm) 

the Hanson SMP value is below (larger negative) than the C+H (Figure 1). What this says to me 

is that ELM transpiration (and GPP) is critically dependent on soil moisture in the upper 30 cm 

of the soil, and this upper soil is frequently at VWC below 15%. There should be some 

discussion of this. Do you think this result is realistic? What this is saying is that trees in the 

American Midwest are not at all dependent upon soil moisture below 30cm in the soil. Do you 

believe that to be true? Myself, I find this result suspicious. I was under the impression that 

deeper roots are critical to tree survival. This result contradicts that, as Hanson SMP was lower 

than C+H at all VWC below 30cm.  

 

Response: We have revised the sentence as (page 11, line 14-15): 

 

“First, the changes in SWP with the Hanson model increased plant transpiration and GPP in the model.” 
 

The reviewer suggested to discuss why the ELM transpiration is critically dependent on soil 

moisture in the upper 30 cm. The reviewer also observed that “the Hanson SMP is only higher 
than the C+H SMP in the top 30cm of soil when VWC is < 15%. Everywhere else (top 30 cm, 
VWC > 15%, all VWC below 30cm) the Hanson SMP value is below (larger negative) than the 
C+H”. We greatly appreciate the valuable comments. In temperate forests, approximate 60% of 

plant roots are distributed in the upper 30 cm of the soil (Jackson et al., 1996). That means the 

moisture in the upper 30 cm is critically important for transpiration and GPP. Therefore, we 

agree with the reviewer’s observation that “ELM transpiration (and GPP) is critically dependent 
on soil moisture in the upper 30 cm of the soil”. This suggests that the ELM was able to represent 

the dependence of transpiration (and GPP) on soil moisture change. In addition, one important 

trend at the MOFLUX site is that soil moisture is lower during the peak growing season than 

other times (Fig. 2). As a result, the improved SMP simulation by the Hanson model during the 

peak growing season when VWC < 15% in the upper 30 cm of the soil played a critical role for 

the improvement of GPP and SR simulations. 

 

To respond to the reviewer’s comments, we have added discussion in the revision (page 12, line 

2-6): 

 

“In addition, the improvement of GPP and SR simulations was primarily due to the better simulation of the 
SWP in the upper 30 cm of the soil, as approximately 60% of plant roots are distributed in the upper 30 cm 
of the soil in temperate forests (Jackson et al., 1996). One important trend at the MOFLUX site was that 
soil moisture was lower during the peak growing season than during other times. As a result, the improved 
SWP simulation in the upper 30-cm soil during the peak growing season played a critical role in the 
improved simulation of GPP and SR.” 

 

Section 4.2: The lack of IAV in the model may be tied to the dependence on near-surface soil 

moisture. It appears that the main change imposed by using the Hanson model is that SMP is 

higher, so moisture is more readily available to roots, in the upper 30cm of the soil, and only 

when VWC is below 15%. I would expect that VWC in the upper 30cm gets reduced to very 

small amounts every year. In that case the model would not be expected to see much IAV, ever. 



So it may be that the lack of IAV in the model has nothing to do with mortality rates or 

pathogens, and everything to do with how the model extracts water from the soil. On the other 

hand, Figure S10 shows that SWP was lowest during the entire record in the period 2005-2007, 

and the GPP in those years was not as extremely depleted as it was in 2012 (Figure 2). This is 

something the authors should discuss.  

 

Response: We appreciate the valuable comments. We agree that the dependence of GPP and SR 

on upper layer soil moisture may be one of the reasons for the lack of inter-annual variability. In 

addition, the long-term measurements suggest that failing to capture the change at the 

community level, such as mortality and drought-pathogen interactions, may also contribute to the 

inter-annual variability. 

 

The reviewer also suggested to discuss why “SWP was lowest during the period of 2005-2007, 
but the GPP in those years was not as extremely depleted as it was in 2012”. Field inventory 

data at the study site showed that the severe drought-pathogen interactions in 2012 resulted in a 

significant stem mortality of tree species (Wood et al., 2017). Thus, the observed steep decreases 

in GPP and SR could be because of the species mortality. The stem mortality led to lower 

moisture loss through evapotranspiration (Fig. S9), resulting in no soil moisture decrease (Fig. 

S10). 

 

In the manuscript, we have discussed possible reasons regarding the lack of inter-annual 

variability in the model simulation (page 13, line 20-33). 

 

“Although the SWP simulations using the Hanson model improved the representation of both annual SR 
and GPP, the model continued to overestimate SR during the non-growing season (Figs. 4), resulting in 
significant overestimations of the annual SR fluxes (Fig. S5). No matter which SWP simulations were used, 
the ELMv0 had smaller interannual variability than the observations (Fig. 2). Specifically, the model was 
not able to capture the steep decreases in GPP and SR in the extreme drought year (i.e., 2012; Fig. S9). 
These results indicate that the current model structure is not sensitive enough to environmental changes. 
Several potential reasons may contribute to the underestimated seasonal and interannual variability. For 
example, field inventory data at the study site showed that the severe drought-pathogen interactions in 
2012 resulted in a significant stem mortality of tree species (Wood et al., 2017). Thus, the observed steep 
decreases in GPP and SR could be due to mortality. The stem mortality could lead to lower 
evapotranspiration (Fig. S9), minimizing soil moisture losses (Fig. S10). However, the ELMv0 simulated 
the moisture effect on biogeochemical cycles at the physiological level, but not at the plant community 
level. In addition, the strong dependence of GPP and SR on the upper layer soil moisture could explain the 
model’s difficulty in capturing inter-annual variability. Although better representation of SWP improved 
the mean annual simulation of biogeochemical processes, the model could not capture the mortality or the 
interannual variability of GPP and SR.” 
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Abstract. Accurate simulations of soil respiration and carbon dioxide (CO2) fluxes are critical to project global 
biogeochemical cycles and the magnitude of carbon-climate feedbacks in Earth system models (ESMs). Currently, soil 
respiration is not represented well in ESMs, and few studies have attempted to address this deficiency. In this study, we 
evaluated the simulation of soil respiration in the Energy Exascale Earth System Model (E3SM) Land Model version 0 

(ELMv0) using long-term observations from the Missouri Ozark AmeriFlux (MOFLUX) forest site in the central U.S. 20 
Simulations using the default model parameters underestimated soil water potential (SWP) during peak growing seasons and 
overestimated SWP during non-growing seasons, and consequently underestimated annual soil respiration and gross primary 
production (GPP). A site-specific soil water retention curve greatly improved model simulations of SWP, GPP and soil 

respiration. However, the model continued to underestimate the seasonal and interannual variabilities and the impact of the 
extreme drought in 2012. Potential reasons may include inadequate representations of vegetation mortality, the soil moisture 25 
function, and the dynamics of microbial organisms and soil macroinvertebrates. Our results indicate that the simulations of 
mean annual GPP and soil respiration can be significantly improved by better model representations of the soil water 
retention curve. 

1 Introduction 

Globally, soils store over twice as much carbon (C) as the atmosphere (Chapin III et al., 2011). Soil respiration (SR) is the 30 
second largest C flux between terrestrial ecosystems and the atmosphere (Luo and Zhou, 2006). An accurate simulation of 
SR is critical for projecting terrestrial C status, and therefore climate change, in Earth system models (ESMs) (IPCC, 2013). 
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Despite significant experimental data accumulation and model development during the past decades, simulations of soil CO2 
efflux to the atmosphere still have a high degree of uncertainty (Friedlingstein et al., 2006; Jones et al., 2013; Todd-Brown et 

al., 2013; Todd-Brown et al., 2014; Tian et al., 2015), calling for comprehensive assessments of model performance against 
observational data. 

To assess the performance of ESMs, different types of data can be used. For example, using atmospheric CO2 5 
observations, eddy covariance measurements and remote sensing images, Randerson et al. (2009) found that two ESMs 
underestimated net C uptake during the growing season in temperate and boreal forest ecosystems, primarily due to the 

delays in the timing of maximum leaf area in the models. By comparing remote sensing estimations from the Moderate 
Resolution Imaging Spectroradiometer and flux tower datasets, Xia et al. (2017) found that better representations of 
processes controlling monthly maximum gross primary productivity (GPP) and vegetation C use efficiency (CUE) improved 10 
the ability of models to predict the C cycle in permafrost regions. 

Despite the significance of large global SR fluxes, SR has rarely been evaluated in ESMs using long-term observations. 

Among the factors that influence SR, soil water potential (SWP) provides a unified measure of the energy state of soil water 
that limits the growth and respiration of plants and microbes. Unlike soil temperature (ST) or soil volumetric water content 
(VWC), however, SWP is difficult to directly monitor in the field. Accurate estimation of SWP largely relies on the soil 15 
water retention curve (i.e., the relationship between VWC and SWP), which is highly specific to soil properties (Childs, 

1940; Clapp and Hornberger, 1978; Cosby et al., 1984; Tuller and Or, 2004; Moyano et al., 2013). Site-level data have been 
used to evaluate model representations of other processes, such as phenology, net primary production (NPP), transpiration, 
leaf area index (LAI), water use efficiency, and nitrogen use efficiency (Richardson et al., 2012; De Kauwe et al., 2013; 
Walker et al., 2014; Zaehle et al., 2014; Mao et al., 2016; Duarte et al., 2017; Montané et al., 2017). In Powell et al. (2013), 20 
the only aspect influencing the modelling of SR was the sensitivity of SR to VWC in an Amazon forest, but the study 

resulted in no improvements to simulated SR. Here, we focus on improving simulations by using site-specific measurements 
to assess multiple factors influencing SR. 

We will evaluate the simulation of SR step by step. We assessed underlying mechanisms in the Energy Exascale Earth 
System Model (E3SM) Land Model version 0 (ELMv0) by using intensive observations at the Missouri Ozark AmeriFlux 25 
(MOFLUX) forest site in the central U.S. We first evaluated the effects of two abiotic factors, ST and SWP, on the 

simulation of SR. Then we evaluated the effects of biotic factors, such as GPP, LAI and Q10 of heterotrophic respiration, on 
the simulation of surface CO2 efflux to the atmosphere. 

2 Materials and Methods 

2.1 Study site and measurements 30 

The MOFLUX site is located in the University of Missouri’s Thomas H. Baskett Wildlife Research and Education Area 

(latitude 38º44’39”N, longitude 92º12’W). The mean annual precipitation is 1083 mm, while minimum and maximum 
monthly mean temperatures are −1.3 ºC (January) and 25.2 ºC (July), respectively. The site is a temperate, upland oak-
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hickory forest, with major tree species consisting of white oak (Quercus alba L.), black oak (Q. velutina Lam.), shagbark 
hickory (Carya ovata (Mill.) K. Koch), sugar maple (Acer saccharum Marsh.), and eastern red cedar (Juniperus virginiana 

L.) (Gu et al., 2016; Wood et al., 2017). The dominant soils are the Weller silt loam and the Clinkenbeard very flaggy clay 
loam (Young et al., 2001). 

Ecosystem C, water and energy fluxes, SR, LAI and supporting meteorological measurements were initiated in June 5 
2004 (Gu et al., 2016). Soil respiration was measured within the ecosystem flux tower footprint using non-flow through non-
steady state auto-chambers. From 2004 through 2013, SR was measured using eight automated, custom-built chambers (ED 

system; Edwards and Riggs, 2003; Gu et al., 2008) coupled with an infrared gas analyzer (LI-820 Li-Cor Inc., Lincoln, 
Nebraska). In 2013, this system was replaced with 16 auto-chambers operated using the closed-path system (model LI-8100; 
Li-Cor Inc., Lincoln, Nebraska). The two systems (ED and Li-8100) were operated side-by-side for several weeks in 2010 10 
and found to produce comparable responses (Paul Hanson, personal communication).  Half-hourly SR time series were 
generated to coincide with the ecosystem flux data set by averaging those chambers sampled in the corresponding averaging 

period. Net ecosystem CO2 exchange (NEE) was measured on a 32-m walk-up scaffold tower (Gu et al., 2016). A soil 
temperature profile sensor (model STP01, HuksefluxUSA, Inc., Center Moriches, NY) measured at 5 depths down to 0.5 m. 
Soil VWC was measured using water content reflectometers (model CS616, Campbell Scientific Inc., Logan UT) installed 15 
beneath each soil chamber. All the data were recorded at half-hourly intervals, which were integrated over time to obtain 

daily and annual fluxes. 

2.2 Ecosystem C flux partitioning 

Flux-tower GPP was estimated from measured NEE. To reduce biases resulting from individual methods, three NEE-
partitioning approaches were employed. The average and variation of the three methods were used to evaluate the model-20 
simulated GPP. In the first two methods, ecosystem respiration (ER) was estimated from nighttime NEE and extrapolated to 

daytime, and daytime GPP was calculated from NEE and the extrapolated ER (Reichstein et al., 2005). The only difference 
between the two methods was whether to exclude night-time data under non-turbulent conditions. In the third method, GPP 
was estimated by fitting the light-response curve between NEE and radiation (Lasslop et al., 2010). All the partitioning 
calculations were conducted using the R package REddyProc (Reichstein et al., 2017). 25 

2.3 Model description 

The ELMv0 used in this study is structurally equivalent to the Community Land Model 4.5 (CLM 4.5), which includes 
coupled carbon and nitrogen cycles (Oleson et al., 2013). In ELMv0, the soil biogeochemistry can be simulated with one-
layer or multi-layer converging trophic cascade (CTC, i.e., CLM-CN) decomposition model. We used the vertically-resolved 
CTC decomposition in this study. In the model, SR was calculated by different CO2 emission components (Oleson et al., 30 
2013):  

!" = "$ + "&																																																																						Eq. (1) 

"$ = ". + "/																																																																						Eq. (2) 
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where RA and RH are belowground autotrophic and heterotrophic respiration, respectively. RA is the sum of root maintenance 
(RM) and growth respiration (RG). Rlivecroot and Rfroot are maintenance respiration of live coarse root and fine root. [N]livecroot 

and [N]froot are nitrogen content of live coarse and fine roots. Rbase is the base maintenance respiration at 20 ºC. Rq10 which 
equals 2, is the temperature sensitivity of maintenance respiration. T2m is the air temperature at 2 m. Cnew_root is the new root 
growth C. RH is the sum of heterotrophic respiration of four SOC pools with different turnover rates (Oleson et al., 2013) in 10 

the 10 soil layers. The parameters ki and rfi are the turnover rate and respiration fraction of the ith pool. xT, xW, xO, xD, xN are 

environmental modifiers of soil temperature, soil water content, oxygen, depth and nitrogen for each layer, respectively. A 
detailed description of the environmental modification can be found in Oleson et al. (2013). Briefly, the temperature and 
water modifiers were: 

\E = c
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d
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																																																																															Eq. (8) 15 
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											Eq. (9) 

where Q10 is the temperature sensitivity (the default value is 1.5), Tref is the reference temperature (25 ºC). Ym is the matric 

water potential, Ymin is the lower limit for matric potential, and Ymax is the matric water potential under saturated conditions. 

The ELMv0 is a grid-based model. To assess it using site-level observations, we used a point-run framework which allows 
the model to simulate individual sites (Mao et al., 2016). Single-point runs forced with site-level measurements have a long 20 
history to evaluate model representations of phenology, NPP, transpiration, LAI, water use efficiency, and nitrogen use 

efficiency (Richardson et al., 2012; De Kauwe et al., 2013; Walker et al., 2014; Zaehle et al., 2014; Mao et al., 2016; Duarte 
et al., 2017; Montané et al., 2017). With site-specific forcing, a 200-year accelerated decomposition spin-up was performed, 
followed by a 200-year normal spin-up, before the transient simulation was performed from 1850 to 2013. The vegetation 
was set as 100% temperate deciduous forest. 25 
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2.4 Soil water retention curve 

Soil water potential values for the Weller soils (https://soilseries.sc.egov.usda.gov/OSD_Docs/W/WELLER.html) were 
estimated from observed VWC and soil water retention curves that were developed for the site. To derive the soil water 

retention curves,  soil samples were collected in the area of the flux tower base at two depths: 0 to 30 cm and below 30 cm. 
Samples were evaluated periodically for soil water potential using a dewpoint potentiometer (Decagon Devices, Model 5 
WP4C) as they dried over time (Hanson et al., 2003). 

In the ELMv0, the SWP was calculated from VWC based on the Clapp & Hornberger model (Clapp and Hornberger, 

1978), in which the SWP-VWC relationship was expressed as 

Ψs = ΨA d

{

{Al

H|

																																																																											Eq. (10) 

where { and Ψs are the VWC and matric potential (MPa); and {A and ΨA are VWC and matric potential under saturated 10 

conditions, and B is a parameter to determine the shape of the SWP-VWC relationship. In the ELMv0, all parameters were 

calculated from the fraction of organic matter (fom), clay content (fclay; %) and sand content (fsand; %) (Cosby et al., 1984; 
Lawrence and Slater, 2008), where 

ΨA = −
~(
1 − P7s) × 10 × 10

C.ÄÄHD.DCÅC9eÇÉÑ + 10.3P7sÖ
						Eq. (11) 

{A = Ü(1 − P7s) × (0.489 − 0.00126PA@Vá) + 0.9P7sà										Eq. (12) 15 

â = (1 − P7s) × Ü2.91 + 0.159P51@äà + 2.7P7s																								Eq. (13) 

In addition to the Clapp & Hornberger model, four other empirical models (Brooks and Corey, 1964; van Genuchten, 
1980; Fredlund and Xing, 1994; Hanson et al., 2003) were also used to fit the SWP curve against VWC (Table 1, Figure 1). 

In the Brooks & Corey model, the SWP-VWC relationship was expressed as 

{ − {6

{A − {6
=
ã
d

Ψ?

Ψsl

å

										Ψs > Ψ?

1																					Ψs ≤ Ψ?

																																														Eq. (14) 20 

where {6  and {A  are the residual and saturated water contents, respectively, { and Ψs  are measured VWC and matric 

potential (MPa), Ψ? is a parameter related to the soil matric potential at air entry, and ç is related to the soil pore size 

distribution (Brooks and Corey, 1964).  
In the Fredlund & Xing model, the SWP-VWC relationship was described as 

{ − {6

{A − {6
=
é

1

ln	(ë + (Ψs í⁄ )
V
)ì

s

																																																Eq. (15) 25 

where a, n and m are parameters determining the shape of the soil water characteristic curve (Fredlund and Xing, 1994).  
In the Hanson model (Hanson et al., 2003), soil matric potential was modelled by a double exponential function: 

Ψs = −í?î
ï
− ñ																																																																										Eq. (16) 

where a, b, c and d are fitted parameters.  
In the van Genuchten model, the SWP-VWC relationship was described as 30 
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																																												Eq. (17) 

where ó (MPa-1) and n are parameters that determine the shape of the soil-water curve (van Genuchten, 1980).  

In addition to the default SWP-VWC relationship in the ELMv0, all the five empirical models were parameterized using 
non-linear fitting against measured VWC and SWP data from the study site. For the calibration of the Clapp & Hornberger 

model, instead of using the hard-coded parameters in Eq. 11-13, we calibrated the three parameters (i.e., Ψs, {A and ΨA) in 5 

the Clapp & Hornberger model (Eq. 10). The root-mean-square error (RMSE) and Akaike Information Criterion (AIC) were 

used to select the best model representing the SWP-VWC relationship. The AIC value was calculated by: 

òôU = ítö
õ

∑(ù̂)
I

í ü
+ 2†																																										Eq. (18) 

where a is the number of data points, ù̂ is the estimated residual of each data point, and b is the total number of estimated 

model parameters. Smaller RMSE and AIC values imply a better fit to observational data. The best-fit model was used in 10 
two ways. First, it was used to calculate the “observed” SWP from monitored VWC in the field. Second, it was implemented 
in the ELMv0 to replace the default SWP model in order to improve the SWP simulation. 

2.5 Evaluation of SR in the model 

The evaluation of SR was conducted step by step. We first compared observations with the model default output of SR and 
related factors, including ST, SWP, GPP, and LAI. Thereafter, we attempted to improve the simulation of these factors in 15 
order to improve the overall SR simulation by (i) implementing the best-fit SWP-VWC relationship, and (ii) modifying 
model parameters related to GPP, LAI and SR. GPP-related parameters included the specific leaf area (SLA) at the top of 

canopy and the fraction of leaf nitrogen in the RuBisCO enzyme. LAI-related parameters included the number of days to 
complete leaf fall during the end of growing season, the critical day length for senescence (i.e., the length of the day when 

leaves start to senesce), and a parameter a that was used to produce a linearly-increasing rate of litterfall. The contributions 20 

and autotrophic and heterotrophic respiration to total SR were also calculated. In addition, the Q10 of heterotrophic 
respiration was also modified. Because the parameter modification was dependent on the evaluation steps, how the 
parameters were modified is presented in the Results section. 
 

3 Results 25 

For the upper 30 cm of soil, the ELMv0 simulations using the default Clapp and Hornberger model tended to underestimate 
the SWP when VWC was less than 15% (Fig. 1a), while SWP rapidly approached zero when VWC was greater than 25% 
(Fig. 1a). For soil below 30 cm, the ELMv0 showed a consistent overestimation of SWP (Fig. 1b). The default ELMv0 
showed relatively high RMSE for both soil layers, indicating that the SWP-VWC relationship was not well simulated in the 

ELMv0 (Table 1). Although the Clapp & Hornberger model performed better by using parameters from non-linear fitting, its 30 

Deleted: when VWC exceeded 15% 
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performance was not as good as the Hanson and the van Genuchten models (Table 1, Fig. 1). The Hanson model was the 
best-fit model for the MOFLUX site, showing the smallest RMSE and AIC values for both soil layers (Table 1, Fig. 1), and 

was therefore implemented in ELMv0 to calculate SWP from measured VWC. 
 

 5 
Figure 1: Observed (black dots) and simulated relationship between soil water potential (SWP) and volumetric water content 

(VWC) by the different models at two soil layers: (a) 0 to 30 cm and (b) below 30 cm. 

 

Table 1. Root-mean-square-error (RMSE) and Akaike Information Criterion (AIC) of different models in simulating the SWP-VWC 
relationship for the soil in the MOFLUX site at two depths: 0 to 30 cm and below 30 cm. 10 

 < 30 cm  > 30 cm 

Model RMSE AIC  RMSE AIC 

Clapp & Hornberger (default ELMv0) 4.25 157.82  1.33 18.51 
Brooks & Corey 3.91 151.05  1.13 13.51 

Clapp & Hornberger (calibrated) 0.53 -61.03  0.51 -23.43 
Fredlund & Xing 0.51 -63.15  2.43 47.13 
Hanson 0.41 -86.07  0.34 -38.98 
van Genuchten 0.50 -65.53  0.36 -36.61 

 

The ELMv0 default run significantly underestimated both annual SR and GPP (Fig. 2). In addition, the simulated SR 
had smaller interannual variability compared to the observations. The model was not able to simulate the steep drop of SR or 
GPP during the extreme drought in 2012. The simulations of ST and SWP were isolated to analyse their contributions to 
model performance. Whereas the model simulated ST well at 10 cm depth (Fig. 3a), it tended to underestimate SWP when 15 

a b
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water is limiting and to overestimate SWP otherwise (Fig. 3b). Implementing the data-constrained Hanson model 
significantly improved the simulation of SWP, showing a greater R2 and a much smaller RMSE than that of the default run 

(Fig. 3b). After improving the simulation of SWP, the model better matched the observed annual SR and GPP (Fig. 2). The 
mean annual simulations of SR and GPP fell into the 1 sigma (i.e., standard deviation) of observations (inserted plot in Fig. 
2).  The changes in annual SR and GPP (i.e., the differences between before and after the improved SWP simulation using 5 
the Hanson model) showed a linear relationship (Fig. S1). In addition, the improved soil water scheme using the Hanson 

model increased both the moisture modifiers of GPP and heterotrophic respiration (i.e., btran and xW) during the peak 

growing season, and reduced xW during the non-growing season (Fig. S2). The btran is the transpiration beta factor, which 

controls the soil water limitation to transpiration and photosynthesis, while xW is the soil moisture modifier for heterotrophic 

respiration as shown in Eq. (9). While SOC when simulated by the model with different soil water schemes generally fell 10 
within the wide range of observations, the improved SWP simulations using the Hanson model increased SOC stocks (Fig. 

S3). 
 
 

 15 
Figure 2: Annual soil respiration (SR) and gross primary production (GPP). Blue and red lines are model outputs before (MODdefault) 
and after (MODH) soil water potential improvement, respectively. Black lines and grey area are the observed (OBS) mean and 1 sigma 
(i.e., standard deviation) range, which were calculated from eight field replications for SR, and from three different net ecosystem 

exchange partitioning methods for GPP. The inserted bar plots are mean annual average ± 1 sigma across 2005-2011. 

Despite the improved simulation of SR, the model still underestimated SR and GPP during peak growing seasons when 20 
SR and GPP were high, and overestimated them during non-growing seasons (Figs. 4, S4). In other words, though the 
improved simulation of SWP increased SR and GPP during peak growing seasons, the model still showed systematic errors. 
We attempted to improve the seasonal simulations of SR, GPP and LAI by modifying several related parameters (Table 2). 
Using measurements of C and energy fluxes from the MOFLUX site, Lu et al. (2018) calibrated a polynomial surrogate 

model of the ELMv0. Based on their results, we modified two parameters, i.e., the SLA at the canopy top from 0.03 to 0.01, 25 
and the fraction of leaf nitrogen in the RuBisCO enzyme from 0.1007 to 0.12. 

a b

MODdefault
MODH
OBS
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Figure 3: Daily soil temperature (ST) and soil water potential (SWP) at 10 cm. Blue and red lines/dots are model outputs before 
(MODdefault) and after (MODH) soil water potential improvement, respectively. R

2 and RMSE are shown in corresponding colours. 

Extremely low SWP values due to frozen soil water are not shown. 5 

 
Comparing the simulated LAI with the observations (Fig. 4), we found that the parameter ndays_off (number of days to 

complete leaf offset) in the ELMv0 was too short (default value = 15 days) for the MOFLUX site. Thus, we reset the value 

of ndays_off to 45 days. We also modified the values of two additional parameters, i.e., crit_dayl and a correspondingly 

(Table 2). Parameter crit_dayl (the critical day length for senescence, units: second) triggers the leaf falling during the end of 10 

the growing season. Parameter (a) is used to produce a linearly-increasing litterfall rate. Results showed that the ELMv0 

with both the default and improved SWP by the Hanson model overestimated the maximum LAI (Fig. 4a). The adjustment 
of the aforementioned five parameters (Table 2) significantly reduced the LAI to within a more reasonable range (Fig. 4a). 
The parameter changes further increased the simulated GPP and SR during the peak growing season, in addition to the 
improvement by the adjusted SWP (Fig. 4b, c). However, all modifications of the ELMv0 still overestimated SR during the 15 
non-growing season, resulting in significant overestimation of annual SR fluxes (Fig. S5a). After the parameter adjustments, 

the annual GPP flux was still within the observed range (Fig. S5b). The contributions of autotrophic and heterotrophic 

a

b

MODdefault
OBSR2 = 0.87

RMSE = 2.76

MODdefault
MODH
OBS

R2 = –4.66
0.37

RMSE =   0.48
0.16
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respiration to total SR had a seasonal cycle (Fig. 5). The contribution of heterotrophic respiration to total SR ranged from 
60% to 90%. 

 

Table 2. Modified parameters to better simulate gross primary production (GPP) and leaf area index (LAI) at the MOFLUX site in the 
ELMv0. 5 

Parameter name 
(unit*) 

Parameter description Default model 
value  

Tuned 
values 

slatop Specific leaf area at top of canopy 0.03 0.01 

flnr Fraction of leaf nitrogen in RuBisCO enzyme 0.1007 0.12 
ndays_off (d) Number of days to complete leaf offset 15 45 
Crit_dayl (s) Critical day length for senescence 39300 43200 

a To control the rate coefficient rxfer_off to produce a 

linearly-increasing litterfall rate 

2 10 

*
slatop, flnr and a are unitless 

 
In addition, we analyzed changes in simulated evapotranspiration (ET), runoff, photosynthesis, net primary production, 

C allocations to fine roots, leaf and woody tissue in response to the changes in the soil water scheme and parameters (Fig. 

S6, S7). The change in soil moisture scheme and parameter adjustments slightly increased ET and decreased runoff. Despite 10 
these slight changes, the model simulated ET generally fell within the observed range, with or without changes in soil water 
scheme and parameters (Fig. S6). The improved SWP and parameter adjustments generally increased all photosynthesis, 
NPP and carbon allocations to different tissues during the growing season (Fig. S7).  
 

 15 
Figure 4 The annual mean cycles of leaf area index (LAI), gross primary production (GPP) and soil respiration (SR). OBS: 
observation; MODdefault: model output before soil water potential improvement; MODH: model output after soil water potential 

MODdefault
MODH
MODH_param
OBS

a cb
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improvement by the Hanson model; MODH_param: model output after soil water potential improvement by the Hanson model and parameter 
adjustments. 

 
 
 5 

 
Figure 5: Modelled contributions of autotrophic (Ra) and heterotrophic (Rh) respiration to total soil respiration (SR). 

 
 

4 Discussion 10 

4.1 Effect of SWP on annual SR 

Constraining the SWP-VWC relationship with site-specific data and using the Hanson model instead of the ELMv0 default 
model (Fig. 1) significantly improved the model representation of SWP (Fig. 3) and annual SR (Fig. 2a). The improvements 
in model fits could be due to the following reasons. First, the changes in SWP with the Hanson model increased plant 
transpiration and GPP in the model. The default ELMv0 underestimated GPP (Fig. 2b), similar to a recent study where 15 

CLM4.5 significantly underestimated GPP at a coniferous forest in northeastern United States (Duarte et al., 2017). GPP can 
directly affect the magnitude of root respiration as shown in many previous studies (Craine et al., 1999; Högberg et al., 2001; 
Wan and Luo, 2003; Verburg et al., 2004; Gu et al., 2008). Additionally, increased GPP can build a larger SOC pool which 
is the substrate for heterotrophic respiration (Fig. S3). Second, the Hanson soil moisture model increased the moisture 

modifier (xW) on heterotrophic respiration during the peak growing season, and decreased it during the non-growing season 20 
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(Fig. S2), which is consistent with the trend of changes in SWP (Fig. 3). These changes together resulted in the improvement 
of simulated SR. In addition, the improvement of GPP and SR simulations was primarily due to the better simulation of the 

SWP in the upper 30 cm of the soil, as approximately 60% of plant roots are distributed in the upper 30 cm of the soil in 
temperate forests (Jackson et al., 1996). One important trend at the MOFLUX site was that soil moisture was lower during 
the peak growing season than during other times. As a result, the improved SWP simulation in the upper 30-cm soil during 5 
the peak growing season played a critical role in the improved simulation of GPP and SR. 

The simulation of SWP in the default ELMv0 was poor compared with that of ST (Fig. 2), which may be a common 

issue in ESMs. For example, using a reduced-complexity model, Todd-Brown et al. (2013) demonstrated that the spatial 
variation in soil C in most ESMs is primarily dependent on C input (i.e., NPP) and ST, showing R2 values between 0.62 and 
0.93 for 9 of 11 ESMs. However, the same reduced-complexity model, driven by observed NPP and ST, can only explain 10 
10% of the variation in the Harmonized World Soil Database observational database (Todd-Brown et al., 2013). These 
previous results indicate that other important factors affecting soil C dynamics, in addition to NPP and ST, are inadequately 

simulated in ESMs (Powell et al., 2013; Reyes et al., 2017). Powell et al. (2013) showed that differential sensitivity of SR to 
VWC in several ESMs using observations in two Amazon forests. Our analyses in this study indicate that improving the 
modelled SWP can significantly improve mean annual GPP and SR simulations. Thus, we propose that the SWP simulation 15 
in ESMs should be calibrated carefully with observations, and/or by using different model representations of the SWP-VWC 

relationship. Because there is no global grid-based SWP database, paired measurements of VWC and SWP are needed along 
with soil characteristics in a variety of soil types and ecosystems. These data can be used to calibrate SWP-VWC 
relationships and SWP simulations in models. Besides, there are many sites, such as the MOFLUX site in this study, 
collecting long-term hydrological and biogeochemical data. These data are useful to evaluate whether better SWP simulation 20 
will improve biogeochemical cycling simulations. 

In this study, we derived a better SWP-VWC relationship by using non-linear fitting, primarily because of the 
availability of soil moisture retention curve data. It is an efficient method when site-level data is available, but it is not 
realistic to calibrate the water retention curve for every site. The SWP-VWC relationship is dependent on soil texture (Clapp 
and Hornberger, 1978; Cosby et al., 1984; Tuller and Or, 2004), so building relationships between model parameters and soil 25 
texture may allow efficient extrapolations of site-level measurements to regional and global scales. 

Parameters in the default Clapp & Hornberger model used in the ELMv0 were derived from synthesizing data across 
soil textural classes (Clapp and Hornberger, 1978; Cosby et al., 1984; Lawrence and Slater, 2008). The data were derived 
from over 1,000 soil samples from 11 USDA soil textural classes (Holtan et al., 1968; Rawls et al., 1976). The dependence 
of model parameters on soil texture were derived from a regression of these 11 data points, i.e., the mean parameter values of 30 

11 soil textural classes against the sand or clay fractions (Cosby et al., 1984). Because no actual sand or clay content of soil 
samples was reported in the original databases (i.e., only the soil textural classes were reported), the sand and clay fractions 
used for the regression were obtained from midpoint values of each textural class (Clapp and Hornberger, 1978; Cosby et al., 
1984). One potential issue is that soil samples in the same textural classes can have different sand and clay contents and 
SWP-VWC relationships, which may not be fully represented when they are grouped together. An updated SWP-VWC 35 
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database with actual sand and clay content measurements could provide improved empirical relationships between model 
parameters and soil texture in the water retention model. 

In addition, different empirical models have been developed to describe the SWP-VWC relationship (Brooks and Corey, 
1964; Clapp and Hornberger, 1978; van Genuchten, 1980; Fredlund and Xing, 1994; Hanson et al., 2003). These models 
could be evaluated against data, and the selected best-fit model(s) could be used to calculate SWP in the field from 5 
continuously monitored VWC (e.g., from the AmeriFlux network) on different spatial and temporal scales. The database 
could also be used as a benchmark to evaluate simulations of soil water and biogeochemical processes in ESMs. 

Moreover, we also explored whether the calibrated Clapp & Hornberger model can lead to similar improvements with 
the Hanson model (Fig. S8). Generally, both the Hanson model and the calibrated Clapp & Hornberger model improved the 
simulation of GPP and SR in the ELM, in comparison with the default run (Fig. S8). The ELMv0 with the Hanson model 10 
consistently produced higher GPP and SR than that with the calibrated Clapp & Hornberger model. In comparison with the 
observations, the modelled SR generally fell within the 1 sigma (i.e., standard deviation) range of observations, by using 

both the Hanson model and the calibrated Clapp & Hornberger model. However, the modelled GPP with the calibrated 
Clapp & Hornberger model was still lower than the observations. Given the order of the goodness-of-fit of the SWP-VWC 
relationship was default Clapp & Hornberger model < calibrated Clapp & Hornberger model < calibrated Hanson model 15 
(Table 1), these results further support the conclusion that better representations of SWP can improve the simulations of 

carbon dynamics. Therefore, throughout the remainder of this manuscript, we used the Hanson model to represent the SWP-
VWC relationship. 

4.2 Representation of seasonal and interannual variabilities in the ELMv0 

Although the SWP simulations using the Hanson model improved the representation of both annual SR and GPP, the 20 
model continued to overestimate SR during the non-growing season (Figs. 4), resulting in significant overestimations of the 

annual SR fluxes (Fig. S5). No matter which SWP simulations were used, the ELMv0 had smaller interannual variability 
than the observations (Fig. 2). Specifically, the model was not able to capture the steep decreases in GPP and SR in the 
extreme drought year (i.e., 2012; Fig. S9). These results indicate that the current model structure is not sensitive enough to 
environmental changes. Several potential reasons may contribute to the underestimated seasonal and interannual variability. 25 
For example, field inventory data at the study site showed that the severe drought-pathogen interactions in 2012 resulted in a 

significant stem mortality of tree species (Wood et al., 2017). Thus, the observed steep decreases in GPP and SR could be 
due to mortality. The stem mortality could lead to lower evapotranspiration (Fig. S9), minimizing soil moisture losses (Fig. 
S10). However, the ELMv0 simulated the moisture effect on biogeochemical cycles at the physiological level, but not at the 
plant community level. In addition, the strong dependence of GPP and SR on the upper layer soil moisture could explain the 30 
model’s difficulty in capturing inter-annual variability. Although better representation of SWP improved the mean annual 

simulation of biogeochemical processes, the model could not capture the mortality or the interannual variability of GPP and 
SR. 
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The calculation of the moisture scalars (e.g., btran and xW) using empirical equations from SWP may be another 

potential reason for the insensitivity. For example, observational results have shown that there may be an optimal moisture 
point at which soil respiration peaks with significant reductions in decomposition towards both dryer and wetter conditions 
(Linn and Doran, 1984; Franzluebbers, 1999; Monard et al., 2012; Sierra et al., 2017). In the ELMv0, however, the moisture 
scalar increases from 0 to 1 with the increase in soil moisture and does not decrease afterwards (Eq. 9). Thus, the ELMv0 5 

may not be sensitive to extreme wet conditions. The linear empirical equation between the lower and upper thresholds (Ψ°¢£ 

and Ψ°§•) may not capture non-linear moisture behaviours, leading to insensitive responses of biogeochemical processes to 

moisture change. Incorporating more mechanistic moisture scalars may improve the sensitivity of the model in response to 
moisture changes (Ghezzehei et al.; Yan et al., 2018). 

In the ELMv0, heterotrophic respiration contributed the majority (i.e., over 85%) of total SR during non-growing 10 
seasons (Fig. 5), suggesting that the overestimation of SR during these seasons was primarily due to the biased heterotrophic 
respiration simulation. A potential reason for the biased heterotrophic respiration simulation may be related to the 
temperature sensitivity (Q10). Theoretically, a higher Q10 can result in greater seasonal variability of SR (Fig. S11). 
Compared to relatively small Q10 values, a larger Q10 can lead to lower heterotrophic respiration when temperature is below 

the reference temperature, and greater heterotrophic respiration when temperature is above the reference (Fig. S11). In the 15 
ELMv0, the reference temperature is 25 ºC and the Q10 of heterotrophic respiration is 1.5 (Oleson et al., 2013). A previous 
study derived a much greater Q10 value (i.e., 2.83) when the parameters were calibrated with data from another temperate 
forest (Mao et al., 2016). We hypothesized that the Q10 value of 1.5 may be too small for the MOFLUX site. We arbitrarily 
increased Q10 from 1.5 to 2.5, but there were minimal effects on the SR simulation (Fig. S12). This indicates that modifying 

the temperature sensitivity of heterotrophic respiration may not improve the modelled representation of seasonality of SR in 20 
the ELMv0. 

Another potential reason for the biased heterotrophic respiration simulation may be that the seasonality of microbial 
organisms was not adequately represented in the model. Like most ESMs, the ELMv0 represents soil C dynamics using 

linear differential equations and assumes that SR is a substrate-limited process in the model. However, producers of CO2 in 
soils, microbial organisms, have a significant seasonal cycle (Lennon and Jones, 2011). These organisms usually have very 25 
high biomass and activity during growing season peaks with favourable conditions of temperature, moisture and substrate 
supply, and tend to be dormant under stressful conditions (Lennon and Jones, 2011; Stolpovsky et al., 2011; Wang et al., 
2014; Wang et al., 2015). The seasonality of microbial biomass and activity, in addition to that of GPP and ST, may 

contribute to the seasonal variability of SR. 
Additionally, the lack of representation of macroinvertebrate and other forest floor and soil fauna in the ELMv0 may be 30 

another reason. There is a high density of earthworms at the MOFLUX site (Wenk et al., 2016). Earthworms can shred and 
redistribute soil C and change soil aggregation structure, which may alter soil C dynamics and CO2 efflux to the atmosphere 
(Verhoef and Brussaard, 1990; Brussaard et al., 2007; Coleman, 2008). Like microbial organisms, earthworms usually have 

a significant seasonal cycle, showing high biomass and high activity during peak growing seasons and tending to be dormant 
during non-growing seasons (Wenk et al., 2016). However, a recent review suggests that current experimental evidence and 35 
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conceptual understanding remains insufficient to support the development of explicit representation of fauna in ESMs 
(Grandy et al., 2016). Therefore, data collection focused on seasonal variations in fauna and microbial biomass and activity 

might enable further improvements in the representation of seasonal variation in SR. 
Our analyses also showed that the modelled SR was not able to reach the observed peak in many years during the peak 

growing season, even when the modelled GPP exceeded the observation. In addition, the parameter modification increased 5 
GPP during both peak and non-growing seasons, resulting in an even greater overestimation of SR during non-growing 
seasons. These results suggest that simply increasing GPP may not be adequate to increase the seasonal variability of the 

simulated SR. A potential reason may be that the current model does not include root exudates. Root exudates are labile C 
substrates that are important for SR (Kelting et al., 1998; Kuzyakov, 2002; Sun et al., 2017). The root exudate rate is 
primarily dependent on root growth, showing a seasonal cycle in temperate forests (Kelting et al., 1998; Kuzyakov, 2002). 10 
Thus, including root exudates in the model may further increase the model simulated SR during the peak growing season 
without needing to increase GPP. 

5 Conclusions 

In this study, we used temporally extensive and spatially distributed site observations of SR to assess the capabilities of 
ELMv0. These results indicated that an improved representation of SWP within the model provided better simulations of 15 
annual SR. This underscores the need to calibrate SWP in ESMs for more accurate projections of coupled climate and 
biogeochemical cycles. Notwithstanding this improvement, however, the ELMv0 still underestimated seasonal and 

interannual variabilities. It may be that inadequate model representation of vegetation dynamics, moisture function, and the 
dynamics of microbial organisms and soil macroinvertebrates could be explored as means to achieve better fit. Future 
incorporation of explicit microbial processes with relevant data collection activities may therefore enable improved model 20 
simulations. 
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