
Letter of Response 
 
Dear Dr. Tomomichi Kato 
 
We are re-submitting the manuscript entitled “Evaluating the E3SM Land Model at a temperate 
forest site using flux and soil water measurements” to be considered for publication in 
Geoscientific Model Development. We greatly appreciate the constructive comments from the 
two knowledgeable reviewers. We are also grateful to you for offering the opportunity to us to 
re-submit the manuscript, which has been thoroughly revised based on the reviewers’ comments. 
We have made the following major changes: 
 

1. We have conducted more analyses on the interannual variability and added more 
discussion in Section 4.2. 

2. We have discussed in further detail on the future directions for the model improvement of 
water limitation to biogeochemical processes. 

3. We have improved the presentations of figures and results by following the reviewers’ 
suggestions. 

 
We are submitting a letter of point-by-point responses to reviewers’ comments, as well as a 
marked-up revision. We hope you will find our revision thorough and satisfactory. 
 
Sincerely, 
Junyi Liang 
 
Author Note: The reviewers’ comments are in black and the responses follow in blue. Page 
numbers and line numbers in the responses are those in the marked-up revision following the 
response letter. 
 
 
Reviewer 1 (Dr. Will Wieder) 
 
Liang and co-authors have done a nice job revising their manuscript. At its core, this is a paper 
about soil moisture, productivity and respiration. This is a hard problem, and one which could be 
handled more thoughtfully in the discussion. 
 
Response: We appreciate the positive comments. 
 
While I appreciate the qualifiers to text explaining to how “improving SWP directly improved 
soil respiration estimates” (top of page 8 & section 4.1), I would contend that the direct effects of 
SWP on respiration rates are overstated or unclear. It seems the improvements in soil respiration 
rates are driven by change in productivity (Fig. S1) which builds larger SOM pool. Specifically, 
it looks like at annual (Fig 2a, e.g. 2012) and seasonal (4c, shoulder seasons) scales the model 
shows a relatively low sensitivity to the modeled soil moisture scalar (xi_w). I think this is OK, 
E3SM is in good company (see Carvalhais et al 2014)!  



 
Response: We agree that the change in productivity is an important driving factor for the 
improvements in soil respiration, which is highlighted in the manuscript. As shown in the 
manuscript, improving SWP resulted in better GPP simulations, which improved soil respiration 
simulations in two aspects. On the one hand, GPP can directly affect the magnitude of root 
respiration. On the other hand, increased GPP can build larger SOM pools as the reviewer 
mentioned and shown in Fig. S3. In addition to GPP, we would argue that the change in SWP 
also has a direct impact on soil respiration as the soil moisture scalar ([w) controls the magnitude 
of heterotrophic respiration. 
 
We revised the manuscript to incorporate the reviewer’s comment as (Page 12, line 3 – 12): 
 

“Constraining the SWP-VWC relationship with site-specific data and using the Hanson model instead of 
the ELMv0 default model (Fig. 1) significantly improved the model representation of SWP (Fig. 3) and 
annual SR (Fig. 2a). The improvements in model fits could be due to the following reasons. First, the 
Hanson model significantly increased GPP. The default ELMv0 underestimated GPP (Fig. 2b), as in a 
recent study where CLM4.5 significantly underestimated GPP at a coniferous forest in northeastern 
United States (Duarte et al., 2017). GPP can directly affect the magnitude of root respiration as shown 
in many previous studies (Craine et al., 1999; Högberg et al., 2001; Wan and Luo, 2003; Verburg et al., 
2004; Gu et al., 2008). Additionally, increased GPP can build a larger SOC pool, the substrate for 
heterotrophic respiration (Fig. S3). Second, the changed soil moisture scheme increased the moisture 
modifier ([W) on heterotrophic respiration during the peak-growing season, and decreased it during the 
non-growing season (Fig. S2), which is consistent with the trend of changes in SWP (Fig. 3). These 
changes together resulted in the improvement of simulated SR.” 

 
The topic of soil moisture sensitivities is introduced again at the bottom of page 12 (section 4.2), 
but the discussion quickly moves onto temperature sensitivities and q10 before drifting off into 
soil microbes and fauna. As stated above, this is a paper about soil moisture, productivity and 
respiration. I’d argue ELM and other land models do fine with temperature, but really struggle 
with the soil moisture at seasonal and inter annual time scales. The changes to soil physics (the 
Hansen model) seem to improve dynamics of soil moisture stress, but without appropriate effects 
on the biogeochemistry. What modification could be made to the formulation of btran and xi_w? 
Are these functions that need new parameterizations, new forms, or that should be replaced in 
future generations of the model. I’m not asking for the simulations in the paper, but can these 
ideas be explored more in the discussion?  
 
Response: The reviewer provided a great suggestion. We agree that after improving the 
simulation of SWP, the moisture scalars (btran and [W) may also influence the biogeochemical 
processes. For example, no matter which SWP simulations were used, the ELMv0 had smaller 
interannual variability than the observations (Fig. 2). Specifically, the model was not able to 
capture the steep decreases in GPP and SR in the extreme drought year (i.e., 2012). These results 
indicate that the current model structure is not sensitive enough to environmental changes. 
 
Thanks to the reviewer’s comments, we have added more discussion of the possible influences of 
moisture scalars and possible improvements in the revision (Page 14, line 10 – 18): 
 

“The calculation of the moisture scalars (e.g., btran and [W) using empirical equations from SWP may 
be another potential reason for the insensitivity. For example, observational results have shown that 
there may be an optimal moisture point at which soil respiration peaks with significant reductions in 



decomposition towards both dryer and wetter conditions (Linn and Doran, 1984; Franzluebbers, 1999; 
Monard et al., 2012; Sierra et al., 2017). In the ELMv0, however, the moisture scalar increases from 0 to 
1 with the increase in soil moisture and does not decrease afterwards (Eq. 9). Thus, the ELMv0 may not 
be sensitive to extreme wet conditions. The linear empirical equation between the lower and upper 
thresholds  (𝛹𝑚𝑖𝑛 and 𝛹𝑚𝑎𝑥) may not capture non-linear moisture behaviours, leading to insensitive 
responses of biogeochemical processes to moisture change. Incorporating more mechanistic moisture 
scalars may improve the sensitivity of the model in response to moisture changes (Ghezzehei et al.; Yan 
et al., 2018).” 

 
Towards this end, it’s still a little confusing what the most tractable way will be to parameterize 
soil hydrology in ELM. The authors discuss why the current approximation is sub-optimal (page 
11-12), but can Hansen be applied in the global model? I'm assuming part of the motivation for 
this paper is to document the Hansen parameterization for work moving forward. If so, can the 
discussion more explicitly state how existing data can inform the global scale parameterization, 
application, and evaluation of the Hansen model? The current text seems somewhat vague.  
 
Response: The reviewer asked an insightful question “can the Hanson model be applied in the 
global model?” and suggested to “more explicitly state how existing data can inform the global 
scale parameterization, application and evaluation of the Hanson model”. We appreciate these 
suggestions. 
 
The answer to the question is not a simple “yes” or “no”. As the reviewer stated in an earlier 
comment, the ELM and other global models “struggle with the soil moisture” simulation. To 
improve the global simulations of SWP and SOC, two important aspects, an updated database 
and a well parameterized SWP-VWC relationship, are needed. 
 
On the global scale, the ELMv0 used a SWP-VWC relationship which was parameterized by 
grouping over 1,000 soil samples into 11 USDA soil textural classes. The midpoints of sand and 
clay content in the 11 textural classes were used to extrapolate the relationship into the global 
scale. One potential issue is that soil samples in the same textural classes can have different sand 
and clay contents and SWP-VWC relationships, which may not be fully represented when they 
are grouped together. To address this issue, an updated SWP-VWC database with actual sand 
and clay content measurements (e.g., the UNsaturated SOil hydraulic Database, UNSODA), may 
enable improved relationships between model parameters and soil texture in the water retention 
models. 
 
Meanwhile, different empirical models have been developed to describe the SWP-VWC 
relationship as shown in Table 1 and Fig. 1. These models could be evaluated with the UNSODA 
database, and the selected best-fit model(s) could be used to calculate SWP in the field from 
continuously monitored VWC (e.g., from the AmeriFlux network) on different spatial and 
temporal scales. Additionally, the database could also be used as a benchmark to evaluate 
simulations of soil water and biogeochemical processes in ESMs. 
 
In the manuscript, we have discussed these points in Page 13 line 1 – 16: 
 

“Parameters in the default Clapp & Hornberger model used in the ELMv0 were derived from 
synthesizing data across soil textural classes (Clapp and Hornberger, 1978; Cosby et al., 1984; 
Lawrence and Slater, 2008). The data were derived from over 1,000 soil samples from 11 USDA soil 



textural classes (Holtan et al., 1968; Rawls et al., 1976). The dependence of model parameters on soil 
texture were derived from a regression of these 11 data points, i.e., the mean parameter values of 11 soil 
textural classes against the sand or clay fractions (Cosby et al., 1984). Because no actual sand or clay 
content of soil samples was reported in the original databases (i.e., only the soil textural classes were 
reported), the sand and clay fractions used for the regression were obtained from midpoint values of 
each textural class (Clapp and Hornberger, 1978; Cosby et al., 1984). One potential issue is that soil 
samples in the same textural classes can have different sand and clay contents and SWP-VWC 
relationships, which may not be fully represented when they are grouped together. An updated SWP-
VWC database with actual sand and clay content measurements could provide improved empirical 
relationships between model parameters and soil texture in the water retention model. 
 
In addition, different empirical models have been developed to describe the SWP-VWC relationship 
(Brooks and Corey, 1964; Clapp and Hornberger, 1978; van Genuchten, 1980; Fredlund and Xing, 
1994; Hanson et al., 2003). These models could be evaluated against data, and the selected best-fit 
model(s) could be used to calculate SWP in the field from continuously monitored VWC (e.g., from the 
AmeriFlux network) on different spatial and temporal scales. The database could also be used as a 
benchmark to evaluate simulations of soil water and biogeochemical processes in ESMs.” 

 
It seems like ‘fixing’ a soil moisture bias in ELM exposed a compensating bias in the canopy 
photosynthesis (red lines in Fig. 4). I wonder if the proposed modifications to plant physiological 
parameters are also consistent with observations? Specifically, the add-hoc tuning (Table 2) of 
SLA (to reduce LAI) and FLRN (to modify Vcmax and maintain GPP with a less leafy canopy) 
certainly worked (Fig. 4). I wonder if the modifications are at all consistent with leaf physiology 
measurements from the site or from similar plants in the TRY database?  
 
Response: The parameter adjustments followed a surrogate-based global optimization using 
measurements of C and energy fluxes at the site (Lu et al., 2018). The TRY database showed that 
the SLA for broadleaved deciduous forest ranges from < 0.005 to > 0.05 m2 g-1 C, with mean 
values of 0.015 m2 g-1 C (Kattge et al., 2011), which is similar to our modification (i.e., 0.01 m2 
g-1 C). Similarly, the adjustment of the parameter flnr fell within the range of observations in the 
TRY database. 
 
Minor and technical concerns: 
In general, I'm not a fan of introducing new analyses / results at the end of the discussion (Fig. 
5). As such, I’d encourage moving this display item into the results (section 3) and mentioning 
the experiment in the methods (section 2), but leave this up to the authors & editor to decide. 
 
Response: We appreciate the suggestion for the manuscript presentation. We have added 
descriptions of Fig. 5 in Methods and moved Fig.5 to Results: 
 

Page 6 line 21 – 22: “The contributions and autotrophic and heterotrophic respiration to total SR were 
also calculated.” 
 
Page 10 line 13 – 15: “The contributions of autotrophic and heterotrophic respiration to total SR had a 
seasonal cycle (Fig. 5). The contribution of heterotrophic respiration to total SR ranged from 60% to 
90%.” 

 
Why not put the uncertainty bands on both parts of Fig. S5 (and other bar charts in the 
manuscript)? 
 



Response: We have added the uncertainty bands in Fig. S5 and other bar charts in the revision. 
 
References: 
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., et al. (2014). 
Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 
514(7521), 213-217. doi: 10.1038/nature13731. 
 
Response: Thanks for the information. 
 
Reviewer 2 
 
Review: Evaluating the E3SM Land Model Version 0 (ELMv0) at a temperature forest site using 
flux and soil water measurements 
Authors: Liang, Wang, Ricciuto, Gu, Hanson, Wood, Mayes 
Synopsis: The authors run an out-of-the-box simulation of E3SM (which is the same as CLM4.5- 
CN; I’m not sure what makes E3SM distinct) and compare results to Eddy Covariance (EC) 
fluxes and soil moisture observations. The default model is found to have Gross Primary 
Productivity (GPP) and Soil Respiration (SR) that are too low when compared to observations. 
Near-surface Soil Water Potential (SWP), calculated using relationships that determine SWP 
from Volumetric Water Content (VWC) based on Clapp&Hornberger result in potentials that are 
too high during the winter, and too low in the summer. Overall, SWP is too low at low moisture 
in the near- surface soil, and was slightly high at depth when moisture content was higher. 
Five different treatments for relating VWC-SWP were tested, and the model of Hanson was 
found to have the smallest errors when compared to observations. However, when C&H was 
replaced with Hanson GPP was slightly low and SR slightly high when compared to 
observations, and the model did not reproduce either the amplitude or sign of interannual 
variability. Therefore, coefficients influencing Specific Leaf Area (SLA), fractional leaf N used 
in Rubisco and several coefficients controlling leaf senescence were changed, and results were 
improved in evaluation of mean seasonal cycles of LAI, GPP and SR. 
Finally, there was speculation about which mechanisms and processes might be responsible for 
model-data mismatch after the aforementioned tuning was complete. These include model Q10 
for heterotrophic respiration, microbial biomass and seasonality, and macroinvertebrate 
(earthworm) influence on carbon cycle processes, and root exudates. The authors exhort the 
community to pay particular attention to SWP in simulations, and to consider inclusion of these 
added processes in models. 
 
Response: We appreciate the precise summary. 
 
Review: One could consider this a model-tuning paper. A default model was run, deficiencies 
were noted, and changes were made to parameters and model physics. This is fine, and has been 
done many times previously (e.g. Sellers et al. 1989), but I’m not sure that the present paper 
really tells me anything about how the world works. I work with models that simulate land-
atmosphere interaction, and there is nothing in this paper that makes me want to look at my 
model code and start performing tests and making changes. Hanson worked better, but it worked 
better at one place on the planet, at a particular deciduous forest (DBF) in the North American 
midwest. I suspect that if we were to perform evaluations like this at multiple EC sites (across 



multiple DBF sites and across multiple PFTs), I expect that we would find that each of the 
VWC-SWP treatments would come out on top at least one or more times. We would also likely 
find that the SLA, Nitrogen and senescence parameters could take multiple values as well. 
 
Response: We agree that the performance of the five SWP-VWC relationships may vary across 
different ecosystems. We chose the Hanson model because it performed the best at the study site. 
The purpose of this manuscript was to evaluate the ELMv0 using long-term site-level 
observations. As the reviewer mentioned, similar works have been widely done to improve the 
model performance. 
 
We are sorry that the manuscript did not excite the reviewer. We are not sure which models the 
reviewer works with, but previous model evaluation papers show that the hydrological 
modification on biogeochemical cycles is a big issue in current land models (Todd-Brown et al., 
2013; Carvalhais et al., 2014). In our manuscript, we have attempted to explore this issue with 
the ELMv0 and the long-term observations at the MOFLUX site. One of the most important 
points is that the ELMv0 is not able to simulate SWP well, and a better representation of SWP, 
using site-specific data if available, can significantly improve the mean annual simulations of 
biogeochemical processes. Because many current efforts involving soil carbon cycle modeling 
are focused on better modeling the effects of changes in temperature, and whether or not to 
include explicit microbes, we felt it was important to point out the role of soil moisture on model 
performance. We also agree with the reviewer that the SLA, nitrogen and senescence parameters 
may change across sites. Common parameter values based on biome and/or soil types would be a 
better choice if modeling larger spatial scales. 
 
My main complaint now levied, I will also say that just because this paper does not particularly 
excite me, there is nothing wrong with the analysis. The paper follows a logical progression, and 
the analysis and presentation of results is done professionally and is easy to follow. I think there 
is value in the paper, and my official recommendation is to accept this manuscript with minor 
revisions. 
 
Response: We appreciate the positive comments on the manuscript. 
 
The paper is quite short (14 pages), which is nice, but I think there might be some expansion of 
analysis and explanation that would add value to the research. 
 
Merely stating that the model was unable to capture observed response to the 2012 drought is 
extremely unsatisfying. This is an opportunity to explore model behavior, and perhaps gain 
valuable insight into processes and mechanisms. I find it interesting that observed near-surface 
(10cm) SWP (Fig 3b) was not exceptionally low in 2012; the year did not look much different 
from 2011 or 2013, and in fact looked wetter than 2005-2007. That is interesting; what was deep 
soil SWP doing in those years? From Figure 2, we see that observed SR oscillated up and down 
between 2005-2007, while GPP dropped from 2005 to 2007. What was the model doing? What 
did BTRAN look like in 2012, as compared to other years? How about LAI? Is there a near- 
surface water table in the simulations that prevents root stress? Are there constraints on stomatal 
conductance due to high VPD or unfavorable temperature? What did they do in 2012? In fact, 
simulated SR and GPP both increased from 2011 to 2012, while there were dramatic drops in the 



observations of both. If the model does not respond to the drought, you should be able to tell 
your reader why, and speculate whether that behavior is realistic or not, and how that behavior 
might impact model performance in other years. I would like to see some exploration of IAV, 
and explanation of why Hanson provides an upgrade from C&H in this regard. 
 
Response: We appreciate the valuable comments, especially the suggestion of explorations of 
2012 drought and interannual variability. In the manuscript, we have an entire section (i.e., 
section 4.2) to discuss the representation of seasonal and interannual variabilities in the ELMv0. 
We explored the interannual variability from several aspects. 
 
First, to answer the reviewer’s questions, we have conducted more analyses. It was an extremely 
dry year in 2012, with much lower precipitation than other years (Fig. S9 and also see below). 
However, neither the upper nor the deeper layer SWP in 2012 was extremely low as well (Fig. 
S10 and also see below). This could be because that the severe drought-pathogen interactions in 
2012 resulted in a significant stem mortality of tree species (Wood et al., 2017). Thus, the 
observed steep decreases in GPP and SR are likely because of the species mortality. In addition, 
the stem mortality led to lower moisture loss through evapotranspiration (Fig. S9), resulting in no 
soil moisture decrease. In the model, however, the water limitation to biogeochemical cycles is 
primarily controlled by soil water stress. In other words, the ELMv0 had moisture modifications 
at the physiological level, but not at the plant community level. As a result, although the better 
presentation of SWP improved the mean annual simulations of biogeochemical processes, the 
model was not able to capture the mortality and the interannual variability of GPP and SR. 
 

 
Figure S9. Mean annual precipitation and evapotranspiration at the MOFLUX site from 
2005 to 2013. Both precipitation and evapotranspiration were lower in 2012 than other years. 
The grey bars show the multi-year standard deviation. 
 

 



Figure S10. Mean annual soil water potential (SWP) at 10 cm and 100cm at the MOFLUX 
site. The grey bars show the multi-year standard deviation. 
 
Second, the calculation of the moisture scalars (e.g., btran and [W) using empirical equations 
from SWP may be another potential reason for the insensitivity. For example, observational 
results have shown that there may be an optimal moisture point at which soil respiration peaks 
with significant reductions in decomposition towards both dryer and wetter conditions (Linn and 
Doran, 1984; Franzluebbers, 1999; Monard et al., 2012; Sierra et al., 2017). In the ELMv0, 
however, the moisture scalar increases from 0 to 1 with the increase in soil moisture and does not 
decrease afterwards (Eq. 9). Thus, the ELMv0 may not be sensitive to extreme wet conditions. 
The linear empirical equation between the lower and upper SWP thresholds (Ψ𝑚𝑖𝑛 and Ψ𝑚𝑎𝑥) 
may not capture non-linear moisture behaviours, leading to insensitive responses of 
biogeochemical processes to moisture change. Incorporating more mechanistic moisture scalars 
may improve the sensitivity of the model in response to moisture changes (Ghezzehei et al.; Yan 
et al., 2018). 
 
Additionally, lacking representations of microbial and macroinvertebrate dynamics may also 
potential reasons for the low seasonal and interannual variability in the model. We also discussed 
that the temperature sensitivity was unlikely a reason. 
 
Please see Section 4.2 for more details. We have made revision in the Abstract and Conclusions. 
 
Related to the above is the fact that in 2007 there was a significant drop in observed SR and GPP 
when compared to 2006. The default model (C&H) showed drops that are more similar to the 
amplitude of the observed reduction, even if there is an offset or bias. In fact, the Hanson model 
shows almost no interannual variability (IAV) in SR and GPP at all. Is this really an 
improvement? One might make the case that you would have a better simulation of the observed 
flux by increasing Vcmax (and perhaps SLA and the senescence parameters) in CLM without 
changing the soil; your GPP would go up, which would translate into larger carbon pools and 
subsequent increased RS. You would also retain a more realistic comparison with observed IAV. 
Is there a reason to suspect that this would not work? 
 
Response: The study site experienced drought in 2007, which also resulted in an increased tree 
mortality though it was milder than that in 2012 (Wood et al., 2017). As discussed above, the 
model was not able to capture the mortality and the interannual variability without vegetation 
and microbial dynamics. Therefore, although the default model showed drops that were more 
similar to the amplitude of the observed reduction in 2007, it was because of the wrong reason 
(i.e., wrong SWP). 
 
The reviewer asked “is this really an improvement”. The default model did not simulate SWP, 
GPP and SR well. We improved the modeled SWP by better representing the SWP-VWC 
relationship in the model. The better representation of SWP further improved the mean annual 
simulations of GPP and SR. We think this is an improvement because the changes in GPP and 
SR were because of the right SWP simulation. 
 



The reviewer also asked if we suspect changing Vcmax would not work. We changed the SWP 
because we found the model was not able to simulate it properly when comparing with 
observations. For Vcmax, we do not have any observational evidence that it is wrong in the 
model. 
 
Although the model did not match the observed interannual variability, the appropriate 
simulation of SWP led to improved mean annual simulations of GPP and SR. Based on that, we 
think better representations of vegetation dynamics, moisture function, and microbial activity 
may address the issue of interannual variability. We have added more discussion in the revision, 
thanks to the reviewer’s comments. 
 
In section 4.1 two paragraphs (lines 30-33 on page 11, continued in lines 1-7 on page 12; lines 8-
13 on page 12) describe how C&H was developed from textural classes and not sand/clay 
fractions, and how models might make use of near-continuous SWP observations. I’m not sure 
what these 2 paragraphs bring to the analysis, since neither has been done. Do they merit this 
much attention? 
 
Response: We think these two paragraphs are necessary. The default Clapp & Hornberger model 
failed to simulate the SWP in the ELM. An obvious question to ask was why it failed and how to 
improve. We have used these two paragraphs to discuss this issue. The default Clapp & 
Hornberger model’s parameters were dependent on soil sand/clay fractions. However, it used 
data without actual measurements of soil sand/clay fractions, leading to inaccurate simulations. 
As a result, we propose that an updated SWP-VWC database with actual sand and clay content 
measurements may enable improved relationships between model parameters and soil texture in 
the water retention model. 
 
Different empirical models have been developed to describe the SWP-VWC relationship (Brooks 
and Corey, 1964; Clapp and Hornberger, 1978; van Genuchten, 1980; Fredlund and Xing, 1994; 
Hanson et al., 2003). As the reviewer mentioned above, the performance of different SWP-VWC 
relationships may vary across different ecosystems, which we totally agree. Thus, it may 
ultimately be necessary to evaluate these models using a global database and select the best-fit 
model(s) on the global scale. 
 
In summary, we think these two paragraphs are needed from the perspective of model evaluation 
and improvement. 
 
The authors state that “SWP in simulations in ESMs should be calibrated carefully with 
observations...”, but this is clearly impossible and unrealistic in global simulations. If the 
ultimate goal is correct simulations of global biogeophysical behavior, then we have a disconnect 
between what the authors are doing here (tuning at a single site) and what we are told is the 
ultimate goal (accurate representation of global carbon cycle). This is a persistent and real 
problem. We calibrate our models on site-level data and then extend that behavior to the globe. 
I’d be interested in some discussion of how we might use site-level studies to improve global 
simulations. 
 



Response: We appreciate the suggestion of discussing how to improve global simulations using 
site-level studies. It is true that there is no global grid-based SWP database. However, the 
research community has collected paired measurements of VWC and SWP, as well as soil 
characteristics, in a variety of soil types and ecosystems (e.g., the UNSODA database). These 
data can be used to calibrate SWP-VWC relationships and SWP simulations in models. There are 
many sites, such as the MOFLUX site in this study, collecting long-term hydrological and 
biogeochemical data. These data are very useful to evaluate whether improving the SWP 
simulation is one of the right reasons for model improvement. 
 
Thanks to the reviewer’s suggestion, we have added more discussion in the revision (Page 12 
line 20 – 27): 
 

“Our analyses in this study indicate that improving the modelled SWP can significantly improve mean 
annual GPP and SR simulations. Thus, we propose that the SWP simulation in ESMs should be 
calibrated carefully with observations, and/or by using different model representations of the SWP-VWC 
relationship. Because there is no global grid-based SWP database, paired measurements of VWC and 
SWP are needed along with soil characteristics in a variety of soil types and ecosystems. These data can 
be used to calibrate SWP-VWC relationships and SWP simulations in models. Besides, there are many 
sites, such as the MOFLUX site in this study, collecting long-term hydrological and biogeochemical 
data. These data are useful to evaluate whether better SWP simulation will improve biogeochemical 
cycling simulations.” 

 
 
Specific Comments: 
• Equation 4: The subscript should be liveCroot, should it not? 
 
Response: Yes. We have corrected it. 
 
• Page 4, line 9: coarse 
 
Response: Revised (Page 4, line 9). 
 
• Page 5: is ‘residual’ water content the same as wilt point? 
 
Response: The residual water content is not exactly the same as the wilting point. The wilting 
point, by definition, is the minimal point of soil moisture the plant requires not to wilt. It is the 
water content at -1.5MPa of suction pressure. On the other hand, the residual water content is a 
parameter to determine the shape of the SWP-VWC relationships. As summarized by Vanapalli 
et al. (1998), the definition of residual water content varies depending on the SWP-VWC model, 
but it can exceed the wilting point (i.e., at -1.5MPa of suction pressure). 
 
• Table 1: I’m not sure what AIC is: shouldn’t it be explained, even if briefly? 
 
Response: The Akaike Information Criterion (AIC) is an estimator of the relative quality of 
models for a given set of data. The smaller AIC value, the better. It was calculated by 

𝐴𝐼𝐶 = 𝑎𝑙𝑛 (
∑(𝜀̂)2

𝑎 ) + 2𝑏 

 



We have added the AIC equation in the Method section (Page 6, line 7 – 11). 
 
• Page 8, line3: I know what ‘btran’ is, but some of your readers may not. You should 
explain this variable. 
 
Response: We have added explanation in the revision (Page 8, line 12 – 14): 
 

“The btran is the transpiration beta factor, which controls the soil water limitation to transpiration and 
photosynthesis, while [W is the soil moisture modifier for heterotrophic respiration as shown in Eq. (9).” 

 
• Figure 4, Figures S6-S7: Make lines darker, shading lighter. Hard to discern individual 
simulations. 
 
Response: Revised as suggested. 
 
• I might have missed this, but what is the porosity and sand/clay content of the soil at 
the MOFLUX site? If VWC at depth regularly drops to between 15-20% (Fig 1b) then it must 
have considerable sand content. My recollection of more clayey soils is that wilt point will be 
much higher. Is this soil representative of the region and/or PFT? 
 
Response: The dominant soils are the Weller silt loam and the Clinkenbeard very flaggy clay 
loam (Young et al., 2001). This soil is representative of the region. The sand and clay contents in 
the lower layer (Fig. 1b) are 8.66% and 39.89%, respectively. According to its definition (i.e., at 
-1.5MPa of suction pressure), the VWC at the wilting point of the lower layer is approximate 
23% (Fig. 1b). The values shown in Fig. 1 were not measured in the field. Instead, to derive the 
soil water retention curves,  soil samples were collected in the area of the flux tower base at two 
depths: 0 to 30 cm and below 30 cm. Samples were evaluated periodically for soil water 
potential using a dewpoint potentiometer (Decagon Devices, Model WP4C) as they dried over 
time (Hanson et al., 2003). Thus, the measurements went beyond the wilting point. 
 
• Equation 9: It appears that the environmental modifier for water has value of 0 and low water 
(conditions too dry for microbial activity), varies between 0-1 for moisture up to (PSI)max. What 
is the difference between (PSI)max and (PSI)s? Are they the same? Most models I am familiar 
with will have an ‘optimum’ soil water content or potential for respiration, the idea being that 
either too dry or too wet (anaerobic) conditions are unfavorable for microbial decomposition of 
carbon stocks. The ‘too wet’ does not seem to be the case here. Why is that? 
 
Response: We apologize for the typo. <s should be <max, which is the matric water potential 
under saturated conditions. The issue has been fixed in the revision (Page 4, Eq. 9 and line 20). 
 
The reviewer asked a very interesting question why the moisture modifier ([W) did not decrease 
under “too wet” conditions. In the ELM, the moisture modifier was based on observational data 
(Orchard and Cook, 1983; Andren and Paustian, 1987). These data were produced a few decades 
ago. However, as the reviewer mentioned, more recent data showed there might be an optimal 
moisture point at which soil respiration peaks with significant reductions in decomposition 
towards both dryer and wetter conditions (Linn and Doran, 1984; Franzluebbers, 1999; Monard 
et al., 2012; Sierra et al., 2017). As a result, the calculation of the moisture scalars may be a 



potential reason for the unrealistic simulated interannual variability, which we discussed in the 
revision (Page 14, line 10 – 18): 
 

“The calculation of the moisture scalars (e.g., btran and xW) using empirical equations from SWP may be 
another potential reason for the insensitivity. For example, observational results have shown that there 
may be an optimal moisture point at which soil respiration peaks with significant reductions in 
decomposition towards both dryer and wetter conditions (Linn and Doran, 1984; Franzluebbers, 1999; 
Monard et al., 2012; Sierra et al., 2017). In the ELMv0, however, the moisture scalar increases from 0 to 
1 with the increase in soil moisture and does not decrease afterwards (Eq. 9). Thus, the ELMv0 may not 
be sensitive to extreme wet conditions. The linear empirical equation between the lower and upper 
thresholds (𝛹𝑚𝑖𝑛 and 𝛹𝑚𝑎𝑥) may not capture non-linear moisture behaviours, leading to insensitive 
responses of biogeochemical processes to moisture change. Incorporating more mechanistic moisture 
scalars may improve the sensitivity of the model in response to moisture changes (Ghezzehei et al.; Yan 
et al., 2018).” 

 
• Using 10 years of tower forcing to perform a 200-year spinup of carbon pools concerns me. I 
understand that this might be all the tower data available, but, especially for carbon pools, I’m 
concerned that anomalies in the 10-year meteorology may be aliased onto pool size. Did you 
consider using a reanalysis product (CRU, NCEP, ECMWF) for spinup and then use the tower 
data for the transient run? 
 
Response: We used preindustrial atmospheric forcing (e.g., CO2 concentrations and nitrogen 
deposition) and site-specific meteorological measurements to perform the spinup. We hope the 
reviewer would agree that both tower measurements and reanalyzed products will produce biases 
and uncertainties when they are used for the spinup. The resolution mismatch and algorithm 
uncertainty of reanalyzed products may significantly influence the site-level results. In addition, 
using the reanalyzed data first followed by tower data may produce abrupt changes in the model 
simulation. For the site-level study, the in situ measurements were our first choice. Using site-
specific meteorological measurements to perform spinup has been applied in many studies (e.g., 
Mao et al., 2016; Duarte et al., 2017). Thus, we chose to use the site-specific meteorological 
measurements to perform both the spinup and transient simulations. 
 
References: 
Sellers, P.J., W.J. Shuttleworth, J.L. Dorman, A. Dalcher, J.M. Roberts, 1989: Calibrating the 
Simple Biosphere Model for Amazonian Tropical For- est Using Field and Remote Sensing 
Data. Part I: Average Calibration with Field Data. Journal of Applied Meteorology, 28, 727-759, 
August 1989. 
 
Response: Thanks for the information. 
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Abstract. Accurate simulations of soil respiration and carbon dioxide (CO2) fluxes are critical to project global 15 

biogeochemical cycles and the magnitude of carbon (C) feedbacks to climate change in Earth system models (ESMs). 

Currently, soil respiration is not represented well in ESMs, and few studies have attempted to address this deficiency. In this 

study, we evaluated the simulation of soil respiration in the Energy Exascale Earth System Model (E3SM) Land Model 

version 0 (ELMv0) using long-term observations from the Missouri Ozark AmeriFlux (MOFLUX) forest site in the central 

U.S. Simulations using the default model parameters significantly underestimated annual soil respiration and gross primary 20 

production, while underestimating soil water potential during peak growing seasons and overestimating it during non-

growing seasons. A site-specific soil water retention curve significantly improved modelled soil water potential, mean 

annual gross primary production and soil respiration. However, the model continued to underestimate the seasonal and 

interannual variabilities and the impact of the extreme drought in 2012. Potential reasons may include inadequate 

representations of vegetation mortality, moisture function, and the dynamics of microbial organisms and soil 25 

macroinvertebrates. Our results indicate that the simulations of mean annual gross primary production and soil respiration 

can be significantly improved by better model representations of the soil water retention curve. 

1 Introduction 

Globally, soils store over twice as much carbon (C) as the atmosphere (Chapin III et al., 2011). Soil respiration (SR) is the 

second largest C flux between terrestrial ecosystems and the atmosphere (Luo and Zhou, 2006). An accurate simulation of 30 

SR is critical for projecting terrestrial C status, and therefore climate change, in Earth system models (ESMs) (IPCC, 2013). 
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Despite significant experimental data accumulation and model development during the past decades, simulations of soil CO2 

efflux to the atmosphere still have a high degree of uncertainty (Friedlingstein et al., 2006; Jones et al., 2013; Todd-Brown et 

al., 2013; Todd-Brown et al., 2014; Tian et al., 2015), calling for comprehensive assessments of model performance against 

observational data. 

To assess the performance of ESMs, different types of data can be used. For example, using atmospheric CO2 5 

observations, eddy covariance measurements and remote sensing images, Randerson et al. (2009) found that two ESMs 

underestimated net C uptake during the growing season in temperate and boreal forest ecosystems, primarily due to the 

delays in the timing of maximum leaf area in the models. By comparing remote sensing estimations from the Moderate 

Resolution Imaging Spectroradiometer and flux tower datasets, Xia et al. (2017) found that better representations of 

processes controlling monthly maximum gross primary productivity (GPP) and vegetation C use efficiency (CUE) improved 10 

the ability of models to predict the C cycle in permafrost regions. 

Despite the significance of large global SR fluxes, SR has rarely been evaluated in ESMs using long-term observations. 

Among the factors that influence SR, soil water potential (SWP) provides a unified measure of the energy state of soil water 

that limits the growth and respiration of plants and microbes. Unlike soil temperature (ST) or soil volumetric water content 

(VWC), however, SWP is difficult to directly monitor in the field. Accurate estimation of SWP largely relies on the soil 15 

water retention curve (i.e., the relationship between VWC and SWP), which is highly specific to soil properties (Childs, 

1940; Clapp and Hornberger, 1978; Cosby et al., 1984; Tuller and Or, 2004; Moyano et al., 2013). Site-level data have been 

used to evaluate model representations of other processes, such as phenology, net primary production (NPP), transpiration, 

leaf area index (LAI), water use efficiency, and nitrogen use efficiency (Richardson et al., 2012; De Kauwe et al., 2013; 

Walker et al., 2014; Zaehle et al., 2014; Mao et al., 2016; Duarte et al., 2017; Montané et al., 2017). In Powell et al. (2013), 20 

the only aspect influencing the modelling of SR was the sensitivity of SR to VWC in an Amazon forest, but the study 

resulted in no improvements to simulated SR. Here, we focus on improving simulations by using site-specific measurements 

to assess multiple factors influencing SR. 

We will evaluate the simulation of SR step by step. We assessed underlying mechanisms in the Energy Exascale Earth 

System Model (E3SM) Land Model version 0 (ELMv0) by using intensive observations at the Missouri Ozark AmeriFlux 25 

(MOFLUX) forest site in the central U.S. We first evaluated the effects of two abiotic factors, ST and SWP, on the 

simulation of SR. Then we evaluated the effects of biotic factors, such as GPP, LAI and Q10 of heterotrophic respiration, on 

the simulation of surface CO2 efflux to the atmosphere. 

2 Materials and Methods 

2.1 Study site and measurements 30 

The MOFLUX site is located in the University of Missouri’s Thomas H. Baskett Wildlife Research and Education Area 

(latitude 38º44’39”N, longitude 92º12’W). The mean annual precipitation is 1083 mm, while minimum and maximum 
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monthly mean temperatures are −1.3 ºC (January) and 25.2 ºC (July), respectively. The site is a temperate, upland oak-

hickory forest, with major tree species consisting of white oak (Quercus alba L.), black oak (Q. velutina Lam.), shagbark 

hickory (Carya ovata (Mill.) K. Koch), sugar maple (Acer saccharum Marsh.), and eastern red cedar (Juniperus virginiana 

L.) (Gu et al., 2016; Wood et al., 2017). The dominant soils are the Weller silt loam and the Clinkenbeard very flaggy clay 

loam (Young et al., 2001). 5 

Ecosystem C, water and energy fluxes, SR, LAI and supporting meteorological measurements were initiated in June 

2004 (Gu et al., 2016). Soil respiration was measured within the ecosystem flux tower footprint using non-flow through non-

steady state auto-chambers. From 2004 through 2013, SR was measured using eight automated, custom-built chambers (ED 

system; Edwards and Riggs, 2003; Gu et al., 2008) coupled with an infrared gas analyzer (LI-820 Li-Cor Inc., Lincoln, 

Nebraska). In 2013, this system was replaced with 16 auto-chambers operated using the closed-path system (model LI-8100; 10 

Li-Cor Inc., Lincoln, Nebraska). The two systems (ED and Li-8100) were operated side-by-side for several weeks in 2010 

and found to produce comparable responses (Paul Hanson, personal communication).  Half-hourly SR time series were 

generated to coincide with the ecosystem flux data set by averaging those chambers sampled in the corresponding averaging 

period. Net ecosystem CO2 exchange (NEE) was measured on a 32-m walk-up scaffold tower (Gu et al., 2016). A soil 

temperature profile sensor (model STP01, HuksefluxUSA, Inc., Center Moriches, NY) measured at 5 depths down to 0.5 m. 15 

Soil VWC was measured using water content reflectometers (model CS616, Campbell Scientific Inc., Logan UT) installed 

beneath each soil chamber. All the data were recorded at half-hourly intervals, which were integrated over time to obtain 

daily and annual fluxes. 

2.2 Ecosystem C flux partitioning 

Flux-tower GPP was estimated from measured NEE. To reduce biases resulting from individual methods, three NEE-20 

partitioning approaches were employed. The average and variation of the three methods were used to evaluate the model-

simulated GPP. In the first two methods, ecosystem respiration (ER) was estimated from nighttime NEE and extrapolated to 

daytime, and daytime GPP was calculated from NEE and the extrapolated ER (Reichstein et al., 2005). The only difference 

between the two methods was whether to exclude night-time data under non-turbulent conditions. In the third method, GPP 

was estimated by fitting the light-response curve between NEE and radiation (Lasslop et al., 2010). All the partitioning 25 

calculations were conducted using the R package REddyProc (Reichstein et al., 2017). 

2.3 Model description 

The ELMv0 used in this study is structurally equivalent to the Community Land Model 4.5 (CLM 4.5), which includes 

coupled carbon and nitrogen cycles (Oleson et al., 2013). In ELMv0, the soil biogeochemistry can be simulated with one-

layer or multi-layer converging trophic cascade (CTC, i.e., CLM-CN) decomposition model. We used the vertically-resolved 30 

CTC decomposition in this study. In the model, SR was calculated by different CO2 emission components (Oleson et al., 

2013):  
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where RA and RH are belowground autotrophic and heterotrophic respiration, respectively. RA is the sum of root maintenance 

(RM) and growth respiration (RG). Rlivecroot and Rfroot are maintenance respiration of live coarse root and fine root. [N]livecroot 

and [N]froot are nitrogen content of live coarse and fine roots. Rbase is the base maintenance respiration at 20 ºC. Rq10 which 10 

equals 2, is the temperature sensitivity of maintenance respiration. T2m is the air temperature at 2 m. Cnew_root is the new root 

growth C. RH is the sum of heterotrophic respiration of four SOC pools with different turnover rates (Oleson et al., 2013) in 

the 10 soil layers. The parameters ki and rfi are the turnover rate and respiration fraction of the ith pool. xT, xW, xO, xD, xN are 

environmental modifiers of soil temperature, soil water content, oxygen, depth and nitrogen for each layer, respectively. A 

detailed description of the environmental modification can be found in Oleson et al. (2013). Briefly, the temperature and 15 

water modifiers were: 
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where Q10 is the temperature sensitivity (the default value is 1.5), Tref is the reference temperature (25 ºC). Ym is the matric 

water potential, Ymin is the lower limit for matric potential, and Ymax is the matric water potential under saturated conditions. 20 

The ELMv0 is a grid-based model. To assess it using site-level observations, we used a point-run framework which allows 

the model to simulate individual sites (Mao et al., 2016). Single-point runs forced with site-level measurements have a long 

history to evaluate model representations of phenology, NPP, transpiration, LAI, water use efficiency, and nitrogen use 

efficiency (Richardson et al., 2012; De Kauwe et al., 2013; Walker et al., 2014; Zaehle et al., 2014; Mao et al., 2016; Duarte 

et al., 2017; Montané et al., 2017). With site-specific forcing, a 200-year accelerated decomposition spin-up was performed, 25 

followed by a 200-year normal spin-up, before the transient simulation was performed from 1850 to 2013. The vegetation 

was set as 100% temperate deciduous forest. 
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2.4 Soil water retention curve 

Soil water potential values for the Weller soils (https://soilseries.sc.egov.usda.gov/OSD_Docs/W/WELLER.html) were 

estimated from observed VWC and soil water retention curves that were developed for the site. To derive the soil water 

retention curves,  soil samples were collected in the area of the flux tower base at two depths: 0 to 30 cm and below 30 cm. 

Samples were evaluated periodically for soil water potential using a dewpoint potentiometer (Decagon Devices, Model 5 

WP4C) as they dried over time (Hanson et al., 2003). 

In the ELMv0, the SWP was calculated from VWC based on the Clapp & Hornberger model (Clapp and Hornberger, 

1978), in which the SWP-VWC relationship was expressed as 

Ψs = ΨA d
|

|A
l

H}

																																																																											Eq. (10) 

where | and Ψs are the VWC and matric potential (MPa); and |A and ΨA are VWC and matric potential under saturated 10 

conditions, and B is a parameter to determine the shape of the SWP-VWC relationship. In the ELMv0, all parameters were 

calculated from the fraction of organic matter (fom), clay content (fclay; %) and sand content (fsand; %) (Cosby et al., 1984; 

Lawrence and Slater, 2008), where 

ΨA = −�(1 − P7s) × 10 × 10
C.ÅÅHD.DCÇC9eÉÑÖ + 10.3P7sÜ 						Eq. (11) 

|A = á(1 − P7s) × (0.489 − 0.00126PA@Và) + 0.9P7sâ										Eq. (12) 15 

ä = (1 − P7s) × á2.91+ 0.159P51@ãâ + 2.7P7s																								Eq. (13) 

In addition to the Clapp & Hornberger model, four other empirical models (Brooks and Corey, 1964; van Genuchten, 

1980; Fredlund and Xing, 1994; Hanson et al., 2003) were also used to fit the SWP curve against VWC (Table 1, Figure 1). 

In the Brooks & Corey model, the SWP-VWC relationship was expressed as 

| − |6

|A − |6
= å

d
Ψ?

Ψs
l

ç

										Ψs > Ψ?

1																					Ψs ≤ Ψ?

																																														Eq. (14) 20 

where |6 and |A are the residual and saturated water contents, respectively, | and Ψs  are measured VWC and matric 

potential (MPa), Ψ? is a parameter related to the soil matric potential at air entry, and é is related to the soil pore size 

distribution (Brooks and Corey, 1964).  

In the Fredlund & Xing model, the SWP-VWC relationship was described as 

| − |6
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= è
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s

																																																Eq. (15) 25 

where a, n and m are parameters determining the shape of the soil water characteristic curve (Fredlund and Xing, 1994).  

In the Hanson model (Hanson et al., 2003), soil matric potential was modelled by a double exponential function: 

Ψs = −ì?ï
ñ
− ó																																																																										Eq. (16) 

where a, b, c and d are fitted parameters.  
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In the van Genuchten model, the SWP-VWC relationship was described as 
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																																												Eq. (17) 

where ò (MPa-1) and n are parameters that determine the shape of the soil-water curve (van Genuchten, 1980).  

In addition to the default SWP-VWC relationship in the ELMv0, all the five empirical models were parameterized using 

non-linear fitting against measured VWC and SWP data from the study site. For the calibration of the Clapp & Hornberger 5 

model, instead of using the hard-coded parameters in Eq. 11-13, we calibrated the three parameters (i.e., Ψs, |A and ΨA) in 

the Clapp & Hornberger model (Eq. 10). The root-mean-square error (RMSE) and Akaike Information Criterion (AIC) were 

used to select the best model representing the SWP-VWC relationship. The AIC value was calculated by: 

ôöU = ìtõ ú
∑(û̂)I

ì
†+ 2°																																										Eq. (18) 

where a is the number of data points, û̂ is the estimated residual of each data point, and b is the total number of estimated 10 

model parameters. Smaller RMSE and AIC values imply a better fit to observational data. The best-fit model was used in 

two ways. First, it was used to calculate the “observed” SWP from monitored VWC in the field. Second, it was implemented 

in the ELMv0 to replace the default SWP model in order to improve the SWP simulation. 

2.5 Evaluation of SR in the model 

The evaluation of SR was conducted step by step. We first compared observations with the model default output of SR and 15 

related factors, including ST, SWP, GPP, and LAI. Thereafter, we attempted to improve the simulation of these factors in 

order to improve the overall SR simulation by (i) implementing the best-fit SWP-VWC relationship, and (ii) modifying 

model parameters related to GPP, LAI and SR. GPP-related parameters included the specific leaf area (SLA) at the top of 

canopy and the fraction of leaf nitrogen in the RuBisCO enzyme. LAI-related parameters included the number of days to 

complete leaf fall during the end of growing season, the critical day length for senescence (i.e., the length of the day when 20 

leaves start to senesce), and a parameter a that was used to produce a linearly-increasing rate of litterfall. The contributions 

and autotrophic and heterotrophic respiration to total SR were also calculated. In addition, the Q10 of heterotrophic 

respiration was also modified. Because the parameter modification was dependent on the evaluation steps, how the 

parameters were modified is presented in the Results section. 

 25 

3 Results 

For the upper 30 cm of soil, the ELMv0 simulations using the default Clapp and Hornberger model tended to underestimate 

the SWP when VWC was less than 15% (Fig. 1a), while SWP rapidly approached zero when VWC was greater than 25% 

(Fig. 1a). For soil below 30 cm, the ELMv0 showed a consistent overestimation of SWP when VWC exceeded 15% (Fig. 
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1b). The default ELMv0 showed relatively high RMSE for both soil layers, indicating that the SWP-VWC relationship was 

not well simulated in the ELMv0 (Table 1). Although the Clapp & Hornberger model performed better by using parameters 

from non-linear fitting, its performance was not as good as the Hanson and the van Genuchten models (Table 1, Fig. 1). The 

Hanson model was the best-fit model for the MOFLUX site, showing the smallest RMSE and AIC values for both soil layers 

(Table 1, Fig. 1), and was therefore implemented in ELMv0 to calculate SWP from measured VWC. 5 

 

 
Figure 1: Observed (black dots) and simulated relationship between soil water potential (SWP) and volumetric water content 

(VWC) by the different models at two soil layers: (a) 0 to 30 cm and (b) below 30 cm. 

 10 

Table 1. Root-mean-square-error (RMSE) and Akaike Information Criterion (AIC) of different models in simulating the SWP-VWC 

relationship for the soil in the MOFLUX site at two depths: 0 to 30 cm and below 30 cm. 

 < 30 cm  > 30 cm 

Model RMSE AIC  RMSE AIC 

Clapp & Hornberger (default ELMv0) 4.25 157.82  1.33 18.51 

Brooks & Corey 3.91 151.05  1.13 13.51 

Clapp & Hornberger (calibrated) 0.53 -61.03  0.51 -23.43 

Fredlund & Xing 0.51 -63.15  2.43 47.13 

Hanson 0.41 -86.07  0.34 -38.98 

van Genuchten 0.50 -65.53  0.36 -36.61 

 

a b
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The ELMv0 default run significantly underestimated both annual SR and GPP (Fig. 2). In addition, the simulated SR 

had smaller interannual variability compared to the observations. The model was not able to simulate the steep drop of SR or 

GPP during the extreme drought in 2012. The simulations of ST and SWP were isolated to analyse their contributions to 

model performance. Whereas the model simulated ST well at 10 cm depth (Fig. 3a), it tended to underestimate SWP when 

water is limiting and to overestimate SWP otherwise (Fig. 3b). Implementing the data-constrained Hanson model 5 

significantly improved the simulation of SWP, showing a greater R2 and a much smaller RMSE than that of the default run 

(Fig. 3b). After improving the simulation of SWP, the model better matched the observed annual SR and GPP (Fig. 2). The 

mean annual simulations of SR and GPP fell into the 1 sigma (i.e., standard deviation) of observations (inserted plot in Fig. 

2).  The changes in annual SR and GPP (i.e., the differences between before and after the improved SWP simulation using 

the Hanson model) showed a linear relationship (Fig. S1). In addition, the improved soil water scheme using the Hanson 10 

model increased both the moisture modifiers of GPP and heterotrophic respiration (i.e., btran and xW) during the peak 

growing season, and reduced xW during the non-growing season (Fig. S2). The btran is the transpiration beta factor, which 

controls the soil water limitation to transpiration and photosynthesis, while xW is the soil moisture modifier for heterotrophic 

respiration as shown in Eq. (9). While SOC when simulated by the model with different soil water schemes generally fell 

within the wide range of observations, the improved SWP simulations using the Hanson model increased SOC stocks (Fig. 15 

S3). 

 

 

 
Figure 2: Annual soil respiration (SR) and gross primary production (GPP). Blue and red lines are model outputs before (MODdefault) 20 
and after (MODH) soil water potential improvement, respectively. Black lines and grey area are the observed (OBS) mean and 1 sigma 

(i.e., standard deviation) range, which were calculated from eight field replications for SR, and from three different net ecosystem 

exchange partitioning methods for GPP. The inserted bar plots are mean annual average ± 1 sigma across 2005-2011. 

Despite the improved simulation of SR, the model still underestimated SR and GPP during peak growing seasons when 

SR and GPP were high, and overestimated them during non-growing seasons (Figs. 4, S4). In other words, though the 25 

a b

MODdefault
MODH
OBS
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improved simulation of SWP increased SR and GPP during peak growing seasons, the model still showed systematic errors. 

We attempted to improve the seasonal simulations of SR, GPP and LAI by modifying several related parameters (Table 2). 

Using measurements of C and energy fluxes from the MOFLUX site, Lu et al. (2018) calibrated a polynomial surrogate 

model of the ELMv0. Based on their results, we modified two parameters, i.e., the SLA at the canopy top from 0.03 to 0.01, 

and the fraction of leaf nitrogen in the RuBisCO enzyme from 0.1007 to 0.12. 5 

 

  
Figure 3: Daily soil temperature (ST) and soil water potential (SWP) at 10 cm. Blue and red lines/dots are model outputs before 

(MODdefault) and after (MODH) soil water potential improvement, respectively. R2 and RMSE are shown in corresponding colours. 

Extremely low SWP values due to frozen soil water are not shown. 10 

 

Comparing the simulated LAI with the observations (Fig. 4), we found that the parameter ndays_off (number of days to 

complete leaf offset) in the ELMv0 was too short (default value = 15 days) for the MOFLUX site. Thus, we reset the value 

of ndays_off to 45 days. We also modified the values of two additional parameters, i.e., crit_dayl and a correspondingly 

(Table 2). Parameter crit_dayl (the critical day length for senescence, units: second) triggers the leaf falling during the end of 15 

the growing season. Parameter (a) is used to produce a linearly-increasing litterfall rate. Results showed that the ELMv0 

with both the default and improved SWP by the Hanson model overestimated the maximum LAI (Fig. 4a). The adjustment 

of the aforementioned five parameters (Table 2) significantly reduced the LAI to within a more reasonable range (Fig. 4a). 

a

b

MODdefault
OBSR2 = 0.87

RMSE = 2.76

MODdefault
MODH
OBS

R2 = –4.66
0.37

RMSE =   0.48
0.16
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The parameter changes further increased the simulated GPP and SR during the peak growing season, in addition to the 

improvement by the adjusted SWP (Fig. 4b, c). However, all modifications of the ELMv0 still overestimated SR during the 

non-growing season, resulting in significant overestimation of annual SR fluxes (Fig. S5a). After the parameter adjustments, 

the annual GPP flux was still within the observed range (Fig. S5b). The contributions of autotrophic and heterotrophic 

respiration to total SR had a seasonal cycle (Fig. 5). The contribution of heterotrophic respiration to total SR ranged from 5 

60% to 90%. 

 

Table 2. Modified parameters to better simulate gross primary production (GPP) and leaf area index (LAI) at the MOFLUX site in the 

ELMv0. 

Parameter name 

(unit*) 

Parameter description Default model 

value  

Tuned 

values 

slatop Specific leaf area at top of canopy 0.03 0.01 

flnr Fraction of leaf nitrogen in RuBisCO enzyme 0.1007 0.12 

ndays_off (d) Number of days to complete leaf offset 15 45 

Crit_dayl (s) Critical day length for senescence 39300 43200 

a To control the rate coefficient rxfer_off to produce a 

linearly-increasing litterfall rate 

2 10 

*slatop, flnr and a are unitless 10 

 

In addition, we analyzed changes in simulated evapotranspiration (ET), runoff, photosynthesis, net primary production, 

C allocations to fine roots, leaf and woody tissue in response to the changes in the soil water scheme and parameters (Fig. 

S6, S7). The change in soil moisture scheme and parameter adjustments slightly increased ET and decreased runoff. Despite 

these slight changes, the model simulated ET generally fell within the observed range, with or without changes in soil water 15 

scheme and parameters (Fig. S6). The improved SWP and parameter adjustments generally increased all photosynthesis, 

NPP and carbon allocations to different tissues during the growing season (Fig. S7).  
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Figure 4 The annual mean cycles of leaf area index (LAI), gross primary production (GPP) and soil respiration (SR). OBS: 

observation; MODdefault: model output before soil water potential improvement; MODH: model output after soil water potential 

improvement by the Hanson model; MODH_param: model output after soil water potential improvement by the Hanson model and parameter 

adjustments. 5 
 

 

 

 
Figure 5: Modelled contributions of autotrophic (Ra) and heterotrophic (Rh) respiration to total soil respiration (SR). 10 
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4 Discussion 

4.1 Effect of SWP on annual SR 

Constraining the SWP-VWC relationship with site-specific data and using the Hanson model instead of the ELMv0 default 

model (Fig. 1) significantly improved the model representation of SWP (Fig. 3) and annual SR (Fig. 2a). The improvements 

in model fits could be due to the following reasons. First, the Hanson model significantly increased GPP. The default 5 

ELMv0 underestimated GPP (Fig. 2b), as in a recent study where CLM4.5 significantly underestimated GPP at a coniferous 

forest in northeastern United States (Duarte et al., 2017). GPP can directly affect the magnitude of root respiration as shown 

in many previous studies (Craine et al., 1999; Högberg et al., 2001; Wan and Luo, 2003; Verburg et al., 2004; Gu et al., 

2008). Additionally, increased GPP can build a larger SOC pool, the substrate for heterotrophic respiration (Fig. S3). 

Second, the changed soil moisture scheme increased the moisture modifier (xW) on heterotrophic respiration during the peak-10 

growing season, and decreased it during the non-growing season (Fig. S2), which is consistent with the trend of changes in 

SWP (Fig. 3). These changes together resulted in the improvement of simulated SR. 

The simulation of SWP in the default ELMv0 was poor compared with that of ST (Fig. 2), which may be a common 

issue in ESMs. For example, using a reduced-complexity model, Todd-Brown et al. (2013) demonstrated that the spatial 

variation in soil C in most ESMs is primarily dependent on C input (i.e., NPP) and ST, showing R2 values between 0.62 and 15 

0.93 for 9 of 11 ESMs. However, the same reduced-complexity model, driven by observed NPP and ST, can only explain 

10% of the variation in the Harmonized World Soil Database observational database (Todd-Brown et al., 2013). These 

previous results indicate that other important factors affecting soil C dynamics, in addition to NPP and ST, are inadequately 

simulated in ESMs (Powell et al., 2013; Reyes et al., 2017). Powell et al. (2013) showed that differential sensitivity of SR to 

VWC in several ESMs using observations in two Amazon forests. Our analyses in this study indicate that improving the 20 

modelled SWP can significantly improve mean annual GPP and SR simulations. Thus, we propose that the SWP simulation 

in ESMs should be calibrated carefully with observations, and/or by using different model representations of the SWP-VWC 

relationship. Because there is no global grid-based SWP database, paired measurements of VWC and SWP are needed along 

with soil characteristics in a variety of soil types and ecosystems. These data can be used to calibrate SWP-VWC 

relationships and SWP simulations in models. Besides, there are many sites, such as the MOFLUX site in this study, 25 

collecting long-term hydrological and biogeochemical data. These data are useful to evaluate whether better SWP simulation 

will improve biogeochemical cycling simulations. 

In this study, we derived better SWP-VWC relationship by using non-linear fitting, primarily because of the availability 

of soil moisture retention curve data. It is an efficient method when site-level data is available, but it is not realistic to 

calibrate the water retention curve for every site. The SWP-VWC relationship is dependent on soil texture (Clapp and 30 

Hornberger, 1978; Cosby et al., 1984; Tuller and Or, 2004), so building relationships between model parameters and soil 

texture may allow efficient extrapolations of site-level measurements to regional and global scales. 
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Parameters in the default Clapp & Hornberger model used in the ELMv0 were derived from synthesizing data across 

soil textural classes (Clapp and Hornberger, 1978; Cosby et al., 1984; Lawrence and Slater, 2008). The data were derived 

from over 1,000 soil samples from 11 USDA soil textural classes (Holtan et al., 1968; Rawls et al., 1976). The dependence 

of model parameters on soil texture were derived from a regression of these 11 data points, i.e., the mean parameter values of 

11 soil textural classes against the sand or clay fractions (Cosby et al., 1984). Because no actual sand or clay content of soil 5 

samples was reported in the original databases (i.e., only the soil textural classes were reported), the sand and clay fractions 

used for the regression were obtained from midpoint values of each textural class (Clapp and Hornberger, 1978; Cosby et al., 

1984). One potential issue is that soil samples in the same textural classes can have different sand and clay contents and 

SWP-VWC relationships, which may not be fully represented when they are grouped together. An updated SWP-VWC 

database with actual sand and clay content measurements could provide improved empirical relationships between model 10 

parameters and soil texture in the water retention model. 

In addition, different empirical models have been developed to describe the SWP-VWC relationship (Brooks and Corey, 

1964; Clapp and Hornberger, 1978; van Genuchten, 1980; Fredlund and Xing, 1994; Hanson et al., 2003). These models 

could be evaluated against data, and the selected best-fit model(s) could be used to calculate SWP in the field from 

continuously monitored VWC (e.g., from the AmeriFlux network) on different spatial and temporal scales. The database 15 

could also be used as a benchmark to evaluate simulations of soil water and biogeochemical processes in ESMs. 

Moreover, we also explored whether the calibrated Clapp & Hornberger model can lead to similar improvements with 

the Hanson model (Fig. S8). Generally, both the Hanson model and the calibrated Clapp & Hornberger model improved the 

simulation of GPP and SR in the ELM, in comparison with the default run (Fig. S8). The ELMv0 with the Hanson model 

consistently produced higher GPP and SR than that with the calibrated Clapp & Hornberger model. In comparison with the 20 

observations, the modelled SR generally fell within the 1 sigma (i.e., standard deviation) range of observations, by using 

both the Hanson model and the calibrated Clapp & Hornberger model. However, the modelled GPP with the calibrated 

Clapp & Hornberger model was still lower than the observations. Given the order of the goodness-of-fit of the SWP-VWC 

relationship was default Clapp & Hornberger model < calibrated Clapp & Hornberger model < calibrated Hanson model 

(Table 1), these results further support the conclusion that better representations of SWP can improve the simulations of 25 

carbon processes. Therefore, throughout the remainder of this manuscript, we used the Hanson model to represent the SWP-

VWC relationship. 

4.2 Representation of seasonal and interannual variabilities in the ELMv0 

Although the simulation of the SWP using the Hanson model improved the representation of both annual SR and GPP, 

the model continued to overestimate SR during the non-growing season (Figs. 4), resulting in significant overestimations of 30 

the annual SR fluxes (Fig. S5). In addition, no matter which SWP simulations were used, the ELMv0 had smaller interannual 

variability than the observations (Fig. 2). Specifically, the model was not able to capture the steep decreases in GPP and SR 

in the extreme drought year (i.e., 2012; Fig. S9). These results indicate that the current model structure is not sensitive 
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enough to environmental changes. Several potential reasons may contribute to the underestimated seasonal and interannual 

variability. For example, field inventory data at the study site showed that the severe drought-pathogen interactions in 2012 

resulted in a significant stem mortality of tree species (Wood et al., 2017). Thus, the observed steep decreases in GPP and 

SR could be because of the species mortality. In addition, the stem mortality led to lower moisture loss through 

evapotranspiration (Fig. S9), resulting in no soil moisture decrease (Fig. S10). In the model, however, the water limitation to 5 

biogeochemical cycles is primarily controlled by soil water stress. In other words, the ELMv0 had moisture modifications at 

the physiological level, but not at the plant community level. As a result, although the better presentation of SWP improved 

the mean annual simulations of biogeochemical processes, the model was not able to capture the mortality and the 

interannual variability of GPP and SR. 

The calculation of the moisture scalars (e.g., btran and xW) using empirical equations from SWP may be another 10 

potential reason for the insensitivity. For example, observational results have shown that there may be an optimal moisture 

point at which soil respiration peaks with significant reductions in decomposition towards both dryer and wetter conditions 

(Linn and Doran, 1984; Franzluebbers, 1999; Monard et al., 2012; Sierra et al., 2017). In the ELMv0, however, the moisture 

scalar increases from 0 to 1 with the increase in soil moisture and does not decrease afterwards (Eq. 9). Thus, the ELMv0 

may not be sensitive to extreme wet conditions. The linear empirical equation between the lower and upper thresholds (Ψ¢£§ 15 

and Ψ¢•¶) may not capture non-linear moisture behaviours, leading to insensitive responses of biogeochemical processes to 

moisture change. Incorporating more mechanistic moisture scalars may improve the sensitivity of the model in response to 

moisture changes (Ghezzehei et al.; Yan et al., 2018). 

In the ELMv0, heterotrophic respiration contributed a majority proportion (i.e., over 85%) to total SR during non-

growing seasons (Fig. 5), suggesting that the overestimation of SR during these seasons was primarily due to the biased 20 

heterotrophic respiration simulation. A potential reason for the biased heterotrophic respiration simulation may be related to 

the temperature sensitivity (Q10). Theoretically, a higher Q10 can result in greater seasonal variability of SR (Fig. S11). 

Compared to relatively small Q10 values, a larger Q10 can lead to lower heterotrophic respiration when temperature is below 

the reference temperature, and greater heterotrophic respiration when temperature is above the reference (Fig. S11). In the 

ELMv0, the reference temperature is 25 ºC and the Q10 of heterotrophic respiration is 1.5 (Oleson et al., 2013). A previous 25 

study derived a much greater Q10 value (i.e., 2.83) when the parameters were calibrated with data from another temperate 

forest (Mao et al., 2016). We hypothesized that the Q10 value of 1.5 may be too small for the MOFLUX site. We arbitrarily 

increased Q10 from 1.5 to 2.5, but there were minimal effects on the SR simulation (Fig. S12). This indicates that modifying 

the temperature sensitivity of heterotrophic respiration may not improve the modelled representation of seasonality of SR in 

the ELMv0. 30 

Another potential reason for the biased heterotrophic respiration simulation may be that the seasonality of microbial 

organisms was not adequately represented in the model. Like most ESMs, the ELMv0 represents soil C dynamics using 

linear differential equations and assumes that SR is a substrate-limited process in the model. However, producers of CO2 in 

soils, microbial organisms, have a significant seasonal cycle (Lennon and Jones, 2011). These organisms usually have very 
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high biomass and activity during growing season peaks with favourable conditions of temperature, moisture and substrate 

supply, and tend to be dormant under stressful conditions (Lennon and Jones, 2011; Stolpovsky et al., 2011; Wang et al., 

2014; Wang et al., 2015). The seasonality of microbial biomass and activity, in addition to that of GPP and ST, may 

contribute to the seasonal variability of SR. 

Additionally, lacking representation of macroinvertebrate and other forest floor and soil fauna in the ELMv0 may be 5 

another reason. There is a high density of earthworms at the MOFLUX site (Wenk et al., 2016). Earthworms can shred and 

redistribute soil C and change soil aggregation structure, which may alter soil C dynamics and CO2 efflux to the atmosphere 

(Verhoef and Brussaard, 1990; Brussaard et al., 2007; Coleman, 2008). Like microbial organisms, earthworms usually have 

a significant seasonal cycle, showing high biomass and high activity during peak growing seasons and tending to be dormant 

during non-growing seasons (Wenk et al., 2016). However, a recent review suggests that current experimental evidence and 10 

conceptual understanding remains insufficient to support the development of explicit representation of fauna in ESMs 

(Grandy et al., 2016). Therefore, data collection focused on seasonal variations in fauna and microbial biomass and activity 

might enable further improvements in the representation of seasonal variation in SR. 

Our analyses also showed that the modelled SR was not able to reach the observed peak in many years during the peak 

growing season, even when the modelled GPP exceeded the observation. In addition, the parameter modification increased 15 

GPP during both peak and non-growing seasons, resulting in an even greater overestimation of SR during non-growing 

seasons. These results suggest that simply increasing GPP may not be adequate to increase the seasonal variability of the 

simulated SR. A potential reason may be that the current model does not include root exudates. Root exudates are labile C 

substrates that are important for SR (Kelting et al., 1998; Kuzyakov, 2002; Sun et al., 2017). The root exudate rate is 

primarily dependent on root growth, showing a seasonal cycle in temperate forests (Kelting et al., 1998; Kuzyakov, 2002). 20 

Thus, including root exudates in the model may further increase the model simulated SR during the peak growing season 

without needing to increase GPP. 

5 Conclusions 

In this study, we used temporally extensive and spatially distributed site observations of SR to assess the capabilities of 

ELMv0. These results indicated that an improved representation of SWP within the model provided better simulations of 25 

annual SR. This underscores the need to calibrate SWP in ESMs for more accurate projections of coupled climate and 

biogeochemical cycles. Notwithstanding this improvement, however, the ELMv0 still underestimated seasonal and 

interannual variabilities. It may be that inadequate model representation of vegetation dynamics, moisture function, and the 

dynamics of microbial organisms and soil macroinvertebrates could be explored as means to achieve better fit. Future 

incorporation of explicit microbial processes with relevant data collection activities may therefore enable improved model 30 

simulations. 
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