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Abstract. In this paper, we evaluate the skill of the road
weather model RoadSurf to reproduce present-day road
weather conditions in Finland. RoadSurf was driven by
meteorological input data from cycle 38 of the high-
resolution regional climate model (RCM) HARMONIE-5

Climate (HCLIM38) with ALARO physics (HCLIM38-
ALARO) and ERA-Interim forcing in the lateral boundaries.
Simulated road surface temperatures and road surface con-
ditions were compared to observations between 2002 and
2014 at 25 road weather stations located in different parts10

of Finland. The main characteristics of road weather condi-
tions were accurately captured by RoadSurf in the study area.
For example, the model simulated road surface temperatures
with a mean monthly bias of − 0.3 ◦C and mean absolute
error of 0.9 ◦C. The RoadSurf’s output bias most probably15

stemmed from the absence of road maintenance operations in
the model, such as snow plowing and salting, and the biases
in the input meteorological data. The biases in the input data
were most evident in northern parts of Finland, where the re-
gional climate model HCLIM38-ALARO overestimated pre-20

cipitation and had a warm bias in near-surface air tempera-
tures during the winter season. Moreover, the variability in
the biases of air temperature was found to explain on aver-
age 57 % of the variability in the biases of road surface tem-
perature. On the other hand, the absence of road maintenance25

operations in the model might have affected RoadSurf’s abil-
ity to simulate road surface conditions: the model tended to
overestimate icy and snowy road surfaces and underestimate
the occurrence of water on the road. However, the overall
good performance of RoadSurf implies that this approach30

can be used to study the impacts of climate change on road
weather conditions in Finland by forcing RoadSurf with fu-
ture climate projections from RCMs, such as HCLIM.

1 Introduction

The road traffic sector is one field benefiting from im- 35

proved regional weather and climate information, especially
at northern high latitudes. These regions do not only expe-
rience frequent wintertime snow and ice conditions but also
rapidly changing road weather due to, for instance, the on-
set of snowfall (Juga et al., 2012) or during temperature 40

variations around the freezing point (Kangas et al., 2015).
Systematic consideration of upcoming weather events helps
the general public in their everyday commute and, further-
more, road maintenance authorities to attend the roads in a
cost-effective manner (Nurmi et al., 2013). In Finland, the 45

Finnish Meteorological Institute (FMI) has a duty to issue
warnings of hazardous traffic conditions to the general pub-
lic. To support this, the institute has developed a road weather
model, RoadSurf, which has been in operational use since
2000 (Kangas et al., 2015). 50

Road weather conditions are expected to be affected by
ongoing anthropogenic climate change (e.g. Jaroszweski et
al., 2014) throughout the inhabited northern high latitudes.
This region is strongly impacted by the Arctic amplifica-
tion of climate warming (Screen, 2014), which can clearly 55

be seen, for instance, in the Finnish temperature records of
the past 170 years (Mikkonen at al., 2015). The expected
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warmer and wetter future climate implies new challenges for
road maintenance and traffic safety, especially in the south-
ern parts of Finland: precipitation events are likely to shift to-
wards less snowfall and more frequent rain and sleet episodes
(Räisänen, 2016). This kind of change in climate will de-5

crease snowy road conditions but at the same time increase
the occurrence of wet road surfaces, which could lead to
more frequently observed slippery and icy road conditions
during the coldest times of a day, such as nighttime (Ander-
sson and Chapman, 2011a). Moreover, the events of temper-10

ature change around the freezing point might become more
frequent in the northern parts of Finland (Makkonen et al.,
2014), leading to an increased occurrence of black ice con-
ditions and making the roads more vulnerable to erosion.
Therefore, policymakers and other stakeholders should have15

access to credible regional climate projections that can pro-
vide a solid basis for informed impact assessments and adap-
tation measures in the road weather sector. A central tool for
producing such projections is high-resolution regional cli-
mate models (RCMs).20

Although the impacts of climate change on road weather,
safety, and design have been assessed in many studies (e.g.
see Koetse and Rietveld, 2009), most of these studies have
only considered relative changes in air temperature and pre-
cipitation and related these to the possible impacts on the25

roads (e.g. Andersson and Chapman, 2011a, b; Hambly et
al., 2013; Hori et al., 2018; Makkonen et al., 2014). It would
be beneficial to study the climate change impacts on, for in-
stance, road surface temperatures (Troad) or road surface con-
ditions using an approach in which these impacts can be ac-30

cessed more directly. Furthermore, as slippery road condi-
tions, such as snowy or icy roads, are the major cause for the
wintertime and weather-related road accidents in Fennoscan-
dia (Andersson and Chapman, 2011b; Malin et al., 2019;
Salli et al., 2008), it is essential to estimate how frequently35

these conditions will occur in the future.
The main goal of this paper is to evaluate the skill

of RoadSurf to reproduce present-day road weather con-
ditions in Finland when driven by a state-of-the-art high-
resolution RCM, cycle 38 of the HIRLAM-ALADIN Re-40

gional Mesoscale Operational Numerical Weather Prediction
(NWP) In Europe (HARMONIE) Climate (HCLIM) (Lind-
stedt et al., 2015). HCLIM is forced by the ERA-Interim
reanalysis product (Dee et al., 2011) in the lateral bound-
aries since it is a standard procedure to carry out evaluation45

experiments using the (close to) perfect boundary settings
in RCMs (e.g. Kotlarski et al., 2014). This is the first time
that such a modeling chain is evaluated, and therefore this
evaluation is needed in order to build and study future sce-
narios of road weather in this area with higher confidence.50

Although high-resolution climate projections for Europe are
currently available through the EURO-CORDEX interna-
tional climate downscaling initiative that provides RCM data
at 50 km (EUR-44) and 12.5 km (EUR-11) resolutions (Jacob
et al., 2014), the EURO-CORDEX dataset does not publicly55

include reanalysis-driven RCM simulations at very high tem-
poral resolutions, such as 1-hourly. Therefore, meteorologi-
cal input data for RoadSurf are taken from HCLIM, which is
run for the years 2002–2014 with ALARO physics (Gerard,
2007; Gerard et al., 2009; Piriou et al., 2007) at 12.5 km reso- 60

lution. These HCLIM simulations are evaluated against stan-
dard meteorological datasets over Finland: E-OBS v19.0e
(Cornes et al., 2018) and the ERA5 reanalysis product (C3S,
2017).

In the previous studies, mainly NWP model outputs have 65

been used to force RoadSurf. The simulated road weather
parameters, such as Troad, have been verified against obser-
vations over Finland (Karsisto et al., 2016) and the Nether-
lands (Karsisto et al., 2017). In addition, Kangas et al. (2015)
have studied RoadSurf’s ability to simulate the amount of 70

water, snow, frost, and ice on the road (called storage terms in
RoadSurf) as well as road surface conditions and friction val-
ues, although only for two road weather stations in Finland.
These studies have considered relatively short verification
periods varying from 1 week to some months. In this paper, 75

we concentrate on 13-year-long simulations of HCLIM and
HCLIM-driven RoadSurf. First, the performance of HCLIM
is evaluated by comparing the model results with E-OBS
v19.0e dataset of near-surface air temperature and precipi-
tation and with ERA5 reanalysis for downwelling shortwave 80

and longwave radiation, total cloud fraction (clt), relative hu-
midity, and wind speed. All of these parameters, excluding
clt, are used as inputs for RoadSurf. This comparison is fol-
lowed by an evaluation of HCLIM-driven RoadSurf against
observations at 25 road weather stations located in Finland. 85

The focus is on Troad but also the simulated road surface con-
ditions and storage terms are compared to the observations.
In addition, this study investigates the role of the biases in
the HCLIM data on the biases in road surface temperature
produced by HCLIM-driven RoadSurf. 90

2 Models and data

2.1 Models

2.1.1 HARMONIE-Climate (HCLIM)

HARMONIE is a seamless NWP model framework devel-
oped in collaboration with several European national mete- 95

orological services (Bengtsson et al., 2017). The nonhydro-
static and spectral dynamical cores in HARMONIE are pro-
vided by ALADIN–NH (Bénard et al., 2010), which solves
the fully compressible Euler equations using a two-time
level, semi-implicit, semi-Lagrangian discretization on an 100

Arakawa A grid. This study applied a model setup using the
cy38h1 climate model version of HARMONIE with ALARO
physics (HCLIM38-ALARO hereafter), as mentioned be-
fore; a hydrostatic version of the dynamical core; and a time
step of 300 s. The HCLIM38-ALARO version used in this 105
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Figure 1. The HCLIM38-ALARO model domain and topography at
12.5 km× 12.5 km grid resolution. Colored overlays depict the re-
gions that are evaluated in more detail. The transparent areas depict
the model’s 8-point wide relaxation zone.

study includes a lake model, FLake (Mironov, 2008; Mironov
et al., 2010), and a surface parameterization framework, sur-
face externalisée (SURFEX) (Masson et al., 2013). A more
thorough description of HCLIM can be found in Lindstedt et
al. (2015).5

For this study, HCLIM38-ALARO was run from Jan-
uary 2002 to December 2014 (years 2000 and 2001 as a
spinup) over the Fennoscandian domain (151× 181 grid
boxes) with 12.5 km× 12.5 km horizontal grid resolution
and 65 vertical layers. Figure 1 depicts the HCLIM38-10

ALARO simulated domain along with the model’s 8-point
wide relaxation zone as well as the regions of Finland that
are analyzed in more detail in this study. The sea surface
(sea-surface temperature and sea-ice concentration) and lat-
eral boundary conditions of HCLIM38-ALARO were taken15

from ERA-Interim reanalysis (Dee et al., 2011) every 6 h. In
this study, the HCLIM38-ALARO output parameters were
produced every full hour and were used to force RoadSurf
offline.

2.1.2 RoadSurf20

The road weather model RoadSurf used in this study is a 1-
D model based on solving the energy balance at the ground
surface. This study employed the RoadSurf version 6.60b,
which is the operational version of the FMI’s research de-
partment with slight I/O changes made for this study. The25

model takes into account the conditions at the road surface
and beneath it, and calculates the vertical heat transfer into
the ground as well as at the interface of ground and atmo-
sphere. Hydrological processes, such as accumulation of rain
and snow, run-off from the surface, sublimation, freezing,30

melting, and evaporation, are parameterized. The model esti-

mates road surface friction using a numerical statistical equa-
tion (Juga et al., 2013). RoadSurf assumes a flat horizontal
surface which does not have any shading elements, such as
trees. However, topography in general is taken into account 35

implicitly through the input data. Thermodynamic properties
of the road surface and ground are assumed to be similar
for all simulated points, and the first two layers of the sur-
face are always described as asphalt. In addition, the effect
of traffic on the road surface is included: the model assumes 40

that traffic packs some part of the snow into ice, whereas
the remaining part is assumed to be blown away from the
road. However, the model does not take into account winter-
time road maintenance operations, such as salting and snow
plowing, because RoadSurf is also used to plan and optimize 45

these maintenance actions. The absence of road maintenance
in the model implies that there will be unavoidable discrepan-
cies when comparing the modeled and observed road weather
conditions.

As inputs, RoadSurf needs near-surface air temperature 50

(Tair), near-surface relative humidity (RH), 10 m wind speed
(WS), precipitation (Pr); and downwelling shortwave (SWd)
and longwave (LWd) radiation. In the operational use, the
model employs observations from road weather stations, me-
teorological SYNOP (surface synoptic observations) weather 55

stations, and radar precipitation networks to initialize road
conditions while the road weather is predicted for the up-
coming days utilizing forecasts produced by NWP models.
In this study, we did not include any forecasted periods im-
plying that no in situ observations were used to initialize and 60

force RoadSurf. Instead, RoadSurf was modified so that it
utilizes the RCM data, in this case the output of reanalysis-
driven HCLIM38-ALARO. In addition to the abovemen-
tioned inputs needed by RoadSurf, we utilized the bottom
layer ground temperature (at the depth of 4.28 m) produced 65

by HCLIM38-ALARO. Using the simulated ground temper-
ature instead of the climatological one was motivated by the
fact that although in the original RoadSurf version this tem-
perature is assumed to vary sinusoidally, it is estimated by
an equation in which some of the parameter values are based 70

on measurements retrieved from only one FMI observatory
located in Southern Finland. RoadSurf’s main outputs are
Troad and a traffic index describing driving conditions, but the
model produces also surface friction; prevailing road condi-
tions; and the sizes of water, snow, and ice storages on the 75

road. RoadSurf divides the road surfaces into eight classes:
dry, damp, wet, wet snow, frosty, partly icy, icy, and “dry
snow”. This classification is mainly based on the storage
terms and Troad. The model physics of RoadSurf is described
in more detail in Kangas et al. (2015). 80
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2.2 Evaluation data

2.2.1 E-OBS dataset of gridded daily precipitation and
near-surface air temperature

The HCLIM38-ALARO simulated daily precipitation and
near-surface air temperatures were compared with the E-5

OBS dataset, version 19.0e (Cornes et al., 2018), which con-
sists of daily precipitation and 2 m air temperature (daily
minimum, mean, and maximum) data retrieved from stations
located in Europe. The data are available as a regular grid
which covers the pan-European domain with a resolution of10

0.11◦ (approximately 12 km). This E-OBS version, 19.0e,
consists of a 100-member ensemble of realizations for each
daily field. We utilized ensemble means that can be taken as
grid box averages (Cornes et al., 2018) and that are compa-
rable to the best guess grid in the earlier versions of E-OBS15

(Haylock et al., 2008).
In general, gridded datasets, such as E-OBS, include un-

certainties due to the use of point measurements (e.g. rain
gauges) and interpolation procedures. For example, the un-
dercatch of precipitation can lead to high biases especially20

in winter at high latitudes as well as in the areas of rough
topography (e.g. Prein and Gobiet, 2017). These undercatch
errors are typically between 3 % and 20 % for rainfall and up
to 40 % (for shielded) or even up to 80 % (for nonshielded
gauges) for snow (Goodison et al., 1998). Moreover, the ac-25

curacy and success of the E-OBS dataset depend on the num-
ber of stations used in the gridding process (Cornes et al.,
2018): the sparse station density can introduce errors into the
gridded dataset (e.g. Prein and Gobiet, 2017). For Finland,
the station density is sparser in the northern parts compared30

to the south (Fig. S1 in the Supplement). Although these ob-
servational uncertainties are not in the scope of this study,
they should be kept in mind when analyzing the results.

The comparison of modeled and observed data was per-
formed using the coarsest grid resolution. The HCLIM38-35

ALARO model results covering Finland were thus compared
with E-OBS by remapping the E-OBS values into the grid of
HCLIM38-ALARO: temperature data by using bilinear and
precipitation data by using first-order conservative remap-
ping. The areas with a lake fraction greater than or equal to40

0.5 have been excluded from the analysis because E-OBS
data over the lakes are based on the interpolation of the mea-
surements over land. Moreover, the modeled 2 m air tem-
perature values have been corrected using a lapse rate of
0.0064 ◦C m−1 to account for the differences between the45

orography in the E-OBS dataset and the model. A standard
Student’s t test at a 95 % confidence level was used to assess
the significance of the differences between the modeled and
observed monthly averages (in the case of temperature) or
monthly sums (in the case of precipitation).50

2.2.2 ERA5 reanalysis product

Reanalysis is a scientific method that is based on a combi-
nation of data assimilation and numerical models. The fifth
generation of the ECMWF’s atmospheric reanalyses of the
global climate, ERA5, provides hourly atmospheric data esti- 55

mates at a horizontal grid resolution of approximately 30 km
(Hersbach et al., 2018). This product was created using 4D-
Var data assimilation and the ECMWF’s Integrated Forecast
System (IFS) cycle 41r2 that was used as the operational
medium-range forecasting system in 2016. The model in- 60

cludes 137 levels in the vertical reaching to 1 Pa. Overall,
ERA5 assimilates more observations compared to the ERA-
Interim reanalysis product. However, it is good to note that
the ERA5 dataset is based on a model that is assimilating
observations and thus the dataset is prone to similar model 65

deficiencies as other weather and climate models.
We utilized the monthly means of daily means for clt,

SWd, LWd, 10 m WS, and near-surface RH to evaluate
the performance of HCLIM38-ALARO. Monthly means of
daily-mean RH were computed employing the ERA5 product 70

of hourly near-surface Tair and dew point temperature (Tdew)
(RH= 100×es(Tdew)/es(Tair)) as RH is not archived directly
in the ERA5 dataset. Saturation vapor pressure (es) was cal-
culated based on the Magnus formula and with respect to
water (WMO, 2008). Modeled near-surface RH was directly 75

available and used as such.
Similarly to the comparison with the E-OBS data, the eval-

uation was carried out using the coarsest grid resolution by
remapping HCLIM38-ALARO model results into the ERA5
grid using bilinear interpolation. Again, a standard Student’s 80

t test at a 95 % confidence level was used to assess the signif-
icance of the differences between the modeled and observed
monthly averages (in the case of clt, LWd, WS, and RH) or
seasonal averages (in the case of SWd).

2.2.3 Road weather stations 85

The results obtained by the RoadSurf-HCLIM configuration
were compared with observations retrieved from 25 road
weather stations located in different regions of Finland. Ta-
ble 1 describes the features of these stations, such as location,
surrounding characteristics, road maintenance class, and the 90

monthly average air temperatures, during October and April
from 2002 to 2014. Stations 1–8 are located in Southern Fin-
land, stations 9–13 in Western and Central Finland, stations
14–16 in Eastern Finland, stations 17–21 in Northern Fin-
land, and stations 22–25 in Lapland (Fig. 2). The model grid 95

cell closest to each of these stations was selected for evalu-
ation. However, it needs to be noted that the model output
represents an areal average over the whole model grid cell,
whereas the road weather observations are point measure-
ments. 100

The road weather stations are equipped with the Vaisala
ROSA road weather package and Vaisala DRS511 sensors
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6 E. Toivonen et al.: The road weather model RoadSurf (v6.60b)

Figure 2. Locations of road weather stations used in this study. The
numbers refer to Table 1. The stations with an additional optical
sensor are marked as stars. SF stands for Southern Finland, WCF
for Western and Central Finland, EF for Eastern Finland, NF for
Northern Finland, and LAPL for Lapland.

(Vaisala, 2018a), which are installed in the road surface.
Thirteen of the selected stations included also the Vaisala
DSC111 optical sensor (Vaisala, 2018b), which provides in-
formation on, for instance, water, snow, and ice storages on
the road. Two of the stations with an optical sensor had a5

large amount of missing data and, therefore, only 11 of them
were included in this study. This study employs the road
surface temperature and the information on the road surface
classes provided by the ROSA stations and the storage terms
provided by the stations with the additional optical sensors.10

Data availability was on average 79 % (range 57 %–91 %) at
ROSA stations and 32 % (range 18 %–38 %) at stations with
the optical sensor during the study period of 2002–2014.

The classification of observed and modeled road surface
conditions differ slightly. For example, the observations in-15

cluded “damp and salty” as well as “wet and salty” road sur-
face classes. These classes were combined with “damp” and
“wet”, respectively because RoadSurf does not include in-
formation on salting of the roads. The “wet snow” and “dry
snow” classes provided by RoadSurf were also grouped to-20

gether considering that observations did not have a directly
comparable class for wet snow. In addition, observations
do not include a “partly icy” class which is defined in the
model. Therefore, these divergent definitions of road condi-
tion classes might cause some discrepancies when comparing 25

the modeled and observed road conditions.

3 Results and discussion

3.1 Evaluation of HCLIM38-ALARO

3.1.1 Mean near-surface air temperature

The HCLIM38-ALARO model accurately captured the daily 30

and seasonal mean 2 m air temperatures (Tair) over Finland
between 2002 and 2014. This is confirmed by Fig. S2 which
illustrates the probability density functions (PDF) of the
daily Tair for the observations and model during different sea-
sons over all the grid points falling over Finland. Overall, the 35

general shapes of Tair distributions were correctly reproduced
by HCLIM38-ALARO with the largest deviations found in
the winter season (December–February).

Also, the multiyear mean seasonal Tair was well captured
by HCLIM38-ALARO. Figure 3 shows the seasonal means 40

from E-OBS as well as the mean biases in the HCLIM38-
ALARO simulated mean seasonal Tair with a reference to
E-OBS. The stippled areas depict significant differences in-
dicated by the Student’s t test (p < 0.05). The mean biases
averaged over Finland were slightly positive in the autumn 45

and winter (September–February) and negative in the spring
and summer (March–August). The autumn season had the
smallest domain-averaged bias of 0.004 ◦C and the summer
season the highest domain-averaged bias of −0.40 ◦C. The
biases were statistically significant mainly over the north- 50

ern parts of Finland where the model had an enhanced warm
bias in the winter and cold bias in the summer. These bi-
ases might partly be caused by the lower station density in
the northernmost domain, which might decrease the accu-
racy of the E-OBS data. On the other hand, the model was in 55

good agreement with the observations during the spring and
autumn when most of the differences were not statistically
significant.

It is good to note that Lindstedt et al. (2015) encoun-
tered similar warm biases in their HCLIM-ALARO simu- 60

lations with cycle 36 over Sweden during the wintertime
and they suggested it might originate from the nonprognos-
tic lake surface temperatures. A prognostic lake model was
included in the model version used in this study, and thus
the warm bias might have stemmed from other reasons, such 65

as from SURFEX’s own features or the possible biases in
ERA-Interim’s sea-surface temperatures or sea-ice concen-
trations that are used to force the sea surface in HCLIM. On
the other hand, the HCLIM38-ALARO results for mean sea-
sonal Tair were in agreement with EURO-CORDEX RCMs 70

Geosci. Model Dev., 12, 1–21, 2019 www.geosci-model-dev.net/12/1/2019/



E. Toivonen et al.: The road weather model RoadSurf (v6.60b) 7

Figure 3. (a–d) The reference values of mean near-surface air temperatures (Tmean) from E-OBS data and (e–h) the biases of HCLIM38-
ALARO modeled Tmean with a reference to E-OBS. The seasonal means were calculated over the whole model domain for the time period
of January 2002–December 2014. Stippled areas represent statistically significant differences with p values < 0.05.

that were run at 12.5 km grid resolution. For instance, Kot-
larski et al. (2014) showed that some of the ERA-Interim-
driven EURO-CORDEX RCMs had a warm (cold) bias es-
pecially over the northern parts of Finland during the winter
(summer). However, a more detailed analysis of the causes5

of the model biases is out of the scope of this study.
Figure 4 demonstrates that the mean monthly biases in the

simulated daily Tair with a reference to the E-OBS dataset
were generally between ±1 ◦C when the biases were av-
eraged over different regions of Finland for the period of10

2002–2014. The highest positive biases occurred in the win-
ter season and the highest negative biases in the summer
as discussed before. However, some regional differences
were apparent. For example, in Southern Finland, the biases
were mainly negative during the autumn and winter months15

(October–February). Similarly, the biases were negative at
the beginning of the winter season in Western and Cen-
tral Finland but the biases during the late winter and early
spring season were positive as opposed to the negative bi-
ases in Southern Finland (excluding March when the bias20

in Southern Finland was also positive). In Eastern Finland,
the mean biases resembled Western and Central Finland but
were slightly higher for every month except for July, Novem-
ber, and December. The monthly biases were even higher in
Northern Finland and Lapland compared to the other parts25

of Finland. In the northernmost areas, the biases were mostly
positive during the autumn and winter seasons and negative
during the spring and summer.

Figure 4. The monthly mean biases of simulated near-surface air
temperature averaged over Southern Finland (SF), Western and
Central Finland (WCF), Eastern Finland (EF), Northern Finland
(NF), Lapland (LAPL), and the whole of Finland (ALL) in 2002–
2014 with a reference to E-OBS.

3.1.2 Minimum and maximum near-surface air
temperature and percentiles of mean temperature 30

Similarly to the mean near-surface Tair, we assessed the
differences between the observed and modeled daily PDFs
as well as the multiyear seasonal means of daily mini-
mum and maximum near-surface temperatures (Tair,min and
Tair,max, respectively) in 2002–2014 over Finland. Again, 35

the PDFs of both Tair,min and Tair,max were adequately rep-

www.geosci-model-dev.net/12/1/2019/ Geosci. Model Dev., 12, 1–21, 2019



8 E. Toivonen et al.: The road weather model RoadSurf (v6.60b)

Figure 5. The biases in the simulated seasonal means of (a–d) minimum near-surface air temperature (Tmin) and (e–h) maximum near-
surface air temperature (Tmax) with a reference to E-OBS. The seasonal mean biases were calculated over Finland for the time period of
January 2002–December 2014. Stippled areas represent statistically significant differences with p values < 0.05.

resented in HCLIM38-ALARO with the largest deviations
in the winter season (not shown). Figure 5 shows that the
multiyear seasonal means of Tair,min were mainly overes-
timated and, contrarily, Tair,max underestimated. The stip-
pled areas in Fig. 5 depict significant differences pointed out5

by the Student’s t test (p < 0.05). The differences between
HCLIM38-ALARO and E-OBS were significant mainly in
the winter and summer season for Tair,min with the largest
domain-averaged difference of 1.73 ◦C found in the winter.
For Tair,max, the differences were significant mostly in the10

summer with also the largest domain-averaged difference of
−2.03 ◦C occurring in the summertime.

In addition to daily minimum and maximum temperatures,
the differences in the 5th, 25th, 75th, and 95th percentiles of
the daily-mean Tair between the model and observations were15

computed for different seasons (Fig. S5). The spatial differ-
ences for each season and over all the percentiles were sim-
ilar to each other with generally more positive biases found
for the 5th percentile and more negative biases for the 95th
percentile (excluding the autumn), which is in line with the20

results for Tair,min that are overestimated and Tair,max that
are underestimated. In the winter, Finland could clearly be
divided into two regions as the biases were positive in the
northern parts of Finland and negative in the south (exclud-
ing the 5th percentile). For all seasons, the maximum biases25

in the 5th, 25th, and 75th percentiles occurred in the winter
with a maximum domain-averaged difference of 4.9 ◦C for
the 5th percentile. For the 95th percentiles, the largest biases

appeared in the summer with a maximum domain-averaged
difference of −2.2 ◦C. 30

3.1.3 Precipitation and wet-day frequency

Also multiyear mean seasonal precipitation sums were reli-
ably simulated by HCLIM38-ALARO although slight over-
estimation was evident. Figure 6 depicts both observed mul-
tiyear mean seasonal precipitation sums from the E-OBS 35

dataset over Finland in 2002–2014 as well as the differ-
ences between HCLIM38-ALARO with a reference to E-
OBS. Similarly to the figures shown before, the stippled areas
represent significant differences confirmed by the Student’s
t test (p < 0.05). Overall, precipitation was overestimated 40

rather than underestimated throughout the year. The biases
were the smallest in the winter with a domain-averaged
bias of 16.1 %TS1 and highest in the spring with a domain-
averaged bias of 42.2 %. The largest biases in simulated pre-
cipitation occurred in the north of Finland, especially over 45

Lapland, where the biases were also statistically significant
for every season. The biases were statistically significant
over the whole model domain during the spring and sum-
mer season. We stress that E-OBS might suffer from under-
catch errors during the winter and spring. The larger biases 50

in the northern parts of Finland might again originate from
the sparser observation network in the northernmost domain.
The results obtained for HCLIM38-ALARO showed simi-
lar magnitude and spatial patterns of the precipitation biases
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E. Toivonen et al.: The road weather model RoadSurf (v6.60b) 9

compared to other EURO-CORDEX RCMs that are mainly
overestimating seasonal precipitation over Finland during the
winter and summer as shown by Kotlarski et al. (2014).

The overall overestimation of spring and summertime pre-
cipitation in HCLIM38-ALARO might be due to too fre-5

quent low- and moderate-intensity precipitation events as
Lindstead et al. (2015) and Lind et al. (2016) pointed out
in their studies of HCLIM36 and HCLIM37. Also the wet-
day frequency with a 1 mm d−1 threshold was slightly over-
estimated especially during the spring and summer with the10

highest domain-averaged bias of 4.6 d per season (Fig. S6).
Contrarily, HCLIM38-ALARO slightly underestimated wet-
day frequency during the winter (excluding the most north-
ern and southern parts of Finland) with the domain-averaged
bias of −0.2 d per season. In addition, HCLIM38-ALARO15

slightly overestimated the relative frequency of daily pre-
cipitation over Finland for the intensities that were approx-
imately between 10 and 40 mm d−1 in the spring season and
10 and 80 mm d−1 in the summer reason (Fig. S3). Other-
wise, the PDFs of daily precipitation were adequately cap-20

tured by HCLIM38-ALARO.
Figure 7 further confirms that precipitation was overes-

timated over different regions of Finland throughout the
year. The mean monthly biases between the regions did
not substantially differ from each other. However, the bi-25

ases were the smallest in Northern Finland during the win-
ter (December–March) and in the southern parts of Finland
during the other months (April–November). Consistently, the
largest biases were found in Lapland. As already seen in
Fig. 6, the largest biases appeared during the spring season30

(especially between April and May) and the second largest
biases during the summer and early autumn season (from
June to September).

3.1.4 Other variables

The modeled seasonal averages of total cloud fraction (clt),35

SWd, LWd, RH, and WS were compared against the ERA5
reanalysis product over 2002–2014 since these parameters,
excluding clt, were used as inputs for RoadSurf together with
Tair and precipitation. Again, the stippled areas in Fig. 8 il-
lustrate significant differences revealed by the Student’s t test40

(p < 0.05). Clt was significantly underestimated throughout
the year with the highest domain-averaged bias of −16.1 %
in the winter (Fig. 8a–d). Consequently, LWd was signif-
icantly underestimated during the winter, summer (in the
north), and autumn with the largest domain-averaged bias45

of −15 W m−2 TS2 occurring in the wintertime (Fig. 8e–h).
SWd was, in turn, mostly significantly overestimated, es-
pecially during the autumn when the domain-averaged bias
was 10.3 W m−2 TS3 (Fig. 8i–l). The biases in SWd during
the winter were small as the received actual SWd is, in gen-50

eral, limited during this time of the year at the high latitudes.
However, negative biases in SWd were found over the south-
ern parts of Finland during the spring and summer, although

the differences were significant only over restricted areas.
These results are in agreement with the previous compari- 55

son of clt, LWd, and SWd between HCLIM36-ALARO and
ERA-Interim reanalysis product over northern Europe shown
by Lindstedt et al. (2015).

In addition, RH was underestimated in the winter and au-
tumn with a domain-averaged bias of−4.3 % during the win- 60

ter and overestimated during the summer with a domain-
averaged bias of 6.3 % (not shown). WS was mainly underes-
timated during all seasons with the largest domain-averaged
negative bias of −0.6 m s−1 appearing in the winter and au-
tumn seasons (not shown). 65

3.2 Evaluation of HCLIM-driven RoadSurf

3.2.1 Road surface temperature

The meteorological data from HCLIM38-ALARO were used
as an input to RoadSurf that was further evaluated against
25 road weather stations in Finland. Here, we mostly con- 70

centrate on the evaluation of road surface temperature as it
is the main output of RoadSurf. Only the results obtained
for an extended winter season from October to April were
explored because this period is the most relevant for road
maintenance (e.g. salting of the roads and snow plowing) and 75

road safety in Finland. Road surface temperature produced
by RoadSurf was evaluated against the observations by cal-
culating the PDFs of observed and modeled daily Troad at the
road weather stations as well as computing mean monthly
biases and mean absolute errors (MAEs) using the average 80

monthly road surface temperature values. It is good to keep
in mind that the hourly and daily temporal resolutions are
the most crucial for road weather because the accident rates
might increase rapidly in the case of a sudden change of the
prevailing weather (Juga et al., 2012). The monthly timescale 85

was selected for the evaluation to account for the fact that
RoadSurf was driven using an RCM that was forced by a
reanalysis product only in the lateral boundaries. This im-
plies that the modeled day-to-day variability might not en-
tirely match with observations at all locations. However, cal- 90

culating monthly statistics gives us a clear understanding of
the model performance for different months during the study
period from 2002 to 2014.

Figure 9 makes it evident that the HCLIM-driven
RoadSurf was able to simulate the monthly means of Troad 95

with high accuracy and with most of the biases falling be-
tween ±2 ◦C. The mean monthly bias at all 25 stations was
−0.3 ◦C (range −2.1 to 2.7 ◦C) and MAE 0.9 ◦C (range 0.3–
2.9 ◦C). Some regional and seasonal differences were appar-
ent. In January and February, most of the stations located 100

in Southern Finland and Western and Central Finland had
mainly negative mean biases, whereas the biases were pre-
dominantly positive at the stations located in Eastern Fin-
land, Northern Finland, and Lapland. When looking at the
results for all stations, most of the positive mean biases oc- 105
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10 E. Toivonen et al.: The road weather model RoadSurf (v6.60b)

Figure 6. (a–d) The reference values of precipitation (Pr) from E-OBS data and (e–h) the biases of HCLIM38-ALARO modeled Pr with a
reference to E-OBS. The seasonal averages were calculated for the time period of January 2002–December 2014. Stippled areas represent
statistically significant differences with p values < 0.05.

Figure 7. The monthly mean biases of simulated precipitation av-
eraged over Southern Finland (SF), Western and Central Finland
(WCF), Eastern Finland (EF), Northern Finland (NF), Lapland
(LAPL), and the whole of Finland (ALL) in 2002–2014 with a ref-
erence to E-OBS.

curred in January and March, whereas negative biases oc-
curred in April, November, and December. Eleven stations
had negative mean biases throughout all the analyzed months
while the rest of the stations had both negative and positive
mean biases depending on the month. Overall, the MAE val-5

ues were the lowest in March and October while the highest
MAE values occurred in Lapland in January and February.
Despite the apparent mean monthly biases, the shapes of the
daily Troad PDFs were sufficiently reproduced by RoadSurf

with the largest deviations found in the winter (Fig. S4) in 10

accordance with the PDFs of daily Tair.
Probable reasons for the seasonal and regional differences

in the model performance are the biases in the HCLIM38-
ALARO data and the fact that RoadSurf works well in the
vicinity of 0 ◦C. To address the impact of the biases in the in- 15

put parameters on the Troad biases, we computed the monthly
mean biases in the HCLIM38-ALARO model outputs with
a reference to E-OBS (in the case of Tair and precipitation)
and ERA5 (in the case of LWd, SWd, RH, and WS) at the
grid cell closest to the road weather station in question. The 20

monthly biases in the input parameters were plotted against
the monthly biases in Troad. The analysis shown in Fig. 10
revealed that the variability in the monthly biases of Tair
explained on average 57 % (range 19 %–84 % in October–
April) of the variability in the monthly biases of Troad while 25

the LWd biases explained on average 16 % (range 2 %–34 %
in October–March). Furthermore, the variability in SWd bi-
ases was found to explain a small amount (4 %) of the vari-
ability in Troad biases during April. The comparison between
other input parameters and Troad did not reveal clear linear 30

responses and are thus not discussed here. Also, Karsisto et
al. (2017) noted that a part of the Troad biases is caused by
the biases in the input parameters used to force road weather
models. In their study, the input was provided by a fore-
cast produced with a high-resolution NWP version of HAR- 35

MONIE (cy36h1.4) with a grid resolution of 2.5 km over the
Netherlands. In that study, the KNMI (the Royal Netherlands

Geosci. Model Dev., 12, 1–21, 2019 www.geosci-model-dev.net/12/1/2019/
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Figure 8. TS4The biases in the simulated seasonal means of (a–d) total cloud fraction (clt), (e–h) downwelling longwave and (i–l) shortwave
radiation (LWd and SWd, respectively) with a reference to the ERA5 reanalysis product. The seasonal mean biases were calculated over
Finland for the time period of January 2002–December 2014. Stippled areas represent statistically significant differences with p values
< 0.05.

Meteorological Institute) road weather model (a 1-D heat
balance model similar to RoadSurf) was run by removing
the bias of one of the model inputs, 2 m Tair. This reduced
the Troad bias during the nighttime by 50 % indicating that
the biases in the input parameters clearly affect road weather5

model outcomes.
Moreover, the comparison of the simulated and observed

Tair in the wintertime (December–February) revealed a warm
bias ranging from 0.1 to 1.1 ◦C in the northern parts of Fin-
land (Northern Finland and Lapland) while Southern Finland10

had negative biases ranging between−0.4 and−0.04 ◦C (see
Fig. 4). Thus, the larger and more positive biases in the sim-
ulated Tair in Northern Finland and Lapland compared to
Southern Finland seem to explain the larger positive biases
in the modeled Troad at the northernmost stations. In addi-15

tion, Kangas et al. (2015) noted that RoadSurf is designed
to work especially well when temperatures are close to 0 ◦C.
Based on the monthly statistics obtained for the study pe-
riod (2002–2014), road surface temperatures were crossing
0 ◦C particularly often during March, April, and October (see 20

Sect. 3.2.2). This good model performance near 0 ◦C could,
in turn, partly explain why the MAE values were lower in
October and March compared to other months.

Some part of the biases in Troad might originate from the
RoadSurf model itself. For instance, the absence of snow re- 25

moval and salting in the model might keep the road surface
colder than what it would be with the maintenance actions.
In addition, traffic is assumed to pack some part of the snow
into ice while the remaining part is assumed to be blown
away from the road. For example, the real traffic amounts 30
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Figure 9. (a) The mean monthly biases and (b) MAE values of simulated road surface temperature between October and April in 2002–2014.
The station indices on the x axis refer to Table 1. SF refers to Southern Finland, WCF to Western and Central Finland, EF to Eastern Finland,
NF to Northern Finland, and LAPL to Lapland.

Figure 10. Scatter plots of the mean monthly biases of road surface temperature (Troad) against (a) the mean monthly biases of near-surface
air temperature (Tair) and (b) the mean monthly biases of downwelling longwave (LWd for October–March) and shortwave radiation (SWd
for April) at the road weather stations. The squared R values represent linear regression for different months with p values < 0.001 (p value
for LWd in October 0.01).

are higher in Southern Finland compared to the other parts
of the country, which can lead to an overestimation of the
simulated icy and snowy conditions in the south and, hence,
to colder road surface conditions than what is observed. On
the other hand, the snowpack that is observed might actu-5

ally stay longer than what is simulated by the model leading

to positive biases in Troad at locations with less traffic: this
could especially happen at stations such as station 23 (Siep-
pijärvi). The biases in Troad might also stem from the absence
of shading effects as this effect is not taken into account by 10

RoadSurf.
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Although the results obtained in this study indicated a
good skill of RoadSurf to realistically capture Troad, the mean
biases were slightly larger compared to the previous studies
of RoadSurf. For example, Karsisto et al. (2016) found that
the biases in the simulated Troad varied between −1 and 1 ◦C5

(mostly ±2 ◦C in our study) at 20 stations in Finland during
October and December 2013 when RoadSurf was driven by
a high-resolution NWP version of HARMONIE (cy36h1.4)
with a grid resolution of 2.5 km without any data assimila-
tion. However, it is good to note that the results obtained in10

our study and by Karsisto et al. (2016) are not directly com-
parable since in their study RoadSurf was initialized using
road weather station measurements for 48 h and only the first
forecasted hour was analyzed. However, one possible reason
for the slightly larger errors obtained in the present study15

might be the coarser grid resolution of HCLIM38-ALARO
as compared to the NWP version: coarser grid resolution im-
plies that not all the local features, such as topography, are
described as in detail as they are in higher resolution NWP
models. Increasing the grid resolution of HCLIM38-ALARO20

might therefore yield better performance for RoadSurf al-
though increasing the grid resolution of a climate model will
also increase the computational cost. However, the longer
time period used in this study makes the results more robust
compared to the previous studies in which only short time25

periods were analyzed.

3.2.2 Zero-crossing days

Temperatures close to 0 ◦C should be predicted correctly be-
cause in these conditions wet road surfaces have a tendency
to freeze (e.g. Vajda et al., 2014) and roads are the most slip-30

pery in the copresence of ice (Moore, 1975). In this study, a
zero-crossing day was defined as a day when the road surface
temperature had been at least once both below −0.5 ◦C and
above 0.5 ◦C.

Figure 11 shows that the monthly number of zero-crossing35

days and the monthly variation (standard deviation) were
well captured by RoadSurf. This was expected as RoadSurf
has been confirmed to simulate Troad accurately in the vicin-
ity of 0 ◦C (Kangas et al., 2015; Karsisto et al., 2016). On
average, the correlation coefficient was very high (0.92) and40

the mean bias was approximately 0.9 d (Fig. 11f). The perfor-
mance of the model differed slightly depending on the ana-
lyzed region. Surprisingly, the correlation coefficient was the
lowest in Southern Finland and the highest in Northern Fin-
land and Lapland, whereas the bias was the lowest in Eastern45

Finland and the highest in Lapland. The higher biases in La-
pland might be explained by the overall overestimation of
zero-crossing days, which might, in turn, be caused by the
warm bias in the simulated Troad values as discussed before.
Overall, most of the zero-crossing days occurred in March,50

April, and October. However, the number of zero-crossing
days declined in March and increased in April when mov-
ing towards the north. In Lapland, most of the zero crossings

occurred in April instead of March. This was also expected
as the winter season (and therefore the coldest period) lasts 55

longer in Lapland compared to the southern parts of Finland,
leading to less zero-crossing days in March. The smallest
number of zero crossings took place in January, February,
and December. These are usually the coldest months of the
year, especially in Lapland (see also Table 1); thus, 0 ◦C is 60

not crossed as often during these months.

3.2.3 Road surface classes

The majority of the wintertime and weather-related road
accidents in Fennoscandia are caused by the snowy and
icy road conditions in addition to, for example, driving 65

habits and worn out tires (Salli et al., 2008). To investigate
RoadSurf’s skill to correctly predict the road surface classes
(e.g. snowy and icy surfaces), the model results and obser-
vations were compared by calculating the fraction of each
road surface class occurring within a month. The fraction 70

was calculated as a multiyear sum of the occurrence of the
surface class in question divided by the multiyear sum of the
occurrence of all surface classes and then taking an average
between stations falling into the same region. It is good to re-
member that the observed and modeled road surface classes 75

might not fully match as they are defined differently.
Figure 12 shows that overall RoadSurf captured well the

prevailing road surface conditions although the observed and
modeled fractions differed slightly. For example, the model
overestimated the fraction of dry surfaces in all regions (av- 80

erage bias over all regions and all months was 7 % as a frac-
tion) and underestimated damp surfaces slightly more (av-
erage bias −16 %). The model underestimated also wet sur-
faces (average bias −6 %), but the fraction of the partly icy
class (8 % on average) was almost equal to this difference be- 85

tween the modeled and observed wet surface fraction. There-
fore, these results indicated that wet surfaces tended to be
predicted as partly icy, although it has to be remembered that
observations do not have a partly icy class. The underestima-
tion of the frost on the road (average bias −1 %) and overes- 90

timation of ice (2 %) were also of a similar magnitude with
opposite signs. Moreover, the snow class was slightly overes-
timated with an average bias of 2 %. These results are in line
with the study by Kangas et al. (2015) where they encoun-
tered an overestimation of ice and snow storages produced 95

by RoadSurf at two stations located in Finland. In addition,
they found that sometimes frost predicted by the model was
observed as ice in the measurements. In the present study,
frosty surfaces were, however, mainly underestimated. On
the other hand, both icy and frosty surfaces are slippery, so 100

in that aspect the model behavior (i.e., the tendency of the
model to underestimate frost and to overestimate ice with the
same magnitude) is acceptable.

The absence of road maintenance could be one logical rea-
son why the model overestimated icy and snowy surfaces: in 105

real life, salting prevents roads becoming icy and snow is re-
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Figure 11. Modeled vs. observed days per month when road temperatures had been both below −0.5 ◦C and above 0.5 ◦C (zero-crossing
day) during October and April in 2002–2014 in (a) Southern Finland (SF), (b) Western and Central Finland (WCF), (c) Eastern Finland (EF),
(d) Northern Finland (NF), (e) Lapland (LAPL), and (f) the whole of Finland (ALL). Grey color represents the monthly values for every year
and the multiyear monthly means are illustrated in other colors. The vertical and horizontal bars represent ±1 standard deviation based on
13 years of monthly values from the model and observations, respectively. R stands for the Pearson correlation coefficient and BIAS for the
mean difference between the modeled and observed values. The dashed black line represents a 1 : 1 reference line.

Figure 12. Observed (O) and modeled (M) fractions of road surface classes (e.g. dry, wet, or icy) within each month in 2002–2014 in
(a) Southern Finland (SF), (b) Western and Central Finland (WCF), (c) Eastern Finland (EF), (d) Northern Finland (NF), (e) Lapland
(LAPL), and (f) the averages for whole of Finland (ALL). The definitions of road surface classes differ slightly for the observations and
model (e.g. the partly icy class is included only in the model).

moved from the roads. Accordingly, the observed and mod-
eled fractions of snowy surfaces were very similar to each
other in Lapland where maintenance, such as snow plow-
ing, is performed far less frequently compared to the more
southern parts of Finland in real life. The icy road fraction5

was underestimated in Lapland, whereas this fraction was

overestimated in the other regions: in reality, salting is not
performed as often at the stations in Lapland as in South-
ern Finland and thus icy roads can occur more frequently in
the northernmost stations. Furthermore, the RoadSurf model 10

takes the effect of traffic into account in a similar manner re-
gardless of the region. Therefore, the simulated ice and snow
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storages might deplete too fast in the model considering the
substantially lower traffic amounts in the northern parts of
Finland compared to the south. For instance, snow storage
was slightly underestimated in Lapland although only in Jan-
uary and November (Fig. 12e). The warm bias in Lapland5

might also have played a role in the underestimation of icy
road fraction as icy roads are less likely to occur if the sim-
ulated air temperatures are too high. In addition, the under-
estimated wet and damp surfaces during the winter months
(December–February) might be explained by the slightly un-10

derestimated wet-day frequency of precipitation over most
parts of Finland (see Fig. S6).

3.2.4 Categorical performance of the simulated
frequency of water, snow, and ice storages

Rainfall is considered to be one of the main contributing fac-15

tors in traffic accidents together with snow and ice on the
road (e.g. Andersson and Chapman, 2011b). Therefore, the
water, snow, and ice storages, as well as their frequency,
should be simulated accurately. The absolute values of the
storages are not discussed here as the modeled values rep-20

resent areal averages and observations represent point mea-
surements. In addition, the optical sensor might not correctly
sense the exact thickness of the water, snow, or ice layer on
the road but rather it might detect only the upper layer of
these storage terms. Thus, RoadSurf’s ability to simulate the25

frequency of the storages was assessed by first calculating the
daily maximum values of the storages between October and
April and, further, setting the daily values to one if the daily
maximum value was more than zero and to zero if the daily
maximum value was zero. These binary values were used to30

calculate hits and false alarms (Table S1 in the Supplement)
and the probability of detection (POD) and false alarm ra-
tios (FARs) (Roebber, 2009). The details of the POD-FAR
analysis are explained in the Supplement Sect. S1. The num-
ber of compared daily cases per station varied between 50335

and 1101 d depending on the data availability at each sta-
tion. However, this method might penalize the model more
than it should because the modeled storages were compared
with observations using day-to-day values. For this reason,
we additionally calculated the multiyear sums of all the mod-40

eled and observed daily cases with daily maximum more than
zero or zero.

The results of the POD-FAR analysis for 11 stations in-
cluding an optical sensor (see Table 1) are illustrated in
Fig. 13 using a categorical performance diagram (Roebber,45

2009; please see the Supplement Sect. S1 for more details).
Figure 13 shows that RoadSurf reliably captured the occur-
rence of the storage terms as the points located near the
upper-right corner of the diagram. However, the model per-
formance varied slightly depending on which storage was50

simulated. For instance, the modeled water storages had the
lowest FAR (highest 1–FAR) values but also the lowest POD
values. This means that because the model did not detect

Figure 13. The performance diagram of water, snow, and ice stor-
ages modeled at the 11 road weather stations which have an optical
sensor (see Table 1). Absolute values of the modeled and observed
maximum daily storages were not used directly; but instead, the
daily value was set to one if the maximum value was more than zero
and to zero if the maximum value was zero. The months between
October and April were included in the analysis. Success ratio (1–
FAR) runs along the x axis and POD along the y axis. Dashed lines
represent the frequency bias and continuous lines the CSI (critical
success index, see the Supplement Sect. S1). The vertical and hor-
izontal lines represent the 95 % confidence intervals for POD and
FAR values, respectively, calculated by using a bootstrap method
and 1000 resamples.

water as often as it should, the false alarm ratio was also
smaller. The frequency bias values were lower than one indi- 55

cating an underestimation of the events with water on the sur-
face. The opposite was true for the modeled ice storages: the
events were predicted well (POD was high) but false alarms
were more frequent (1–FAR was lower). Furthermore, the
frequency bias values were greater than one suggesting an 60

overestimation of the events with ice on the road. The POD
and FAR values of the modeled snow storages fell some-
where between the POD and FAR values which were ob-
tained for the water and ice storages. The model underesti-
mated the frequency of the events with snow on the road but 65

to a lesser extent compared to the underestimated frequency
of the water storages.

It has to be emphasized once more that the model does not
take into account road maintenance measures. Again, the ab-
sence of salting can be one reason for the overestimated oc- 70

currence of ice and the underestimated occurrence of water
on the road surface. However, the model is thus on the “safe
side”, which means that in operational use the model would
give warnings to the road users slightly more often than what
would be required. As mentioned before, a part of the un- 75

derestimated frequency of water might be explained by the
slightly underestimated wet-day frequency of precipitation
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during the winter season. On the other hand, the absence of
snow removal in the model did not lead to an overestimated
frequency of snow on the road: this frequency was under-
estimated while the fraction of snowy road cover was over-
estimated as shown in Fig. 12. One possible reason for this5

discrepancy might be the different number of road weather
stations used in the POD and FAR analysis compared to the
road condition analysis (11 vs. 25 stations). Another reason
might be that the POD and FAR analysis utilized fewer ob-
servations compared to the number of observations used in10

the analysis of the road surface conditions (due to a higher
amount of missing data). Moreover, the RoadSurf-HCLIM
configuration might not capture all the snow events which are
observed at the station because the simulated storages repre-
sent areal averages. However, the underestimated frequency15

of snow cannot be explained by the snowpacks that are de-
pleting too fast in the model. This is because the majority of
the stations with an optical sensor utilized in this study are
located in the southern parts of Finland where the modeled
snowpacks might actually stay longer compared to the mea-20

surements as discussed before.
In addition to the POD-FAR analysis, we computed the

modeled and observed fractions of the multiyear sums of the
daily cases with the daily maximum storage of water, snow,
or ice more than zero or zero. The results are shown in Fig. S725

as fractions over all 11 stations. This figure supports the main
conclusions from the POD–FAR analysis: the occurrence of
water and snow storages were underestimated by the model
by−18 % and−7 %, respectively. The frequency of ice stor-
age was slightly overestimated by 5 %.30

4 Conclusions

This study described the performance of the HCLIM38-
ALARO regional climate model over Finland and, fur-
ther, evaluated the skill of the HCLIM38-ALARO-driven
road weather model RoadSurf to reproduce the present-day35

road weather conditions in Finland. HCLIM38-ALARO was
forced with the reanalysis product ERA-Interim in the lat-
eral boundaries. This study showed that HCLIM38-ALARO
is in good agreement with the gridded daily mean air tem-
perature and precipitation observations: the model reliably40

reproduced the monthly and seasonal temporal and spatial
patterns as well as daily variability in these variables over
Finland. Especially daily-mean near-surface air temperatures
were well represented by HCLIM38-ALARO. On the other
hand, daily minimum air temperatures were slightly over-45

estimated and daily maximum temperatures underestimated.
Precipitation was overestimated during all seasons, although
some of this overestimation might be caused by the inaccu-
racy of E-OBS data due to possible undercatch errors and
lower station density in the northern parts of Finland. Over-50

all, the HCLIM38-ALARO results were found to be in line
with other EURO-CORDEX RCMs. The underestimated to-

tal cloud fraction in the model led to the overestimated down-
welling shortwave and underestimated longwave radiation,
which has also been encountered in the previous evaluations 55

of HCLIM over northern Europe in the wintertime.
As far as the authors are aware, this may be the first pa-

per that studies the performance of a road weather model
which is forced by RCM data. This study revealed that the
HCLIM38-ALARO-driven RoadSurf was able to adequately 60

reproduce the daily distributions of road surface tempera-
tures (Troad) and accurately simulate Troad with the mean
monthly bias of −0.3 ◦C and the mean monthly MAE of
0.9 ◦C over Finland. These metrics indicated a slightly poorer
performance than what was obtained in the earlier studies 65

of RoadSurf. The coarser grid resolution of the HCLIM38-
ALARO compared to the NWP model input used in the ear-
lier studies might be the main reason for this outcome as
no data assimilation was used for HCLIM38-ALARO or the
NWP model. Moreover, the HCLIM38-ALARO simulated 70

air temperature tended to have a warm bias over the northern
parts of Finland in the winter. This, in turn, might be the ma-
jor reason for the better performance of RoadSurf to simulate
Troad at the stations located in the southern parts of Finland
compared to the stations located in Lapland. The variability 75

in the air temperature biases was found to explain the largest
part of the variance in the road surface temperature biases as
compared to other input variables of RoadSurf.

In addition, RoadSurf adequately captured the daily zero
crossings, which verified the good performance of the model 80

when temperatures approach 0 ◦C. This is of great impor-
tance as the road surfaces are most prone to slippery condi-
tions when the road surface temperatures are close to 0 ◦C
and simultaneous icing occurs. Moreover, the analysis on the
road surface classes showed that the model is overall in a 85

good agreement with the observations in terms of the pre-
vailing road conditions. However, the model tended to yield
more icy and snowy road surfaces than indicated by obser-
vations. The absence of road maintenance, such as salting
and snow plowing, is very likely the dominant reason for this 90

model behavior as well as for the overestimated occurrence
of ice and underestimated occurrence of water on the road
surface. On the other hand, the overestimated traffic wear in
the model and therefore a depletion of ice storages that is too
fast could be the reason for the underestimated fraction of icy 95

surfaces at the northernmost stations.
These results were obtained using a limited set of road

weather stations in Finland. On the other hand, the 13-year-
long study period makes the results more robust compared
to the earlier studies of RoadSurf which have concentrated 100

only on short verification periods of 1 week to some months.
Therefore, the results represented in this study indicated that
HCLIM38-ALARO realistically captured the climate over
Finland and that this RCM data can be used as an input to
RoadSurf in order to produce reliable results of Troad, road 105

surface classes, and storage terms. Although RoadSurf rep-
resents a scenario wherein nothing is done in terms of road
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maintenance, it also means that the model is ideal to study the
relative changes in the road surface conditions due to climate
change. Earlier studies of climate change impacts on road
weather have mainly considered the relative changes in air
temperature and precipitation. Therefore, the approach pre-5

sented in this study offers an alternative to these methods:
running the road weather model with HCLIM38-ALARO
produced climate projections makes it possible to directly
study how the road weather conditions are going to change
in the future.10

Code availability. The ALADIN and HIRLAM consortia coop-
erate on the development of a shared system of model codes.
The HCLIM model configuration forms part of this shared
ALADIN-HIRLAM system. According to the ALADIN-HIRLAM
collaboration agreement, all members of the ALADIN and15

HIRLAM consortia are allowed to license the shared ALADIN-
HIRLAM codes within their home country for noncommercial
research. Access to the HCLIM codes can be obtained by contact-
ing one of the member institutes of the HIRLAM consortium (see
links at http://www.hirlam.org/index.php/hirlam-programme-53,20

last access: 29 July 2019). Access will be subject to signing a
standardized ALADIN-HIRLAM license agreement (http://www.
hirlam.org/index.php/hirlam-programme-53/access-to-the-models,
last access: 29 July 2019). The RoadSurf code is not in the public
domain and cannot be distributed.25

Data availability. Due to the very large size of the data files, the
data are not publicly available. The data files can be requested from
the first author.
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Appendix A: The maintenance classes of the roads
during wintertime in Finland (Finnish Transport
Agency, 2018)

A1 Maintenance class 1 (lse):

The road is kept bare most of the time. The slipperiness5

of the roads is prevented beforehand, but mild slipperiness
might occur in the case of a rapid change in the prevailing
weather. Salting is not possible during long-lasting cold pe-
riods, which can lead to partially frozen road surfaces. The
maintenance is timed so that inconvenience for traffic is min-10

imized.

A2 Maintenance class 2 (ls):

The road is kept bare most of the time. The aim is to prevent
slipperiness beforehand, but mild slipperiness might occur
in the case of a rapid change in the prevailing weather. The15

central and northern parts of Finland, and also the southern
part of the country (only during the coldest periods), might
have a thin ridge of snow packed on the road, which does
not particularly affect driving. Salting is not possible during
long-lasting cold periods, which can lead to partially frozen20

road surfaces.

A3 Maintenance class 3 (lb):

The road is kept bare most of the time. The aim is to prevent
slipperiness beforehand, but mild slipperiness might occur in
the case of a rapid change in the prevailing weather. During25

the coldest periods, there might be shallow and narrow ridges
of snow packed on the road. Salting is not possible during
long-lasting cold periods, which can lead to partially frozen
road surfaces.

A4 Maintenance class 4 (l):30

The road is maintained at a fairly high standard but mostly
without salt. The surface of the road is partially bare depend-
ing on the traffic volume and weather. There might be ridges
of snow packed on the road and the road might also be fully
covered with a snowpack. The road is kept safe enough for35

the road users. The possible snowpack on the road surface is
smoothed. Slipperiness is prevented beforehand only in the
autumn and spring and in the case of particularly hazardous
situations.
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