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Abstract 22 

Improving predictive understanding of Earth system variability and change requires data-model 23 

integration. Efficient data-model integration for complex models requires surrogate modeling to 24 

reduce model evaluation time. However, building a surrogate of a large-scale Earth system 25 

model (ESM) with many output variables is computationally intensive because it involves a large 26 

number of expensive ESM simulations. In this effort, we propose an efficient surrogate method 27 

capable of using a few ESM runs to build an accurate and fast-to-evaluate surrogate system of 28 

model outputs over large spatial and temporal domains. We first use singular value 29 

decomposition to reduce the output dimensions, and then use Bayesian optimization techniques 30 

to generate an accurate neural network surrogate model based on limited ESM simulation 31 

samples. Our machine learning based surrogate methods can build and evaluate a large surrogate 32 

system of many variables quickly. Thus, whenever the quantities of interest change such as a 33 

different objective function, a new site, and a longer simulation time, we can simply extract the 34 

information of interest from the surrogate system without rebuilding new surrogates, which 35 

significantly saves computational efforts. We apply the proposed method to a regional ecosystem 36 

model to approximate the relationship between 8 model parameters and 42660 carbon flux 37 

outputs. Results indicate that using only 20 model simulations, we can build an accurate 38 

surrogate system of the 42660 variables, where the consistency between the surrogate prediction 39 

and actual model simulation is 0.93 and the mean squared error is 0.02. This highly-accurate and 40 

fast-to-evaluate surrogate system will greatly enhance the computational efficiency in data-41 

model integration to improve predictions and advance our understanding of the Earth system.        42 
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1 Introduction 43 

Improving predictive understanding of Earth system variability and change requires data-44 

model integration. For example, Bilionis et al. (2015) improved Community Land Model (CLM) 45 

prediction of crop productivity after model calibration; Müller et al. (2015) improved the CLM 46 

prediction of methane emission after parameter optimization; and Fox et al. (2009) and Lu et al. 47 

(2017) improved the terrestrial ecosystem model predictive credibility of carbon fluxes after 48 

uncertainty quantification. However, data-model integration methods are usually 49 

computationally expensive involving a large ensemble of model simulations, which prohibits 50 

their application to complex Earth system models (ESMs) with lengthy simulation time. To 51 

reduce computational costs, surrogate modeling is widely used (Razavi et al., 2012; Gong et al, 52 

2015; Ray et al., 2015; Huang et al., 2016, Lu et al., 2018; Ricciuto et al., 2018). The surrogate 53 

model, which is a set of mathematical functions, approximates the actual simulation model based 54 

on pairs of simulation model input-output samples, and then replaces the simulation model in the 55 

data-model integration. As the ESMs evaluation is expensive, it is desired to use a limited 56 

number of ESM simulation samples to build an accurate surrogate. As the surrogate model needs 57 

to be calculated many times in data-model integration, it is required to build a fast-to-evaluate 58 

surrogate. In this study, we use a very few simulation model runs to build an accurate and fast 59 

evaluated surrogate system of a large scale problem based on advanced machine learning 60 

methods.  61 

In Earth system modeling, we usually need to build a surrogate system of many output 62 

variables over large spatial and temporal domains. ESMs tend to be simulated in a regional or 63 

global scale with many grid cells for several years, producing a large number of output variables. 64 

In addition, ESMs are used to solve versatile scientific problems, so the quantities of interest 65 
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(QoIs) often change. Moreover, the development of a surrogate requires expensive ESM runs, 66 

and a large number of runs are often needed to capture the complex model input-output 67 

relationship. Therefore, it is reasonable to build a surrogate system for all possible model outputs 68 

to reduce the efforts of rerunning ESMs for a new surrogate development when the QoIs change. 69 

In this way, whenever we simulate the outputs in a new site or for additional sites, at a different 70 

time or for a longer period, we can simply extract the information of interest from the large 71 

surrogate system without spending extra efforts in building new surrogates, which significantly 72 

saves the computational costs. 73 

Building and evaluating a surrogate system of a large number of model outputs can be very 74 

computationally intensive for almost all the surrogate methods. Polynomials and artificial neural 75 

networks are widely used for surrogate modeling (Razavi et al., 2012; Viana et al., 2014). 76 

Polynomial methods, such as polynomial regression and radial basis functions, need to solve 77 

polynomial coefficients in the surrogate construction and to calculate matrix multiplications in 78 

the surrogate evaluation. Using a pth-order polynomial to approximate a model with d 79 

parameters, M = (p+d)!/(p!d!) coefficients need to be solved, i.e., the number of coefficients 80 

increases factorially fast with the parameter size and polynomial order. When d=40, a second-81 

order polynomial involves 861 coefficients and a third-order polynomial involves 12341 82 

coefficients. ESMs have many uncertain parameters and a high-order polynomial is usually 83 

needed to approximate complex ESMs, which can easily lead to a prohibitive number of model 84 

evaluations, up to ~105, necessary to compute the polynomial coefficients. To reduce the 85 

computational costs, some regularization techniques such as Bayesian compressive sensing have 86 

been used (Sargsyan et al., 2014; Ricciuto et al., 2018). These regularization techniques can use a 87 

few samples to solve a large number of coefficients (i.e., an underdetermined system) by 88 
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iteratively minimizing the L1 norm of the coefficient vector. But they usually perform 89 

minimization once for one model output, so for a large model outputs problem, significant 90 

computing effort is required. To reduce the computing burden in building polynomial-based 91 

surrogates, we need to reduce the output dimensions.  92 

Reducing the model output dimensions also improves computational efficiency in the 93 

evaluation of the polynomial-based surrogates. For example, evaluating the third-order 94 

polynomial-based surrogate of the model with 40 parameters and 300,000 outputs at 1 parameter 95 

sample, we need to calculate two matrix multiplications where matrix A has the size [1, M] and 96 

B has the size [M, Nout] and M =12341 and Nout=300,000. The surrogate evaluation takes about 97 

90 seconds and most time is spent on loading the huge matrix. When Nout reduces to 20, the 98 

surrogate evaluation quickly reduces to less than a second. Note that an ESM can easily have 99 

more than 40 parameters and more than 300,000 model outputs. Even using the most advanced 100 

supercomputers with GPUs, the data storage and loading are still a bottleneck. Thus, reducing 101 

model output dimensions is necessary for both fast building and evaluating polynomial-based 102 

surrogates. 103 

Neural network (NN) assisted surrogate modeling also suffers from high computational 104 

costs when applied to a large-scale problem with many QoIs. To approximate a complex ESM 105 

with many outputs, a complicated NN with many wide hidden layers is usually needed to capture 106 

the complex relationship between the model inputs and outputs, because each spatial and 107 

temporal output variable is driven by different meteorological forcing such as air temperature, 108 

humidity, wind speed, precipitation, and radiation. The full connections between nodes in the 109 

input layer and the first hidden layer, between nodes of the hidden layers, and between nodes in 110 

the last hidden layer and a large number of nodes on the output layer, involve a great amount of 111 
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NN weights and biases that need to be solved. For the same example discussed above, to 112 

approximate the model with 40 parameters and 300,000 model outputs, an NN with two hidden 113 

layers and each layer having 100 nodes has over 30 million weights and biases. Calculation of 114 

these weights and biases requires many samples to train the NN for a good fit. Each training 115 

sample involves one model evaluation. However, ESM simulation is time consuming, which 116 

usually takes several hours or days and can be up to months or even years. A limited sample size 117 

is not enough to train a deep and wide NN for convergence and a simple NN trained by a small 118 

sample size may not capture underlying Earth systems accurately. Thus, reducing model output 119 

dimensions is needed to advance the NN-based surrogate modeling. A small output size reduces 120 

the width of the output layer and also simplifies the relationship between the model inputs and 121 

outputs, so that a simple NN architecture can be appropriate and a small sample size can be 122 

sufficient to accurately train the simple NN. In addition, a simple NN can also be fast evaluated 123 

with small weight matrix multiplications.   124 

In this work, we propose to use singular value decomposition (SVD) to reduce model 125 

output dimensions, so as to improve the computational efficiency in both building and evaluating 126 

the surrogates. ESM outputs usually show periodic changes along time and strong correlations 127 

between locations, which promises a fast decay of singular values. So, we can use a small 128 

number of singular value coefficients to capture a great amount of output information, enabling a 129 

significant output dimension reduction. We use the NN for surrogate modeling, because 130 

compared to polynomial methods, NNs have shown less difficulty in fitting highly nonlinear and 131 

discontinuous functions which are usually observed in ESMs response surfaces. For example, 132 

carbon flux state variables, such as gross primary productivity (GPP), are strongly affected by 133 

vegetation related parameters. When the parameter samples cause zero vegetation growth, GPP 134 
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has zero values. Whereas when the parameter samples cause high vegetation growth, GPP has 135 

large positive values. This leads to a discontinuous GPP response surface jumping from zeros to 136 

nonzeros.  137 

NNs theoretically can fit any functions, but their practical performance strongly depends 138 

on the NN’s architectures and hyperparameters. NN has many hyperparameters such as the 139 

number of layers, number of nodes in each layer, type of activation functions, and learning rate 140 

of the stochastic gradient descent optimization. A slight change in the hyperparameter value can 141 

result in dramatically different NN performance. Development of a high-performing NN is time-142 

intensive and usually requires trial-and-error tuning by machine learning experts. In this work, 143 

we use Bayesian optimization techniques to optimize the NN architecture and hyperparameters 144 

so as to produce an accurate NN model for the training data. Bayesian optimization searches the 145 

hyperparameter space to iteratively minimize the validation errors of the NN by balancing 146 

exploration and exploitation (Shahriari et al., 2016). Researches suggested that Bayesian 147 

hyperparameter optimization of NNs is more efficient than manual, random, or grid search with 148 

better overall performance on test data and less time required for optimization (Bergstra et al., 149 

2011; Snoek et al., 2012). Bayesian optimization involves a large ensemble of NN fittings and it 150 

is a sequential model-based optimization, thus, fast training of the NN models is important. Our 151 

proposed SVD method can simplify the NN architecture so as to advance the NN training and 152 

improve the Bayesian optimization performance. 153 

In this effort, we propose an SVD-enhanced, Bayesian-optimized, and NN-based surrogate 154 

method and aim to build an accurate and fast-to-evaluate surrogate system of a large-scale model 155 

using a few model runs, so as to improve computational efficiency in surrogate modeling and 156 

thus advance the data-model integration. We apply the method to a simplified land model in the 157 
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Energy Exascale Earth System Model (sELM) to improve the model predictive capability of 158 

carbon fluxes. We build a surrogate system of 42660 model output variables which are annual 159 

GPPs at 1422 locations simulated for 30 years. The sELM is a regional-scale terrestrial 160 

ecosystem model that simulates terrestrial water, energy, and biogeochemical processes in 161 

terrestrial surfaces. Simulation of sELM is important for improving our understanding of 162 

ecosystem responses to climate change. However, sELM requires lengthy times for hydrologic 163 

and carbon cycle equilibration, and these high computational costs limit the affordable number of 164 

simulations in data-model integration thus resulting in poor model performance. The proposed 165 

machine learning assisted surrogate method makes the sophisticated data-model integration 166 

computationally feasible and promises an improvement of the sELM predictions.       167 

The major contributions of this work are (1) using SVD to reduce model output 168 

dimensions so as to improve computational efficiency in both building and evaluating an 169 

accurate surrogate of a large-scale ESM; (2) using Bayesian optimization techniques to fast 170 

generate an accurate NN-based surrogate; and (3) applying the proposed method to build a large 171 

surrogate system of a regional-scale ESM to advance data-model integration. To our knowledge, 172 

the method of using SVD to enhance surrogate modeling is novel and we have not seen the 173 

application of Bayesian optimization to improve NN-based surrogates in Earth system modeling.           174 

The paper is organized as follows. In section 2, we first describe the sELM, the model 175 

parameters and the QoIs we build surrogates for; following that, we introduce the SVD, NNs, 176 

and Bayesian optimization methods. In section 3, we apply the methods to the sELM and analyze 177 

the surrogate accuracy. In section 4, we discuss strategies to improve surrogate accuracy and 178 

investigate our method’s performance in the application of these strategies. In section 5, we end 179 

this paper by drawing our conclusions. 180 
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2 Materials and Methods 181 

2.1 Description of sELM and related parameters  182 

We developed a simplified version of Energy Exascale Earth System (E3SM) land model 183 

(ELM), or sELM, to simulate carbon cycle processes relevant for Earth system models in a 184 

computationally efficient framework. This framework allows us to perform large regional 185 

ensembles that are computationally infeasible using offline land surface models such as ELM.  186 

sELM is a combination of model elements from the Data Assimilation Linked Ecosystem 187 

Carbon model (DALEC; Williams et al., 2005) and the Community Land Model version 4.5 188 

(CLM4.5; Oleson et al., 2013). sELM consists of five process-based submodels that simulate 189 

carbon fluxes between five major carbon pools using 49 overall parameters. Based on previous 190 

sensitivity analysis using ELM (Ricciuto et al., 2018), this study considers the most sensitive 191 

eight parameters associated with four out of the five submodels. We summarize all five process-192 

based submodels and their interactions below and in Figure 1.  193 

sELM consists of five major submodels: photosynthesis, autotrophic respiration, 194 

allocation, deciduous phenology, and decomposition. Photosynthesis is driven by the aggregate 195 

canopy model (ACM) from the DALEC, which itself is calibrated against the soil-plant-196 

atmosphere model (Williams et al., 2005). ACM predicts GPP as a function of carbon dioxide 197 

concentration, leaf area index, maximum and minimum daily temperature, and 198 

photosynthetically active radiation.  Here the GPP predicted by ACM is modified by BTRAN, 199 

which reduces GPP when soil water is insufficient to support transpiration. Because sELM does 200 

not predict soil moisture, BTRAN is calculated in a full ELM simulation and is fed into sELM as 201 

an input. ACM shares one parameter, the leaf carbon to nitrogen ratio (leaf C:N), with the 202 
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autotrophic respiration model and employs an additional parameter, the specific leaf area at the 203 

top of the canopy (slatop).  204 

The remaining four submodules are based on ELM. The autotrophic respiration model 205 

computes the growth and maintenance respiration components and is controlled by four 206 

parameters, the leaf C:N, the fine root carbon to nitrogen ratio (froot C:N), the base rate of 207 

maintenance respiration (br_mr), and temperature sensitivity for maintenance respiration 208 

(q10_mr). The allocation model partitions carbon to several vegetation carbon pools following 209 

those in ELM: leaves, fine roots, live stem, dead stem, live coarse roots and dead coarse roots. In 210 

the allocation model, we only consider one parameter, the fine root to leaf allocation ratio 211 

(froot_leaf). The deciduous phenology model is used to predict the timing of budbreak and 212 

senescence. It considers two parameters, the critical day length to initiate autumn senescence 213 

(crit_dayl) and the number of accumulated growing degree days needed to initiate spring leaf-out 214 

(crit_onset_gdd). The last submodel is a decomposition model that simulates heterotrophic 215 

respiration and the decomposition of litter into soil organic matter using the converging trophic 216 

cascade framework as in the CLM4.5 (Oleson et al., 2013). Because this study focuses on plant 217 

carbon uptake, no uncertain parameters are considered in the decomposition model. In sELM, 218 

nutrient feedbacks are not represented explicitly, however a constant nitrogen limitation factor is 219 

included to downregulate photosynthetic uptake. 220 

The sELM can simulate several carbon state and flux variables as shown in Figure 1 with 221 

green shapes. GPP, which represents the total plant carbon uptake, is considered in this study. 222 

Here we use sELM to predict annual GPP in deciduous forest systems in the eastern region of the 223 

United States for 30 years between 1981-2010. The carbon state variables are spun up to steady 224 

state by cycling the GSWP3 input meteorology (Kim et al., 2017) from 1981-2010 for 5 cycles, 225 
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and the 6th cycle is used as the output for our surrogate modeling study. The region of interest 226 

covers 1422 land grid cells (locations) as shown in Figure 2. Given 30 outputs at each location 227 

(annual values over 30 years), a total of 42660 GPP variables are simulated. The model uses one 228 

plant functional type and the phenological drivers such as air temperature, solar radiation, vapor 229 

pressure deficit, and CO2 concentration are used as boundary conditions. One regional sELM run 230 

takes about 24 hours on a single processor, which although much faster than ELM is still 231 

computationally too expensive to be directly used in model-data integration studies. To improve 232 

the computational efficiency in generating the sELM simulation samples to develop the surrogate 233 

model, we use high performance computing to perform an ensemble of 2000 sELM model 234 

simulations in parallel. The 2000 parameter input samples are randomly drawn from the 235 

parameter space defined in Figure 3. The numerical ranges of these parameters are designed to 236 

reflect their average values and broad uncertainties associated with the temperate deciduous 237 

forest plant functional type. The output samples are sELM simulated GPPs at the 1422 locations 238 

for 30 years. In the surrogate modeling, part of the 2000 input-output samples are used for 239 

developing the surrogate and part of them are used to evaluate the surrogate accuracy, as 240 

discussed in section 3. 241 

2.2 Efficient surrogate modeling methods 242 

In this section, we introduce our SVD-enhanced, Bayesian-optimized, and NN-based 243 

surrogate methods. We first describe the SVD for reducing data dimensionality, then introduce 244 

the NN techniques for building a surrogate model, and last depict the Bayesian optimization 245 

algorithm for producing a high-performing NN-based surrogate. 246 
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2.2.1 Singular value decomposition for data compression 247 

We build a surrogate system of model outputs by fitting a data matrix whose columns are 248 

output variables and rows are output samples. For a model with 100000 output variables, the 249 

columns of this matrix span a 100000-dimensional space. Encoding this matrix on a computer 250 

takes quite a lot of memory and evaluating this matrix takes a large number of calculations. We 251 

are interested in approximating this matrix with some low-rank matrix but remaining its most 252 

information, so as to reduce data transfer and accelerate matrix calculation.       253 

 Singular value decomposition (SVD) decomposes a matrix A with size m ´ n into three 254 

other matrices, 𝐀 = 𝐔𝐒𝐕&, where U is an m ´ m orthogonal matrix, V is an n ´ n orthogonal 255 

matrix, and S is an m ´ n diagonal matrix saving singular values in descending order on the 256 

diagonal. Truncated SVD keeps the K largest singular values and corresponding K column 257 

vectors of U and K row vectors of VT to form 𝐀' = 𝐔(𝐒(𝐕(&. The K-rank matrix 𝐀' has proven to 258 

be the best approximation of A in minimizing the Frobenius norm of the difference between A 259 

and 𝐀' under the constraint of rank(𝐀') = K. In addition, the total of the first K singular values 260 

divided by the sum of all the singular values is the percentage of information that those singular 261 

values contain (i.e., the percentage of the total variance explained by those singular values). For 262 

example, if we want to keep 90% of the data information, we just need to compute sums of K 263 

largest singular values until we reach 90% of the sum and discard the rest. By dropping all but a 264 

few singular values and then recomputing the approximated matrix, the SVD technique 265 

compresses the data information and reduces data dimensions. When the matrix A shows strong 266 

correlations between columns (variables), a low-rank matrix 𝐀' can make a very accurate 267 

approximation of A.  268 
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In this study, we use SVD to reduce training data dimensions. The training data matrix A 269 

[m, n] for surrogate construction contains model output samples information. n columns are 270 

output variables (e.g., the 42660 temporal and spatial GPPs in this work) and m rows are the 271 

samples of these variables (e.g., the sELM simulation results of the 42660 GPPs for the m 272 

parameter samples), and usually n≫m for expensive ESMs with many outputs. In 273 

implementation, we first perform truncated SVD to get low-rank matrices 𝐔([𝑚,𝐾], 	𝐒([𝐾, 𝐾], 274 

and 𝐕(&[𝐾, 𝑛] with K≪n, we then use the low-dimensional dataset (𝐕(&𝐀&)& with reduced size m 275 

´ K as training data to build the surrogate model of the K largest singular value coefficients. 276 

Next, we evaluate the surrogate model at q new data points to get results Ynew with size q ´ K. 277 

Lastly, we transform the predicted values back to its original size q ´ n through 𝐘567𝐕(& to obtain 278 

the surrogate approximation of the n variables at the q new data points. 279 

2.2.2 Neural networks for surrogate modeling 280 

Artificial neural networks (NNs) consist of fully connected hierarchical layers with nodes 281 

which can be flexibly used for function approximation (Yegnanarayana, 2009). The first layer is 282 

the input layer and each node in the input layer represents one model input variable. The last 283 

layer is the output layer and each node in the output layer represents one model output variable. 284 

The layers between input and output layers are hidden layers which are used to approximate the 285 

relationship between model inputs and outputs. When the relationship is complex, a complicated 286 

NN with many wide hidden layers is usually needed. The input layer first assigns model 287 

parameter values to its nodes. Then each node in the first hidden layer takes multiple weighted 288 

inputs, applies the activation function to the summation of these inputs, and calculates the node’s 289 

value. Next, the second hidden layer takes the values on the first hidden layer nodes as inputs 290 

and calculates its nodes’ values in the same way. This process moves forward till we get values 291 
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of all nodes in the output layer, i.e., obtaining NN predictions for the given model parameter 292 

input values. The nodes in each layer are fully connected to all the nodes in its previous and 293 

subsequent layers. Each of these connections has an associated weight and bias. A complicated 294 

NN results in a large number of weights. By tuning these weights and biases based on some 295 

training data, we improve the NN approximation of the underlying simulation model.  296 

NN uses stochastic gradient descent (SGD) method to optimize its weights and biases 297 

(Bottou, 2012). SGD optimizes variables by minimizing some loss function based on the 298 

function’s gradients to these variables. The loss function is usually defined as the mean squared 299 

error (MSE) between the NN predictions and model simulations for the same set of model 300 

parameter samples in the training data. SGD iteratively updates the optimized variables at the 301 

end of each training epoch. In the process, the learning rate, which specifies how aggressively 302 

the optimization algorithm jumps between iterations, greatly affects the algorithm’s performance 303 

and has to be tuned. A small learning rate will take a long time to reach the optimum causing a 304 

slow convergence, whereas a big learning rate will bounce around the optimum causing unstable 305 

results and a difficult convergence. Using SGD to optimize a complex NN with many weights 306 

requires a great amount of computational efforts and has difficulty in convergence. First, many 307 

training data are required to tune a large number of weights. Small training data can easily cause 308 

over-fitting, i.e., the NN “perfectly” fits the training data but performs badly on new data, thus 309 

deteriorating the NN prediction accuracy. In addition, a large number of weights involve massive 310 

matrix calculations in evaluating the loss function, slowing down the training process. 311 

Furthermore, a complicated NN has difficulty in convergence and can easily get stuck in local 312 

minima. In this work, we use SVD to reduce the model output dimensions, so as to decrease the 313 

number of nodes in the output layer and simplify the NN architecture, thus reducing the size of 314 
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the weights and enabling a reasonable NN training from small training data, and ultimately 315 

improving the computational efficiency. 316 

2.2.3 Bayesian algorithms for NN hyperparameter optimization  317 

NN involves a lot of hyperparameters that dramatically affect its performance such as the 318 

number of layers, the number of nodes in each layer, and the learning rate of the SGD algorithm. 319 

Hyperparameter optimization is needed to produce a high-performing NN. This requires 320 

optimizing an objective function f(x) over a tree-structured configuration spaces 𝑥 ∈ Χ, where 321 

some leaf variables (e.g., the number of nodes in the third hidden layer of an NN) are only well 322 

defined when branch variables (e.g., a discrete choice of how many layers to use) take particular 323 

values. In addition, the optimization not only optimizes discrete and continuous variables, but 324 

also simultaneously choose which variables to optimize. When the NN is used for surrogate 325 

modeling, the objective function is the NN accuracy of predicting some validation data. In this 326 

case, the f(x) does not have a simple closed form but can be evaluated at any arbitrary query 327 

point x in the configuration space. For such optimization problem, a sequential search method is 328 

needed, besides some inefficient grid search and random search approaches (Bergstra and 329 

Bengio, 2012). The sequential search method starts with some random points in the search space, 330 

and then iteratively evaluates new points based on NN predictions on previously evaluated 331 

points. After N evaluations, we choose the optimal combination of the hyperparameters resulting 332 

in the highest NN prediction accuracy. Among the sequential search algorithms, Bayesian 333 

optimization is able to take advantage of full information provided by the history of the 334 

optimization to improve the search efficiency.     335 

Bayesian optimization first prescribes a prior belief over the possible objective functions 336 

and then sequentially updates this prior distribution to posterior distributions as points are 337 
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evaluated via Bayesian posterior updating. The prior and posterior distributions are the 338 

probabilistic model that approximates the unknown objective function we are optimizing. With 339 

this probabilistic model, we can sequentially induce acquisition function that leverages the 340 

uncertainty in the posterior to guide exploration of new data points for updating the model. The 341 

acquisition function evaluates the utility of candidate points for the next evaluation of f(x), 342 

therefore the next iteration point 𝑥;<= is selected by maximizing the acquisition function. As 343 

more data information is incorporated to exploit the objective function, we get closer to find the 344 

best estimate of the optimizer.  345 

Dependent on the choice of the probabilistic model, we have different Bayesian 346 

optimization algorithms (Shahriari et al., 2016). The Gaussian process approach, using the 347 

Gaussian process as probabilistic model and expected improvement as acquisition function, has 348 

been widely used for parameter optimization (Bardenet and Kegl, 2010; Rasmussen and 349 

Williams, 2006; Niranjan et al., 2010). However, this approach has a few disadvantages when 350 

applying to optimize NN hyperparameters. First, it does not work well for categorical variables 351 

such as the type of activation functions in NN. Secondly, it selects new set of parameter points 352 

based on the best evaluation data. However, NN usually involves randomization during the 353 

training process. So, running NN with the same parameter values can lead to different 354 

performance which suggests that our best point can be just lucky output for the specific setting of 355 

randomness. Thirdly, Gaussian process itself involves several hyperparameters such as the kernel 356 

of the covariance function; a good choice of these hyperparameters can significantly affect the 357 

optimization but the selection of them is difficult. Lastly, the calculation of Gaussian process is 358 

rather slow, especially for a large number of parameters search (Snoek et al., 2012). 359 
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In this work, we use tree-structured Parzen estimator (TPE) for NN hyperparameter 360 

optimization (Bergstra, et al., 2013). TPE first performs a few iterations of random search, and 361 

then it divides collected parameter points into two groups. The first group contains points that 362 

give best scores after evaluation, which can be the top 10-25% of all the points, and the second 363 

group has all other points. Next, TPE finds a set of parameters that more likely to be in the first 364 

group and less likely to be in the second group through the following steps: (1) estimate 365 

likelihood probability for each of the two groups based on Parzen-window density estimators 366 

(Archambeau et al., 2006); (2) sample a bunch of candidate points using the likelihood 367 

probability from the first group; and (3) select the point having the largest probability ratio of 368 

being in the first group to the second group as the next iteration point. Lastly, we continue the 369 

searching till we hit the maximum evaluation and choose the optimal parameter combination that 370 

gives the best NN accuracy on the validation data.         371 

The TPE algorithm has great improvement over the classic hyperparameter optimization 372 

methods. TPE works well for all types of NN hyperparameter variables; it considers a set of top 373 

parameters to avoid the influence from NN randomization; its implementation is straightforward 374 

and has no associated hyperparameters for specification; and the calculation of TPE is 375 

computationally fast (Bergstra et al., 2011). 376 

3 Results 377 

In this section, we present the results of building the surrogate system of 42660 GPP 378 

variables of sELM. First, we demonstrate that our method using SVD can efficiently build and 379 

evaluate a large surrogate system by comparing the results with and without application of SVD. 380 

We then investigate the influence of NN’s architecture on surrogate performance and show that 381 
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our method using hyperparameter optimization can fast generate an accurate NN. Last, we 382 

evaluate surrogate accuracy on the large-scale spatial and temporal GPPs. 383 

We consider three sets of data, the training data for fitting the NN, the validation data to 384 

detect overfitting in the NN training and to select the best-performing NN in the hyperparameter 385 

optimization, and the test data to evaluate the NN prediction accuracy. Each data set contains 386 

pairs of parameter and GPP samples. The parameter samples are randomly drawn from the 387 

parameter space defined in Figure 3. To assess the effectiveness of our proposed surrogate 388 

method for a small data set, we consider only 20 training data (Figure 3). The validation data is 389 

chosen as 0.3 fractions of the training data. The NN model will not train on the validation data 390 

but evaluate the loss function on them at the end of each epoch. In each epoch, the training data 391 

is shuffled, and the validation data are always selected from the last 0.3 fraction. Precisely, we 392 

only use 14 samples to tune NN weights. Attribute to shuffling, these 14 samples can be a 393 

different subset from the 20 training data in each epoch, thus we sufficiently explore the limited 394 

20 data information for building the surrogates. We use 1000 test data (Figure 3) to evaluate the 395 

NN prediction accuracy, which makes a reasonable assessment of our proposed method within 396 

an affordable computational cost. Note that the 1000 test data are not needed for building the 397 

surrogates but used to demonstrate the effectiveness and efficiency of our method. When using 398 

our method to build the surrogates of the 42660 GPPs, only 20 sELM model simulations are 399 

used.          400 

We define the loss function as the mean squared error (MSE) between the NN predictions 401 

and the sELM simulations based on the parameter samples for training. We use Adam algorithm 402 

(Kingma and Ba, 2015) for stochastic optimization of NN and run it for 800 epochs to minimize 403 

the loss function and update NN weights. Adam has been shown a superior stochastic 404 
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optimization algorithm in training NN (Basu et al., 2018). There is no right answer for the 405 

optimal number of epochs. A small number of epochs could result in underfitting and a large 406 

number of epochs may lead to overfitting. Here we consider a large number of epochs and in the 407 

meantime use early stopping to avoid overfitting. During the training, when there is no 408 

improvement of loss functions for the validation data in 100 epochs, we stop the training and 409 

choose the weights at the epoch resulting in the smallest loss function of the validation data as 410 

the optimal weights and the associated NN as the best trained NN under the given setting.     411 

We then use the trained NN to predict the 1000 test data and compare the predictions with 412 

the corresponding sELM simulation results to evaluate the NN accuracy. We define two metrics 413 

for evaluation, the MSE and the coefficient of determination. The MSE computes the expected 414 

value of the squared prediction errors; the small the MSE value is, the better the prediction. The 415 

coefficient of determination, also called R2 score, measures how well the unobserved data are 416 

likely to be predicted by the NN model. Denote 𝑦?@ as the NN prediction of the ith sample and yi 417 

as the corresponding sELM simulation, the R2 score estimated over Ns samples is defined as 418 

𝑅B = 1 −
∑ (FGHF?G)I
JK
GLM

∑ (FGHFNG)I
JK
GLM

 , where 𝑦N = =
OK
∑ 𝑦@
OK
@P= . Best possible value of R2 score is 1.0, indicating 419 

that the NN can perfectly predict the test data. R2 score can be negative indicating the model is 420 

arbitrarily poor. A constant model gets a R2 score of 0.0. Compared to MSE, the R2 score 421 

considers the variability of the data which provides a more reasonable measure.       422 

3.1 SVD reduces data dimensionality and improves surrogate efficiency  423 

We consider two scenarios when building the surrogate system of the 42660 GPP outputs; 424 

Case I: building the surrogates of reduced data after SVD, and Case II: building the surrogates of 425 

all GPPs directly. In Case I, we first apply SVD to reduce the training data dimensionality, then 426 
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build surrogates of the singular value coefficients, and last transfer the surrogate system back to 427 

the original QoIs (i.e., the 42660 GPP variables).  428 

  The goal of this study is to develop a surrogate method that builds an accurate surrogate 429 

system with small training data, so as to reduce the computational costs in simulating the 430 

expensive ESMs. To demonstrate the effectiveness and efficiency of our method, we compare 431 

the surrogate performance of the two cases in predicting the 1000 test data from two aspects: (1) 432 

for the same number of training data, the predictive accuracy of the two surrogates, and (2) the 433 

number of training data used to achieve the similar predictive accuracy.  434 

Figure 4 shows the singular value decay of decomposition of the training data matrix 435 

having 20 samples and 42660 GPP variables. The figure indicates that the singular values decay 436 

very fast. The first 2 singular values drop about 1 magnitude, and the first 5 singular values can 437 

capture 97% information of the training data matrix. To choose a suitable number of singular 438 

value coefficients (Nsvd) to compress the training data and build a surrogate for, we consider a 439 

series of Nsvds, where Nsvd=1, 5, 10, 15, and 20, and investigate their impact on NN 440 

performance. To make a fair comparison, the same NN architectures are used for all Nsvd cases. 441 

We consider a simple NN with 2 hidden layers and each hidden layer has 10 nodes. Figure 5 442 

shows the prediction performance of the NNs based on the 20 training data. The figure indicates 443 

that with considering only 1 singular value coefficient, the averaged MSE of the predictions is 444 

about 0.053, and the NN model can fit the sELM simulation data well with the R2 score of 0.83. 445 

When 5 singular value coefficients are considered, the NN prediction accuracy improves with the 446 

MSE of 0.02 and the R2 score of 0.93. After Nsvd=5, the MSE and R2 score have minor changes, 447 

suggesting that for the limited 20 training data, Nsvd=5 is a good choice to compress the GPPs 448 

and build a surrogate for. At this time, the surrogate error becomes dominant compared to the 449 
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SVD approximation error and including more than 5 singular value coefficients would barely 450 

improve the NN prediction unless more training data are included to reduce the surrogate error. 451 

In the following, we consider Nsvd=5 in Case I and compare its surrogate prediction 452 

performance with Case II which builds surrogates for all GPPs directly. 453 

In Case I, our method is able to use 20 training data to build a highly accurate surrogate of 454 

42660 GPP variables with a small MSE of 0.02 and a high R2 score of 0.93. The detailed NN 455 

performance is explained in Figure 6(a) where the training and validation loss decays in building 456 

the surrogates of the 5 singular value coefficients are plotted. The figure indicates that the loss 457 

functions of the two data sets have similar decay, decreasing dramatically at the first 10 epochs 458 

and then slowly decreasing to the end of training. The closely overlapped two lines in Figure 6(a) 459 

suggest that the trained NN captures the relationship between sELM inputs and outputs pretty 460 

well and can give reasonable predictions of GPPs for a given parameter sample.  461 

To make a fair comparison, we use the same NN architecture in Case II as in Case I except 462 

that the output layer of NN in Case II has all the 42660 GPPs and the output layer in Case I has 463 

only 5 singular value coefficients. Figure 6(b) indicates that the simple NN with 20 hidden nodes 464 

is not sophisticated enough to capture the complex relationship between the 8 inputs and 42660 465 

outputs. As we can see in Figure 6(b), both training and validation losses are relatively high 466 

suggesting an underfitting. The validation loss is always larger than the training loss suggesting 467 

that the fitted NN does not generalize well and may result in poor performance in predicting new 468 

data. Figure 7 shows R2 scores of Case II in predicting the 1000 test data. The figure indicates 469 

that the simple NN trained by 20 data in Case II has a very poor prediction accuracy with the R2 470 

score of only 0.05, close to a constant model’s performance with a zero R2 score. However, with 471 

the same NN trained by the same 20 data, our SVD-based surrogate method can achieve a high 472 
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prediction accuracy with the R2 score of 0.93. This demonstrates our method’s capability in using 473 

a few training samples to build an accurate surrogate model, greatly reducing the computational 474 

costs in generating the expensive model simulation data.  475 

On the other hand, the poor performance in Case II suggests that a wider and deeper NN is 476 

needed when we consider the large outputs directly. We thus increase the nodes of each hidden 477 

layer to 100 and use this complex NN with total 200 hidden nodes to approximate the 478 

relationship of the 8 inputs and 42660 outputs in Case II. This complex NN blows up its 479 

parameters (including weights and biases) to 4.3 million from 255 in Case I. To fit this wide NN 480 

and calibrate its large parameters, 20 training data are way too small to get a reasonable fit. No 481 

matter how we adjust the NN hyperparameters, we cannot get a stable solution in training. We 482 

then increase the training data to 50, Figure 6(c) shows that the increased data greatly decrease 483 

the training and validation losses and the validation loss is slightly higher than the training loss, 484 

implying a good fit. Figure 7 indicates that the complex NN with 200 hidden nodes trained by 50 485 

data in Case II significantly improves the prediction accuracy with the R2 score of 0.73. 486 

However, Case II’s predictive performance is still worse than Case I which has the R2 score of 487 

0.93. We keep increasing the training data (Ntrain) to 100 and 200 in Case II. Figure 6(d) and (e) 488 

indicate that the increase of training data brings the validation loss closer and closer to the 489 

training loss making the fitted NN represent the underlying sELM better and better. Figure 7 490 

shows that the nicely fitted NNs trained by large Ntrains lead to a high prediction accuracy. With 491 

Ntrain=100, the R2 score is about 0.89, and with Ntrain=200, the R2 score is up to 0.95. 492 

However, compared to Case I using 20 training data to get predictive R2 score of 0.93, Case II 493 

uses near 200 data to get the similar accuracy, increasing 10-fold computational costs. Note that, 494 

each training data involves one sELM simulation and one regional sELM run takes about 24 495 
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hours on one processor. Thus, our SVD-based surrogate method greatly improves computational 496 

efficiency in the accurate surrogate modeling.  497 

Our method, in the means of simplifying NN architecture through data compression, not 498 

only reduces the training data but also decreases the training time. Using 20 data to train a simple 499 

NN with 255 parameters, our method takes about 4 seconds. In comparison, the traditional 500 

surrogate method without data compression spends a great effort in training the complex NN 501 

with 4.3 million parameters. As shown in Figure 7, Case II takes 270 seconds to fit the NN based 502 

on 50 training data and 967 seconds for the 200 training data, showing a linear increase in 503 

computing time. The long training time leads to high computational costs in NN hyperparameter 504 

optimization where massive NN training are involved in searching the wide hyperparameter 505 

space for a high-performing NN model, as discussed in the following section 3.2.    506 

3.2 NN’s hyperparameter optimization improves surrogate accuracy 507 

NN has a large number of hyperparameters. Here we adjust 5 hyperparameters and use 508 

Case I to investigate their influence on surrogate prediction accuracy. The 5 hyperparameters are, 509 

the number of hidden layers (L) where we consider the most 3 hidden layers, the number of 510 

nodes in hidden layer 1 (N1), in hidden layer 2 (N2), and in hidden layer 3 (N3), and the learning 511 

rate (lr) of Adam optimization algorithm. We consider the following choices: L={2, 3}, N1={10, 512 

20, 40, 60, 80, 100}, N2={10, 20, 40, 60, 80, 100}, N3={0, 10, 20, 40, 60, 80, 100}, and 513 

lr=U[0.001, 0.1]. The first four hyperparameters are discrete variables and the last one, lr, is a 514 

continuous variable with uniform distribution. The choice of L determines the selection of N3 515 

showing a tree-like structure. We use tree-structured Parzen estimator (TPE) to search the 5 516 

hyperparameter space and find a set of values that gives the best-performing NN. We fix the 517 
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activation function as ReLU (Agarap, 2018) which has been widely used and shown to produce 518 

good NN predictions. 519 

We use TPE to evaluate 100 sets of hyperparameters and the one giving the best validation 520 

score, i.e., the smallest MSE on validation data, is chosen as the optimal hyperparameters. 521 

Results indicate that the combination of N1=10, N2=10, N3=0, and lr=0.08 gives the best 522 

validation score. To investigate the impact of hyperparameters on NN prediction accuracy, we 523 

show the 100 sets of hyperparameters and their resulting R2 scores in predicting the 1000 test 524 

data in Figure 8. The figure indicates that different hyperparameter values result in dramatically 525 

different NN performance. The prediction R2 scores range from 0.66 to 0.93 where 32 526 

hyperparameter sets have the R2 scores over 0.90. The selected optimal NN producing the 527 

smallest MSE on the validation data also gives the best prediction performance on the test data 528 

with the R2 score of 0.93. It is desired that the best NN model chosen by validation data gives the 529 

best predictions, however, in practice it is not always the case, especially when the prediction 530 

data deviates a lot from the validation data. Extrapolation is always a difficulty in surrogate 531 

modeling and several researches are going on to improve the extrapolation accuracy (Gal, 2014). 532 

Although NNs perform significantly different with different combination of 533 

hyperparameters, the TPE algorithm can efficiently find the high-performing NNs based on 534 

previous samples information. As shown in Figure 8, good-performing NNs prefer simple 535 

architectures with 2 hidden layers, e.g., most blue lines have N3 of 0. After TPE finds a good 536 

architecture of N1=10 and N2=10, it samples around this architecture in the hyperparameter 537 

space to fine tune the learning rate till finds the most suitable lr of 0.08. This work considers 5 538 

hyperparameters with limited choices, increasing the dimensions and possible choices of the 539 

hyperparameters would make the search more thorough and could produce a better-performing 540 
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NN. Our surrogate method with SVD can accelerate the optimization process by reducing the 541 

NN training time.      542 

3.3 Evaluation of surrogate accuracy on large-scale spatial and temporal data 543 

We, using only 20 expensive sELM runs, fast build an accurate surrogate system of 42660 544 

GPPs at 1422 locations for 30 years. Therefore, for a data-model integration problem with the 545 

QoIs within the spatial and temporal ranges, we can directly extract the information of interest 546 

from the surrogate system to advance the analysis. The best-performing NN generated from our 547 

method gives an overall accurate prediction of the 42660 GPPs with averaged MSE of 0.02 and 548 

R2 scores of 0.93. When using the subset of the surrogate system for data-model integration 549 

studies, it is desired to analyze the surrogate accuracy at individual locations for specific times.  550 

Figure 9 shows averaged R2 scores over 30 years at 1422 locations. The figure indicates 551 

that the surrogate accuracy is not uniformly good for all the locations. We observe that most 552 

locations have R2 scores above 0.9 with the best R2 score of 0.96, and about 100 locations have 553 

R2 scores below 0.90 with the smallest R2 score of 0.79. We highlight the locations having zero 554 

GPP simulations in blue circles and find that these locations generally have poor predictions with 555 

low R2 scores. Connecting to Figure 2 where we label the locations in column-wise from south to 556 

north and from west to east, we identify that those locations with zero GPPs are mostly located in 557 

the north where the temperature is relatively low and annual GPPs tend to be zero for parameter 558 

samples.  559 

We pick 3 locations to closely evaluate the surrogate accuracy (Figure 9). Location 1046 560 

has the best prediction with the highest R2 score, location 1345 has the worst prediction 561 

accuracy, and location 428 performs best among the locations with zero GPP simulations. Figure 562 

10 shows annual GPP simulations based on sELM and NN-based surrogate in evaluating the 563 
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1000 test data for 30 years at the 3 locations. It can be seen that NN has difficulty in fitting zero 564 

GPP data. At location 1046 where the annual GPPs are relatively high with positive values, NN 565 

produces a great fit with a high R2 score of 0.96 and a small MSE of 0.013. Location 1046 566 

(Figure 2) is close to the lake where the variance in atmospheric drivers (e.g., temperature) is 567 

moderated. This reduced variance leads to a smooth response surface of GPP for which NN can 568 

easily build an accurate surrogate. In contrast, location 1345 has a large number of simulated 569 

GPPs less than 1.0 including many zero GPPs. NN shows difficulty in predicting these small 570 

GPPs resulting in a relatively poor performance with the R2 score of 0.79. Location 1345 is 571 

sitting in the north and has the lowest mean annual temperature, so the most parameter samples 572 

cause low vegetation growth and small GPP values. Moreover, location 1345 is far away from 573 

the lakes and has a large variation in atmospheric drivers. Since this location has a climate that is 574 

at the extreme end of the range for deciduous forests, the model response is expected and 575 

reasonable. However, this leads to a strong nonlinear response surface that casts difficulty in 576 

surrogate modeling. In comparison, although location 428 is located in the north with some small 577 

GPPs including zero values, it is also close to the lake which has a small variance in the 578 

atmospheric drivers. Thus, the NN prediction performance in location 428 is not bad with the R2 579 

score of 0.91.  580 

Figure 11 plots the averaged R2 scores over all locations for 30 years. The R2 scores have 581 

small fluctuations between 0.93 and 0.94, displaying a uniformly good fit among the simulated 582 

years. So, when using the surrogate model at any specific year for a data-model analysis, we 583 

should be able to obtain a good approximation. In this study, we are considering annual GPPs. 584 

Although the variation of atmospheric drivers between years has an impact on surrogate 585 
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accuracy, its influence is less strong compared to monthly GPPs, so a uniformly good fit among 586 

years is expected.  587 

Building a surrogate of the discontinuous response surface, e.g., vegetation turns from 588 

alive to dead representing as the GPP jumps from nonzero to zero, is a difficulty for almost all 589 

the state-of-the-art surrogate methods. Researches showed that, NNs, attribute to the layered 590 

architecture and the nonlinear activation function, can show better performance compared to 591 

other surrogate approaches (Luo and Lu, 2014; Razavi et al., 2012). To improve the surrogate 592 

accuracy for strong nonlinear and discontinuous problems, one strategy is using physics-593 

informed domain decomposition methods to build surrogate models separately in different 594 

response surface regimes. This strategy requires the surrogate methods strongly connecting to the 595 

simulation model, and the methods are generally problem-specific requiring experts’ interaction. 596 

Another strategy is increasing the training data to explore complex problems. This strategy 597 

requires an increase in computational costs for extra expensive model simulations. In the 598 

following section 4, we investigate these two strategies and discuss their influence on surrogate 599 

accuracy.         600 

4 Discussion  601 

ESMs are complex whose response surfaces always display strong nonlinearity and 602 

discontinuity, casting a challenge to surrogate modeling. In this section, we consider the 603 

strategies of physics-informed learning and increase of training data to improve the surrogate 604 

accuracy. We conduct two corresponding experiments to investigate our method’s performance 605 

in application of these two strategies. In experiment I, we divide the parameter space into two 606 

parts producing zero GPPs and nonzero GPPs, and we use 20 training data to build surrogates of 607 

the 42660 GPPs in the regime generating nonzero GPP samples. In experiment II, we build the 608 
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surrogates of the 42660 GPPs in the original parameter domain (Figure 3), but with increasing 609 

training data of 200 and 1000.    610 

We use the results of Case I as a baseline to investigate our method’s performance in the 611 

two experiments. Figure 12 shows averaged R2 scores over 30 years at the 1422 locations in 612 

experiment I. The figure indicates that without zero GPPs our method can produce a very 613 

accurate surrogate at all locations with a uniformly high R2 score of 0.98. Building the surrogates 614 

in the subdomain without zero GPPs not only significantly improves the prediction accuracy in 615 

locations originally having poor fit in Case I, but also further improves the prediction accuracy in 616 

locations which already have a good fit in Case I. For example, the R2 score is dramatically 617 

improved from 0.79 to 0.97 at location 1345, from 0.96 to 0.99 at location 1046, and from 0.91 618 

to 0.98 at location 428. As shown in Figure 13, the NN almost perfectly reproduces sELM 619 

simulations at these 3 locations. Experiment I indicates that physics-informed domain 620 

decomposition can be a good strategy to improve surrogate accuracy. For smooth problems (e.g., 621 

no sharp jumps from non-zeros to zeros in response surfaces), our method can build a very 622 

accurate surrogate model based on a few training data.   623 

Figure 14 shows averaged R2 scores over 30 years at 1422 locations based on 200 and 624 

1000 training data in experiment II. The figure indicates that an increase of training data greatly 625 

enhances NN prediction accuracy. Adding 10 folds additional data from Ntrain=20 to 626 

Ntrain=200, the overall R2 score improves from 0.93 to 0.98; further increasing Ntrain to 1000, 627 

the averaged R2 score is up to 0.993 with the worst value of 0.96. Although we observe similar 628 

nonuniform performance among locations in Figure 14 as in Figure 9, where the locations with 629 

zero GPPs have smaller R2 scores than others, increasing Ntrain significantly improves the 630 

accuracy at all locations, especially those originally having poor fits in Case I. For example, 631 
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when Ntrain=200, most blue-circled locations have R2 scores above 0.95 and for Ntrain=1000, 632 

the R2 scores at these blue-circled locations are above 0.985 in comparison to the values below 633 

0.9 when Ntrain=20. In the examination of the 3 individual locations by comparing Figure 10 634 

and Figure 15, we see that at the location of 1046, an increase of Ntrain enables the NN to 635 

perfectly predict sELM simulations with negligible MSEs. Even for the location 428 with zero 636 

GPPs, more training data can capture the discontinuous behavior better with R2 score of 0.99 and 637 

MSE of 0.003 when Ntrain=1000. The worst location happens at 1345 for all cases due to its 638 

highly changed atmospheric drivers. Even so, the increase of Ntrain can still dramatically 639 

enhance the NN’s capability in simulating the difficult response surface. Experiment II indicates 640 

that increasing training data is able to significantly improve the surrogate accuracy. Our method 641 

scales well with the increase of training data and greatly improves prediction accuracy as Ntrain 642 

increases.  643 

The analysis of the two experiments suggests that our method is data-efficient for 644 

continuous problems. To improve the surrogate accuracy in discontinuous and highly nonlinear 645 

problems, we can use the physical-informed domain decomposition to focus on the continuous 646 

and smooth regions of the response surface. If the discontinuity is the inherent feature of the 647 

underlying function that we need to surrogate, an increase of training data would be a good 648 

solution for surrogate accuracy improvement.           649 

Having built a surrogate system of many GPP variables over large spatial and temporal 650 

domains provides great flexibility and possibility for subsequent predictive analytics tasks. For 651 

example, the surrogate model can be used for analyzing sensitivities of model parameters to any 652 

set of spatial and temporal GPP variables, and for parameter optimization and uncertainty 653 

quantification based on a single-site or multiple-site, a single-year or multiple-year GPP 654 
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observations using any defined objective functions. In addition, with the newly collected 655 

observations from additional sites or further time periods, we can use the same surrogate system 656 

for analysis as long as the QoIs are within the surrogate simulation ranges. In the future study, 657 

we will pursue the data-model integration using the constructed surrogate system.     658 

5 Conclusions 659 

In this work, we develop an SVD-enhanced, Bayesian-optimized, and NN-based surrogate 660 

method to improve the computational efficiency of large-scale surrogate modeling, so as to 661 

advance model-data integration studies in Earth system model simulations. Our method is data 662 

efficient in the fact that only 20 model simulations are needed to build an accurate surrogate 663 

system. This is a promising result because large Earth system model ensembles are always 664 

computationally infeasible, and 20 is a reasonable and affordable number of simulations to 665 

consider. In addition, our method is general purpose and can be efficiently applied to a wide 666 

range of Earth system problems with different spatial scales (local, regional, or global) at 667 

different simulation periods. It is super effective for smooth problems and scaled well for highly 668 

nonlinear and discontinuous problems.   669 

We apply our surrogate method to a regional ecosystem model. The results indicate that 670 

using only 20 model runs, we can build an accurate surrogate system of 42660 spatially- and 671 

temporally-varied GPPs with the R2 score of 0.93 and MSE of 0.02. For locations with robust 672 

vegetation growth across the ensemble, our method can almost perfectly predict the model 673 

simulations with the R2 score of 0.96. For locations with low vegetation growth for some 674 

parameter samples and large variation in atmospheric drivers that cause discontinuous response 675 

surfaces, using physics-informed domain decomposition or the increase of training samples, our 676 

method can produce accurate predictions with the R2 score of 0.97 and 0.96, respectively. This 677 
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application demonstrates our method’s capability in accurately reproducing expensive model 678 

simulations based on a few parallel model runs.     679 
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List of Figures 776 

 777 

Figure 1. Schematic of sELM, where processes are shown using blue boxes with dependencies 778 
on environmental data, 8 uncertain parameter inputs are listed in orange ovals, and model state 779 
variables are indicated by green shapes. Parameters are input to one or more processes as 780 
indicated by blue arrows.  Model state variables may be outputs for some processes and input for 781 
other processes as indicated by red arrows.   782 

 783 

  784 
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 785 
Figure 2. Locations of interest for which we build surrogates of GPP (gC/m^2/day) variables; 786 
total 1422 locations are considered. The figure shows the sELM simulated annual GPP based on 787 
one parameter sample. 788 
  789 
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 790 

Figure 3. We consider 8 uncertain parameter inputs whose ranges are shown as axis limits. The 791 
20 training and 1000 testing data are randomly drawn from the parameter space.  792 
  793 
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 794 

Figure 4. Singular value decay and the information contained in the first largest singular values. 795 
The top 5 singular values contain 97% information of training data matrix with 42660 GPP 796 
variables and 20 samples. 797 
  798 
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 799 
Figure 5. Performance of the NNs trained by 20 data with considering the different number of 800 
singular value coefficients after SVD. 801 
  802 
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 803 

Figure 6. Changes of loss function values along epochs for training and validation data (a) in 804 
Case I which builds surrogates of the 5 singular value coefficients with a simple NN (two hidden 805 
layers and each layer has 10 nodes, N1=N2=10) based on 20 training data (Ntrain=20), and (b-e) 806 
in Case II which builds surrogates of all outputs with different NN architectures and different 807 
training data size.  808 
  809 
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 810 
Figure 7. Comparison of NN performance between Case I: building surrogates of 5 singular 811 
value coefficients (Nsvd=5) after SVD based on 20 training data (red dashed line) and Case II: 812 
building surrogates for all outputs directly with different numbers of training data (red solid 813 
line). Each training data represents one sELM simulation. The right y-axis shows the time in 814 
training the NN in Case II. The time for training the NN in Case I is 4 seconds.    815 
  816 
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 817 
Figure 8. Different sets of NN hyperparameters result in different R2 score in evaluating the 1000 818 
test data. Nl is the number of nodes in hidden layer l, where l=1, 2, and 3. lr is the learning rate 819 
of Adam algorithm for NN weights optimization.   820 
  821 
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 822 
Figure 9. Averaged R2 scores over 30 years at 1422 locations in evaluating the 1000 test data 823 
based on 20 training samples, where the blue circles identify the locations having zero GPP 824 
simulations. 825 
  826 
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 827 
Figure 10. Simulations of annual GPPs (gC/m^2/day) from sELM and NN-based surrogate 828 
model in evaluating 1000 test data for 30 years at 3 locations, where the NN is trained by 20 data 829 
using our method.  830 
  831 
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 832 
Figure 11. Averaged R2 scores over 1422 locations at 30 years in evaluating the 1000 test data.  833 
  834 



 47 

 835 
Figure 12. Averaged R2 scores over 30 years at 1422 locations in evaluating the 1000 test data 836 
based on 20 training data in experiment I where the samples are generated in a subdomain of the 837 
parameter space without zero GPP simulations. The averaged R2 score is 0.98.   838 
  839 
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 840 
Figure 13. Simulations of annual GPPs (gC/m^2/day) from sELM and NN-based surrogate 841 
model in evaluating 1000 test data for 30 years at 3 locations in experiment I where the samples 842 
are generated in a subdomain of the parameter space without zero GPP simulations. 843 
  844 
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 845 

 846 

Figure 14. Averaged R2 scores over 30 years at 1422 locations in evaluating the 1000 test data 847 
based on 200 and 1000 training samples, where the blue circles identify the locations having zero 848 
GPP simulations.  849 

  850 
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 851 

852 
Figure 15. Simulations of annual GPPs (gC/m^2/day) from sELM and NN-baed surrogate model 853 
in evaluating 1000 test data for 30 years at 3 locations, where the NN is trained by 200 and 1000 854 
data. 855 

 856 


