Supplementary Materials

The Eulerian urban dispersion model EPISODE. Part II: Extensions to the source dispersion and photochemistry for EPISODE-CityChem and its application to the city of Hamburg

Matthias Karl¹, Sam-Erik Walker², Sverre Solberg², Martin O. P. Ramacher¹

[1] Chemistry Transport Modelling, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany.

[2] Norwegian Institute for Air Research (NILU), Kjeller, Norway.

Correspondence to: M. Karl (matthias.karl@hzg.de)

Stability class	Stability class Name Temperature between 10 m and P-G class 25 m	Temperature difference ΔT	Mapping to	Line-source parameterization of ambient turbulence			
Stability class		а	b	C	d		
1	Unstable	$\Delta T < -0.5^{\circ}$	A, B, C	110.62	0.932	18.333	1.8096
2	Neutral	$-0.5^\circ < \Delta T < 0.0^\circ$	D	86.49	0.923	14.333	1.7706
3	Moderately stable	$0.0^{\circ} < \varDelta T < 0.5^{\circ}$	Е	61.14	0.915	12.5	1.0857
4	Stable	$\varDelta T > 0.5^{\circ}$	F	61.14	0.915	12.5	1.0857

Table S1: Atmospheric stability classes in the sub-grid model components.

Table S2: Chemical reactions and photo-dissociation reactions of the EmChem03-mod scheme.For notes on rate coefficient functions see end of table.

Reaction no.	Educts	Products	Rate coefficient
Inorganic ch	emistry		
IN-1	OP + O2 + M	→ 03	$5.67E-34 \times M \times O2 \times (T/300)^{-2.8}$
IN-2	OD + M	\longrightarrow OP	$1.8\text{E-}11 \exp(107/T) \times \text{N2} + 3.2\text{E-}11 \exp(67/T) \times \text{O2}$
IN-3	OP + NO + M	\longrightarrow NO2	<i>ktr</i> (NO + OP)
IN-4	OD + H2O	→ 2.0 OH	2.2E-10 × H2O
IN-5	O3 + NO	\longrightarrow NO2 + O2	$1.4\text{E-12} \exp(-1310/T)$
IN-6	O3 + NO2	\longrightarrow NO3 + O2	$1.4\text{E-12} \exp(-2470/T)$
IN-7	O3 + OH	\longrightarrow HO2 + O2	$1.7\text{E-}12 \exp(-940/T)$
IN-8	O3 + HO2	\longrightarrow OH + 2 O2	$2.03\text{E-16} \times (300/T)^{-4.57} \exp(693/T)$

IN-9	NO + NO3	\longrightarrow NO2 + NO2	1.8E-11 exp(110/ <i>T</i>)
IN-10	NO + HO2	\longrightarrow NO2 + OH	$3.6\text{E-12} \exp(270/T)$
IN-11	NO3 + HO2	\longrightarrow NO2 + OH + O2	3.5E-12
IN-12	NO2 + NO3	\longrightarrow N2O5	<i>ktr</i> (NO2 + NO3)
IN-13	NO2 + OH + M	\longrightarrow HNO3	<i>ktr</i> (NO2 + OH)
IN-14	N2O5	\longrightarrow NO2 + NO3	<i>ktr</i> (N2O5)
IN-15	OH + H2	\longrightarrow HO2 + H2O	7.7E-12 $\exp(-2100/T)$
IN-16	OH + HO2	\longrightarrow O2 + H2O	4.8E-11 exp(250/ <i>T</i>)
IN-17	OH + H2O2	\longrightarrow HO2 + H2O	$2.9\text{E-}12 \exp(-160/T)$
IN-18	HO2 + HO2	\longrightarrow H2O2	<i>FH20</i> × 2.2E-13 exp(600/ <i>T</i>)
IN-19	HO2 + HO2 + M	\longrightarrow H2O2	<i>FH20</i> × 1.9E-33 exp(980/ <i>T</i>)
IN-20	OH + HNO3	\longrightarrow NO3 + H2O	k(OH + HNO3)
IN-21	SO2 + OH	\longrightarrow HO2 + H2SO4	<i>ktr</i> (SO2 + OH)
IN-22	SO2 + CH3O2	\longrightarrow H2SO4 + HCHO + HO2	4.0E-17
IN-23	OH + HONO	\longrightarrow NO2	$2.5\text{E-12} \exp(-260/T)$
IN-24	OH + NO	→ HONO	<i>ktr</i> (OH + NO)
Heterogeneo	ous chemistry		
HE-1	H2SO4	\longrightarrow aerosol sink	5.0E-6 × M / 2.55E19
Methane che	emistry		
MA-1	OH + CH4	→ CH3O2	$1.85\text{E-}20 \times T^{2.8} \times \exp(-987/T)$
MA-2	CH3O2 + NO	\longrightarrow HCHO + HO2 + NO2	$2.3\text{E-}12 \exp(360/T)$
MA-3	CH3O2 + NO3	\longrightarrow HCHO + HO2 + NO2	1.3E-12
MA-4	OH + CH3OH	\longrightarrow HO2 + HCHO + H2O	$6.38\text{E-}18 \exp(144/T) \times T^2$

Table S2: Continued.

CH3COCHO2CH3 + NO

NB-4

MA-5	HO2 + CH3O2	→ 0.9 CH3O2H + 0.1 HCHO	$3.8\text{E-}13 \exp(780/T)$
MA-6	CH3O2H + OH	\longrightarrow HCHO + OH	$1.0\text{E-12} \exp(190/T)$
MA-7	CH3O2H + OH	\longrightarrow CH3O2 + H2O	$1.9\text{E-}12 \exp(190/T)$
MA-8	OH + HCHO	\longrightarrow CO + HO2 + HO2	$1.25\text{E-}17 \times T^2 \times \exp(615/T)$
MA-9	NO3 + HCHO	\longrightarrow HNO3 + CO + HO2	$2.0\text{E-}12 \exp(-2440/T)$
MA-10	OH + CO	\longrightarrow HO2 + CO2	$1.44E-13 + 3.43E-33 \times M$
Ethane and e	ethanol chemistry		
EA-1	OH + C2H6	\longrightarrow C2H5O2 + H2O	$6.9\text{E}-12 \exp(-1000/T)$
EA-2	C2H5O2 + NO	\longrightarrow HO2 + CH3CHO + NO2	$2.55\text{E}-12 \exp(380/T)$
EA-3	C2H5O2 + NO3	\longrightarrow HO2 + CH3CHO + NO2	2.3E-12
EA-4	OH + CH3CHO	$\longrightarrow \begin{array}{c} 0.95 \text{ CH3COO2} + 0.05 \\ \text{CH3O2} + 0.05 \text{ CO} \end{array}$	$4.4\text{E-12} \exp(365/T)$
EA-5	CH3COO2 + NO2 + M	\longrightarrow PAN	<i>ktr</i> (CH3OO2 + NO2)
EA-6	PAN + M	\longrightarrow CH3COO2 + NO2	<i>ktr</i> (PAN)
EA-7	CH3COO2 + NO	\longrightarrow NO2 + CH3O2 + CO2	7.5E-12 $\exp(290/T)$
EA-8	OH + C2H5OH	→ CH3CHO + HO2	6.7E-18 $\exp(511/T) \times T^2$
n-butane che	emistry		
NB-1	OH + NC4H10	→ SECC4H9O2	2.03E-17 $\exp(78/T) \times T^2$
NB-2	NO + SECC4H9O2	NO2 + 0.65 HO2 + 0.65 → CH3COC2H5 + 0.35 CH3CHO + 0.35 C2H5O2	2.54E-12 $\exp(360/T)$
NB-3	OH + CH3COC2H5	→ СН3СОСНО2СН3	2.53E-18 exp(503/ T) × T^2

NO2 + CH3COO2 + CH3CHO

 $2.54\text{E-}12 \exp(360/T)$

Table S2: Continued.

Ethene chem	istry		
EE-1	C2H4 + OH +M	→ CH2O2CH2OH	<i>ktr</i> (OH + C2H4)
EE-2	CH2O2CH2OH + NO	\longrightarrow NO2 + 2 HCHO + HO2	2.54E-12 $\exp(360/T)$
EE-3	C2H4 + O3	$\longrightarrow \begin{array}{c} 1.14 \text{ HCHO} + 0.63 \text{ CO} + 0.13 \\ \text{HO2} + 0.13 \text{ OH} + 0.14 \text{ H2O2} \end{array}$	9.1E-15 exp(-2580/ <i>T</i>)
Propene cher	mistry		
PE-1	OH + C3H6 + M	→ CH3CHO2CH2OH	<i>ktr</i> (OH + C3H6)
PE-2	NO + CH3CHO2CH2OH	$\longrightarrow \frac{\text{NO2} + \text{CH3CHO} + \text{HCHO} + \text{HO2}}{\text{HO2}}$	2.54E-12 $\exp(360/T)$
PE-3	O3 + C3H6	$ \begin{array}{c} 0.545 \text{ HCHO} + 0.545 \\ \hline \text{CH3CHO} + 0.56 \text{ CO} + 0.36 \\ \hline \text{OH} + 0.28 \text{ HO2} + 0.09 \text{ H2O2} \\ + 0.1 \text{ CH4} + 0.28 \text{ CH3O2} \end{array} $	5.5E-15 $\exp(-1880/T)$
o-xylene cher	mistry		
OX-1	OXYL + OH	\longrightarrow OXYLOHO2	1.36E-11
OX-2	OXYLOHO2 + NO	$\longrightarrow \begin{array}{c} \text{NO2} + \text{CH3COCHO} + \\ \text{MEMALDIAL} + \text{HO2} \end{array}$	2.54E-12 $\exp(360/T)$
OX-3	MEMALDIAL + OH	\longrightarrow MEMALO2	5.58E-11
OX-4	MEMALO2 + NO	$\xrightarrow{\text{NO2} + \text{HO2} + \text{CH3COCHO}}_{\text{+ HCOCHO}}$	2.54E-12 $\exp(360/T)$
OX-5	OH + CH3COCHO	\longrightarrow CH3COO2 + CO	$1.9\text{E-12} \exp(575/T)$
OX-6	OH + HCOCHO	\longrightarrow HO2 + 2 CO	6.6E-18 exp $(820/T) \times T^2$
Isoprene che	mistry		
IS-1	C5H8 + OH	\longrightarrow ISOPO2	2.7E-11 $\exp(390/T)$
IS-2	ISOPO2 + NO	$\longrightarrow \begin{array}{c} 0.776 \text{ MVK} + 0.776 \text{ HCHO} + \\ 0.12 \text{ ISOPO2} + \text{HO2} + \text{NO2} \end{array}$	2.54E-12 $\exp(360/T)$
IS-3	MVK + OH	\longrightarrow MVKO2	$4.1\text{E}-12 \exp(453/T)$
IS-4	MVKO2 + NO	$\longrightarrow \begin{array}{c} \text{CH3COCHO} + \text{HCHO} + \\ \text{HO2} + \text{NO2} \end{array}$	$1.4\text{E-12} \exp(-180/T)$

Reaction no.	Educts		Products	ε ₁	ε2	ε3	E 4
Photolysis re	actions						
PH-1	03	\longrightarrow	OD	2.00E-04	1.400	0.86	0.33
PH-2	O3	\longrightarrow	OP	1.23E-03	0.600	0.92	0.41
PH-3	NO2	\longrightarrow	OP + NO	1.45E-02	0.400	0.91	0.38
PH-4	H2O2	\longrightarrow	2 OH	2.20E-05	0.750	0.88	0.35
PH-5	HNO3	\longrightarrow	NO2 + OH	3.00E-06	1.250	0.87	0.33
PH-6	нсно	\longrightarrow	CO + 2 HO2	5.40E-05	0.790	0.88	0.34
PH-7	нсно	\longrightarrow	CO + H2	6.65E-05	0.600	0.89	0.35
PH-8	СНЗСНО	\longrightarrow	CH3O2 + HO2 + CO	1.35E-05	0.940	0.87	0.33
PH-9	CH3COC2H5	\longrightarrow	CH3COO2 + C2H5O2	2.43E-05	0.877	0.92	0.41
PH-10	СНЗСОСНО	>	CH3COO2 + CO + HO2	9.72E-05	0.877	0.92	0.41
PH-11	нсосно	>	1.9 CO + 0.1 HCHO + 0.5 HO2	5.40E-04	0.790	0.92	0.41
PH-12	NO3	\longrightarrow	NO + O2	3.53E-02	0.081	0.92	0.42
PH-13	NO3	>	NO2 + OP	8.94E-02	0.059	0.92	0.42
PH-14	N2O5	>	NO2 + NO3	3.32E-05	0.567	0.88	0.35
PH-15	СНЗО2Н	>	HCHO + OH + HO2	2.27E-05	0.620	0.88	0.35
PH-16	HONO	>	OH + NO	3.22E-03	0.400	0.91	0.38

Table S2: Continued.

Notes:

Special rate constants and reaction parameters:

FH2O = 1 + 1.4E-21 exp(2200/*T*) × H2O; $k(OH + HNO3) = K_1 + (K_3 \times M)/(1.0 + (K_3 \times M/K_4))$ with $K_1 = 2.4E-14 \exp(460/T)$, $K_3 = 6.5E-34 \exp(1335/T)$, $K_4 = 2.7E-17 \exp(2199/T)$; Rate coefficients for three-body reactions using the Troe expression (e.g. Atkinson et al., 2006), where the reaction rates are calculated as: $ktr = \frac{k_0 k_\infty}{k_0 + k_\infty} F$, with the broadening factor *F* calculated using the approximate expression: $log_{10}F \cong \frac{log_{10}F_c}{1+[log_{10}(k_0/k_\infty)/N]^2}$, where $N = [0.75 - 1.27 log_{10}F_c]$, are given as follows:

ktr (NO+OP): $k_0/M = 1.0E-31 (300/T)^{1.6}$, $k_\infty = 3.0E-11 (300/T)^{-0.3}$, $F_c = 0.85$; *ktr* (NO2+NO3): $k_0/M = 3.6E-30 (300/T)^{4.1}$, $k_\infty = 9.7E-12 (300/T)^{-0.2}$, $F_c = 0.35$; *ktr* (NO2+OH): $k_0/M = 3.3E-30 (300/T)^{3.0}$, $k_\infty = 4.1E-11$, $F_c = 0.40$; *ktr* (N2O5): $k_0/M = 1.3E-3 (300/T)^{3.5} \exp(-11000/T)$, $k_\infty = 9.7E14 (300/T)^{-0.1} \exp(-11080/T)$; *ktr* (OH+NO): $k_0/M = 7.4E-31 (300/T)^{2.4}$, $k_\infty = 3.3E-11 (300/T)^{0.3}$, $F_c = \exp(-T/1420)$; *ktr* (CH3OO2 + NO2): $k_0/M = 2.7E-28 (300/T)^{7.1}$, $k_\infty = 1.2-11 (300/T)^{0.9}$, $F_c = 0.3$; *ktr* (PAN): $k_0/M = 4.9E-3 (300/T)^{-12100}$, $k_\infty = 5.4E16 \exp(-13830/T)$, $F_c = 0.3$; *ktr* (OH+C2H4): $k_0/M = 8.6E-29 (300/T)^{3.1}$, $k_\infty = 9.0E-12 (300/T)^{0.85}$, $F_c = 0.48$; *ktr* (OH+C3H6): $k_0/M = 8.0E-27 (300/T)^{3.5}$, $k_\infty = 3.0E-11 (300/T)$, $F_c = 0.5$; *ktr* (SO2+OH): $k_0/M = 4.0E-31 (300/T)^{-3.3}$, $k_\infty = 2.0E-12$, $F = 0.45^{1/(1 + \log_{10}(k_0/k_\infty)^2)}$

Reaction no.	Educts	Products	Rate coefficient
MA-11	CH3O2 + CH3O2	→ 2. HCHO + 2. HO2	$7.4\text{E-}13 \exp(-520/T)$
MA-12	CH3O2 + CH3O2	→ СНЗОН + НСНО	1.03E-13 exp(365/ <i>T</i>) – 7.4E-13 exp(-520/ <i>T</i>)
EA-9	C2H5O2 + HO2	→ С2Н5ООН	3.8E-13 exp(900/ <i>T</i>)
EA-10	C2H5OOH + OH	→ CH3CHO + OH	8.01E-12
EA-11	C2H5OOH + OH	→ C2H5O2	1.9E-12 exp(190/ <i>T</i>)
EA-12	CH3COO2 + HO2	0.41 CH3COO2H + 0.15 O3 → + 0.44 OH + 0.44 CH3O2 + 0.15 CH3COOH	5.2E-13 exp(980/ <i>T</i>)
EA-13	CH3COO2H + OH	→ CH3COO2	1.9E-12 exp(190/ <i>T</i>)
EA-14	CH3O2 + CH3COO2	$\longrightarrow \begin{array}{c} 0.9 \text{ HO2} + \text{HCHO} + 0.9 \\ \text{CH3O2} + 0.1 \text{ CH3COOH} \end{array}$	$2.0\text{E-}12 \exp(500/T)$
EA-15	CH3COO2 + CH3COO2	→ CH3O2 + CH3O2	2.9E-12 exp(500/ <i>T</i>)

Table S3: Additional chemical reactions and photo-dissociation reactions of EmChem09-mod. The scheme includes all reactions of EmChem03-mod given in Table S2.

Table S3: Continued.	: Continued.
----------------------	--------------

NB-5	SECC4H9O2 + HO2	$\longrightarrow 0.95$ BURO2H	$0.625 \times 2.91\text{E-}13 \exp(1300/T)$
NB-6	CH3COCHO2CH3 + HO2	—→ МЕКО2Н	$0.625 \times 2.91\text{E}{-}13 \exp(1300/T)$
NB-7	MEKO2H + OH	→ CH3COCHO2CH3	1.9E-12 exp(190/ <i>T</i>)
NB-8	BURO2H + OH	→ SECC4H9O2	1.9E-12 exp(190/ <i>T</i>)
NB-9	BURO2H + OH	\longrightarrow OH + CH3COC2H5	2.15E-11
EE-4	CH2O2CH2OH + HO2	→ ETRO2H	1.2E-11
EE-5	ETRO2H + OH	→ CH3CHO + OH	1.38E-11
EE-6	ETRO2H + OH	→ CH2O2CH2OH	1.9E-12 exp(190/ <i>T</i>)
PE-4	CH3CHO2CH2OH + HO2	$\longrightarrow 0.795 \text{ PRRO2H}$	$0.52 \times 2.91\text{E}{-}13 \exp(1300/T)$
PE-5	PRRO2H + OH	→ CH3COCH2OH + OH	2.44E-11
PE-6	CH3COCH2OH + OH	→ CH3COCHO + HO2	$1.6\text{E-}12 \exp(305/T)$
PE-7	PRRO2H + OH	→ CH3CHO2CH2OH	1.9E-12 exp(190/ <i>T</i>)
OX-7	OXYLOHO2 + HO2	→ 0.227 OXYO2H	$0.859 \times 2.91\text{E}{-}13 \exp(1300/T)$
OX-8	OXYO2H + OH	→ OXYLOHO2	4.2E-11
OX-9	MEMALDIAL + HO2	→ MEMALO2H	$0.706 \times 2.91\text{E}{-}13 \exp(1300/T)$
OX-10	MEMALO2H + OH	\longrightarrow MEMALO2	1.9E-12 exp(190/ <i>T</i>)
IS-5	ISOPO2 + HO2	$\longrightarrow 0.857$ ISRO2H	$1.4\text{E-12} \exp(-180/T)$
IS-6	ISRO2H + OH	\longrightarrow OH + ISOPO2	7.5E-11
IS-7	MVKO2 + HO2	→ MVKO2H	$0.625 \times 2.91\text{E-}13 \exp(1300/T)$
IS-8	MVKO2H + OH	→ MVKO2	2.2E-11

Table S3: Continued.

Monoter	nene	cher	nistrv
monorer	pene	cnen	usu y

MT-1	APINENE + OH	\longrightarrow PRODAPINOH + MTO2	1.2E-11 $\exp(444/T)$
MT-2	APINENE + NO3	\longrightarrow PRODAPINNO3 + MTO2	1.2E-12 exp(490/ <i>T</i>)
MT-3	APINENE + O3	$ \begin{array}{c} 0.8 \text{ PRODAPINO3} + 0.8 \\ \longrightarrow \text{ MTO2} + 0.2 \text{ BLOC} + 0.46 \\ \text{OH} \end{array} $	$6.3\text{E-16} \exp(-580/T)$
MT-4	LIMONENE + OH	\longrightarrow PRODLIMOOH + MTO2	1.7E-10
MT-5	LIMONENE + NO3	\longrightarrow PRODLIMONO3 + MTO2	1.3E-11
MT-6	LIMONENE + O3	$\longrightarrow \begin{array}{c} \text{PRODLIMOO3} + 0.67 \text{ OH} + \\ 0.19 \text{ HCHO} + \text{MTO2} \end{array}$	2.0E-16
MT-7	MTO2 + NO	$\longrightarrow \begin{array}{c} \text{NO2} + \text{HO2} + 0.78 \\ \text{MTKETONE} \end{array}$	$2.54\text{E-}12 \exp(360/T)$
MT-8	MTO2 + HO2	→ 0.493 MTO2H	$0.914 \times 2.91\text{E}{-}13 \exp(1300/T)$
MT-9	MTO2 + CH3O2	→ MTO2H	2.91E-13 exp(1300/ <i>T</i>)
MT-10	MTO2 + C2H5O2	→ MTO2H	2.91E-13 exp(1300/ <i>T</i>)
MT-11	PRODAPINOH + OH	\longrightarrow MTO2	1.0E-30
MT-12	PRODAPINNO3 + OH	\longrightarrow MTO2	1.0E-30
MT-13	PRODAPINO3 + OH	\longrightarrow MTO2	1.0E-30
MT-14	PRODLIMOOH + OH	\longrightarrow MTO2	1.0E-30
MT-15	PRODLIMONO3 + OH	\longrightarrow MTO2	1.0E-30
MT-16	PRODLIMOO3 + OH	\longrightarrow MTO2	1.0E-30
MT-17	MTKETONE + OH	\longrightarrow MTO2	1.0E-30
MT-18	MTO2H + OH	→ MTO2	1.0E-30
Semi-volatile	e organic compounds		

SV-1	ISOPO2 + NO	→ 0.003 BLOC + 0.101 BSOC	2.54E-12 exp(360/ <i>T</i>)
SV-2	ISOPO2 + HO2	$\longrightarrow 0.024 \text{ BLOC} + 0.119 \text{ BSOC}$	$0.706 \times 2.91\text{E}{-}13 \exp(1300/T)$

Table S3: Continued.

SV-3	MTO2 + NO	$\longrightarrow 0.052 \text{ BLOC} + 0.184 \text{ BSOC}$	$2.54\text{E-}12 \exp(360/T)$
SV-4	MTO2 + HO2	→ 0.327 BLOC + 0.180 BSOC	2.91E-13 exp(1300/ <i>T</i>)
SV-5	BSOC + OH	\longrightarrow BLOC	4.0E-11
SV-6	OXYLOHO2 + NO	$\longrightarrow 0.063 \text{ ALOC}$	$2.54\text{E-}12 \exp(360/T)$
SV-7	OXYLOHO2 + HO2	$\longrightarrow 0.710 \text{ ALOC}$	2.91E-13 exp(1300/ <i>T</i>)
SV-8	CH3CHO2CH2OH + HO2	$\longrightarrow 0.205 \text{ ALOC}$	$0.52 \times 2.91\text{E}-13 \exp(1300/T)$
SV-9	SECC4H9O2 + HO2	$\longrightarrow 0.050 \text{ ALOC}$	$0.625 \times 2.91\text{E}{-}13 \exp(1300/T)$
SV-10	BLOC + OH	\longrightarrow MTO2	1.0E-30
SV-11	ALOC + OH	\longrightarrow OXYLOHO2	1.0E-30

Photolysis reactions

				E 1	E 2	E 3	E 4
PH-17	С2Н5ООН	\longrightarrow	HO2 + CH3CHO + OH	2.27E-05	0.620	0.88	0.35
PH-18	ETRO2H	>	HO2 + OH + 1.56 HCHO + 0.22 CH3CHO	2.27E-05	0.620	0.88	0.35
PH-19	BURO2H	>	OH + 0.65 HO2 + 0.65 CH3CO2H5 + 0.25 CH3CHO + 0.25 C2H5O2	2.27E-05	0.620	0.88	0.35
PH-20	PRRO2H	\longrightarrow	CH3CHO + HCHO + HO2	2.27E-05	0.620	0.88	0.35
PH-21	MEKO2H	\longrightarrow	CH3CHO + CH3COO2 + OH	2.27E-05	0.620	0.88	0.35
PH-22	СН3СОО2Н	\longrightarrow	CH3O2 + OH	2.27E-05	0.620	0.88	0.35
PH-23	ОХҮО2Н		OH + CH3COCHO + MEMALDIAL + HO2	2.27E-05	0.620	0.88	0.35
PH-24	MEMALO2H		OH + HO2 + HCOCHO + CH3COCHO	2.27E-05	0.620	0.88	0.35

Reaction no.	Educts	Rate	Rate coefficient				
IN-1	OP + O2 + M	5.67	$5.67\text{E-}34 \times \text{M} \times \text{O2} \times (7/300)^{-2.8}$				
IN-2	OD + M	\longrightarrow OP	1.8E exp($-11 \exp(10^{\circ})$ 67/ <i>T</i>) × O2	7/T) × N2 -	+ 3.2E-11	
IN-3	OP + NO + M	\longrightarrow NO2	ktr(NO + OP)			
IN-4	OD + H2O	→ 2.0 OH	2.2E	-10 × H2O			
IN-5	O3 + NO	\longrightarrow NO2 + O2	1.4E	-12 exp(-13	310/ <i>T</i>)		
IN-7	O3 + OH	\longrightarrow HO2 + O2	1.7E	-12 exp(-94	40/ <i>T</i>)		
IN-8	O3 + HO2	2.03	$2.03\text{E}\text{-}16 \times (300/T)^{-4.57} \exp(693/T)$				
IN-10	NO + HO2	3.6E	$3.6\text{E-12} \exp(270/T)$				
IN-13	$NO2 + OH + M \longrightarrow HNO3 $ $ktr(NO2 + OH)$						
MA-8	OH + HCHO	1.25	$1.25\text{E-}17 \times T^2 \times \exp(615/T)$				
MA-10	OH + CO	\longrightarrow HO2 + CO2	$1.44E-13 + 3.43E-33 \times M$				
			ε 1	E 2	E 3	ε 4	
PH-1	03	\longrightarrow OD	2.00E-04	1.400	0.86	0.33	
PH-2	03	→ OP	1.23E-03	0.600	0.92	0.41	
PH-3	NO2	\longrightarrow OP + NO	1.45E-02	0.400	0.91	0.38	
PH-5	HNO3	\longrightarrow NO2 + OH	3.00E-06	1.250	0.87	0.33	
PH-6	нсно	\longrightarrow CO + 2 HO2	5.40E-05	0.790	0.88	0.34	
PH-7	НСНО	\longrightarrow CO + H2	6.65E-05	0.600	0.89	0.35	

Table S4: Chemical reactions and photo-dissociation reactions of the EP10-Plume scheme.

Table S5: Comparison of performance statistics of CMAQ (4-km res.), EPISODE-CityChem and TAPM for NO₂ based on hourly concentration values for a 14 days period in July 2012 at four urban background monitoring stations. Observed mean concentrations at 52NG, 51BF, 13ST and 27TA are 8.67, 11.96, 21.50, and 12.73 μ g m⁻³, respectively. Number of observations: *N* = 336.

Station code	Model	<i>Μ</i> [μg/m ⁻³]	Bias [µg/m ⁻³]	Corr [-]	RMSE [µg/m ⁻³]
	CMAQ	9.43	0.76	0.55	8.27
52NG	EPISODE-CC	4.32	-4.35	0.66	4.69
	TAPM	6.44	-2.23	0.73	5.57
	CMAQ	7.44	-4.52	0.69	4.11
51BF	EPISODE-CC	7.02	-4.94	0.48	4.65
	TAPM	10.00	-1.95	0.51	8.13
	CMAQ	13.65	-7.85	0.61	7.77
13ST	EPISODE-CC	21.98	0.47	0.58	10.19
	TAPM	20.54	-0.96	0.57	13.09
	CMAQ	10.12	-2.61	0.45	5.38
27TA	EPISODE-CC	8.37	-4.36	0.38	7.54
	ТАРМ	33.06	20.33	0.20	13.63

Table S6: Statistical comparison of meteorological variables modelled with TAPM and observations for 2012 based on hourly values. Statistical parameters: number of observations (N), mean (observed, modelled), standard deviation (STD; observed, modelled), overall bias (Bias), correlation (Corr), root mean squared error (RMSE), and index of agreement (IOA).

Station	Meteorological variable	Ν	ō	\overline{M}	STD ₀	STD _M	Bias	Corr	RMSE	IOA
	Temperature [°C]	8510	9.10	9.55	7.17	6.93	1.00	0.98	1.85	0.98
Hamburg weather	Wind speed [m s ⁻¹]	8604	3.00	2.95	1.55	1.32	-0.08	0.87	0.76	0.93
mast (10 m)	Wind direction [°]	8604	180.6	202.8	89.5	83.0	16.94	0.79	57.54	0.89
	Tot. solar radiation [W m ⁻²]	8690	116.2	138.7	193.0	212.9	26.56	0.86	110.51	0.92
Hamburg weather mast (50 m)	Temperature [°C]	8441	9.43	9.38	7.04	6.95	0.60	0.98	1.54	0.99
	Wind speed [m s ⁻¹]	8744	4.86	4.92	2.32	2.12	-0.02	0.85	1.24	0.92
	Wind direction [°]	8744	191.8	204.8	89.84	82.67	6.20	0.82	52.24	0.90
DWD Hamburg Airport (10 m)	Temperature [°C]	8784	9.36	9.31	7.26	6.90	-0.05	0.97	1.70	0.99
	Relative humidity [fraction]	8784	0.806	0.798	0.149	0.149	-0.08	0.74	0.11	0.86

Table S7: Stations of the Hamburg air quality monitoring network included in the comparison. Available pollutant measurements for 2012 are indicated by X. Station types: traffic (tra), industrial (ind), urban background (ubg).

Station code	Station name	Coordinates (UTM 32N); height (a.s.l.)	Station type	O ₃	SO ₂	NO	NO ₂	PM _{2.5}	PM ₁₀
80KT	Altona-Elbhang	562611 E; 5933342 N; 25 m	ubg		х	х	Х		x
21BI	Billbrook	571730 E; 5931713 N; 5 m	ind		х	х	Х		x
51BF	Bramfeld	573434 E; 5943029 N; 31 m	ubg	Х		Х	Х		
72FI	Finkenwerder West	555949 E; 5932255 N; 0 m	ind			х	х		х
68HB	Habichtstrasse	569743 E; 5938684 N; 12 m	tra			х	х	Х	х
64KS	Kieler Strasse	562563 E; 5935470 N; 16 m	tra			х	х	Х	
70MB	Max-Brauer Allee	562473 E; 5934507 N; 25 m	tra			х	х		х
17SM	Stresemannstrasse	563414 E; 5935091 N; 20 m	tra			х	х		х
52NG	Neugraben	556885 E; 5926120 N; 3 m	ubg	х		х	х		
13ST	Sternschanze	564134 E; 5935504 N; 15 m	ubg	х	х	х	х	Х	х
20VE	Veddel	567752 E; 5930928 N; 5 m	ind		х	х	х	Х	х
61WB	Wilhelmsburg	565692 E; 5929231 N; 3 m	ubg		х	Х	Х	Х	Х
54BL	Blankenese	552066 E; 5935753 N; 75 m	ubg	Х		Х	х		
27TA	Tatenberg	571900 E; 5927121 N; 2 m	ubg	X		X	X		
74BT	Billstedt	573088 E; 5932744 N; 18 m	ubg			X	X		

Figure S1: Comparison of the daily NO_X concentration (μ g m⁻³) cycle with EmChem09-mod (red lines) with EmChem03-mod (blue lines) for three different VOC/NO_X ratios. As average from a test run with NO_X emission of 4.3×10^{-8} g s⁻¹ m⁻² and NMVOC emissions corresponding to a VOC/NO_X ratio of 4:1 (solid lines), 8:1 (dashed lines) and 15:1 (dash-dotted lines), respectively.

Figure S2: Test of the boundary conditions for the lateral entrainment into the model domain of Hamburg. Relationship between the monthly mean concentration (July 2012) in the grid cell where station 13ST is located and the BCON offset added to the CMAQ concentrations at the lateral boundaries: (a) for O_3 and (b) for PM_{2.5}. Zero BCON offset corresponds to the original boundary conditions from CMAQ.

Figure S3. Comparison of EPISODE-CityChem (blue) with TAPM (magenta) and CMAQ (dark green) for (a) - (d) O₃ hourly concentrations (in μ g m⁻³) and (e) - (h) NO₂ hourly concentrations (in μ g m⁻³) at urban background stations (52NG, 51BF, 13ST, 27TA) during a 14-days period (12 - 25 July 2012). Observations are shown as black lines.

Figure S4: Comparison of EPISODE-CityChem (blue) with TAPM (magenta) and CMAQ (dark green) for (a) PM_{2.5} daily mean concentrations ($\mu g m^{-3}$) and (b) PM₁₀ daily mean concentrations (μ g m⁻³) at urban background station 13ST during a 14-days period (12 - 25 July 2012). Observations are shown as black lines.

Figure S5: Time series comparing modelled and observed concentrations (in μ g m⁻³) at Sternschanze (station 13ST): (a) NO (daily mean), (b) NO₂ (daily mean), (c) O₃ (maximum of daily 8-h running mean), (d) SO₂ (daily mean), (e) PM_{2.5} (daily mean), and (f) PM₁₀ (daily mean). Observed values black lines, modelled values indicated as red lines. Lowest value of SO₂ observation data is 2.5 µg m⁻³ (detection limit of the method).

Figure S6: Diurnal cycle of O_3 and NO_2 concentrations (in μ g m⁻³) at Sternschanze (station 13ST) based on the hourly modelled and observed values: (a) yearly O_3 , (b) yearly NO_2 , (c) summer O_3 , (d) summer NO_2 , (e) autumn O_3 , and (f) autumn NO_2 . Modelled median shown as red line and observed median as blue line. Shaded area reflects the band width between the 25th percentile and the 75th percentile (model red-shaded; observation blue-shaded). Summer is defined as June–August (JJA), autumn is defined as September–November (SON).

Figure S7: Ozone variation in a summer 6-day episode (5–10 July, 2012): hourly concentrations of O_3 (µg m⁻³), NO (µg m⁻³), NO₂ (µg m⁻³), OH radical (molecule cm⁻³), wind direction (degrees) and hourly total solar radiation (W m⁻²) at station Tatenberg (27TA) in the south east of Hamburg. Observations indicated by filled circles and model results by solid lines. Six short periods with ozone under predicted by the model at 13ST shown as grey shaded area, labelled with P1–P6.

Figure S8: Ozone variation in a summer 6-day episode (5–10 July, 2012): hourly concentrations of O_3 (µg m⁻³), NO (µg m⁻³), NO₂ (µg m⁻³), OH radical (molecule cm⁻³), wind direction (degrees) and hourly total solar radiation (W m⁻²) at station Blankenese (54BL) at the western border of the domain. Observations indicated by filled circles and model results by solid lines. Six short periods with ozone under predicted by the model at 13ST shown as grey shaded area, labelled with P1–P6.

References

Atkinson, R., Baulch, D. L., Cox, R.A., Crowley, J.N., Hampson, R. F., Hynes, R.G., Jenkin, M. E., Rossi, M. J., Troe, J., and Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Physics, 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.