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Abstract.

The complex and computationally expensive nature of landscape evolution models pose significant challenges in the in-

ference and optimisation of unknown model parameters. Bayesian inference provides a methodology for estimation and un-

certainty quantification of unknown model parameters. In our previous work, we developed parallel tempering Bayeslands

as a framework for parameter estimation and uncertainty quantification for the Badlands landscape evolution model. Parallel5

tempering Bayeslands features high-performance computing that can feature dozens of processing cores running in parallel to

enhance computational efficiency. Nevertheless, the procedure remains computationally challenging since thousands of sam-

ples need to be drawn and evaluated. In large-scale landscape evolution problems, a single model evaluation can take from

several minutes to hours and in some instances, even days or weeks. Surrogate-assisted optimisation has been used for several

computationally expensive engineering problems which motivate its use in optimisation and inference of complex geoscientific10

models. The use of surrogate models can speed up parallel tempering Bayeslands by developing computationally inexpensive

models to mimic expensive ones. In this paper, we apply surrogate-assisted parallel tempering where the surrogate mimics

a landscape evolution model by estimating the likelihood function from the model. We employ a neural network-based sur-

rogate model that learns from the history of samples generated. The entire framework is developed in a parallel computing

infrastructure to take advantage of parallelism. The results show that the proposed methodology is effective in lowering the15

computational cost significantly while retaining the quality of model predictions.

Copyright statement.

1 Introduction

The Bayesian methodology provides a probabilistic approach for the estimation of unknown parameters in complex models

(Sambridge, 1999; Neal, 1996; Chandra et al., 2019b). We can view a deterministic geophysical forward model as a proba-20

bilistic model via Bayesian inference which is also known as Bayesian inversion which has been used for landscape evolution

(Chandra et al., 2019c, a), geological reef evolution models (Pall et al., 2020) and other geoscientific models (Sambridge,
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1999, 2013; Scalzo et al., 2019). Markov Chain Monte Carlo (MCMC) sampling is typically used to implement Bayesian

inference that involves the estimation and uncertainty quantification of unknown parameters (Hastings, 1970; Metropolis et al.,

1953; Neal, 2012, 1996). Parallel tempering MCMC (Marinari and Parisi, 1992; Geyer and Thompson, 1995) features multiple

replicas to provide a balance between exploration and exploitation which makes them suitable for irregular and multi-modal

distributions (Patriksson and van der Spoel, 2008; Hukushima and Nemoto, 1996). In contrast to canonical sampling methods,5

we can implement parallel tempering more easily in a parallel computing architecture (Lamport, 1986).

Our previous work presented parallel tempering Bayeslands for parameter estimation and uncertainty quantification for

landscape evolution models (LEMs) (Chandra et al., 2019c). Parallel tempering Bayeslands features parallel computing to

enhance computational efficiency of inference for the Badlands LEM. Although we used parallel computing, the procedure

was computationally challenging since thousands of samples were drawn and evaluated (Chandra et al., 2019c). In large-scale10

LEMs, running a single model can take several hours, to days or weeks and usually thousands of model runs are required

for inference of unknown model parameters. Hence, it is important to enhance parallel tempering Bayeslands which can also

be applicable for other complex geoscientific models. One of the ways to address this problem is through surrogate-assisted

estimation.

Surrogate assistant optimisation refers to the use of statistical and machine learning models for developing approximate15

simulation or surrogate of the actual model (Jin, 2011). Since typically optimisation methods lack a rigorous approach for

uncertainty quantification, Bayesian inversion becomes as an alternative choice particularly for complex geophysical numerical

models (Sambridge, 2013, 1999). The major advantage of a surrogate model is its computational efficiency when compared to

the equivalent numerical physical forward model (Ong et al., 2003; Zhou et al., 2007). In the optimization literature, surrogate

utilization is also known as response surface methodology (Montgomery and Vernon M. Bettencourt, 1977; Letsinger et al.,20

1996), and applicable for a wide range of engineering problems (Tandjiria et al., 2000; Ong et al., 2005) such as aerodynamic

wing design (Ong et al., 2003). Several approaches have been used to improve the way surrogates are utilised. (Zhou et al.,

2007) combined global and local surrogate models to accelerate evolutionary optimisation. (Lim et al., 2010) presented a

generalised surrogate-assisted evolutionary computation framework to unify diverse surrogate models during optimisation and

taking into account uncertainty in estimation. Jin (Jin, 2011) reviewed a range of problems such as single, multi-objective,25

dynamic, constrained, and multi-modal optimisation problems (Díaz-Manríquez et al., 2016). In the Earth sciences, examples

for surrogate assisted approaches include modeling water resources (Razavi et al., 2012; Asher et al., 2015), atmospheric

general circulation models (Scher, 2018), computational oceanography (van der Merwe et al., 2007), carbon-dioxide (CO2)

storage and oil recovery (Ampomah et al., 2017), and debris flow models (Navarro et al., 2018).

Given that Bayeslands is implemented using parallel computing, the challenge is in implementing surrogates across different30

processing cores. Recently, we developed surrogate-assisted parallel tempering has for Bayesian neural networks, which used a

global-local surrogate framework to execute surrogate training in the master processing core that manages the replicas running

in parallel (Chandra et al., 2020). The global surrogate refers to the main surrogate model that features training data combined

from different replicas running in parallel cores. Local surrogate model refers to the surrogate model in the given replica that

incorporates knowledge from the global surrogate to make a prediction given new input parameters. Note that the training35
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only takes place in the global surrogate and the prediction or estimation for pseudo-likelihood only takes place in the local

surrogates. The method gives promising results where prediction performance is maintained while lowering computational

time using surrogates.

In this paper, we present an application of surrogate-assisted parallel tempering (Chandra et al., 2020) for Bayesian inversion

of LEMs using parallel computing infrastructure. We use the Badlands LEM model (Salles et al., 2018) as a case study5

to demonstrate the framework. Overall, the framework features the surrogate-model which mimics the Badlands model and

estimates the likelihood function to evaluate the proposed parameters. We employ a neural network model as the surrogate that

learns from the history of samples from the parallel tempering MCMC. We apply the method to several selected benchmark

landscape evolution and sediment transport/deposition problems and show the quality of the estimation of the likelihood given

by the surrogate when compared to the actual Badlands model.10

2 Background and Related Work

2.1 Bayesian inference

Bayesian inference is typically implemented by employing MCMC sampling methods that update the probability for a hypoth-

esis as more information becomes available. The hypothesis is given by a prior probability distribution (also known as the prior)

that expresses one’s belief about a quantity (or free parameter in a model) before some data is taken into account. Therefore,15

MCMC methods provide a probabilistic approach for estimation of free parameters in a wide range of models (Raftery and

Lewis, 1996; van Ravenzwaaij et al., 2016). The likelihood function is a way to evaluate the sampled parameters for a model

with given observed data. In order to evaluate the likelihood function, one would need to run the given model, which in our

case is the Badlands model. The likelihood function is used with the Metropolis-criteria to either accept or reject a proposal.

When accepted, the proposal becomes part of the posterior distribution, which essentially provides the estimation of the free20

parameter with uncertainties. The sampling process is iterative and requires thousands of samples are drawn until convergence.

In our case, convergence is defined by a predefined number of samples or until the likelihood function has reached a specific

value.

2.2 Badlands model and Bayeslands framework

LEMs incorporate different driving forces such as tectonics or climate variability (Whipple and Tucker, 2002; Tucker and25

Hancock, 2010; Salles et al., 2018; Campforts et al., 2017; Adams et al., 2017) and combine empirical data and conceptual

methods into a set of mathematical equations. Badlands (basin and landscape dynamics) (Salles et al., 2018; Salles and Hardi-

man, 2016) is an example of such a model that can be used to reconstruct landscape evolution and associated sediment fluxes

(Howard et al., 1994; Hobley et al., 2011). Badlands LEM model (Salles et al., 2018) simulates landscape evolution and sed-

iment transport/deposition with given parameters such as the precipitation rate and rock erodibility coefficient. The Badlands30

LEM simulates landscape dynamics which requires an initial topography exposed to climate and geological factors over time.

3



Bayeslands essentially provides the estimation of unknown Badlands parameters with Bayesian inference via MCMC sam-

pling (Chandra et al., 2019c). We use the final or present-day topography at time T and expected sediment deposits at selected

intervals to evaluate the quality of proposals during sampling. In this way, we constrain the set of unknown parameters (θ) using

ground-truth data (D). The prior distribution (also known as prior) refers to one’s belief in the distribution of the parameter

without taking into account the evidence or data. Bayeslands estimates θ so that the simulated topography by Badlands can re-5

semble the ground-truth topography D to some degree. Bayeslands samples the posterior distribution p(θ|D) using principles

of Bayes rule

p(θ|D) =
p(D|θ)p(θ)
P (D)

where, p(D|θ) is the likelihood of the data given the parameters, p(θ) is the prior, and p(D) is a normalizing constant and

equal to
∫
p(D|θ)p(θ)dθ. We note that the prior ratio cancels out since we use a uniform distribution for the priors.10

3 Methodology

3.1 Benchmark landscape evolution problems

(a) Continental-Margin (b) Tasmania

Figure 1. Location of (a) Continental-Margin problem shown taken from South Island of New Zealand (b) Tasmania, Australia with latitude

and longitude information shown in degrees.

We select two benchmark landscape problems from parallel tempering Bayeslands (Chandra et al., 2019c) that are adapted

from earlier work (Chandra et al., 2019a). These include Continental Margin (CM) and Synthetic-Mountain (SM) which

are chosen due to the computational time taking for running a single model since they use less than five seconds to run a15
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single model on a single central processing unit (CPU). These problems are well suited for a parameter evaluation for the

proposed surrogate-assisted Bayesian inversion framework. In order to demonstrate an application which is computationally

expensive, we introduce another problem, which features the landscape evolution of Tasmania in Australia for a million years

that features the region shown in Figure 1 Panel(b). The Synthetic-Mountain landscape evolution is a synthetic problem while

the Continental-Margin problem is a real-world problem based on the topography of a region along the eastern margin of the5

South Island of New Zealand as shown in Figure shown in Figure 1 Panel(a). We use Badlands to evolve the initial landscape

with parameter settings given in Table 1 and Table 2 and create the respective problems synthetic ground-truth topography.

The initial and synthetic ground-truth topographies along with erosion/deposition for these problems appear in Figure 2 and

3, respectively. Note that the figure shows that the Synthetic-Mountain is flat in the beginning, then given a constant uplift rate

along with weathering with constant precipitation rate creates the mountain topography. We use present-day topography as the10

initial topography in the Continental-Margin and Tasmania problems; whereas, a synthetic flat region for Synthetic-Mountain

initial topography. The problems involve an erosion-deposition model history that is used to generate synthetic ground-truth

data for the final model state that we then attempt to recover. Hence, the likelihood function given in the following subsection

takes both the landscape topography and erosion-deposition ground-truth into account. The Continental-Margin and Tasmania

cases feature six free parameters (Table 2); whereas, the Synthetic-Mountain features 5 free parameters. Note that the marine15

diffusion coefficients are absent for the Synthetic-Mountain problem since the region does not cover or overlap with coastal and

marine areas. The main reason behind choosing the two benchmark problems is due to their nature, i.e. the Synthetic-Mountain

problem features uplift rate, which is not present in the Continental-Margin problem. The Continental-Margin problem features

other parameters such as the marine coefficients. The Tasmania problem features a much bigger region; hence, it takes more

computational time for running a single model. The common feature in all three problems is that they model both the elevation20

and erosion/deposition topography. Furthermore, we draw the priors from a uniform distribution with a lower and upper limit

given in Table 3.

Topography Evo.(years) Length [km, pts] Width [km, pts] Res. factor Run-time (s)

Continental-Margin 1 000 000 [136.0, 136] [123.0, 123] 1 3.0

Synthetic-Mountain 1 000 000 [ 202.0, 202 ] [102.0, 102 ] 1 5.0

Tasmania 1 000 000 [523.0,523] [554.0,554] 1 71.3
Table 1. In the given landscape evolution problems, the run-time represents approximately the duration for one model to run on a single CPU.

The length and width is given in kilometers (km) that are represented by the specified number of points (pts) as defined by the resolution

(Res.) factor.

3.2 Bayeslands likelihood function

The Bayeslands likelihood function evaluates Badlands topography simulation along with the successive erosion-deposition

which denotes the sediment thickness evolution through time. More specifically, the likelihood function evaluates the effect25
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(a) Synthetic-Mountain initial topography (b) Continental-Margin initial topography

(c) Synthetic-Mountain ground truth topography (d) Continental-Margin synthetic ground-truth topogra-

phy

(e) Synthetic-Mountain erosion-deposition map (f) Continental-Margin erosion-deposition map

Figure 2. Synthetic-Mountain: Initial and eroded ground-truth topography after a million years of evolution. Continental Margin : Initial

and eroded ground-truth topography and sediment after one million years. The erosion-deposition that forms sediment deposition after one

million years is also shown. Note that x-axis represents the latitude, y-axis represents the longitude and that aligns with Figure 1 Panel(a).

The elevation in meters is given by the z-axis which is further shown as a colour-bar. The Synthetic-Mountain problem does not align with

actual landscape.
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(a) Tasmania initial topography (b) Tasmania final topography

(c) Tasmania erosion-deposition map

Figure 3. Tasmania: initial and eroded ground-truth topography along with erosion-deposition that shows sediment deposition after one

million years evolution. Note that x-axis represents the latitude, y-axis represents the longitude and that aligns with Figure 1 for the Tasmania

problem. The elevation in meters is given by the z-axis which is further shown as a colour-bar.
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opography Rainfall (m/a) Erod. n-value m-value c-marine c-surface Uplift (mm/a)

Continental-Margin 1.5 5.0-e06 1.0 0.5 0.5 0.8 -

Synthetic-Mountain 1.5 5.0-e06 1.0 0.5 - - 1.0

Tasmania 1.5 5.0-e06 1.0 0.5 0.5 0.8 -
Table 2. True values of parameters

Topography Rainfall (m/a) Erod. n-value m-value c-marine c-surface uplift

Continental-Margin [0,3.0 ] [3.0-e06, 7.0-e06] [0, 2.0] [0, 2.0] [0.3, 0.7] [0.6, 1.0] -

Synthetic-Mountain [0,3.0 ] [3.0-e06, 7.0-e06] [0, 2.0] [0, 2.0] - - [0.1, 1.7]

Tasmania [0,3.0 ] [3.0-e06, 7.0-e06] [0, 2.0] [0, 2.0] [0.3, 0.7] [0.6, 1.0] -
Table 3. Prior distribution range of model parameters

of the proposals by taking into account the difference between the final simulated Badlands topography and the ground-truth

topography. The likelihood function also considers the difference between the simulated and ground-truth sediment thickness

at selected time intervals, which has been adapted from previous work (Chandra et al., 2019c) and given as follows. The initial

topography is denoted byD0 withD0 = (D0,s1 . . . ,D0,sn), where si corresponds to site si, with the coordinates given by the

latitude ui and longitude vi.5

We assume an inverse gamma (IG) prior τ2 ∼ IG(ν/2,2/ν) and integrate it so that the likelihood for the topography at time

t= T is

Ll(θ)∝
n∏
i=1

(
1 +

(Dsi,T − fsi,T (θ))2

ν

)− ν+1
2

(1)

where ν is the number of observations and the subscript l, in Ll(θ) denotes that it is the landscape likelihood to distinguish it

from a sediment likelihood.10

Although Badlands produces successive time-dependent topographies, only the final topography DT is used for the calcula-

tion of the elevation likelihood since little ground-truth information is available for the detailed evolution of surface topography.

In contrast, the time-dependence of sedimentation can be used to ground-truth the time-dependent evolution of surface process

models that include sediment transportation and deposition. The sediment erosion/deposition values at time (zt) are simulated

(predicted) by the Badlands model given set of parameters, θ plus some Gaussian noise15

zsj ,t = gsj ,t(θ) + ηsj ,t with ηsj ,t ∼ (0,χ2) (2)

The sediment likelihood Ls(θ), after integrating out χ2 becomes

Ls(θ)∝
T∏
t=1

J∏
j=1

(
1 +

(zsj ,t− gsj ,t(θ))2

ν

)− ν+1
2

(3)
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The combined likelihood takes both elevation and sediment/deposition into account

L(θ) = Ls(θ)×Ll(θ). (4)

Note that although we use the log-likelihood version in our actual implementation, we refer to it as the likelihood throughout

the paper.
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Alg. 1 Surrogate-assisted Bayeslands
Data: Ground-truth topography dataset

Result: Posterior distribution of unknown parameters θ ( precipitation and erodibility

1 i. InitializeM replicas, θ1,θ2, ...,θM with corresponding temperature values T1,T2, ...,TM

ii. Set all replicas in ensemble as alive; alive =M

iii. Define the surrogate interval (ψ), surrogate probabilitySprob, and maximum number of samples for each replica (Rmax ).

2 (Note: The highlighted region of the algorithm shows different processing cores. We highlighted the manager process in blue and ensemble of replica processes running in parallel in pink.)

while (alive 6= 0 do

3 Stage 0: Prepare manager process to execute each replica in parallel cores

for each replica r inM do

4 while (i < Rmax) do

5 Stage 1.0: Metropolis Transition

for each s inψ do

6 1.1 Random-walk, θ∗s = θs + ε

1.2Llocal calculate:

Draw κ from a Uniform distribution [0,1]

if κ <Sprob and s >ψ then

7 EstimateLlocal from local surrogate’s prediction,Lsurrogate
1.3 Copy global surrogate knowledge to local surrogate

1.4 PredictLsurrogate value with the proposed θ∗i .

1.5Lpast = mean(Ls−1,Ls−1,Ls−2 )

1.6 AssignLlocal = (0.5 *Lsurrogate ) + 0.5 *Lpast
1.7 SaveLs =Llocal

8

9 else

10 Llocal = true-likelihood, given by the Likelihood function in Equation 4

11 end

12 1.8 Drawα from uniform distribution [0,1]

ifα ≤ Llocal(θs → θ∗s ) then

13 Update replica state, θs ← θ∗s
14 end

15 1.9 Increment i

16 end

17

18

19 Stage 2.0: Replica Transition:

2.1 Draw β from a Uniform distribution [0,1]

if β ≤ P (θi ↔ θs+1) then

20 2.2 Signal() manager process

2.3 Exchange neighboring Replica, θi ↔ θs+1

21 end

22 Stage 3.0: Check when to end the process

if i == Rmax − 1 then

23 3.1 Signal() manager process

3.2 decrement number of replica processes alive

24 end

25

26 end

27 Stage 4.0: Signal() manager process

4.1 Set Θ which features history of proposals Φ (θ) and responseλ (Llocal ) from Stage 1.7

28 Stage 5.0: Global Surrogate Training

29 for each replica do

30 5.1 Get Θ which features history of proposals Φ (θ) and responseλ (Llocal )

5.2 Append proposal list toX

5.3 Append likelihood list to Y

31 end

32 5.4 Train global surrogate model with inputX and output Y

5.5 Save global surrogate model parameters

33 end

34

35 end

36 Stage 6: Combine predictions and posterior from respective replicas in the ensemble.
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3.3 Surrogate-assisted Bayeslands

The surrogate model learns from the relationship between the set of input parameters and the response given by the true (Bad-

lands) model. The input is the set of proposals by the respective replica samplers in the parallel tempering MCMC sampling

algorithm. We refer to the likelihood estimation by the surrogate model as the pseudo-likelihood.

We need to take into account the cost of inter-process communication in parallel computing environment to avoid compu-5

tational overhead. As given in our previous implementation (Chandra et al., 2019c), the swap interval refers to the number of

iterations after which each replica pauses and can undergo a replica transition. After the swap proposal is accepted or rejected,

the respective replica sampling is resumed while undergoing Metropolis transition in between the swap intervals. We incor-

porate the surrogate-assisted estimation into the multi-core parallel tempering algorithm. Our previous work (Chandra et al.,

2020) used a surrogate interval that determines the frequency of training by collecting the history of past samples with their10

likelihood from the respective replicas. We need a swap interval of several samples when dealing with small scale models that

take a few seconds to run; however for large models, we recommend to have a swap interval of 1.

Taking into account that the true model is represented as y = f(x), the surrogate model provides an approximation in the

form ŷ = f̂(x); such that y = ŷ+ e, where e represents the difference or error. The task of the surrogate model is to provide

an estimate for the pseudo-likelihood by training from the history of proposals which is given by the set of input xr,s and15

likelihood ys where s represents the sample and r represents the replica. Hence, we create the training dataset Φ for the

surrogate by fusion of xr,s across all the replica for a given surrogate interval ψ, which can be formulated as follows

Φ = (x1,s, . . . ,x1,s+ψ, . . . ,xM,s, . . . ,xM,s+ψ)

λ = (y1,s, . . . ,y1,s+ψ, . . . ,yM,s, . . . ,yM,s+ψ) (5)

where, xr,s represents the set of parameters proposed at sample s, yr,s = log(p(y|xr,s)) is the likelihood which is dependent20

on data and the Badlands model, and M is the total number of replicas. Θ denotes the training surrogate dataset which features

input Φ and response λ at the end of every surrogate interval denoted by s+ψ. Therefore, we give the pseudo likelihood

as ŷ = f̂(Θ), where f̂ is the prediction from the surrogate model. The likelihood in training data is altered, with respect of

the temperature, since it has been changed by taking Llocal/Tr for given replica r. We undo this change by multiplying the

likelihood by the respective replica temperature level taken from the geometric temperature ladder.25

We present surrogate-assisted Bayeslands in Algorithm 1 that features parallel processing of the ensemble of replicas. The

highlighted region in colour pink of the Algorithm 1 shows different processing cores running in parallel, shown in Figure 4

where the manager process is highlighted. Due to multiple parallel processing replicas, it is not straightforward to implement

when to terminate sampling. Hence, the termination condition waits for all the replica processes to end as it monitors the

number of active or alive replica processes in the manager process. We begin by setting the number of alive replicas in the30

ensemble (alive=M ) and then the replicas that sample θn are assigned values using a uniform distribution [−α,α]; where α

defines the range of the respective parameters. We then assign the user-defined parameters which include the number of replica
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samples Rmax, swap-interval Rswap, surrogate interval, ψ, and surrogate probability Sprob which determines the frequency of

employing the surrogate model for estimating the pseudo-likelihood.

The samples that cover the first surrogate interval makes up the initial surrogate training data Θ, which features all the

replicas. We then train the surrogate to estimate the pseudo-likelihood when required according to the surrogate probability.

Figure 4 shows how the manager processing unit controls the respective replicas, which samples for the given surrogate interval.5

Then, the algorithm calculates the replica transition probability for the possibility of swapping the neighbouring replicas. The

information flows from replica process to manager process using signal() via inter-process communication given by the replica

process as shown in Stage 2.2, 3.1 and 4.0 of Algorithm 1, and further shown in Figure 4.

To enable better estimation for the pseudo-likelihood, we retrain the surrogate model for remaining surrogate interval blocks

until the maximum time (Rmax). We train the surrogate model only in the manager process and the algorithm passes the10

surrogate model copy with the trained parameters to the ensemble of replica processes for predicting or estimating the pseudo-

likelihood. The samples associated with the true-likelihood only becomes part of the surrogate training dataset. In Stage 1.4

of Algorithm 1, the pseudo-likelihood (Lsurrogate) provides an estimation with given proposal θ∗s . Stage 1.5 calculates the

likelihood moving average of past three likelihood values, Lpast = mean(Ls−1,Ls−1,Ls−2). In Stage 1.6, we combine the

moving average likelihood with the pseudo-likelihood to give a prediction that considers the present replica proposal and15

taking into account the past, Llocal = (0.5 * Lsurrogate) + 0.5 * Lpast. The surrogate training can consume a significant portion

of time which is dependent on the size of the problem in terms of the number of parameters and also the type of surrogate

model used, along with the training algorithm. We evaluate the trade-off between quality of estimation by pseudo-likelihood

and overall cost of computation for the true likelihood function for different types of problems.

We validate the quality of estimation from the surrogate model by the root mean squared error (RMSE) which considers the20

difference between the true likelihood and the pseudo-likelihood. This can be seen as a regression problem with multi-input

(parameters) and a single output (likelihood). Hence, we report the surrogate prediction quality by

RMSEsur =

√√√√ 1

N

N∑
i=1

(yi− ŷi)2

where yi and ŷi are the true likelihood and the pseudo-likelihood values, respectively.N is the number of cases the surrogate

is used during sampling.

We further note that the framework uses parallel tempering MCMC in the first stage of sampling and then transforms into the25

second stage where the temperature ladder is changed such that Ti = 1, for all replicas, i= 1,2, ...,M . This strategy enables

exploration is the first stage and exploitation in the second stage. We combine the respective replica posterior distributions once

the termination condition is met and show their mean and standard deviation of the prediction in the results.

We evaluate the prediction performance by comparing the predicted/simulated Badlands landscape with the ground-truth data

using the root-mean squared error (RMSE). We compute the RMSE for the elevation (elev) and sediment erosion/deposition30

(sed) at each iteration of the sampling scheme using
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Figure 4. Surrogate-assisted Bayeslands using the parallel tempering MCMC framework. We carry out the training in the master (manager)

process which features the global surrogate model. The replica processes provide the surrogate training dataset to the master process using

inter-process communication. We employ a neural network model for the surrogate model. After training, we transfer the knowledge (neural

network weights) to each of the replicas to enable estimation of pseudo-likelihood. Refer to Algorithm 1 for further details.
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RMSEelev =

√√√√ 1

n×m

n∑
i=1

n∑
j=1

(
g(θ̂T,i,j)− gT,i,j(θ)

)2

RMSEsed =

√√√√ 1

nt× v

nt∑
t=1

m∑
j=1

(
f(θ̂t,j)− f(θt,j)

)2

where, θ̂ is an estimated value of θ, and θ is the true value representing the synthetic ground-truth. f(.) and g(.) represent

the outputs of the Badlands model while m and n represent the size of the selected topography. v is the number of selected

points from sediment erosion/deposition over the selected time frame, nt.5

3.4 Surrogate model

To choose a particular surrogate model, we need to consider the computational resources for training the model during the

sampling process. The literature review showed that Gaussian process models, neural networks, and radial basis functions

(Broomhead and Lowe, 1988) are popular choices for surrogate models. We note that Badlands LEM features about a dozen

of free parameters in one of the simplest cases, this increases when taking into account spatial and temporal dependencies.10

For instance, the precipitation rate for a million years can be represented by a single parameter or by 10 different parameters

that capture every 100,000 years for 10 different regions, which can account for 1,000 parameters instead of 1. Considering

hundreds or thousands of unknown Badlands model parameters, the surrogate model needs to be efficiently trained without

taking lots of computational resources. The flexibility of the model to have incremental training is also needed and hence, we

rule out Gaussian process models since they have limitations in training when the size of the dataset increases to a certain level15

(Rasmussen, 2004). Therefore, we use neural networks as the choice of the surrogate model and the training data and neural

network model is formulated as follows.

We denote the surrogate model training data by Φ and λ which is shown in Equation (5); where Φ is the input and λ is the

desired output of the model. The prediction of the model is denoted by λ̂. We use a feedforward neural network as the surrogate

model. Given input xt, f(xt) is computed by the feedforward neural network with one hidden layer defined by the function20

f(xt) = g

(
δo +

H∑
h=1

vjg

(
δh +

I∑
d=1

wdhxt

))
(6)

where δo and δh are the bias weights for the output o and hidden h layer, respectively. vj is the weight which maps the

hidden layer h to the output layer. wdh is the weight which maps xt to the hidden layer h and g(.) is the activation function for

the hidden and output layer units. We use ReLU (rectified linear unitary function) as the activation function. The learning or

optimisation task then is to iteratively update the weights and biases to minimise the cross-entropy loss J(W,b). This can be25

done using gradient update of weights using Adam (adaptive moment estimation) learning algorithm (Kingma and Ba, 2014)

and stochastic gradient descent (Bottou, 1991, 2010). We experimentally evaluate them for training feedforward network for

the surrogate model in the next section.
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3.5 Proposal distribution

Bayeslands features random-walk (RW) and adaptive random-walk (ARW) proposal distributions which will be evaluated

further for surrogate-assisted Bayeslands in our experiments. In our previous work (Chandra et al., 2019a), AWR showed

better convergence properties when compared to RW proposal distribution. The RW proposal distribution features Σ as the

diagonal matrix, so that Σ = diag(σ2
1 , . . . ,σ

2
P ); where σj is the step size of the jth element of the parameter vector θ. The5

step-size for θj is a combination of a fixed step size φ which is common to all parameters, multiplied by the range of possible

values for parameter θj , hence σj = (aj − bj)×φ; where, aj and bj represent the maximum and minimum limits of the prior

for θj given in Table 2. In our experiments, the RW proposal distribution employs fixed step-size, φ= 0.05,

The ARW proposal distribution features adaptation of the diagonal matrix Σ at every K interval of within-replica sampling.

It allows for the dependency between elements of θ and adapts during sampling (Haario et al., 2001). We adapt the elements10

of Σ for the posterior distribution using the sample covariance of the current chain history Σ = cov({θ[0], . . . ,θ[i−1]}) +

diag(λ2
1, . . . ,λ

2
P ); where θ[i] is the ith iterate of θ in the chain and λj is the minimum allowed step sizes for each parameter θj .

3.6 Design of Experiments

We demonstrate effectiveness of surrogate-assisted parallel tempering (SAPT-Bayeslands) framework for selected Badlands

LEMs taken from our previous study (Chandra et al., 2019c).15

We first investigate the effects of different surrogate training procedures and parameter evaluation for SAPT-Bayeslands

using smaller synthetic problems. Afterwards, we apply the methodology to a larger landscape evolution problem which is

Tasmania, Australia. We design the experiments as follows.

1. We generate a dataset for training and testing the surrogate for the Synthetic-Mountain and Continental-Margin landscape

evolution problems. We use the neural network model for the surrogate and evaluate different training techniques.20

2. We evaluate if the transfer of knowledge from previous surrogate interval is better than no transfer of knowledge for

Synthetic-Mountain and Continental-Margin problems. Note this is done only with the data generated from the previous

step.

3. We provide convergence diagnosis for the RW and ARW proposal distributions in PT-Bayeslands and SAPT-Bayeslands.

4. We integrate the surrogate model into Bayeslands and evaluate the effectiveness of the surrogate in terms of estimation25

of the likelihood and computational time. Due to the computational requirements, we only consider Continental-Margin

problem.

5. We then apply SAPT-Bayeslands to all the given problems and compare with PT-Bayeslands.

We use Keras neural networks library (Chollet et al., 2015) for implementation of the surrogate. We provide the open-source

software package that implements Algorithm 1 along with benchmark problems and experimental results 1.30

1Surrogate-assisted Bayeslands: https://github.com/badlands-model/surrogateBayeslands
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We use a geometric temperature ladder with a maximum temperature of Tmax = 2 for determining the temperature level

for each of the replicas. In trial experiments, the selection of these parameters depended on the performance in terms of the

number of accepted samples and prediction accuracy of elevation and sediment/deposition. We use replica-exchange or swap

interval value, Rswap = 3 samples that determine when to check whether to swap with the neighbouring replica. In previous

work (Chandra et al., 2019c), we observed that increasing the number of replicas up to a certain point does not necessarily5

mean that we get better performance in terms of the computational time or prediction accuracy. In this work, we limit the

number of replicas as Rnum = 8 for all experiments with maximum of 5,000 samples.

We use a 50 % burn-in which discards the portion of samples in the parallel tempering MCMC stage as done in our previous

work (Chandra et al., 2019a).

4 Results10

4.1 Surrogate accuracy

To implement the surrogate model, we need to evaluate the training algorithm such as Adam and stochastic gradient descent

(SGD). Furthermore, we also evaluate specific parameters such as the size of the surrogate interval (batch-ratio), the neural

network topology for the surrogate and the effectiveness of either training from scratch or to utilise previous knowledge for

surrogate training (transfer and train). We create a training dataset from the cases where the true likelihood was used, which15

compromises the history of the set of parameters proposed with the corresponding likelihood. This is done for standalone

evaluation of the surrogate model, which further ensures that the experiments are reproducible since different experimental runs

create different dataset depending on the exploration during sampling. We then evaluate the neural network model designated

for the surrogate using two major training algorithms which featured the Adam optimiser and stochastic gradient descent. The

parameters that define the neural network surrogate model used for the experiments are given in Table 4. Note that the train20

size in Table 4 refers to the maximum size of the data set. The training is done in batches where the batch ratio determines the

training data set size, as shown in Table 5.

Table 4. Neural network architecture for the different problems

Dataset Input Output Train size Test size

Continental-Margin 6 1 8073 879

Synthetic-Mountain 5 1 8073 879

Table 5 presents the results for the experiments that took account of the training data collected during sampling for two

benchmark problems (Continental-Margin and Synthetic-Mountain). Note that, we report the mean value of the mean-squared-

error (MSE) for the given batch ratio from ten experiments. The batch ratio is taken, in relation to the maximum number25

of samples across the chains (Rmax/Rnum). We normalise the likelihood values (outcomes) in the dataset between [0,1].

Although in most cases, the accuracy of the neural network is slightly better when training from scratch with combined data;

16



Table 5. Evaluation of surrogate training accuracy

Dataset Batch-ratio Transfer and train Train from scratch

SGD Adam SGD Adam

MSE Time(s) MSE Time(s) MSE Time(s) MSE Time(s)

Continental-Margin 0.1 0.0198 19.40 0.0209 31.23 0.0199 88.17 0.0206 122.41

0.2 0.0197 26.95 0.0211 56.84 0.0197 67.74 0.0199 100.49

0.3 0.0199 25.53 0.0212 61.41 0.0197 70.71 0.0205 268.16

0.4 0.0195 70.42 0.0193 48.28 0.0194 46.07 0.0188 140.90

Synthetic-Mountain 0.1 0.0161 40.38 0.0097 54.45 0.0161 282.0 0.0081 347.94

0.2 0.0134 52.87 0.007 70.65 0.0139 185.025 0.007 857.38

0.3 0.0129 65.105 0.0088 73.035 0.0123 179.36 0.0088 543.019

0.4 0.0164 50.14 0.0048 87.67 0.0066 149.26 0.0038 653.85

however, there is a considerable trade-off with the time required to train the network. The results show that the transfer and

train methodology, in general, requires much lower computational time when compared to training from scratch by combined

data. Moreover, in comparison to SGD and Adam training algorithms, we observe that SGD achieves slightly better accuracy

than Adam for Continental-Margin problem. However, Adam, having an adaptive learning rate, outperforms SGD in terms of

the time required to train the network. Thus, we can summarise that transfer and train method is better since it saves significant5

computation time with a minor trade-off with accuracy.

4.2 Convergence diagnosis

The Gelman-Rubin diagnostic (Gelman et al., 1992) is one of the popular methods used for evaluating convergence by an-

alyzing the behaviour of multiple Markov chains. The assessment is done by comparing the estimated between-chains and

within-chain variances for each parameter, where large differences between the variances indicate non-convergence. The diag-10

nosis reports the potential scale reduction factor (PSRF) which gives the ratio of the current variance in the posterior variance

for each parameter compared to that being sampled and the values for the PSRF near 1 indicates convergence. We analyse five

experiments for each case using different initial values for 5,000 samples for each problem configuration.

Table 6 presents the convergence diagnosis using the PSRF score for RW and ARW proposal distributions for PT-Bayeslands

and SAPT-Bayeslands. We notice that ARW has lower PSRF score (mean) when compared to RW proposal distribution which15

indicates better convergence. We also notice that the ARW SAPT-Bayeslands maintains convergence with PSRF score close to

AWR PT-Bayeslands when compared to rest of the configurations. This suggests that although we use surrogates, convergence

can be maintained up to a certain level, which is better than RW PT-Bayeslands.
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Table 6. Convergence diagnosis (PSRF score) for Continental Margin problem

Proposal method Precip. Erod. m-value n-value c-marine c-surface Mean R-Score

RW PT-Bayeslands 1.50 1.6 1.14 4.82 2.62 1.56 2.21

ARW PT-Bayeslands 1.26 1.55 1.26 1.63 1.38 1.13 1.37

RW SAPT-Bayeslands 4.06 1.70 6.57 1.51 1.46 1.49 2.80

ARW SAPT-Bayeslands 1.33 2.88 1.22 2.46 1.03 1.30 1.70

4.3 Surrogate-assisted Bayeslands

We investigate the effect of the surrogate probability (Sprob) and surrogate interval ( ψ) on the prediction accuracy (RMSEelev

and RMSEsed) and computational time. Note that we report the prediction accuracy mean and standard deviation (mean and

std) of accepted samples over the sampling time after removing the burn-out period. We report the computational time in

seconds (s). Table 7 presents the performance of the respective methods (PT-Bayeslands and SAPT-Bayeslands) with respective5

parameter settings for the Continental-Margin problem. In SAPT-Bayeslands, we observe that there not a major difference in

the accuracy of elevation or erosion/deposition given different values of Sprob. Nevertheless, there is a significant difference in

terms of the computational time where higher values of Sprob saves computational time. Furthermore, we notice that there is

not a significant difference in the prediction accuracy given different values of ψ which suggests that the selected values are

sufficient.10

We select a suitable combination of the set of parameters evaluated in the previous experiment (Sprob = 0.6 and ψ = 0.05)

and apply to rest of the problems. Table 8 gives a comparison of performance for Continental-Margin and Synthetic-Mountain

problem, along with the Tasmania which is a bigger and computationally expensive problem. We notice that the performance

of SAPT-Bayeslands is similar to PT-Bayeslands while a significant portion of computational time is saved.

Figures 5, 6 and 7 provides a visualization in the elevation prediction accuracy when compared to actual ground-truth15

between the given methods from results given in Table 8. We also provide the prediction accuracy of erosion/deposition for 10

chosen points taken at selected locations. Although both methods provide erosion/deposition prediction for 4 successive time

intervals, we only show the final time interval. In both the Continental Margin and Synthetic Mountain problems, we notice

that although the prediction accuracy of PT-Bayeslands is very similar to SAPT-Bayeslands and the Badlands prediction of the

topography is close to ground-truth, within the credible interval. This indicates that the use of surrogates has been beneficial20

where not major loss in accuracy in prediction is given. In the case of the Tasmania problem, there is a loss in badlands

prediction accuracy which could be due to the size of the problem. Nevertheless, this loss is not that clear from results in

Table 8. This could be that the topography prediction is mostly inconsistent at the cross-section where it features mountainous

regions.

Figure 8 and Figure 9 show the true likelihood and prediction by the surrogate for the Continental-Margin and Synthetic-25

Mountain problems, respectively. We notice that at certain intervals given in Figure 8, given by different replica, there is
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Table 7. Evaluation for Continental-Margin problem

Method Sprob ψ RMSEelev RMSEelev RMSEsed RMSEsed time (s)

(mean) (std) (mean) (std)

PT-Bayeslands N/A N/A 78.80 10.03 35.91 11.36 3243.30

SAPT-Bayeslands 0.20 0.05 75.53 9.89 35.68 10.93 3082.53

SAPT-Bayeslands 0.40 0.05 80.22 15.63 44.72 16.52 2450.77

SAPT-Bayeslands 0.60 0.05 82.04 8.23 44.33 13.37 1859.52

SAPT-Bayeslands 0.80 0.05 79.30 26.70 43.29 18.68 1149.63

SAPT-Bayeslands 0.20 0.10 76.92 11.59 48.19 11.46 3075.31

SAPT-Bayeslands 0.40 0.10 82.43 11.58 46.47 12.55 2494.13

SAPT-Bayeslands 0.60 0.10 80.12 12.08 47.80 19.05 1934.34

SAPT-Bayeslands 0.80 0.10 88.81 20.61 51.12 14.26 1148.80

SAPT-Bayeslands 0.20 0.15 44.90 33.54 23.95 19.86 2914.06

SAPT-Bayeslands 0.40 0.15 73.64 8.05 38.53 10.02 2495.56

SAPT-Bayeslands 0.60 0.15 83.38 8.45 51.15 19.07 1986.51

SAPT-Bayeslands 0.80 0.15 84.73 10.04 39.78 14.44 1294.64

Table 8. Performance comparison for respective problems and methods

Problem Method Sprob ψ RMSEelev RMSEelev RMSEsed RMSEsed time (s)

(mean) (std) (mean) (std)

Continental Margin PT-Bayeslands N/A N/A 78.80 10.03 35.91 11.36 3243.30

SAPT-Bayeslands 0.60 0.05 82.0 8.23 44.33 13.37 1859.52

Synthetic-Mountain PT-Bayeslands N/A N/A 106.10 48.24 20.34 24.02 8474.67

SAPT-Bayeslands 0.60 0.05 104.88 5.51 11.87 8.69 4161.43

Tasmania PT-Bayeslands N/A N/A 172.64 10.74 3.90 0.50 600293.61

SAPT-Bayeslands 0.60 0.05 179.67 19.71 3.91 0.10 221942.41

inconsistency in the predictions. Moreover, Figure 9 shows that the log-likelihood is very chaotic, and hence there is difficulty

in providing robust prediction at certain points in the time given by samples for the respective replica.

4.4 Discussion

We observe that the surrogate probability is directly related to the computational performance; this is obvious since compu-

tational time depends on how often we use the surrogate. Our concern is about the prediction performance, especially while5

increasing the use of the surrogate as it could lower the accuracy, which can result in a poor estimation of the parameters.

According to the results, the accuracy is well retained given a higher probability of using surrogates. In the cross-section pre-
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(d) Continental Margin (SAPT-Bayeslands)

Figure 5. Topography cross-section and erosion-deposition prediction for 10 chosen points for Continental-Margin problem from results

summarized in Table 8.
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(d) Mountain (SAPT-Bayeslands)

Figure 6. Topography cross-section and erosion-deposition prediction for 10 chosen points for Synthetic-Mountain problem from results

summarized in Table 8.
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(a) Tasmania (PT-Bayeslands)
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Figure 7. Topography cross-section and erosion-deposition prediction for 10 chosen points for Tasmania problem from results summarized

in Table 8.
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Figure 8. Surrogate likelihood vs true likelihood estimation for Continental-Margin problem (RMSEsur = 3605).

sented in the results for Continental-Margin and Synthetic Mountain problems, we find that there is not much difference in

the accuracy given in prediction by the SAPT-Bayeslands when compared to PT-Bayeslands. Moreover, the application to a

more computationally intensive problem (Tasmania), we find that a significant reduction in computational time is achieved.

Although we demonstrated the method using small-scale models that run within a few seconds to minutes, the computational

costs of continental-scale Badlands models is extensive. For instance, the computational time for a 5-kilometre resolution for5

Australian continent Badlands model for 149 million years is about 72 hours; hence, in the case when thousands of samples

are required, the use of surrogates can be beneficial. We note that improved efficiency of the surrogate-assisted Bayeslands

comes at the cost of accuracy for some problems (in case of Tasmania problem), and there is a trade-off between accuracy and

computational time.

In future work, rather than a global surrogate model, we could use the local surrogate model on its own, where the training10

only takes place in the local surrogates by relying on the history of the likelihood and hence taking a univariate time series

prediction approach using neural networks. Our primary contribution is in terms of the parallel computing based open-source

software and the proposed underlying framework for incorporating surrogates, taking into account complex issues such as

inter-process communication. This opens the road to using different types of surrogate models while using the underlying
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Figure 9. Surrogate likelihood vs true likelihood estimation for Synthetic-Mountain problem (RMSEsur = 9917).

framework and open-source software. Given that the sediment erosion/deposition is temporal, other ways of formulating the

likelihood could be possible, for instance, we could have a hierarchical Bayesian model with two stages for MCMC sampling

(Chib and Carlin, 1999; Wikle et al., 1998).

The initial evaluation for the setup surrogate model shows that it is best to use a transfer learning approach where the

knowledge from the past surrogate interval is utilised and refined with new surrogate data. This consumes much less time5

than accumulating data and training the surrogate from scratch at every surrogate interval. We note that in the case when we

use the surrogate model for pseudo-likelihood, there is no prediction given by the surrogate model. The prediction (elevation

topography and erosion-deposition) during sampling are gathered only from the true Badlands model evaluation rather than

the surrogate. In this way, one could argue that the surrogate model is not mimicking the true model; however, we are guiding

the sampling algorithm towards forming better proposals without evaluation of the true model. A direction forward is in10

incorporating other forms of surrogates, such as running low-resolution Badlands model as the surrogate which would be
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computationally faster in evaluating the proposals; however, limitations in terms of effect of resolution setting on Badlands

topography simulation may exist.

Furthermore, computationally efficient implementations of landscape evolution models that only feature landscape evolution

(Braun and Willett, 2013) could be used as the surrogate, while we could use Badlands model that features both landscape

evolution and erosion/deposition as the true model. We could also use computationally efficient implementations of landscape5

evolution models that consider parallel processing (Hassan et al., 2018) in the Bayeslands framework. In this case, the challenge

would be in allocating specialised processing cores for Badlands and others for parallel tempering MCMC.

We adapted the surrogate framework developed for machine learning (Chandra et al., 2020) with a different proposal distribu-

tion instead of using gradient-based proposals. Gradient-based parameter estimation has been very popular in machine learning

due to availability of gradient information. Due to the complexity in geological or geophysical numerical forward models, it is10

challenging to obtain gradients which have been the case of Badlands, landscape evolution model. We used random-walk and

adaptive random-walk proposal distributions which have limitations; hence, we need to incorporate advanced meta-heuristic

techniques to form non-gradient based proposals for efficient search. Our study is limited to a relatively small seat of free

parameters, and a significant challenge would be to develop surrogate models with an increased set of parameters.

5 Conclusions15

We presented a novel application of surrogate-assisted parallel tempering that features parallel computing for landscape evolu-

tion models using Badlands. Initially, we experimented with two different approaches for training the surrogate model, where

we found that transfer learning-based approach is beneficial and could help reduce the computational time of the surrogate.

Using this approach, we presented the experiments that featured evaluating certain key parameters of the surrogate-based

framework. In general, we observed that the proposed framework lowers the computational time significantly while maintain-20

ing the required quality in parameter estimation and uncertainty quantification.

In future work, we envision to apply the proposed framework to more complex applications such as the evolution of

continental-scale landscapes and basins over millions of years. We could use the approach for other forward models such

as those that feature geological reef development or lithospheric deformation. Furthermore, the posterior distribution of our pa-

rameters require multi-modal sampling methods; hence, a combination of meta-heuristics for proposals with surrogate assisted25

parallel tempering could improve exploration features and also help in lowering the computational costs.

Code availability. https://github.com/intelligentEarth/surrogateBayeslands

1 Parallel tempering MCMC

Parallel tempering MCMC features massive parallelism with enhanced exploration capabilities. It features several replicas with

slight variations in the acceptance criteria through relaxation of the likelihood with a temperature ladder that affects the replica30
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sampling acceptance criterion. The replicas associated with higher temperature levels have more chance in accepting weaker

proposals which could help in escaping a local minimum. Given an ensemble ofM replicas defined by a temperature ladder, we

define the state by X = x1,x2, ...,xM ; where xi is the replica at temperature level Ti. We construct a Markov chain to sample

proposal xi and evaluate it using the likelihood L(xi) for each replica defined by temperature level Ti. At each iteration, the

Markov chain can feature two types of transitions that include the Metropolis transition and the replica transition.5

In the Metropolis transition phase, we independently sample each replica to perform local Monte Carlo moves as defined by

the temperature ladder for the replica by relaxing or changing the likelihood in relation to the temperature level L(xi)/Ti. We

sample configuration x∗i from a proposal distribution qi(.|xi). The Metropolis-Hastings ratio at temperature level Ti is given

asby

Llocal(xi→ x∗i ) = exp(− 1

Ti
(L(x∗i )−L(xi))) (1)10

where L represents the likelihood at the local replica. We accept the new state with probability, min(1,Llocal(xi→ x∗i )).

The detailed balance condition holds for each MCMC replica; therefore, it holds for the ensemble system (Calderhead, 2014).

In the replica transition phase, we consider the exchange of the current state between two neighbouring replicas based

on the Metropolis-Hasting acceptance criteria. Hence, given a probability α, we exchange a pair of replica defined by two

neighbouring temperature levels, Ti and Ti+1.15

xi↔ xi+1 (2)

The exchange of neighbouring replicas provide an efficient balance between local and global exploration (Sambridge, 2013).

The temperature ladder and replica-exchange have been of the focus of investigation in the past (Calvo, 2005; Liu et al., 2005;

Bittner et al., 2008; Patriksson and van der Spoel, 2008) and there is a consensus that they need to be tailored for different

types of problems given by their likelihood landscape. In this paper, the selection of temperature spacing between the replicas20

is carried out using a Geometric spacing methodology (Vousden et al., 2015), given as follows

Ti = T (i−1)/(M−1)
max (3)

where i= 1, . . . ,M and Tmax is maximum temperature which is user defined and dependent on the problem.

2 Training the neural network surrogate model

We note that stochastic gradient descent maintains a single learning rate for all weight updates and typically the learning rate25

does not change during the training. Adam (adaptive moment estimation) learning algorithm Kingma and Ba (2014) differs

from classical stochastic gradient descent, as the learning rate is maintained for each network weight and separately adapted as

learning unfolds. Adam computes individual adaptive learning rates for different parameters from estimates of first and second
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moments of the gradients. Adam features the strengths of root mean square propagation and adaptive gradient algorithm

(AdaGrad) (Kingma and Ba, 2014; Duchi et al., 2011). Adam has shown better results when compared to stochastic gradient

descent, RMSprop and AdaGrad. Hence, we consider Adam as the designated algorithm for the neural network-based surrogate

model. We formulate the learning procedure through weight update for iteration number t for weights W and biases b, by

Θt−1 = [Wt−1,bt−1]5

gt = ∇ΘJt(Θt−1)

mt = β1.mt−1 + (1−β1).gt

vt = β2.vt−1 + (1−β2).g2
t

m̂t = mt/(1−βt1)

v̂t = vt/(1−βt2)10

Θt = Θt−1−α.m̂t/(
√
v̂t + ε) (4)

where mt,vt are the respective first and second moment vectors for iteration t; β1,β2 are constants ∈ [0,1], α is the learning

rate, and ε is a close to zero constant.
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