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Abstract.

The complex and computationally expensive features of landscape evolution models pose a significant challenge in the

inference and optimisation of unknown parameters. Bayesian inference provides a methodology for estimation and uncertainty

quantification of free model parameters. In our previous work, we developed parallel tempering Bayeslands as a framework

for parameter estimation and uncertainty quantification for the landscape evolution model called Badlands. Parallel tempering5

Bayeslands features high-performance computing with dozens of processing cores running in parallel to enhance computational

efficiency. Although we use parallel computing, the procedure remains computationally challenging since thousands of samples

need to be drawn and evaluated. In large-scale landscape and basin evolution problems, a single model evaluation can take

from several minutes to hours, and in some instances, even days. Surrogate-assisted optimisation has been used for several

computationally expensive engineering problems which motivate its use in optimisation and inference of complex geoscientific10

models. The use of surrogate models can speed up parallel tempering Bayeslands by developing computationally inexpensive

models to mimic expensive ones. In this paper, we apply surrogate-assisted parallel tempering where that surrogate mimics a

landscape evolution model including erosion, sediment transport and deposition, by estimating the likelihood function that is

given by the model. We employ a neural network-based surrogate model that learns from the history of samples generated.

The entire framework is developed in a parallel computing infrastructure to take advantage of parallelisation. The results show15

that the proposed methodology is effective in lowering the overall computational cost significantly while retaining the quality

of solutions.

Copyright statement.

1 Introduction

The Bayesian methodology provides a probabilistic approach for the estimation of free parameters in complex models (Sam-20

bridge, 1999; Neal, 1996; Chandra et al., 2019b). Hence, a can view a deterministic geophysical forward model as a probabilis-

tic model via Bayesian inference, which provides a rigorous approach to uncertainty quantification as opposed to optimisation
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methods. The approach is also known as Bayesian inversion which has been used for landscape evolution (Chandra et al.,

2019c, a), geological reef evolution models (Pall et al., 2018) and other geoscientific models (Sambridge, 1999, 2013; Scalzo

et al., 2019). Markov Chain Monte Carlo (MCMC) sampling is typically used to implement Bayesian inference that involves

the estimation and uncertainty quantification of unknown parameters (Hastings, 1970; Metropolis et al., 1953; Neal, 2012,

1996). Parallel tempering MCMC (Marinari and Parisi, 1992; Geyer and Thompson, 1995) features multiple replicas to pro-5

vide a balance between exploration and exploitation which makes them suitable for irregular and multi-modal distributions

(Patriksson and van der Spoel, 2008; Hukushima and Nemoto, 1996). In contrast to canonical sampling methods, we can

implement parallel tempering MCMC more easily in a multi-core or parallel computing architecture (Lamport, 1986).

In our previous work, we presented parallel tempering Bayeslands for parameter estimation and uncertainty quantification

for landscape evolution models (LEMs) (Chandra et al., 2019c). Parallel tempering Bayeslands features high performances10

parallel computing to enhance the efficiency of estimating free parameters of a Badlands model. Although we used parallel

computing, the procedure was computationally challenging since thousands of samples were drawn and evaluated (Chandra

et al., 2019c). In large-scale LEMs, a single model can take hours to days. Hence, it is useful to find ways to improve parallel

tempering Bayeslands. Such problems are common for complex forward models of physical processes that can take several

hours to days and months to evaluate a single model run. One of the ways to address this problem is using surrogate-assisted15

estimation.

Surrogate assistant optimisation refers to the use of statistical and machine learning models used for developing approximate

simulation of the actual model (Jin, 2011). Many optimisation methods lack a rigorous approach for uncertainty quantification,

leading to Bayesian inversion as an alternative, particularly for complex geophysical numerical models (Sambridge, 2013,

1999). The major advantage of a surrogate model is its computational efficiency when compared to the equivalent numerical20

physical forward model (Ong et al., 2003; Zhou et al., 2007). In the optimization literature, surrogate utilization is also known

as response surface methodology (Montgomery and Vernon M. Bettencourt, 1977; Letsinger et al., 1996), applicable for a

wide range of engineering problems (Tandjiria et al., 2000; Ong et al., 2005) such as aerodynamic wing design (Ong et al.,

2003). Several approaches have been used to improve the way surrogates are utilised. (Zhou et al., 2007) combined global and

local surrogate models to accelerate evolutionary optimisation. (Lim et al., 2010) presented a generalised surrogate-assisted25

evolutionary computation framework to unify diverse surrogate models during optimisation and taking into account uncertainty

in estimation. Jin (Jin, 2011) reviewed a range of problems such as single, multi-objective, dynamic, constrained, and multi-

modal optimisation problems (Díaz-Manríquez et al., 2016). In the Earth sciences, examples for surrogate assisted approaches

include modeling water resources (Razavi et al., 2012; Asher et al., 2015), atmospheric general circulation models (Scher,

2018), computational oceanography (van der Merwe et al., 2007), carbon-dioxide (CO2) storage and oil recovery (Ampomah30

et al., 2017), and debris flow models (Navarro et al., 2018).

Given that Bayeslands is implemented using parallel computing, the challenge is in implementing surrogates across different

processing cores. Recently, we developed surrogate-assisted parallel tempering has for Bayesian neural networks, which used a

global-local surrogate framework to execute surrogate training in the master processing core that manages the replicas running

in parallel (Chandra et al., 2018). The global surrogate refers to the main surrogate model that features training data combined35
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from different replicas running in parallel cores. Local surrogate model refers to the surrogate model in the given replica

that incorporates knowledge from the global surrogate to make a prediction given new input data (sample or proposal). Note

that the training only takes place in the global surrogate and the prediction or estimation for pseudo-likelihood only takes

place in the local surrogates. The method gives promising results where prediction performance is maintained while lowering

computational time using surrogates.5

In this paper, we present an application of surrogate-assisted parallel tempering (Chandra et al., 2018) for Bayesian inversion

of surface process models that employ parallel computing infrastructure. We use the Badlands LEM (Salles et al., 2018) as

a case study to demonstrate the framework. Overall, the framework features the surrogate-model which mimics the Badlands

model and estimates the likelihood function to evaluate the proposed parameters. We employ a neural network model as the

surrogate that learns from the history of samples from the parallel tempering MCMC. We apply the method to several selected10

benchmark landscape evolution and sediment transport/deposition problems and show the quality of the estimation of the

likelihood given by the surrogate when compared to the actual Badlands model.

2 Background and Related Work

2.1 Bayesian inference

Bayesian inference is typically implemented by employing MCMC sampling methods that update the probability for a hypoth-15

esis as more information becomes available. The hypothesis is given by a prior probability distribution (also known as the prior)

that expresses one’s belief about a quantity (or free parameter in a model) before some data is taken into account. Therefore,

MCMC methods provide a probabilistic approach for estimation of free parameters in a wide range of models (Raftery and

Lewis, 1996; van Ravenzwaaij et al., 2016). The likelihood function is a way to evaluate the sampled parameters for a model

with given observed data. In order to evaluate the likelihood function, one would need to run the given model, which in our20

case is the Badlands model. The likelihood function is used with the Metropolis-criteria to either accept or reject a proposal.

When accepted, the proposal becomes part of the posterior distribution, which essentially provides the estimation of the free

parameter with uncertainties. The sampling process is iterative and requires thousands of samples are drawn until convergence.

In our case, convergence is defined by a predefined number of samples or until the likelihood function has reached a specific

value.25

2.2 Badlands model and Bayeslands framework

LEMs incorporate different driving forces such as tectonics or climate variability (Whipple and Tucker, 2002; Tucker and

Hancock, 2010; Salles et al., 2018; Campforts et al., 2017; Adams et al., 2017) and combine empirical data and conceptual

methods into a set of mathematical equations. Badlands (basin and landscape dynamics) (Salles et al., 2018) is an example of

such a model that can be used to reconstruct landscape evolution and associated sediment fluxes (Howard et al., 1994; Hobley30

et al., 2011). We use the Badlands LEM (Salles et al., 2018) to simulate landscape evolution and sediment transport/deposition
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of selected areas, in order to provide estimation with uncertainty quantification of the unknown parameters such as precipitation

rate and rock erodibility coefficient. The Badlands LEM simulates landscape dynamics which requires an initial topography

exposed to climate and geological factors over time.

Bayeslands essentially provides the estimation of unknown Badlands parameters with Bayesian inference via MCMC sam-

pling. We use the final or present-day topography at time T and expected sediment deposits at selected intervals to evaluate the5

quality of proposals during sampling. In this way, we constrain the set of unknown parameters given by θ using ground-truth

data, D. The prior distribution (also known as prior) refers to one’s belief in the distribution of the parameter without taking

into account the evidence or data. The goal of Bayeslands is to estimate θ so that the simulated topography by Badlands can re-

semble the ground-truth topography D to some degree. Bayeslands samples the posterior distribution p(θ|D) using principles

of Bayes rule10

p(θ|D) =
p(D|θ)p(θ)
P (D)

where, p(D|θ) is the likelihood of the data given the parameters, p(θ) is the prior, and p(D) is a normalizing constant and

equal to
∫
p(D|θ)p(θ)dθ. We note that the prior ratio cancels out since we use a uniform distribution for the priors.

3 Methodology

3.1 Benchmark landscape evolution problems15

We select two benchmark landscape problems from parallel tempering Bayeslands (Chandra et al., 2019c) that were adapted

from earlier work (Chandra et al., 2019a). These include Continental Margin (CM) and Synthetic-Mountain LEMs which are

chosen due to their computational time for a single model. Both of these problems use less than ten seconds to run a single

model on a single central processing unit (CPU). These problems are well suited for a parameter evaluation for the proposed

surrogate-assisted Bayesian inversion framework. In order to demonstrate an application which is computationally expensive,20

we introduce another problem, which features the landscape evolution of Tasmania, Australia, for a million years that features

the region shown in Figure 1. The Synthetic-Mountain landscape evolution is a synthetic problem while the Continental-

Margin problem is a real-world problem based on the topography of a region along the eastern margin of the South Island of

New Zealand as shown in Figure 1. We then use Badlands to evolve the initial landscape with parameter settings given in Table

1 and Table 2 and create the respective problems synthetic ground-truth topography.25

The initial and synthetic ground-truth topographies along with erosion/deposition for these problems appear in Figure 2 and

3, respectively. Note that the figure shows that the Synthetic-Mountain is flat in the beginning, then given a constant uplift rate

along with weathering with constant precipitation rate creates the mountain topography. We use present-day topography as the

initial topography in the Continental-Margin and Tasmania problems, whereas, a synthetic flat region for Synthetic-Mountain

initial topography. The problems involve an erosion-deposition model history that is used to generate synthetic ground-truth30

data for the final model state that we then attempt to recover. Hence, the likelihood function given in the following subsection

takes both the landscape topography and erosion-deposition ground-truth into account. The Continental-Margin and Tasmania
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(a) Continental-Margin (b) Tasmania

Figure 1. Location of (a) Continental-Margin problem shown taken from South Island of New Zealand (llcrnrlon =173.5 ◦ East, llcrnrlat=-

42.5◦ South, urcrnrlon=174.5◦ East, urcrnrlat=-41.5◦ South). (b) Tasmania, Australia (llcrnrlon =144.5 ◦ East,llcrnrlat=-43.5◦ South,

urcrnrlon=148.5◦ East,urcrnrlat=-40.5◦ South). Note the following abbreviations: llcrnrlon refers to longitude of lower left hand corner,

llcrnrlat refers to latitude of lower left hand corner. urcrnrlon refers to longitude of upper right hand corner and urcrnrlat refers to latitude of

upper right hand corner of the desired map domain (degrees).

cases feature six free parameters (Table 2) whereas the Synthetic-Mountain features 5 free parameters. Note that the marine

diffusion coefficients are absent for the Synthetic-Mountain problem since the region does not cover or overlap with coastal and

marine areas. The main reason behind choosing the two benchmark problems is due to their nature, i.e. the Synthetic-Mountain

problem features uplift rate, which is not present in the Continental-Margin problem. The Continental-Margin problem features

other parameters such as the marine coefficients. The Tasmania problem features a much bigger region; hence, it takes more5

computational time for running a single model. The common feature in all three problems is that they model both the elevation

and erosion/deposition topography. Furthermore, we draw the priors from a uniform distribution with a lower and upper limit

given in Table 3.

Topography Evo.(years) Length [km, pts] Width [km, pts] Res. factor Run-time (s)

Continental-Margin 1 000 000 [136.0, 136] [123.0, 123] 1 7.5

Synthetic-Mountain 1 000 000 [80,202] [40,102] 1 10

Tasmania 1 000 000 [510,523] [537,554] 1 71.3
Table 1. In the given landscape evolution problems, the run-time represents approximately the duration for one model to run on a single

central processing unit (CPU).
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(a) Synthetic-Mountain initial topography (b) Continental-Margin initial topography

(c) Synthetic-Mountain ground truth topography (d) Continental-Margin synthetic ground-truth topogra-

phy

(e) Synthetic-Mountain erosion-deposition map (f) Continental-Margin erosion-deposition map

Figure 2. Synthetic-Mountain: Initial and eroded ground-truth topography after a million years of evolution. Continental Margin (CM) :

Initial and eroded ground-truth topography and sediment after one million years. The erosion-deposition that forms sediment deposition after

one million years is also shown. Note that x-axis represents the latitude, y-axis represents the longitude and that aligns with Figure 1 for the

CM problem. The elevation in meters is given by the z-axis which is further shown as a colour-bar. The Synthetic-Mountain problem does

not align with actual landscape.
6



(a) Tasmania initial topography (b) Tasmania final topography

(c) Tasmania erosion-deposition map

Figure 3. Tasmania: initial and eroded ground-truth topography along with erosion-deposition that shows sediment deposition after one

million years evolution. Note that x-axis represents the latitude, y-axis represents the longitude and that aligns with Figure 1 for the Tasmania

problem. The elevation in meters is given by the z-axis which is further shown as a colour-bar.
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Topography Rainfall (m/a) Erod. n-value m-value c-marine c-surface Uplift (mm/a)

Continental-Margin 1.5 5.0-e06 1.0 0.5 0.5 0.8 -

Synthetic-Mountain 1.5 5.0-e06 1.0 0.5 - - 1.0

Tasmania 1.5 5.0-e06 1.0 0.5 0.5 0.8 -
Table 2. True values of parameters

Topography Rainfall (m/a) Erod. n-value m-value c-marine c-surface uplift

CM-ext. [0,3.0 ] [3.0-e06, 7.0-e06] [0, 2.0] [0, 2.0] [0.3, 0.7] [0.6, 1.0] -

Synthetic-Mountain [0,3.0 ] [3.0-e06, 7.0-e06] [0, 2.0] [0, 2.0] - - [0.1, 1.7]

Tasmania [0,3.0 ] [3.0-e06, 7.0-e06] [0, 2.0] [0, 2.0] [0.3, 0.7] [0.6, 1.0] -
Table 3. Prior distribution range of model parameters

Topography Pt. 1 Pt. 2 Pt. 3 Pt. 4 Pt. 5 Pt. 6 Pt. 7 Pt. 8 Pt. 9 Pt. 10

Continental Margin (4,40) (6,20) (14,66) (39,8) (40,5) (42,10) (59,13) (68,40) (72,44) (75,51)

Synthetic-Mountain (5,5) (10,10) (20,20) (30,30) (40,40) (50,50) (25,25) (37,30) (44,27) (46,10)

Tasmania (260,320) (400,350) (270,180) (290,50) (500,120) (500,195) (44,200) (5,315) (450,50) (95,260)
Table 4. Erosion-deposition (sediment) coordinates used in likelihood evaluation

3.2 Bayeslands likelihood function

The Bayeslands likelihood function captures the quality of topography simulation along with the quality of successive erosion-

deposition, which denotes the sediment thickness evolution through time. More specifically, the likelihood function evaluates

the quality of the proposals by taking into account the difference between the final simulated Badlands topography and the

ground-truth topography. The likelihood function also considers the difference between the simulated and ground-truth sed-5

iment thickness at selected time intervals, which has been adapted from previous work (Chandra et al., 2019c) and given as

follows.

The initial topography is denoted byD0 withD0 = (D0,s1 . . . ,D0,sn), where si corresponds to site si, with the coordinates

given by the latitude ui and longitude vi.

We assume an inverse gamma (IG) prior τ2 ∼ IG(ν/2,2/ν). We integrate it so that the likelihood for the topography at time10

t= T is

Ll(θ)∝
n∏
i=1

(
1 +

(Dsi,T − fsi,T (θ))2

ν

)− ν+1
2

(1)

where, the subscript l, in Ll(θ) denotes that it is the landscape likelihood to distinguish it from a sediment likelihood.
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We note that Badlands produces successive time-dependent topographies; however, only the final topography DT is used for

the calculation of the elevation likelihood because usually little ground-truth information is available for the detailed evolution

of surface topography. In contrast, sediments preserve the stratigraphic record of the time-dependence of sedimentation and can

be used to ground-truth the time-dependent evolution of surface process models that include sediment transport and deposition.

Given that the sediment erosion/deposition values at time t, zt, are simulated by the Badlands model, given θ plus some5

Gaussian noise

zsj ,t = gsj ,t(θ) + ηsj ,t with ηsjt ∼ (0,χ2) (2)

Similar to the likelihood function for the topography, the sediment likelihood Ls(θ), after integrating out χ2 is

Ls(θ)∝
T∏
t=1

J∏
j=1

(
1 +

(zsj ,t− gsj ,t(θ))2

ν

)− ν+1
2

(3)

We then have a combined likelihood taking both elevation and sediment/deposition into account10

L(θ) = Ls(θ)×Ll(θ). (4)

We note that given that the sediment erosion/deposition is temporal, we could have a hierarchical Bayesian model (Chib and

Carlin, 1999; Wikle et al., 1998) with two stages for MCMC sampling, that evaluates the respective likelihoods, which could

be future work.
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Alg. 1 Surrogate-assisted Bayeslands
Data: Ground-truth topography dataset

Result: Posterior distribution of unknown parameters θ ( precipitation and erodibility

1 i. InitializeM replicas, θ1,θ2, ...,θM with corresponding temperature values T1,T2, ...,TM

ii. Set all replicas in ensemble as alive; alive =M

iii. Define the surrogate interval (ψ), and maximum number of samples for each replica (Rmax ).

2 (Note: The highlighted region of the algorithm shows different processing cores. We highlighted the manager process in blue and ensemble of replica processes running in parallel in pink.)

while (alive 6= 0 do

3 Stage 0: Prepare manager process to execute each replica in parallel cores

for each replica r inM do

4 while (i < Rmax) do

5 Stage 1.0: Metropolis Transition

for each s inψ do

6 1.1 Random-walk, θ∗s = θs + ε

1.2Llocal calculate:

Draw κ

if κ <Sprob and s >ψ then

7 EstimateLlocal from local surrogate’s prediction,Lsurrogate
1.3 Copy global surrogate knowledge to local surrogate

1.4 PredictLsurrogate value with the proposed θ∗i .

1.5Lpast = mean(Ls−1,Ls−1,Ls−2 )

1.6 AssignLlocal = (0.5 *Lsurrogate ) + 0.5 *Lpast
1.7 SaveLs =Llocal

8

9 else

10 Llocal = true-likelihood, given by Likelihood function in Equation (??))

11 end

12 1.8 Drawα from uniform distribution

ifα ≤ Llocal(θs → θ∗s ) then

13 Update replica state, θs ← θ∗s
14 end

15 1.9 Increment i

16 end

17 Stage 2.0: Replica Transition:

2.1 Draw β from a Uniform distribution [0,1]

if β ≤ P (θi ↔ θs+1) then

18 2.2 Signal() manager process 2.3 Exchange neighboring Replica, θi ↔ θs+1

19 end

20 Stage 3.0: Check when to end the process

if i == Rmax − 1 then

21 3.1 Signal() manager process

3.2 decrement number of replica processes alive

22 end

23 end

24 Stage 4.0: Signal() manager process

4.1 Set Θ which features history of proposals Φ (θ) and responseλ (Llocal )

25

26 Stage 5.0: Global Surrogate Training

27 for each replica do

28 5.1 Get Θ which features history of proposals Φ (θ) and responseλ (Llocal )

5.2 Append proposal list toX

5.3 Append likelihood list to Y

29 end

30 5.4 Train global surrogate model with inputX and output Y

5.5 Save global surrogate model parameters

31 end

32

33 end

34 Stage 6: Combine predictions and posterior from respective replicas in the ensemble.
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3.3 Surrogate-assisted Bayeslands

The surrogate model learns from the relationship between the set of input parameters and the response given by the true

(Badlands) model. In our case, the input is the set of proposals by the respective replica samplers in the parallel tempering

algorithm. The likelihood estimation by the surrogate model is called the pseudo-likelihood.

In a parallel computing environment, we need to take into account the cost of inter-process communication, which must be5

limited to avoid computational overhead. As given in our past implementation (Chandra et al., 2019c), the swap interval refers

to the number of iterations after which each replica pauses and can undergo a replica transition. After the swap proposal is

accepted or rejected, the replicas are resumed, and they continue iterating while undergoing Metropolis transition in between

the swap intervals. We incorporate the surrogate-assisted estimation into the multi-core parallel tempering algorithm. Our

previous work (Chandra et al., 2018) used a surrogate interval that determines the frequency of training by collecting the10

history of past samples with their likelihood from the respective replicas.

Taking into account that the true model is represented as y = f(x), the surrogate model provides an approximation in the

form ŷ = f̂(x), such that y = ŷ+ e where e represents the difference or error. The task of the surrogate model is to provide

an estimate for the pseudo-likelihood by training from the history of proposals which is given by the set of input xr,s and

likelihood ys where s represents the sample and r represents the replica. Hence, we create the training dataset Φ for the15

surrogate by fusion of xr,s across all the replica for a given surrogate interval ψ, which can be formulated as follows

Φ = (x1,s, . . . ,x1,s+ψ, . . . ,xM,s, . . . ,xM,s+ψ)

λ = (y1,s, . . . ,y1,s+ψ, . . . ,yM,s, . . . ,yM,s+ψ) (5)

where, xr,s represents the set of parameters proposed at sample s, yr,s = log(p(y|xr,s)) is the likelihood which is dependent

on data and the Badlands LEM, M is the total number of replicas. Θ denotes the training surrogate dataset which features20

input Φ and response λ at the end of every surrogate interval denoted by s+ψ. Therefore, the pseudo likelihood ŷ is given by

ŷ = f̂(Θ), where f̂ is the surrogate model. The likelihood in training data is altered, with respect of the temperature, since it

has been changed by taking Llocal/Tr for given replica r. We undo this change by multiplying the likelihood by the respective

temperature, which is a data processing step for the surrogate model.

We present surrogate-assisted Bayeslands in Algorithm 1 that features parallel processing of the ensemble of replicas. The25

highlighted region in colour pink of the Algorithm 1 shows different processing cores running in parallel, shown in Figure 4

where the manager process is highlighted. Due to multiple parallel processing replicas, it is not straightforward to implement

when to terminate sampling. Hence, the termination condition waits for all the replica processes to end where the number of

active or alive replica process are monitored in the master process. Hence, we begin by setting the number of alive replicas

in the ensemble (alive=M ). The replicas that sample θn are assigned values using a uniform distribution [−α,α]; where α30

defines the range of the respective parameters. We then assign the user-defined parameters which include the number of replica
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samples Rmax, swap-interval Rswap, surrogate interval, ψ, and surrogate probability Sprob which determines the frequency of

employing the surrogate model for estimating the pseudo-likelihood.

xxx

The samples that cover the first surrogate interval makes up the initial surrogate training data Θ, which features all the

replicas. We then train the surrogate to estimate the pseudo-likelihood when required according to the surrogate probability.5

Figure 4 shows how the manager processing unit controls the respective replicas, which samples for the given surrogate interval.

Then, the algorithm calculates the replica transition probability for the possibility of swapping the neighbouring replicas. The

information flows from replica process to manager process using signal() via inter-process communication given by the replica

process as shown in Stage 2.2, 3.1 and 4.0 of Algorithm 1, and further shown in Figure 4.

To enable better estimation for the pseudo-likelihood, we retrain the surrogate model for remaining surrogate interval blocks10

until the maximum time (Rmax). The surrogate model is trained only in the manager process. Then the algorithm passes the

surrogate model copy with the trained parameters to the ensemble of replica processes for estimating the pseudo-likelihood.

The samples associated with the true-likelihood only becomes part of the surrogate training dataset. In Stage 1.4 of Algorithm

1, the pseudo-likelihood (Lsurrogate) provides an estimation with given proposal θ∗s . Stage 1.5 calculates the likelihood moving

average of past three likelihood values, Lpast = mean(Ls−1,Ls−1,Ls−2). In Stage 1.6, we combine the moving average likeli-15

hood with the pseudo-likelihood to give a prediction that considers the present replica proposal and taking into account the past,

Llocal = (0.5 * Lsurrogate) + 0.5 * Lpast. The surrogate training can consume a significant portion of time which is dependent

on the size of the problem in terms of the number of parameters and also the surrogate model used, along with the training

algorithm. We evaluate the trade-off between quality of estimation by pseudo-likelihood and overall cost of computation for

the true likelihood function for different types of problems.20

We validate the quality of estimation from the surrogate model by the root mean squared error (RMSE) which considers the

difference between the true likelihood and the pseudo-likelihood. This can be seen as a regression problem with multi-input

(parameters) and a single output (likelihood). Hence, the RMSE is given by

RMSE =

√√√√ 1

N

N∑
i=1

(yi− ŷi)2

where yi and ŷi are the true likelihood and the pseudo-likelihood values, respectively,N is the number of cases the surrogate

is used during sampling.25

We further note that the framework uses parallel tempering MCMC in the first stage of sampling and then transforms into

the second stage where the temperature ladder is changed such that Ti = 1, for all replicas, i= 1,2, ...,N . This strategy enables

exploration is the first stage and exploitation in the second stage. We combine the respective replica accepted proposals once

the termination condition is met and show their mean and standard deviation in the results.
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Figure 4. Surrogate-assisted Bayeslands using the parallel tempering framework. We carry out the training in the master process, which

features the global surrogate model. The replica processes provide the surrogate training dataset to the master process using inter-process

communication. We employ a neural network model for the surrogate model. After training, we transfer the knowledge (neural network

weights) to each of the replicas to enable estimation of pseudo-likelihood. Refer to Algorithm 1 for further details.
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3.4 Surrogate model

To choose a particular surrogate model, we need to consider the computational resources for training the model during the

sampling process. Our literature review showed that Gaussian process models, neural networks, and radial basis functions

(Broomhead and Lowe, 1988) are popular choices for surrogate models. We note that Badlands LEM features about a dozen

of free parameters in the simplest case of implementation, this increases when taking into account spatial and temporal de-5

pendencies. For instance, the precipitation rate for a million years can be represented by a single parameter or by 10 different

parameters that capture every 100,000 years for 10 different regions. This can account for 1,000 parameters instead of 1. Con-

sidering hundreds or thousands of unknown Badlands LEM parameters, the surrogate model needs to be efficiently trained

without taking lots of computational resources. The flexibility of the model to have incremental training is also needed and

hence, we rule out Gaussian process models since they have limitations in training given that the size of the dataset increases10

(Rasmussen, 2004). Therefore, we use neural networks as the choice of the surrogate model and the training data and neural

network model can be formulated as follows.

The surrogate model use training data denote by Φ and λ defined in Equation (5), where Φ is the input and λ is the desired

output of the model. The prediction of the model is denoted by λ̂. We use a feedforward neural network as the surrogate model.

Given input xt, f(xt) is computed by the feedforward neural network with one hidden layer defined by the function15

f(xt) = g

(
δo +

H∑
h=1

vjg

(
δh +

I∑
d=1

wdhxt

))
(6)

where δo and δh are the bias weights for the output o and hidden h layer, respectively. vj is the weight which maps the

hidden layer h to the output layer. wdh is the weight which maps xt to the hidden layer h and g(.) is the activation function for

the hidden and output layer units. We use ReLU (rectified linear unitary function) as the activation function. The learning or

optimisation task then is to iteratively update the weights and biases to minimise the cross-entropy loss J(W,b). This can be20

done using gradient update of weights using Adam (adaptive moment estimation) learning algorithm (Kingma and Ba, 2014)

and stochastic gradient descent (Bottou, 1991, 2010). We experimentally evaluate them for training feedforward network for

the surrogate model in the next section.

3.5 Design of Experiments

We provide an experimental study of the proposed surrogate-assisted parallel tempering (SAPT-Bayeslands) framework for25

selected LEMs. We compare the results with our parallel tempering Bayeslands framework (PT-Bayeslands) presented in an

earlier study (Chandra et al., 2019c). The first part of the experiment features the accuracy of the surrogates in comparison

with the actual model, while the second part features the integration of SAPT for the Badlands model. We used Keras neural

networks library (Chollet et al., 2015) for implementation of the surrogate. We provide the open-source software package that

implements Algorithm 1 along with benchmark problems and experimental results 1.30

1Surrogate-assisted parallel tempering Bayeslands: https://github.com/badlands-model/surrogate-pt-Bayeslands
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We first investigate the effects of different surrogate training procedures and parameter evaluation for SAPT-Bayeslands us-

ing smaller problems. Afterwards, we apply the methodology to our selected landscape evolution problems. More specifically,

we design the experiments as follows.

– We generate a dataset for training and testing the surrogate for the Synthetic-Mountain and Continental-Margin landscape

evolution problems. We use the neural network model for the surrogate and evaluate different training techniques.5

– We evaluate if the transfer of knowledge from previous surrogate interval is better than no transfer of knowledge for

Synthetic-Mountain and Continental-Margin problems. Note this is done only with the data generated from the previous

step.

– We integrate the surrogate model into parallel tempering (SAPT-Bayeslands) and evaluate the effectiveness of the surro-

gate in terms of prediction of likelihood and overall time reduced is evaluated. Due to the computational requirements,10

we only consider Synthetic-Mountain and Continental-Margin problems.

– SAPT-Bayeslands is applied to the Tasmania landscape evolution problem and compared with PT-Bayeslands.

In SAPT-Bayeslands and PT-Bayeslands, we employ a random-walk proposal distribution implemented by perturbing the

chain in the respective replica with a small amount of Gaussian noise with a parameter specific step-size or standard deviation.

The step-size βi for parameter i is chosen to be a combination of a fixed step size φ= 0.02, common to all parameters,15

multiplied by the range of possible values for parameter i so that βi = (ai− bi) ∗φ, where, ai and bi represent the maximum

and minimum limits of the priors for parameter and are given in Table 2.

Similarly, we use a geometric temperature ladder with a maximum temperature of Tmax = 10 for determining the tempera-

ture level for each of the replicas. In trial experiments, the selection of these parameters depended on the performance in terms

of the number of accepted samples and prediction accuracy of elevation and sediment/deposition. We used replica-exchange20

or swap interval value, Rswap = 10 samples that determine when to check whether to swap with the neighbouring replica.

In previous work (Chandra et al., 2019c), we observed that increasing the number of replicas up to a certain point does not

necessarily mean that we get better performance in terms of the computational time or prediction accuracy. In this work, we

limit the number of replicas as Rnum = 10 for all experiments along with fixed maximum samples of 10 000 samples. We

use a 15% burn-in which discards the portion of initial samples. This is a standard practice required for convergence which25

shows that the sampling discards the invariant and only considers the joint posterior distribution. We evaluate the performance

quality of the SAPT-Bayeslands and PT-Bayeslands framework in terms of total simulation time, and root-mean-squared-error

(RMSE) of the predicted elevation and erosion-deposition in the topography.
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4 Results

4.1 Surrogate accuracy

To implement the surrogate model, we need to evaluate the training algorithm such as Adam and stochastic gradient descent

(SGD). Furthermore, we also evaluate specific parameters such as the size of the surrogate interval (batch-ratio), the neural

network topology for the surrogate and the effectiveness of either training from scratch or to utilise previous knowledge for5

surrogate training (transfer and train). We create a training dataset from the cases where the true likelihood was used, which

compromises the history of the set of parameters proposed with the corresponding likelihood. This is done for standalone

evaluation of the surrogate model, which further ensures that the experiments are reproducible since different experimental

runs create different dataset depending on the exploration during sampling. Hence, we create a benchmark data set from the

history of samples proposed with their likelihood 2. We then evaluate the neural network model designated for the surrogate10

using two major training algorithms which featured the Adam optimiser and stochastic gradient descent. The parameters that

define the neural network surrogate model used for the experiments are given in Table 5. Note that the train size in Table 5

refers to the maximum size of the data set. The training is done in batches where the batch ratio determines the training data

set size, as shown in Table 6.

Table 5. Neural network architecture for the different problems

Dataset Input Output Hidden layers [H1, H2, H3] Train size Test size

Continental-Margin 6 1 [64,35,24] 8073 879

Synthetic-Mountain 5 1 [65,35,25] 8073 879

Table 6 presents the results for the experiments that took account of the training data collected during sampling for two15

benchmark problems (Continental-Margin and Synthetic-Mountain). Note that, we report the mean value of the mean-squared-

error (MSE) for the given batch ratio from ten experiments. The batch ratio is taken, in relation to the maximum number

of samples across the chains (Rmax/Rnum). We normalise the likelihood values (outcomes) in the dataset between [0,1].

Although in most cases, the accuracy of the neural network is slightly better when training from scratch with combined data;

however, there is a considerable trade-off with the time required to train the network. The results show that the transfer and20

train methodology, in general, requires much lower computational time when compared to training from scratch by combined

data. Moreover, in comparison to SGD and Adam training algorithms, we observe that SGD achieves slightly better accuracy

than Adam for Continental-Margin problem. However, Adam, having an adaptive learning rate, outperforms SGD in terms of

the time required to train the network. Thus, we can summarise that transfer and train method is better since it saves significant

computation time with a minor trade-off with accuracy.25

2¸
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Table 6. Evaluation of surrogate training accuracy

Dataset Batch-ratio Transfer and train Train from scratch

SGD Adam SGD Adam

MSE Time(s) MSE Time(s) MSE Time(s) MSE Time(s)

Continental-Margin 0.1 0.0198 19.40 0.0209 31.23 0.0199 88.17 0.0206 122.41

0.2 0.0197 26.95 0.0211 56.84 0.0197 67.74 0.0199 100.49

0.3 0.0199 25.53 0.0212 61.41 0.0197 70.71 0.0205 268.16

0.4 0.0195 70.42 0.0193 48.28 0.0194 46.07 0.0188 140.90

Synthetic-Mountain 0.1 0.0161 40.38 0.0097 54.45 0.0161 282.0 0.0081 347.94

0.2 0.0134 52.87 0.007 70.65 0.0139 185.025 0.007 857.38

0.3 0.0129 65.105 0.0088 73.035 0.0123 179.36 0.0088 543.019

0.4 0.0164 50.14 0.0048 87.67 0.0066 149.26 0.0038 653.85

4.2 Surrogate-assisted Bayeslands

In the experiments, we investigated the effects of the surrogate probability (s-prob) and surrogate interval (batch-ratio) on the

accuracy and time duration of the experiments. We report the accuracy of the prediction by the mean square error (RMSE)

of the predicted topography with the real synthetic topography. Note that we report the mean and standard deviation ( mean

and std) of accepted samples over the sampling time after removing the burn-out period. We report the computational time in5

seconds.

Table 7 and 8 shows the performance of the respective methods (PT-Bayeslands and SAPT-Bayeslands) with respective

parameter settings for the Continental-Margin and Synthetic-Mountain problems. In SAPT-Bayeslands, we observe that there

not a significant difference in the accuracy of elevation or erosion/deposition given different values of surrogate probability.

Howsoever, there is a significant difference in terms of the computational time. Greater surrogate probability gives more usage10

of surrogates through which we save computational time. Furthermore, we notice that there is not a significant difference in the

accuracy of prediction or computational time given different values of the batch-ratio. Figure 5 and 6 provides a visualization in

the elevation prediction accuracy when compared to actual ground-truth between the two methods. We also give the prediction

accuracy of erosion/deposition for 10 chosen points taken at selected locations shown in Table 4. Although both methods

provide erosion-deposition prediction for 4 successive time intervals, we only show the final time interval due to lack of space15

for the respective problems. We notice that although the prediction accuracy is lower by SAPT-Bayeslands, the visualisation

shows that the mean prediction of the topography is close to ground-truth, which is well covered by the credible interval. Figure

8 and Figure 9 show the true likelihood and prediction by the surrogate for the Continental-Margin and Synthetic-Mountain

problems, respectively. We notice that at certain intervals given in Figure 8, given by different replica, there is inconsistency

in the predictions. Moreover, Figure 9 shows that the log-likelihood is very chaotic, and hence there is difficulty in providing20

robust prediction at certain points in the time given by samples for the respective replica.
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Table 7. Surrogate evaluation for Continental-Margin problem

[Elevation] [Erosion-Deposition]

Data-set method s-prob batch-ratio mean std mean std time (min) time saved (%)

Continental-Margin PT-Bayeslands N/A N/A 60.05 10.45 49.23 14.65 84.50 N/A

SAPT-Bayeslands 0.25 0.10 119.37 31.48 106.13 32.54 78.36 7.27 %

SAPT-Bayeslands 0.25 0.15 138.41 22.14 124.30 29.24 74.98 11.27 %

SAPT-Bayeslands 0.25 0.20 123.09 37.00 112.45 35.45 76.77 9.15 %

SAPT-Bayeslands 0.50 0.10 137.86 29.42 123.89 27.87 49.89 40.96 %

SAPT-Bayeslands 0.50 0.15 131.14 37.31 117.59 34.58 54.27 35.78 %

SAPT-Bayeslands 0.50 0.20 130.74 36.59 120.30 30.34 56.46 33.18 %

SAPT-Bayeslands 0.75 0.10 126.16 29.50 116.11 26.23 34.17 65.48 %

SAPT-Bayeslands 0.75 0.15 127.60 32.73 115.08 34.48 34.32 59.38 %

SAPT-Bayeslands 0.75 0.20 125.18 33.70 114.73 37.86 36.98 56.24 %

Table 8. Surrogate evaluation results for Synthetic-Mountain. Mean Squared Error (MSE) values and Time elapsed for various surrogate

intervals and probabilities

Elevation Erosion-Deposition

Data-set method s-prob batch-ratio mean std mean std time (min) time saved (%)

Synthetic-Mountain PT-Bayeslands N/A N/A 4.87 1.68 1.41 0.34 128.20 N/A

SAPT-Bayeslands 0.25 0.10 17.51 32.05 5.09 12.32 100.77 21.40 %

SAPT-Bayeslands 0.25 0.15 22.50 28.90 7.97 12.16 101.98 20.45 %

SAPT-Bayeslands 0.25 0.20 11.66 26.65 3.11 10.38 110.57 13.75 %

SAPT-Bayeslands 0.50 0.10 18.79 35.75 5.51 14.11 71.35 44.34 %

SAPT-Bayeslands 0.50 0.15 23.67 30.34 8.59 12.83 75.21 41.33 %

SAPT-Bayeslands 0.50 0.20 12.77 28.95 3.61 11.42 80.33 37.34 %

SAPT-Bayeslands 0.75 0.10 26.99 42.75 8.69 17.06 44.72 65.12 %

SAPT-Bayeslands 0.75 0.15 24.18 30.31 8.75 12.66 49.64 61.28 %

SAPT-Bayeslands 0.75 0.20 11.49 25.63 2.89 9.33 54.91 57.17 %

Table 9 gives the results for Tasmania, which is a bigger and computationally expensive problem. We select a suitable

combination of the set of parameters evaluated in the previous experiments (s-prob = 0.5 and batch-ratio is 0.15). We used a

maximum of 10 000 samples with 10 replicas. We notice that the performance of SAPT-Bayeslands is similar to PT-Bayeslands

as shown in Figure 7, and we save 41.27 percent of computational time.

We observe that the surrogate probability is directly related to the computational performance; this is obvious since compu-5

tational time depends on how often we use the surrogate. Our concern is about the prediction performance, especially while
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(a) Continental Margin (PT-Bayeslands) (b) Continental Margin (SAPT-Bayeslands)

(c) Continental Margin (PT-Bayeslands) (d) Continental Margin (SAPT-Bayeslands)

Figure 5. Cross section of prediction for Continental-Margin problem. The prediction of erosion-deposition for 10 chosen points (Figure 2,

Panel f) in the topography is also given.
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(a) Synthetic-Mountain (PT-Bayeslands) (b) Synthetic-Mountain (SAPT-Bayeslands)

(c) Synthetic-Mountain (PT-Bayeslands) (d) Synthetic-Mountain (SAPT-Bayeslands)

Figure 6. Cross section of prediction for Synthetic-Mountain problem. The prediction of erosion-deposition for 10 chosen points (Figure 2,

Panel e) in the topography is also given.
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(a) Tasmania (PT-Bayeslands) (b) Tasmania (SAPT-Bayeslands)

(c) Tasmania (PT-Bayeslands) (d) Tasmania (SAPT-Bayeslands)

Figure 7. Cross section of prediction for Tasmania problem along with the prediction of erosion-deposition for 10 chosen points (Figure 3,

Panel c) .
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Table 9. Surrogate evaluation for Continental-Margin problem

[Elevation] [Erosion-Deposition]

Data-set method s-prob batch-ratio mean std mean std time (min) time saved (%)

Tasmania PT-Bayeslands N/A N/A 197.27 23.42 3.9 0.5 4724.47 N/A

SAPT-Bayeslands 0.50 0.20 235.79 32.06 3.91 0.1 2774.53 41.27 %

Figure 8. Surrogate likelihood vs true likelihood estimation for Continental-Margin topography
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Figure 9. Surrogate likelihood vs true likelihood estimation for Synthetic-Mountain topography

increasing the use of the surrogate as it could lower the accuracy, which can result in a poor estimation of the parameters.

According to the results, the accuracy is well retained we give a higher probability to the use of surrogates.In general, the

proposed method achieves a lower prediction accuracy when compared to PT-Bayeslands. However, given the cross-section

visualisation, we find that the accuracy given in prediction by the surrogate-based framework is not so poor. Moreover, the ap-

plication to a more computationally intensive problem (Tasmania) shows that a significant reduction in computational time is5

achieved. We demonstrated the method using small models that run in seconds or minutes, Computational costs of continental-

scale Badlands models is extensive (5-kilometre resolution for Australian continent for 149 million years is about 72 hours)

and hence, in the case when thousands of samples are required, the use of surrogates can be beneficial. However, we note that

improved efficiency of the surrogate-assisted Bayeslands comes at the cost of lower accuracy, and there is a trade-off between

accuracy and computational time.10
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The results in terms of prediction accuracy given by the proposed method can be further improved in future work with the

way we train the surrogates. Rather than a global surrogate model, we could use the local surrogate model on its own, where

the training only takes place in the local surrogates by relying on the history of the likelihood and hence taking a univariate

time series prediction approach using neural networks. Our primary contribution is in terms of the parallel computing based

open-source software and the proposed underlying framework for incorporating surrogates, taking into account complex issues5

such as inter-process communication. This opens the road to try different types of surrogate models while using the underlying

framework and open-source software.

The initial evaluation for the setup surrogate model shows that it is best to use a transfer learning approach where the

knowledge from the past surrogate interval is utilised and refined with new surrogate data. This consumes much less time

than accumulating data and training the surrogate from scratch at every surrogate interval. We note that in the case when we10

use the surrogate model for pseudo-likelihood, there is no prediction given by the surrogate model. The prediction (elevation

topography and erosion-deposition) during sampling are gathered only from the true Badlands model evaluation rather than

the surrogate. In this way, one could argue that the surrogate model is not mimicking the true model; however, we are guiding

the sampling algorithm towards forming better proposals without evaluation of the true model. A direction forward is in

incorporating other forms of surrogates, such as running low-resolution Badlands model as the surrogate, which would be15

computationally faster in evaluating the proposals.

Furthermore, computationally efficient implementations of landscape evolution models that only feature landscape evolution

(Braun and Willett, 2013) could be used as the surrogate, while we could use Badlands model that features both landscape

evolution and erosion/deposition as the true model. We could also use computationally efficient implementations of landscape

evolution models that consider parallel processing (Hassan et al., 2018) in the Bayeslands framework. In this case, the challenge20

would be in allocating specialised processing cores for Badlands and others for parallel tempering MCMC.

xxx

We adapted the surrogate framework from (Chandra et al., 2018) with a significant difference of featuring gradient-based

proposals. Gradient-based learning or parameter estimation has been very popular in machine learning due to availability

of gradient information. Due to the complexity in geological or geophysical numerical forward models, it is challenging to25

obtain gradients which have been the case of Badlands, landscape evolution model. We use random-walk proposals which is

a canonical sampling approach with several limitations. Hence, we need to incorporate advanced meta-heuristic techniques to

form non-gradient based proposals for efficient search. Our study is limited to a relatively small seat of free parameters, and a

significant challenge would be to develop surrogate models with an increased set of parameters.

5 Conclusions30

We presented a novel application of surrogate-assisted parallel tempering that features parallel computing for landscape evolu-

tion models using Badlands. Initially, we experimented with two different approaches for training the surrogate model, where

we found that transfer learning-based approach is beneficial and could help reduce the computational time of the surrogate.
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Using this approach, we present the experiments that featured evaluating certain key parameters of the surrogate-based frame-

work. In general, we observe that the proposed framework lowers the computational time significantly while maintaining the

required quality in parameter estimation and uncertainty quantification.

In future work, we envision to apply the proposed framework to more complex applications such as the evolution of

continental-scale landscapes and basins over millions of years. We could use the approach for other forward models such5

as those that feature geological reef development or lithospheric deformation. Furthermore, the posterior distribution of our pa-

rameters require multi-modal sampling methods; hence, a combination of meta-heuristics for proposals with surrogate assisted

parallel tempering could improve exploration features and also help in lowering the computational costs.

Code availability. https://github.com/intelligentEarth/surrogate-pt-Bayeslands

1 Parallel tempering MCMC10

As noted earlier, parallel tempering MCMC features massive parallelism with enhanced exploration capabilities. It features

several replicas with slight variations in the acceptance criteria through relaxation of the likelihood with a temperature ladder

that affects the acceptance criterion. The replicas associated with higher temperature levels have more chance in accepting

weaker proposals (solutions) which could help in escaping a local minimum. Given an ensemble of N replicas defined by the

temperature ladder, the state of the ensemble is specified by X = x1,x2, ...,xN , where xi is the replica at temperature level Ti.15

A Markov chain is constructed to sample proposals xi which are evaluated by the likelihood L(xi) at each replica temperature

level Ti. At every iteration, the Markov chain can feature two types of transitions that include the Metropolis transition and the

replica transition.

In the Metropolis transition phase, each replica is sampled independently to perform local Monte Carlo moves defined by

the temperature ladder which is implemented by a change in the energy function E(xi), for each temperature level Ti. The20

configuration x∗i is sampled from a proposal distribution qi(.|xi) and the Metropolis-Hastings ratio at temperature level Ti is

given as

Llocal(xi→ x∗i ) = exp(− 1

Ti
(E(x∗i )−E(xi))) (1)

where, L represents the likelihood at the local replica and the new state is accepted with probability min(1,Llocal(xi→
x∗i )). Since the detailed balance condition holds for each MCMC replica, therefore, it holds for the ensemble system (Calder-25

head, 2014).
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The replica transition phase considers the exchange of current state between two neighbouring replicas based on the

Metropolis-Hasting acceptance criteria. Hence, given a probability α, pairs of replica defined by two neighbouring temper-

ature levels, i and i+ 1 are exchanged.

xi↔ xi+1 (2)

The exchange of neighbouring replicas provide an efficient balance between local and global exploration (Sambridge, 2013).5

The temperature ladder and replica-exchange have been of the focus of investigation in the past (Calvo, 2005; Liu et al., 2005;

Bittner et al., 2008; Patriksson and van der Spoel, 2008) and there is a consensus that they need to be tailored for different

types of problems given by their likelihood landscape. In this paper, the selection of temperature spacing between the replicas

is carried out using a Geometric spacing methodology (Vousden et al., 2015), given as follows

Ti = T (i−1)/(M−1)
max (3)10

where i= 1, . . . ,M and Tmax is maximum temperature which is user defined and dependent on the problem.

2 Training the neural network surrogate model

We note that stochastic gradient descent maintains a single learning rate for all weight updates and typically the learning rate

does not change during the training. Adam (adaptive moment estimation) learning algorithm Kingma and Ba (2014) differs

from classical stochastic gradient descent, as the learning rate is maintained for each network weight and separately adapted as15

learning unfolds. Adam computes individual adaptive learning rates for different parameters from estimates of first and second

moments of the gradients. Adam features the strengths of root mean square propagation (RMSProp) Tieleman and Hinton

(2012), and adaptive gradient algorithm (AdaGrad) Duchi et al. (2011). Adam has shown better results when compared to

stochastic gradient descent, RMSprop and AdaGrad. Hence, we consider Adam as the designated algorithm for the neural

network-based surrogate model.20

The learning procedure through weight update for iteration number t can be formulated as:

Θt−1 = [Wt−1,bt−1]

gt = ∇ΘJt(Θt−1)

mt = β1.mt−1 + (1−β1).gt

vt = β2.vt−1 + (1−β2).g2
t25

m̂t = mt/(1−βt1)

v̂t = vt/(1−βt2)

Θt = Θt−1−α.m̂t/(
√
v̂t + ε) (4)
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where mt,vt are the respective first and second moment vectors for iteration t; β1,β2 are constants ∈ [0,1], α is the learning

rate, and ε is a close to zero constant.
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