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Description 
 
 This paper attempts to present Bayesian inference for an inverse problem in landscape and 
sedimentary basin evolution models, with acceleration by parallel tempering and use of a surrogate 
likelihood in the form of a neural net that is incrementally trained along the chain using evaluations of 
the true model. The paper attempts optimization to perform inversion, and the chain adapts the 
surrogate. The authors sincerely thank the reviewer for time and comments.  
 
Comments on content I will restrict my comments to the computational Bayesian aspects as I am no 
expert in models for landscape and sedimentary basin evolution. However, the paper makes virtually 
no mention of the evolution model used, and the majority concerns Bayesian computation, so my 
comments actually account for the brunt of the content of this paper.  Please note that in the revised 
paper, Section 2.2 gives an overview of the Badlands landscape evolution model. Section 3.1 gives 
problem definition for the Badlands model along with the respective topography datasets. 
 
 
Parallel tempering is an arcane algorithm that probably gives no advantage One can see from the 
references that the computational Bayesian method used in this paper predates 1997, which is when 
the first serious attempts at Bayesian computation for inverse problems were made. There has been 
tremendous development in algorithms since then, particularly in terms of efficiency with respect to 
inverse problems.This manuscript seems entirely unaware of these developments. (The more recent 
statistical references in this manuscript are not to sampling methods, and frequently to the authors’ 
own papers.) It was recognized soon after 1997 that while parallel tempering is a nice idea, it is not 
very effective for inverse problems, and suffers from fundamental difficulties. One such major difficulty 
is the need for tuning “psuedo priors” to allow the parallel chains to mix – this is mentioned in the 
original paper [MP92] (cited in the present manuscript) and studied in subsequent papers, but no 
mention of this issue is made in the present manuscript. It also became known that parallel 
tempering’s use of parallel resources is essentially trivial; one can see from the distribution for the 
ensemble (Eqn. on p 4 line 3) that the parallel chains are statistically independent, so there is no 
efficiency gain over simply running a parallel instance of single chains that move up and down 
tempering levels. That multilevel algorithm has been implemented in multiple guises, most effectively 
in the delayed acceptance algorithm [CF05] and multilevel versions, and the variance-reduction 
methods of multi-level Monte Carlo [DKST15]. These algorithms significantly outperform parallel 
tempering as used in this manuscript; see [HRMVF11] for a review of some of these topics. 
 
 There is significant work done in the area of parallel tempering MCMC with applications to 
Astrophysics and Geoscience problems in the past two decades (after 1997). Parallel tempering is a 
well established MCMC method that has been widely used for inversion problems in Earth science. 
Furthermore, it is widely used in areas of physics, such as astrophysics, environmental modelling and 
many other areas that have inversion problems.   One of the key researchers in this area is Malcolm 
Sambridge from ANU who has more recently used parallel tempering MCMC (Bayesian method) for 
inversion problems in Earth Sciences and some of his prominent works are as follows that has 
attracted a wide range of citations and shared the geo-scientific modelling community: 
 

 



1. Malcolm Sambridge, A Parallel Tempering algorithm for probabilistic sampling and multimodal 
optimization Geophysical Journal International, Volume 196, Issue 1, January, 2014, Pages 
357–374, https://doi.org/10.1093/gji/ggt342  

2. Dosso SE1, Holland CW, Sambridge M., Parallel tempering for strongly nonlinear geoacoustic 
inversion. J Acoust Soc Am. 2012 Nov;132(5):3030-40. doi: 10.1121/1.4757639.  

3. M. Sambridge, "A Parallel Tempering algorithm for probabilistic sampling and multimodal 
optimization," in Geophysical Journal International, vol. 196, no. 1, pp. 357-374, Jan. 2014. 
doi: 10.1093/gji/ggt342 URL: 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8179653&isnumber=8179647  

 
 
 On the other hand, there is no evidence presented in the present manuscript that parallel tempering 
actually leads to improved computational efficiency (beyond running separate parallel chains), and my 
impression is that it does not A further note is that the present manuscript makes no mention of the 
random-walk proposal used, though this is VERY critical to the efficiency of the method. There are 
modern methods that use correlated parallel chains and use the information across chains to adapt to 
an optimal random-walk proposal [SOLHTJ12] that would be much more efficient than the method 
used in this manuscript. 0.0.1 The proposed method is not ergodic for the target distribution One can 
see in Alg. 1 (p11) that the surrogate is trained, or adapted in the language of MCMC, as the 
algorithm proceeds. Hence this MCMC is not stationary and does not satisfy the conditions for 
standard MCMC to be ergodic for the desired target distribution. Indeed, it is easy to see from the 
structure of Alg. 1 that it will not target the desired posterior distribution.  
 
In the revision of the paper, we have mentioned that we are using Random-walk and Adaptive 
Random walk proposed, given their details in Section 3.5 of the manuscript.  
 
We note that the proposed surrogate framework is general and any other MCMC algorithms can be 
used besides parallel tempering MCMC, given that they can be parallelised. 
 
 
 
 
That is to say, Alg. 1 converges (if it converges at all) to some distribution that is not the target. So it is 
somehow useless for performing a quantitative solution of this inverse problem. The present literature 
contains potential fixes to these problems, yet the present manuscript makes no mention of them. In 
particular, the surrogate transition method [L01] would allow Alg. 1 to correctly use a fixed surrogate, 
at no increase in computational cost, while the adaptive algorithm in [CFO11] gives a framework for 
provably ergodic methods that accommodate the adaptation of the surrogate, again at no increase in 
computational cost 
0.0.2 The algorithm in the manuscript is not run to convergence This is evident from Fig. 8, and 
elsewhere. 0.0.3  
 
The revised manuscript has added Section 4.2 that gives results for convergence diagnosis with 
different proposal distributions and methods.  
 
This manuscript does not implement Bayesian methods Bayesian analysis produces a posterior 
distribution over possible solutions to the inverse problem. It is then necessary to summarize the 
posterior distribution, in a way that is appropriate for the problem at hand. Without specific evidence, 
there is no reason that optimizing the posterior distribution to give the MAP estimate, as attempted in 
this manuscript, is a good summary statistic. Indeed, it is known that in even moderate dimension 
inverse problems the MAP estimate can be arbitrarily far from the bulk of feasible solutions, and can 

 



be sensitive to noise realizations – that is to say that it is a hopeless summary statistic.  We are not 
giving a MAP estimate directly,  but integrating out the posterior distribution using Bayesian inference 
MCMC.  
 
The computation attempted in this manuscript is not a sensible summary statistic for a Bayesian 
analysis. Also, the use of Bayesian modelling in this manuscript is entirely bogus. For example, the 
sum-of-squares log likelihood (p10 l 6, and elsewhere) has no physical meaning for sediment 
transport, while plenty of more physically-realistic measures are available. The contribution of this 
paper is not about data sources but the use of surrogates to assist sampling procedure for 
computationally expensive models. Our previous paper has already addressed the issues regarding 
the likelihood and data: (Chandra et. a, 2019) 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008465 
 
 
 
 
Thus, the likelihood function used is not a sensible Bayesian model. Prior models are implicitly 
uniform, which makes no sense in terms of Bayesian probabilistic modelling of the model parameters. 
Uncertainty in distributions, via hyperpriors, is not even considered. This manuscript widely advertises 
its Bayesian credentials and the use of Bayesian inference (in the title, abstract, introduction), yet 
does not implement any sensible Bayesian methods. It certainly does not achieve “a rigorous 
approach to uncertainty quantification” (p2, l1). We have limited or sparse data and it's difficult to 
gather informative priors. The approach is taking into account the Bayesian methodology, we have 
priors, it's just that they are less informative, but we do account for rigorous   uncertainty quantification 
since we are integrating out the posterior using MCMC.  
 
For example, lines 5, 6, 7 on p10 notation is inconsistent: “The likelihood function Le(θ) is given by 
Ll(θ) = ... where the subscript e, in Le(θ),” then again Ll(θ) used in l 19 p10, and so on. Line 9-10 in 
Alg. 1, Llocal is not defined. Line 5 in Alg. 1, proposal density is not defined. Line 22 on p1 
“deterministic geophysical forward model can be seen as a probabilistic model via Bayesian 
inference” is nonsense. 0.0.5 
 Our previously published papers contribution was the likelihood function and the Bayesian model: 
(Chandra et. a, 2019) https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008465 
whereas the focus of this paper is the surrogate model to enhance computation. There are many 
geophysical papers that essentially show: “deterministic geophysical forward model can be seen as a 
probabilistic model via Bayesian inference”, such as those by Malcom Sambrige as mentioned earlier.  
 
 
There are some positive aspects about this manuscript that could be publishable. Some of the 
computed results in Fig. 2, 5, 6 look interesting, to my untrained eye. The idea of using a neural net 
surrogate to accelerate computation is interesting, though a somewhat obvious one given the 
current hype around neural nets. The authors sincerely thank the reviewer for these positive 
comments. 
 
 Nevertheless, the attempt to use neural nets in this way is interesting. I must reemphasize, as stated 
above, that the use of the surrogate ought to be performed within one of the well-established 
algorithms for correct use of a surrogate, while the algorithm in this manuscript is ad-hoc and 
incorrect. The analysis in this manuscript is actually a maximum likelihood calculation – though these 
estimates are known to suffer from quantitative problems, as outlined above, and notwithstanding the 
issue with the unphysical likelihood modelling, mentioned above. The authors might consider 

 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008465
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008465


re-presenting this work with an accurate description of the calculation as a maximum likelihood (and 
dropping all mention of Bayesian methods, which appears to be far from the authors’ skill set)  
 
The major contribution of this paper which is about enhancing existing work with use of surrogates. 
The proposed framework can be used for other MCMC methods.  
 
 
Conclusions This manuscript makes no contemporary contribution to Bayesian methods or 
computation. Indeed, in terms of Bayesian computation, the methods presented in this manuscript 
constitute a step backwards by some decades, while attention to convergence is completely absent 
and hence a major deficiency. 
 
 
 The probabilistic modelling is crude, to the point of being worthless. The use of parallel chains and a 
neural net surrogate seem more an exercise in programming than an efficient, quantified solution to a 
scientific problem. Publishing this paper would be a disservice to the community as it grossly 
misrepresents the current literature on Bayesian modelling and computation for this problem. 
The current literature contains better and more computationally efficient solutions. If this manuscript 
were submitted to a journal that deals with Bayesian computation, I doubt the editor would even send 
it out for review. I recommend this manuscript be rejected.  
There is a multidisciplinary focus  of the paper. The above comments are too focused on validating 
Bayesian inference methodology, whereas the paper is about using existing Bayesian inference 
methodology and applying for Geoscientific models such as landscape evolution models. The 
contribution of the paper is in the area of Geoscientific models, not in the area of Bayesian 
computation. The use of parallel tempering MCMC and contribution to its theoretical foundations are 
still active in statistics and machine learning journals:  

1. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., & Delalleau, O. (2010, May). Parallel 
tempering for training of restricted Boltzmann machines. In Proceedings of the thirteenth 
international conference on artificial intelligence and statistics (pp. 145-152). Cambridge, MA: 
MIT Press. 

2. Sambridge, M. (2013). A parallel tempering algorithm for probabilistic sampling and 
multimodal optimization. Geophysical Journal International, 196(1), 357-374. 

3. Miasojedow, B., Moulines, E., & Vihola, M. (2013). An adaptive parallel tempering algorithm. 
Journal of Computational and Graphical Statistics, 22(3), 649-664. 

4. Baragatti, M., Grimaud, A., & Pommeret, D. (2013). Likelihood-free parallel tempering. 
Statistics and Computing, 23(4), 535-549. 

5. Li, Y., Protopopescu, V. A., Arnold, N., Zhang, X., & Gorin, A. (2009). Hybrid parallel 
tempering and simulated annealing method. Applied Mathematics and Computation, 212(1), 
216-228. 

6. Katzgraber, H. G., Trebst, S., Huse, D. A., & Troyer, M. (2006). Feedback-optimized parallel 
tempering Monte Carlo. Journal of Statistical Mechanics: Theory and Experiment, 2006(03), 
P03018. 
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The novelty of this work is for computationally expensive model inference. The contribution of the 
paper is not in improving parallel tempering MCMC but in applying it for landscape evolution problems 
and further to use surrogate assisted methods for further improving computational efficiency. Latest 
MCMC methods such as Hamiltonian MCMC and Langevin based MCMC methods cannot be applied 
to this problem since there is no gradient information. This is a major reason parallel tempering 
MCMC with random-walk  and adaptive random-walk proposals has been used. The paper not only 
formulates the concept, but also implements and releases open source software that can help the 
landscape evolution modelling committee.  
 
 
The authors sincerely thank the reviewer for valuable time and comments.  
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The scope of this study is quite large, with many complex details included. For example, Bayesian 
inversion is described with on a complex model, an MCMC implementation is used and outlined which 
involves Parallel Tempering and also the parallel architecture of the authors code is also described in 
some detail. These are all relevant, if not original features of the author’s computer code, and it seems 
there is an intent is to describe them all. While completeness is a good thing, and the intent is 
appreciated here, it can tend to obscure the main focus which is to evaluate the effectiveness of 
combining surrogate ‘pseudo-likelihoods’ which are trained ‘in-situ’ during the sampling process.  
The authors may improve the effectiveness of the manuscript by describing some, or most, of these 
algorithmic details in appendices, using the main text to give an overview and clearer focus on the 
primary point, i.e. the comparison between surrogate and full forward modelling in the Bayesian 
sampling. Having said that I think the authors should be commended for attempting to include full 
detail, which is appreciated.  The authors sincerely thank the reviewer for these comments. In the 
revision, we have created Appendix section that features the details of parallel tempering MCMC and 
Training algorithms for neural network surrogate model.  
 
Since the primary focus here (should be) on the surrogate model, I found the section which described 
this, and both approaches for training, rather light. I didn’t get a clear enough understanding to give 
me confidence that I could reproduce it.  
  We are including python code with the paper along with data and sample results in order to ensure 
reproducibility. We   also revised the Algorithm 1 to ensure that we make the method clearer and have 
amended the texts in these section (highlighted in light brown) to ensure that all the details are 
presented clearly.  
 
Given the central importance of this aspect I suggest an appendix devoted to describing the structure 
of the Neural network and its training be described carefully in an appendix. In the revision, the 
authors have added the basic neural network model and details about the training equations in the 
Appendix.  
 
That is outside of the context it is being used, i.e. without reference to MCMC or PT or even Figure 4. 
The readers should have a clear picture of this as a ‘stand alone’ component of the overall algorithm. 
All figures and tables need much better captions. The caption has been improved in this figure and 
further references are given in the text. Other captions have also been edited/extended.  
 
They appear to be an afterthought. Variables, axes and details of the figure need to be explained or 
define. I suggest even including a hint at what you want the reader to notice in each figure/table. At 
present they are just titles. The variables and axes in all the figures have been defined - in the 
captions.  
 

 



Section 2.1 needs to be re-examined. E(x) is not defined, nor is W_L . Presumably eqn. 920 is the 
MCMC balance condition. This paragraph has been moved to applentix where L(x) is used instead of 
E(x) to define the likelihood function. W_L is changed to L_local which refers to the likelihood ratio for 
the proposals.and 
 
 If so where is the prior ratio, where is the proposal ratio. If it is assumed that these cancel this needs 
to be specified and explained. The prior ratio cancels out since we use uniform priors and has been 
stated in the text.  
 
The use of terms local and global need clarification, as far as I can tell it refers to things that happen 
on a parallel compute node compared to the master. Correct? Please explain. Not clear the distinction 
needs to be made.  
 
This has been added:  
“In surrogate-assisted parallel tempering, global surrogate essentially refers to the main surrogate 
model that features training data combined from different replicas running in parallel cores. Local 
surrogate model refers to the surrogate model in the given replica that incorporates knowledge from 
the global surrogate in order to make a prediction given new input data (sample of proposal). Note 
that the training only takes place  in the global surrogate and the prediction or estimation for 
pseudo-likelihood only takes place in the local surrogates. “ 
  
 
 
There a reasonably large number of choices that need to be made for control parameters throughout, 
intervals of PT and surrogate, sizes of training sets, starting values of Neural network etc. Several of 
which are listed on page 12 lines 25-30. We are told that ‘All of these values are determined 
experimentally’, but how? While I trust that the author has done a competent job, we still need to know 
what criteria were used to decide between desirable and less desirable values? Some explanation is 
required.  “In trial experiments, the selection of these parameters depended on the performance in 
terms of the number of accepted samples and prediction accuracy of elevation and 
sediment/deposition. “ 
 
There are numerous typographical and grammatical errors throughout the manuscript which creates a 
poor impression. Below are a few I identified, but there are sufficiently regular to warrant a careful 
proofread by an independent person in any future version. I suspect this has not happened prior to 
submission. These are fixed in the revision.  
 
In some parts the text descends into obscure technical detail regarding data flow in the parallel 
structure, etc. Again independent feedback from a colleague might sort these issues out. The 
repeated use of the term ‘replica’ is confusing. This appears to be describing unrelated models (sets 
of variables) at the time step of an McMC chain. In what sense are they replicas?  Replicas have 
different temperature levels as defined by the temperature ladder.  
My understanding is that the only thing in general any two ‘replica’s have in common is the same 
chain index. Yes  
I was unsure what the actual numbers of unknowns and what the typical compute cost of a Likelihood 
evaluation were in each experiment. It would be best to explicitly state this in each case, as it puts the 
calculations and MCMC sampling into perspective. I did not get a clear picture of this. Time taken to 
run a single model is  shown in Table 1 
  
 

 



In page 10 line 20, it may be useful to mention that these are what is known as hierarchical MCMC 
models, as the variance of both data types are being treated as unknowns. This is not a good aspect I 
think but one that is glossed over. We have two components of the likelihood, the elevation and 
sediment deposition which are evaluated jointly. We have added this sentence to clarify further: 
 
“We note that given that the sediment erosion/deposition is temporal, we could have a hierarchical 
Bayesian model (Chib and Carlin,1999; Wikle et al.,1998) with two stages for MCMC sampling, that 
evaluates the respective likelihoods,  which could be future work.  “ 
 
The bottom line message from this manuscript as I understood it was that across several examples 
shown, both the computationally inexpensive ‘Continental-Margin’ and ‘Synthetic-Mountain’ cases as 
well as the more computationally demanding ‘Tasmania’ case there are time savings of between 7 
and 65% when using the surrogate over the full forward model. Necessarily these numbers depend on 
details of tuning various control parameters and other choices made, and I assume a good job has 
been done. Thanks for these comments. We ran many trial experiments to fine tune parameters and 
also create synthetic problems that had different levels of computational time to demonstrate the 
method.  
 
However whether this is of practical significance is not clear. If I had a computer that was three times 
as fast as the one used here then presumably I would achieve the same compute time as the 
surrogate with the more accurate full physics based model. Correct? While I think a saving has been 
demonstrated, the author should really comment on the significance of the observed improvement in 
compute time. As the author clearly points out well, the improved efficiency of the surrogate-assisted 
MCMC sampler comes at the cost of lower accuracy as measured ultimately in the Bayesian mean 
and standard deviations of the Elevation and Erosion-Deposition parameters.  
 
Actually, we had a major bug in the code and had to carry out most of the experiments again. Now our 
results show that the surrogate Bayeslands approach gives similar predictions as canonical 
Bayeslands, but reduces the computational time significantly (see Figure 5 and Figure 6 and Table 8).  
 
The following has been added in the discussion section: 
 
 “Given the cross-section presented in the results for Continental-Margin and Synthetic Mountain 
problems, we find that there is not much difference in the accuracy given in prediction by the 
SAPT-Bayeslands when compared to PT-Bayeslands. Moreover, the application to a more 
computationally intensive problem (Tasmania), we find that a significant reduction in computational 
time is achieved. Although we demonstrated the method using small-scale  models that run within a 
few seconds to minutes,  the computational costs of continental-scale Badlands models is extensive. 
For instance, the computational time for a  5-kilometre resolution for Australian continent Badlands 
model for 149 million years is about 72 hours, and hence, in the case when thousands of samples are 
required,  the use of surrogates can be beneficial. We note that improved efficiency of the 
surrogate-assisted Bayeslands comes at the cost of  accuracy for some problems (in case of 
Tasmania problem), and there is a trade-off between accuracy and computational time.” 
 
 
 As I understood it the PT-Bayeslands results are considered the ‘near truth’ and the 
Surrogate-assisted, SAPT-Bayesland, as the approximate. So perhaps the more important question, 
is then is how to judge whether the trade-off of accuracy against compute time is significant. One way 
this might be done is ask whether the PT-Bayeslands could produce the same if not better accuracy 
than SAPT-Bayesland with the same computation budget, i.e. fewer samples. Actually, this is the 

 



main goal of our experiments and we have already demonstrated it in the results. It seems  we have 
not been very clear and in the revision we are further highlighting the goal of our experiments.  
 
 I assume it is possible to do such an experiment by rescaling the number of samples available to 
PT-Bayeslands by the relative compute times observed in the experiments. This question/experiment 
has not been addressed but it would be instructive to try it. Again the central question is one of 
significance of the results. It would be impressive for the reader to see some attempt along these 
lines.  
 
The results in Table 7  show computation time reduced and RMSE accuracy, with a fixed number of 
samples to provide a fair comparison.  In our previous work, we have already shown the performance 
trend of PT-Bayeslands given different number of samples (Chandra et. a, 2019) 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008465 
 
Furthermore, the following has been added in the discussion:  
 
“The results in terms of prediction accuracy  given by the proposed method can be further improved in 
future work with  the way the surrogate is trained. Rather than a global surrogate model, local 
surrogate model on its own can be used, where the training only takes place in the local surrogates by 
only relying on history of the likelihood and hence taking a univariate  time series prediction approach 
using neural networks. Our major  contribution is in terms of the parallel computing based 
open-source software and the proposed underlying framework for incorporating surrogates, taking into 
account complex issues such as inter-process communication. This opens the road to try different 
types of surrogate models while using the underlying framework and open source software. “  
 
  
 
Overall I think this is an encouraging piece of work which could be significantly improved by a 
restructured manuscript and more quantitative evaluation on the two points above. The authors 
sincerely thank the reviewer for valuable time and comments.  
 
 
 
Some typo and grammatical errors: P1 L10: ‘has been with successfully’ - ? P8 Figure 3b is missing? 
Fixed  
 
P11 Last sentence starting ‘In our case,. . .’ contains ‘giving by the sampler’ meaning? I did not 
actually understand this sentence at all.  The sentence has been revised: “ In  our case, the input is 
the set of proposals by the respective replica  samplers in the parallel tempering algorithm.” 
 
 
P12 L3 ‘paralle’ P12 L12: ‘the the true Likelihood’  fixed  
 
P12 L18 Is this the Gaussian Likelihood or the logLikelihood?  Log-likelihood - fixed  
 
P13 L30 ‘they have imitations in training’ ?  fixed  
 
P15 eqn (8) balance size of brackets.  fixed  
 
P15 L11 define ‘J(W,b)’ P16 L11 ‘for for’  fixed fixed  
 

 

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GC008465


P16 L22 ‘we needs’ P16 L29 where is footnote 3?  fixed  
 
P17 L23 ‘Howsoever’ ? P18 L10 ‘We by notice that’  fixed  
 
P18 L13 what is surrogate probability? -  
 Do you mean accuracy in recovering marginal probability? “ ----determines the frequency of 
employing the surrogate model for estimating the pseudo-likelihood.” has been added in the text.  
  
 
The authors sincerely thank the reviewer for valuable time and comments.  

 


