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Abstract. Numerical modeling provides the opportunity to quantify the reaction of lakes on alterations in their 

environment, such as changes in climate or hydrological conditions. The one-dimensional hydrodynamic General Lake 

Model (GLM) is an open-source software and widely used within the limnological research community. Nevertheless, 

neither an interface to process the input data and run the model, nor tools for an automatic parameter calibration yet 

exist. Hence, we developed glmGUI, a Graphical User Interface (GUI) including a toolbox for an autocalibration, 15 

parameter sensitivity analysis, and several plot options. The tool is provided as a package for the freely available 

scientific code language R. The model parameters can be analyzed and calibrated for the simulation output variables 

water temperature and lake level. 

The glmGUI package is tested for two sites (Lake Ammersee, Germany, and Lake Baratz, Italy) distinguishing in size, 

mixing regime, hydrology of the catchment area (i.e. the number of inflows and their runoff seasonality), and climatic 20 

conditions. A robust simulation of water temperature for both lakes (Ammersee: RMSE = 1.17 °C, Baratz: RMSE 

=1.30°C) is achieved by a quick automatic calibration. The quality of a water temperature simulation can be assessed 

immediately by means of a difference plot provided by glmGUI, which displays the distribution of the spatial (vertical) 

and temporal deviations. The calibration of the lake level simulations of Lake Ammersee for multiple hydrological 

inputs including also unknown inflows yielded a satisfactory model fit (RMSE = 0.20 m). This shows that GLM can 25 

also be used to estimate the water balance of lakes correctly. The tools provided by glmGUI enable a less time-

consuming and simplified parameter optimization within the calibration process. Due to this, the free availability and 

the implementation in a GUI, the presented R package expands the application of GLM to a broader field of lake 

modeling research and even beyond limnological experts. 

1 Introduction 30 

As lakes respond to changes in their environment they are often considered to be “sentinels of change” (Williamson et 

al., 2009, Hipsey et al., 2019). The investigation of alterations in the physical conditions of lakes, such as water 

temperature, stratification, water balance, mixing behavior, or ice cover, has a key role in the understanding of the lake 

dynamics. Numerical modeling provides the opportunity of research beyond the analysis of observational monitoring 

data (Frassl et al., 2016), enabling simulations of periods without in-situ data as well as future conditions of lakes. 35 

The development and application of community-based models is of increasing importance in order to find solutions for 

the future challenges to simulate water body conditions under environmental alterations (e.g. climatic, land use, and 

agricultural policies, Bruce et al., 2018).The one-dimensional hydrodynamic General Lake Model (GLM) has been 
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developed, under the leadership of members of the Global Lake Ecological Observatory Network (GLEON, gleon.org, 

Hanson et al., 2016), in response to the need of a robust model of lake dynamics (Hipsey et al., 2019), which is 

applicable for the vast diversity of lakes and reservoirs around the globe. GLM is able to simulate the thermal dynamics 

of lakes in their temporal and spatial (vertical) characteristics. The model code is open-source and applied in numerous 

studies to a broad variety of different lakes and research questions (e.g., Bueche et al., 2017; Bucak et al., 2018; Bruce 5 

et al., 2018; Fenocchi et al., 2018; Robertson et al., 2018; Ladwig et al., 2018; Mi et al., 2018; Fenocchi et al., 2017; 

Fenocchi et al., 2019). Carey and Gougis (2017) present the usage of GLM beyond the research application 

incorporated in a teaching tool for students.  

Despite the high applicability of GLM a powerful toolbox for automatic calibration, validation and statistical sensitivity 

analysis is not yet existent. Therefore, we developed an R-based Graphical User Interface (GUI) implemented in the 10 

new R package glmGUI combining an easy handling of GLM simulations, a tool to automatize the calibration process, 

and visualization options for the input and output data. In general, the maxim of our project was inspired by four 

aspects:  

• Provision of an open-source tool 

• Provision of a user-friendly tool, which could be used by experts as well as less experienced modelers and 15 

limnologists  

• Using scripts to adapt the tool, with high acceptance and contribution in the scientific community 

• Flexibility for the implementation of different calibration parameters and for the numerical and graphical 

interpretation of the output results 

The R language (https://www.r-project.org) was chosen because it is open-source, flexible and an independent platform 20 

(Snortheim et al., 2017). Moreover, the lake modeler community uses already R based packages, i.e. glmtools for 

parameterization or plotting model output (https://github.com/USGS-R/glmtools) and rLakeAnalyzer for post-

processing and evaluation of the model results (Winslow et al., 2016, https://github.com/GLEON/rLakeAnalyzer).  

Changes in the water level of a lake can have strong influences on hydrodynamics, such as thermocline depth and 

stratification stability and duration, and can also affect lake water quality (Robertson et al., 2018). The appropriate 25 

water level reproduction by lake models is essential for a robust simulation of spatial features of thermal dynamics in 

lakes, especially in shallow lakes with high variations in water stages. Furthermore, an accurate simulation of the lake 

level ensures the correct representation of hydrological interaction of the lake with its environment in the catchment 

area. Hence, in addition to the model output water temperature, the lake level is included to be calibrated in the 

provided automated calibration tool.  30 

In this contribution we present the options included in glmGUI and show the application for two different sites, namely 

the pre-alpine deep Lake Ammersee, south Germany, and the shallow, Mediterranean Lake Baratz, Sardinia, Italy. The 

objectives of these two case studies are the calibration of the water temperature and lake level simulations of GLM 

using the automatic calibration tool. 

2 Lake model, software description, and toolbox options 35 

2.1 The hydrodynamic lake model 

The GLM is a one-dimensional hydrodynamic model simulating the vertical profiles of temperature, salinity, and 

density at one spatial point in a lake over time (Frassl et al., 2016; Robertson et al., 2018). It applies the Lagrangian 

layer structure adapting the thickness and volume of layers with uniform properties from each simulation step (Bueche 

et al., 2017). The underlying equations and hydrodynamics closures are documented in Hipsey et al. (2014) and Hipsey 40 
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2.3.1 Data pre-processing and model efficiency 

The GUI enables either the usage of an existing simulation control file of GLM (glm2.nml) from a selectable workspace 

(section 1, Fig. 1), or the creation of a new control file using the function nml_template_path() of the R package GLMr 

(https://github.com/GLEON/GLMr). The lake specific parameters and settings are in accordance with the deposited file 

of GLMr and is due to change with the current GLM version. The input data are automatically listed in section 2 (Fig. 5 

1), if stored at the path as specified in the control file. All included time series of input data can be visualized and tested 

against missing values (NA). The toolbox includes an option to fill the missing values applying the non-parametric 

Kalman-filter method (Grewal, 2011) using the R package imputeTS (Hyndman and Khandakar, 2007). Several filter 

methods were tested by manually removing values from existing time series of meteorological data and interpolating 

these missing values. The Kalman smoothing could deliver the best and most constant results for all kinds of the various 10 

meteorological data. If selected, an autofill option writes the interpolated values directly to the input file. All parameter 

settings defined within the control file can be shown and changed by the GUI (section 3, Fig. 1).  

The model simulation can be run (section 5, Fig. 1) and several plot options can be selected to compare the model result 

with observed field data (section 4, Fig. 1). As lake level variations can have a strong impact on the water temperature 

distribution within lakes (especially true for shallow waters), the validation of the lake level simulation results is 15 

provided within the GUI additionally to the water temperature. The root mean square error (RMSE), which is often 

applied as model fit criteria in lake modeling studies (e.g. Bueche et al., 2017; Luo et al., 2018; Frassl et al., 2018), can 

be computed for both model output variables. Additionally, the mean bias error (MBE, average of the lake level 

differences of all time simulated time steps) is calculated for lake level simulations. Both model criteria are calculated 

for all available observed data points and averaged subsequently. 20 

2.3.2 Plots and output visualization 

Plot options are provided by glmGUI for the input time series in section 2 (Fig. 1) and for all output variables generated 

by GLM (csv and netCDF, section 5). This includes simple line plots (e.g. for lake level or evaporation) and contour 

plots for parameter varying in lake depth, such as water temperature or density. In addition, two types of contour plots 

of the vertical profile can be created. First is the visualization of observed and modeled water temperatures in one plot 25 

above each other with the option of the measured data as point-overlay to mark where and when field data are available 

(areas in between are interpolated to draw the plots, Fig. 2). The second plot visualizes the temperature differences 

between the interpolated measured values and the modeled data. This plot type is a new feature enabling a quick 

overview on the spatial and temporal errors and deviations of the simulation (Fig. 9). The displayed deviations are fixed 

to 9 classes in the range of the errors between -5 °C to +5 °C and all values beyond these limits are shown in one color 30 

(≤ -5 in dark blue and ≥ 5 in red) summarizing and highlighting extreme errors. The spatial reference in both plots is the 

lake surface, but lake level variations are represented by changes in depth, which become visible at the “bottom” of this 

plot type. 

The generation of the contour plots is based on functions provided by glmtools. The default settings to scale the color 

bar legend for water temperature plots take into account the range of temperatures and also erroneously the range of 35 

lake depth. This method is adopted in glmGUI, while discarding the consideration of the lake depth, and the 

temperature range is adjusted explicitly to the plotting method to provide well differentiated color ranges in the legend.  
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Fig. 2: Example of a contour plot of observed (top) and modelled (below) water temperatures for Lake Ammersee. Black dots 

mark the availability (time/date and depth) of observed water temperatures. 

2.3.4 Sensitivity analysis 

To reduce the effort of the model calibration process only sensitive parameters should be included (Luo et al., 2018), 5 

which usually are identified applying a sensitivity analysis. It investigates how variations in the output of a numerical 

model can be attributed to variations of input parameters or factors (Pianosi et al., 2016). The widely used approach 

after Lenhart et al. (2002) is implemented in the GUI. The Sensitivity Index (SI) is calculated for each selected 

parameter separately, since only one parameter is changed at a time: 

 10 

�� =
(y� − y�)/y�

2Δx/x�

 
(1) 

 

The parameter with the value x�  is increased and decreased by ∆x . The resulting outputs y� and y�  (either water 

temperature, lake level or the respective RMSEs) are subtracted and normalized by the output y�, which results from 
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using the unchanged parameter value x�. ∆x can be set to four different values in the GUI (5%, 10%, 20%, 50%). It can 

be chosen out of four grades of relative changes of a parameter. The sensitivity of the simulation can be analyzed 

concerning the model output of water temperature or lake level. SI-values can be calculated based on either the 

respective model output or the RMSE, as also applied by Rigosi et al. (2011). 

2.3.4 Autocalibration 5 

Since the GLM uses empirical equations (Hipsey et al., 2017), model parameters can be adjusted during the calibration 

process to minimize the error between model output and observations (Luo et al., 2018). As an alternative to adjust the 

parameters manually in the glm2.nml-file, glmGUI provides an automatic calibration tool for preselected parameters of 

surface dynamics, mixing parameters, and hydrological and meteorological factors (Table A2). The user can choose out 

of those parameters that are to be included in the calibration process and define a percentage range, by which the upper 10 

and lower limit of every parameter is changed from the value in the glm2.nml-file. The resolution of the 

increase/decrease of the parameters within the defined limits can be set as well. According to these settings, model runs 

of GLM are executed with all possible combinations of the selected parameters (“brute-force”). The overall RMSE of 

the lake level or water temperature is calculated and saved for every parameter combination to a csv file, with the “best 

fit” being indicated.  15 

The automated calibration of the lake level includes also the optimization for the parameter inflow_factor for multiple 

lake inflows. This enables an approximation to the water balance and the reproduction of the lake level, if the 

contribution of inflows is unknown, which is often the case for groundwater inflows or smaller tributaries.  

The runtime of the calibration algorithm (tcal) increases exponentially with the number of parameters (p) to be calibrated 

(Eq.(2)) 20 

 

���� = �� ∗ (���� + �����) (2) 

 

with r as the number of tested values for each parameter p and tGLM, tRMSE as runtimes of the lake model and the 

calculation of the output RMSE. 

3 Case study Lake Baratz 25 

3.1 Study site 

Lake Baratz is located in the northwest of Sardinia (Fig. 3), Italy, and is the only natural lake of the island. The 

elevation of its bottom is 18.6 m a.s.l. and the lake level suffered significant changes in the last two decades with a 

maximum lake depth of 11 m and a minimum of 3 m (Giadrossich et al., 2015; Niedda et al., 2014). The overflow 

spillway of the lake is at 32.5 m a.s.l. (Niedda et al., 2014). At this maximum level the lake has a surface of about 0.6 30 

km² and volume of 5.1 × 106 m³ (Giadrossich et al., 2015). As lake-overflow events to the sea were extremely rare in 

the past century the catchment area can be considered as a closed-basin (Niedda and Pirastru, 2013). The lake watershed 

is about 12 km² with a maximum elevation of 410 m (Pirastru and Niedda, 2013). The only significant tributary is 

inflowing the lake in the northeast and drains a sub-catchment area of 8.1 km². Due to a very dry summer season the 

water inflow starts usually in December and ends in May (Giadrossich et al., 2015).  35 
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The lake can be classified as eutrophic and the water is brackish. Thermal stratification usually establishes in February 

or early March and lasts to early autumn (Giadrossich et al., 2015). Lake mixing occurs all throughout winter and thus, 

it can be classified as a warm monomictic lake. 

 

Fig. 3: a) Lake Baratz and its hydrological catchment area and observation station, b) Observation stations outside of the 5 
lake watershed (grey area), c) Contour lines of the lake basin. The blue area indicates the lake surface at a lake level of 8 m 

(equal to an elevation of 26 m a.s.l) observed in November 2012. Brown lines display dry terrain and cyan isobaths at this 

lake level (Source DEM © Regione Autonoma della Sardegna). 

3.2 Sensitivity analysis and calibration 

The simulation period for Lake Baratz is determined to be 13.07.2011 to 31.12.2016. We assume the light extinction 10 

coefficient value Kw = 0.57 m-1 is representative of the whole study period. Kw is calculated dividing the Secchi-disk 

constant (in this case the minimum value of 1.44 was taken as it usually ranges between 1.44 and 1.80, Hornung, 2002; 

Holmes, 1970; Chapra, 2008) by the mean Secchi-disk depth of 2.50 meters (data from June 2016 to June 2017). A 

similar value can be obtained considering a Secchi-disk average depth of 3 meters (assumed when the lake had a higher 

water level) and Secchi-disk constant of 1.70 (Poole and Atkins, 1929). A further detailed description on the applied 15 

meteorological and hydrological model input data, the field data, and the data processing can be found in the 

Supplementary Material. 

The calibration process of the lake level was accomplished without hydrological parameters, as preliminary estimations 

of the water balance considering the seasonality of the inflow and subsurface outflow already exist (see Supplementary 

Material S1.3), which are also applied in this study. Thus, the sensitivity analysis was performed considering only the 20 

parameters of surface dynamics and the wind_factor as wind can have an impact on the lake level due to its influence on 

evaporation. The options of 10 % increase and the RMSE as measure of deviation were selected. 
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After Lenhart et al. (2002) only one of four parameters (cd) is found to have a negligible sensitivity indicated by a SI-

value of below 0.01. The analysis revels a high sensitivity for the parameters ch (SI = 0.234, see also Fig. 4) and ce (SI 

= 0.334) and a medium for wind_factor (SI = 0.089). 

The sensitivity analysis regarding water temperature was conducted for parameters of lake mixing, surface dynamics, 

and the wind factor with the same options as selected for the lake level. Negligible SI-values of 0.005 and below are 5 

found for all considered parameters except for ce (SI = 0.232) and wind_factor (0.290) with a high sensitivity, and ch 

(0.050) with a sensitivity at the threshold between medium and small (Fig. 4). According to both sensitivity analyses the 

model is calibrated first for the lake level considering these three parameters with medium and high sensitivity. As the 

model is found to be sensitive in lake level and water temperature simulations for changes in the same parameters, the 

calibration for water temperature simulations was performed only considering ce and wind_factor to prevent a decline 10 

of the lake level reproduction by the water temperature calibration. Not considering parameter ch is plausible, as its SI 

value matches only just the threshold to be medium sensitive. In addition, small parameter value ranges of 10 % are 

applied. Within the calibration process a total number of approx. 3000 simulation runs were conducted in six 

autocalibration runs. 

 15 

 

Fig. 4: Sensitivity Index (SI) after Lenhart et al. (2002) of GLM simulations of Lake Baratz regarding the lake level (blue) 

and water temperature (cyan). The lower horizontal line (SI = 0.05) marks the threshold between small and medium 

sensitivity, the upper line (SI = 0.20) between medium and high sensitivity.3.3 Simulation results 

The calibration processes for lake level simulations of the lake model reveals the best fit when applying an unchanged 20 

parameter value for ch and an adjustment of ce to 0.001748 and of wind_factor to 1.56. The simulated lake level of 

Lake Baratz shows very good model fit criteria of an average RMSE = 0.11 m and an average MBE = 0.05 m. The 

seasonal pattern of the lake level, characterized by a strong increase during winter and a drop during summer, is 

represented well. Additionally, the general decrease of the water stage by about 3 m during the simulation period is 

simulated correctly, which proves the capability of the model to reproduce the water balance of the lake and its 25 

catchment area. 
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Fig. 6: Observed (top) and simulated (bottom) water temperatures of Lake Baratz. 

4 Case study Lake Ammersee 

4.1 Study site 

The pre-alpine Lake Ammersee (Fig. 7) has a maximum depth of 83.7 m (Fig. S8, Supplementary Material), a surface 5 

area of 46.6 km² and a volume of about 1.8 × 109 km³ (Bueche and Vetter, 2014b). The mixing regime can be classified 

as dimictic, but also monomictic seasons occur (Bueche, 2016). The trophic status is currently mesotrophic (Vetter and 

Sousa, 2012). 

The lake has a catchment area of about 994 km² and its outflow in the north (Stegen gauge station). The main tributary 

is River Ammer, which contributes approximately 80 % of the total annual discharge to the lake (Bueche and Vetter, 10 

2015). Several other streams and creeks inflow into the lake, but only River Rott and Fischbach have a share of greater 

than 5 % of the total lake catchment area size (see Fig. 7). Additionally, groundwater is assumed to inflow the lake, 

which has not been quantified yet (Bueche and Vetter, 2014a). The mean lake level is 532.9 m a.s.l. and usually varies 

about 1 m (Bay. LfU, 2018). 

 15 
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Fig. 7: Catchment area (with sub-catchments) of Lake Ammersee. Dots mark the locations of hydrological observation 

stations (Source DEM: Elevation data from ASTER GDEM, a product of METI and NASA, Source geo-data: Geobasisdaten 

© Bayerische Vermessungsverwaltung, www.geodaten.bayern.de). 

4.2 Sensitivity analysis and calibration 5 

The simulation period for Lake Ammersee is chosen to be 30.01.2014 to 31.12.2017 starting when reliable field data of 

the lake station is available consistently (see Supplementary Material, section 2). The initial profile of water 

temperatures is taken from the observations of that date. No water quality data were available for the simulation period 

and the salinity values are derived from conductivity measurements of January 2004, when similar thermal conditions 

of a slight inverse stratification were prevailed and equivalent salinity conditions can be assumed. As the trophic status 10 

has not changed since 2004 the average value KW of 0.35 m-1 determined for the period 2004 to 2008 from secchi-disk 
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observations (data surveyed and provided by Bavarian Environment Agency) is used for the GLM simulations in this 

study.  

The calibration of the lake level considers the inflow_factor (i.e. simple factor for the discharge values of the inflows) of 

the four defined inflows of River Ammer, River Fischbach, groundwater inflow, and the sum of River Rott, River 

Kienbach, and all other unknown inflows. Thus, the adjustment of the representative inflow_factor includes the required 5 

correction of the available discharge data considering the observations are not taken at the stream inlet to the lake but at 

an upstream location. This is especially relevant for River Ammer with its gauge at Weilheim (Fig. 7). Meteorological 

input data are taken by a raft station at the lake center except for precipitation and cloud cover data (see Supplementary 

Material, section 2, for a detailed description about the sources of the used meteorological and hydrological input data 

and the processing of the data). 10 

The sensitivity analysis regarding the water temperature (increase: 10 %, measure of difference: RMSE) reveals seven 

parameters with an SI > 0.05 indicating a medium sensitivity (after Lenhart et al., 2002, Table 1). In order to reduce the 

calculation time of the autocalibration runs, four parameters of high sensitivity with a SI above 0.2 are chosen for this 

process. In total approx. 50000 simulation runs in 12 autocalibration runs were performed within the calibration 

process. 15 

Table 1: Values of SI for Lake Ammersee water temperature simulations. 

Parameter SI 

ch 0.534 

coef_mix_shear 0.484 

coef_mix_turb 0.410 

wind_factor 0.210 

cd 0.126 

coef_mix_KH 0.097 

coef_wind_stir 0.060 

ce 0.034 

coef_mix_conv 0.015 

coef_mix_hyp 0.008 

 

4.3 Simulation results 

The calibration of the lake level simulation yields its best fit for the combination of the inflow factors for the defined 

tributaries River Ammer of 1.10, River Fischbach of 0.72, groundwater of 1.07, and Rivers Rott, Kienbach and all other 20 

smaller and unknown inflows of 1.01. By using these adapted inflow factors instead of the default value of 1.0, overall 

RMSE reduced significantly from 1.10 m to 0.20 m, and the MBE from -1.00 m to 0.09 m, and the achieved model fit 

can be assessed as very satisfactory. The simulation shows periods of general deviations of over 0.20 m up to 0.55 m for 

some months, but reproduces well the short-term fluctuations (Fig. 8). The remaining errors and differences can be 

ascribed to the uncertainties and lack of data for some inflows as assumptions and estimations for the unknown surface 25 

input and the groundwater inflow had to be made. More detailed hydrological data might explain remarkable dates, like 

during summer, when the trend of simulated and observed lake level changes abruptly. No obvious explanation for 

these trend shifts could be found, although a detailed investigation of the existing hydrological data was conducted. An 

impact of a highly complex groundwater inflow system is likely to have a key role in the water balance of the lake, 

which is not considered by the applied input data sufficiently. Furthermore it cannot be ruled out that unknown 30 

alterations or errors in the observation setup of the gauges cause these “turning points” as some of them correspond to 
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Fig. 9: Contour plot of differences between simulated and observed water temperatures of Lake Ammersee. 

5 Discussion 

The implemented option of an autocalibration in the toolbox enables a less time-consuming and more efficient 

parameter optimization compared to a conventional manual calibration procedure (Luo et al., 2018). The utilization of 5 

such automatization techniques is advised for lake modeling studies (Ladwig et al., 2018). Hence, the provided tool can 

be seen as the centerpeace of the developed GLM Toolbox, which is complemented by the plotting option of differences 

between observed and simulated water temperatures. This model output visualization enables an immediate overview 

on the simulated deviations and their spatial distribution without any further post-processing of the model results. 

Although no detailed quantification of the error is possible, this illustration allows a very quick qualitative comparison 10 

of different simulation settings. Such visualization option for GLM output has not yet been provided for an open-source 

software before.  

The easy handling and free availability of the GUI expands the reach to potential user of the GLM beyond the 

limnological research specialists. The used scripting language R is already widespread in limnological (e.g. Winslow et 

al., 2016), hydrological and environmental research (e.g. Pilz et al., 2017; Gampe et al., 2016), as well as in the field of 15 

automation of water management processes (e.g. Erban et al., 2018). Providing the R code as development version 

(http://doi.org/10.5281/zenodo.2025865) in addition to the R package, enabling the GUI and its tools to be easily 

customized by users for other specific demands and then again to be shared with the public.  

Due to the small number of considered parameters in the calibration process of the presented case studies, the efficiency 

was successfully tested for a realistic effort of time. The visibility of the simulation error provided by the created 20 

difference contour plots gives the opportunity to combine the automated calibration easily with expert knowledge. 

However, the time consumption of an autocalibration run of several days and more for combinations of larger number 

of parameters and higher intervals might hamper of the calibration efficiency of a solely automatized calibration and 

can be improved in upcoming versions of the toolbox. At present running the tool on a server in advance or as a 

“background task” can compensate for this problem. 25 

Further limitations of the toolbox/GUI have to be mentioned and more coding activities should be addressed to 

minimize the following issues. 1) The contour plots of water temperatures indicate the lake level on the bottom either 
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interpolated or in very coarse lake level fluctuation, which does not allow a sufficient derivation of this model output by 

these plots. For this purpose separated plots of the lake level simulations can be created. 2) The calibration algorithm of 

the toolbox creates parameter values with a high decimal precision due to the approach of percental alteration. This 

might pretend a false sensitivity of the model and a too detailed accuracy of the calibration for the respective parameter. 

3) The method of the sensitivity analysis will yield a SI = 0 for any included parameter with the initial value being 0. 5 

This applies for example to seepage_rate as its default value is 0. 4) The applied model version of GLM is dependent of 

the maintenance on the R package glmtools.  

The presented simulations of lake water temperatures have an average overall RMSE of 1.30 °C and 1.17 °C. This is 

within the range of values obtained by other lake modeling studies applying GLM or other lake 1-D models (Bueche et 

al., 2017; Ladwig et al., 2018; Robertson et al., 2018; Frassl et al., 2018). This simulation quality was achieved even by 10 

only a few autocalibration runs showing the effectiveness of the tool.  

In addition to the visualization options and the calibration tool for water temperature simulations, glmGUI enables also 

a calibration of the lake level to achieve a correct reproduction of the water stage. This is especially important for 

smaller lakes, for which an incorrect simulation of the lake level can have a significant impact on the water temperature 

reproduction. Furthermore, as the lake level is the result of the lake-catchment water balance (Vanderkelen et al., 2018), 15 

the applicability of GLM is enhanced also to hydrological analysis and water balance investigations by this feature. The 

GLM uses the bulk aerodynamic formula to estimate the latent heat flux and therefore evaporation (Hipsey et al., 2014), 

which is commonly applied to assess the evaporation rate over open water bodies (Fischer et al., 1979; Hicks, 1972). 

Including the GLM in the hydrological analysis can therefore improve the accuracy of the modeled evaporation and 

thus the water balance estimate. In this study, a RMSE for the lake level simulations of 0.11 m (Lake Baratz) and 0.20 20 

m (Lake Ammersee) is achieved, which is within the range of the GLM performance shown by Weber et al. (2017), and 

attests a good accordance of the modeled water level with the observed values (Hostetler, 1990). 

The GUI is also able to execute simulation runs of GLM coupled with water quality models of ecological lake models 

(e.g. Aquatic Ecodynamics Modelling Library, AED). Although water quality settings cannot yet be changed using the 

toolbox, any model generated output can be plotted. 25 

6 Conclusions 

The presented R package glmGUI combines simulation and processing tools for the GLM. This includes a tool to 

autocalibrate the model and options of a parameter sensitivity analysis. Both tools can be used to examine the two 

simulation output variables of water temperature and lake level. Furthermore, glmGUI implements several 

visualizations options for the meteorological and hydrological input data and the model output. After the deployment of 30 

other R packages to execute GLM and for model output post-processing and statistical analysis (rLakeAnalyzer, rGLM, 

glmtools) glmGUI fills the gap of missing tools to simplify and accelerate the calibration process and to extend 

visualization options.  

The tools are tested for two different lakes (deep, dimictic, perennial inflow, and shallow, monomictic, seasonal inflow) 

located in varying climate zones. Good model results were achieved after a low expenditure of calibration effort. In 35 

contrast to many other studies an exhaustive description of the simulation input data and field data (data for Lake 

Ammersee also provided as example data) is given within this paper (as Supplemetal Material). The GUI includes tools 

to check the quality of the input data. This comprises the option of a visual detection of errors, missing values and 

plausibility.  
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The development of glmGUI for the free and open-source programming language R, available on all common platforms 

(Windows, OS X, Linux), makes it accessible for anyone to use, which contributes to scientific transparency (Winslow 

et al., 2018). The GUI allows a high level of interoperability due to the option of combining with other operating 

systems. This includes the coupling of GLM with ecological lake models (e.g. Snortheim et al., 2017; Robertson et al., 

2018; Weber et al., 2017; Fenocchi et al., 2019), as the toolbox is already applicable for this purpose and can be the 5 

basis for establishing of a coupling interface. Furthermore, we designed the software with the aim of a high flexibility 

for the application of other scenarios, for various study areas or with diverse time steps. An increasing number of lake 

modeling studies are investigating the impact of global change on lakes using as meteorological input data regional 

climate model output or future scenarios (Fenocchi et al., 2018; Weinberger and Vetter, 2014; Bueche and Vetter, 2015; 

Ladwig et al., 2018; Pietikäinen et al., 2018; Piccolroaz and Toffolon, 2018). For analyses in these fields of research the 10 

presented R package glmGUI will be a powerful tool, especially concerning the provided difference contour plots. 

 

Code and data availability: The package and R-code are available at http://doi.org/10.5281/zenodo.2025865. Example 

data for Lake Ammersee are attached to this paper as a supplementary data. Sources are described in Supplementary 

Material, section 2. 15 
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Appendix A: Model input data and calibration parameter 

Table A1: Required model input data (after Hipsey et al., 2014). 

Parameter Unit Description 

Meteorological parameters: 

Air temperature °C average air temperature 10 m above the water  

surface 

Wind speed ms-1 average wind speed 10 m above the water surface 

Relative Humidity % average relative humidity (0 – 100 %) 10 m above the  

water surface 

Shortwave radiation Wm-2 average shortwave radiation 

Longwave radiation Wm-2 Longwave radiation input is assumed to be direct  

incident intensity 

Rainfall md-1 rainfall depth 

Cloud cover (optional) - Required if no information on longwave radiation available and 

incoming longwave flux is estimated from cloud cover fraction 

data 

Snowfall (optional) md-1 snowfall depth 

Hydrological parameters: 

Inflow discharge m³s-1 Average discharge 

Water temperature °C average streamflow water temperature 

Salinity (optional) mgl-1 streamflow salinity 

Outflow discharge m³s-1 average discharge 
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Table A2: List of preselected parameters for autocalibration (after Hipsey et al., 2017). 

Parameter (glm.nml ID) Description 

Lake Properties 

Kw Extinction coefficient for PAR radiation (unit: m-1) 

Surface Dynamics  

ch Bulk aerodynamic coefficient for 
sensible heat transfer 

ce Bulk aerodynamic coefficient for 
latent heat transfer 

cd Bulk aerodynamic coefficient for 
transfer of momentum 

Mixing Parameters 

coef_mix_conv Mixing efficiency - convective 
overturn 

coef_wind_stir Mixing efficiency - wind stirring 

coef_mix_shear Mixing efficiency - shear 
production 

coef_mix_turb Mixing efficiency - unsteady 
turbulence (acceleration) 

coef_mix_KH Mixing efficiency - Kelvin- 
Helmholtz turbulent billows 

coef_mix_hyp Mixing efficiency of hypolimnetic 
turbulence 

Hydrological and meteorological factors 

seepage_rate Rate of seepage from the deepest layer (unit: m day-1) 

inflow_factor Factor for inflow(s) 

outflow_factor Factor for outflow 

Rain_factor Factor for rainfall 

wind_factor Factor for wind speed  
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Appendix B: Contour plot of GLM simulations 

 

Fig. B1: Contour plot of differences between simulated and observed water temperatures of Lake Baratz. 
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