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Abstract. We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10

FLUXNET coniferous evergreen sites in the Boreal zone. The parameter posterior distributions were generated by the adaptive

population importance sampler (APIS), then the optimal values were estimated by a simple stochastic optimisation algorithm.

The model was constrained with in-situ observations of evapotranspiration (ET) and gross primary production (GPP). We

identified the key parameters in the calibration process. These parameters control the soil moisture stress function and the5

overall rate of carbon fixation.

The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity in spring. This

modification enabled the model to correctly reproduce the springtime increase in GPP for all conifer sites used in this study.

Overall, the calibration and model modifications improved the coefficient of determination and the model bias for GPP with

all stomatal conductance formulations. However, only the coefficient of determination was clearly improved for ET. The opti-10

misation resulted in best performance by the Bethy, Ball-Berry and the Friend and Kiang stomatal conductance models.

We also optimised the model during a drought event in a Finnish Scots pine forest site. This optimisation improved the

model behaviour, but resulted in significant changes to the parameter values except for the unified stomatal optimisation model

(USO). Interestingly, the USO model demonstrated the best performance during this event.
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1 Introduction

Plants exchange carbon dioxide (CO2) and water vapour (H2O) with the atmosphere. Sufficient soil water, irradiance and

adequate temperature are required to maintain the exchange rates during the growing season. Disturbances in these conditions

such as drought, cold temperature or low radiation cause the plants to respond to the environmental stress via stomatal closure

and the decrease in photosynthesis and transpiration (Lagergren and Lindroth, 2002; Mäkelä et al., 2004; Gao et al., 2017).5

The capability of plants to recover from such events depends on species and their adaptation to site conditions (Kozlowski and

Pallardy, 2002). Stress is part of the normal annual cycle of the plants, but occasionally it may exceed the limits of recovery.

Soil water deficit and high water vapour pressure deficit can result in suppressed plant transpiration (Bréda et al., 1993;

Kropp et al., 2017). Globally, soil drought has been recognised as one of the main limiting factors for plant photosynthesis

(Nemani et al., 2003) and boreal forests are known to occasionally suffer from soil drought (Muukkonen et al., 2015; Gao et al.,10

2016). The recovery of photosynthetic capacity in spring has been connected to temperature history, and to frequency of severe

night frosts (Bergh et al., 1998; Bergh and Linder, 1999) that can reverse the recovery. Understanding, and correctly modelling,

these phenomena are especially important for boreal forests (Bonan, 2008) under changing environmental conditions.

Ecosystem and land surface models, describing the plant photosynthesis, transpiration and soil hydrology related processes,

usually include descriptions and parameterisations for various stress effects. These parameters often lack a theoretical foun-15

dation (Gao et al., 2002; Medlyn et al., 2011) and descriptions of vegetation drought response and phenology have been

recognized to need better formulations and design (Richardson et al., 2012; Powell et al., 2013; Xu et al., 2013; Medlyn et al.,

2016). These deficiencies restrict a model’s predictive capability under changing environmental conditions, and call for specific

parameterisations for different plant types and vegetation zones.

Stomatal conductance models describe the pathway of CO2 and water through the leaf stomata by an electric circuit analogy20

(Nobel, 1999). The variations in stomatal opening and mesophyll structure are interpreted as resistances to water flow and the

process is idealised via generalised parameterisation. Stomatal conductance models mainly differ in their choice of variables

driving the stomatal closure, and their performance has been recently assessed in modelling studies by e.g. Egea et al. (2011);

Knauer et al. (2015); Franks et al. (2018). However, it can be hypothesised that the choice of the stomatal conductance model

affects the ecosystem model parameters more broadly as the stomatal conductance formulations vary in their responses to the25

different conditions. A holistic assessment of the performance of the stomatal conductance models together with ecosystem

model parameter optimisation has been missing.

In many other studies, where the aim has been to optimise land surface model parameters, the optimisation is based on

estimating the gradient of the cost function: Knorr et al. (2010) for JSBACH, Kuppel et al. (2012); Peylin et al. (2016) for

ORCHIDEE and Raoult and Luke (2016) for JULES. Gradient-based methods are faster than Markov chain Monte Carlo30

(MCMC) methods as they strongly steer the sampling process to reach a minimum in the cost function (see e.g. Gelman et al.,

2013). This approach also enables a more indefinite setting of parameter ranges (limits for acceptable parameter values) when

compared to methods that sample the full parameter space. However, they are prone to get stuck in local minima, especially

when the dimensionality of the parameter space increases. In the last few years, similar parameter estimations have also been
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done for CLM by Post et al. (2017) using the DREAM(zs) (MCMC) algorithm with multiple chains, and for JULES by Iwema

et al. (2017) with the BORG algorithm that employs multiple optimisation algorithms simultaneously. The DREAM algorithm

is fully iterative, which limits the number of parallel processes to the number of parallel chains in use (when we do not account

for the possibility of the model parallelisation that can be substantial). The applicability of the BORG algorithm is dependent

on the algorithms in use and the expertise of the user (to choose the right algorithms etc.).5

APIS is a Monte Carlo (MC) method that can be run iteratively as presented by Martino et al. (2015) but it is also straight-

forward to parallelise, since all samples prior to each adaptation (in our simulations 2000 draws) can be drawn and estimated

simultaneously. This latter feature is useful to decrease the amount of real time required to run the algorithm when computer

resources are not the limiting factor – APIS requires considerably fewer sequential estimates than typical Markov chain meth-

ods. In the iterative mode, automatic stopping rules can be easily implemented to indicate when additional samples are not10

required to improve the estimates. The APIS algorithm samples the full parameter space (as do MCMC methods) and can

utilise a mixture of parameter prior distributions. Therefore, APIS can estimate complicated multidimensional probability dis-

tributions with relative ease. These aspects make APIS an attractive alternative to the other sampling and optimisation methods

mentioned above.

In this study we apply the land surface model JSBACH for 10 boreal coniferous evergreen forest eddy covariance sites15

to examine the performance of different stomatal conductance models, and their effect on calibrated parameters related to

photosynthesis, phenology and hydrology. First, we utilise APIS to sample the full parameter space with the different stomatal

conductance formulations and to locate different modes of the target distributions (peaks of high probability). Second, using the

distributions generated by APIS as the prior distributions, we optimise the parameters using a simple stochastic optimisation

method. Finally, we assess the inter-site variability and the robustness of the calibrated parameters together with different20

stomatal conductance formulations. Optimised parameters for a specific drought are also investigated and compared with the

parameters for the general optimisation.

2 Materials and methods

We will next introduce the measurement sites, followed by the model and modifications made to it. Afterwards we will give a

general overview of the simulations as well as the sampling process, the algorithms and methods used to analyse the results.25

2.1 Sites and measurements

We use data from 10 FLUXNET (doi:10.17616/R36K9X) sites characterised as coniferous evergreen forests. Site descriptions

with appropriate references are provided in Table 1. The site-level half-hourly eddy-covariance (EC) measurements were

quality checked and gap-filled when needed to produce continuous half-hourly and daily time series. The gap-filled and low-

quality (based on FLUXNET data quality flags) measurements were masked, and the daily aggregates (usually means) were30

accepted as part of the calibration process if at least 60% of the values between 4:00 and 20:00 (i.e. daytime measurements)
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for that day were unmasked. The daily aggregates of ET and GPP were used to calibrate and validate the model, whereas the

half-hourly data were used as climate forcing (as explained later in Section 2.4.

Based on the quality and quantity of their respective measurements, the sites were divided into calibration and validation

sites. Essentially, if we have enough data from a site, it is used for both calibration and validation purposes. We required the

site to have at least eight years of measurements, where the first five were used for calibration, and the consecutive three for5

validation. Otherwise we used the site only for a three year validation. The FLUXNET datasets were missing both the long-

and shortwave radiation for the two Russian sites, Fyodorkovskoye (RU-Fyo) and Zotino (RU-Zot). These were generated from

ERA Interim data. The soil types of all of these sites can mostly be identified as mineral soils with varying sand, clay and peat

contents. Fyodorovskoye and Poker Flat (US-Prr) are natural peatlands and Lettosuo (FI-Let) is a drained peatland site.

The measurement error in the EC flux data were separated into systematic and random errors. The main systematic errors10

(density fluctuations, high-frequency losses, calibration issues) were taken into account as part of the post-processing of the

data, and the random errors tend to dominate the uncertainty of the instantaneous fluxes. The random error is often assumed

Gaussian but can be more accurately approximated by a symmetric exponential distribution (Richardson et al., 2006). It in-

creases linearly with the magnitude of the flux, with a standard deviation typically less than 20% of the flux (Richardson et al.,

2008; Rannik et al., 2016). Our treatment of the measurement (and model) errors is explained in Section 2.9.15

Table 1. Descriptions for the sites used in this study sorted by their FLUXNET identifier. The first six sites are used for both calibration and

validation purposes, with the first five years of each site used for calibration. The last three years as well as the last four sites are used for

validation only. The reported elevation is in meters above sea level, LAI is the one-sided leaf area index and the average stand age is in years,

along with average annual precipitation (P) in mm and temperature (T) in degrees Celsius.

Site id lat lon elev. dom. species LAI age P T years reference

CA-Obs 53.99 -105.12 629 Picea mariana 3.8 135 406 0.8 1999–2006 Chen et al. (2006)

CA-Qfo 49.69 -74.34 382 Picea mariana 3.7 112 962 -0.4 2003–2010 Chen et al. (2006)

FI-Hyy 61.85 24.29 180 Pinus sylvestris 3.5 45 709 2.9 1999–2006 Kolari et al. (2009)

FI-Ken 67.99 24.24 337 Picea abies 2.1 100 484 0.4 2003–2010 Aurela et al. (2015)

FI-Sod 67.36 26.64 179 Pinus sylvestris 1.7 150 527 -0.4 2001–2008 Thum et al. (2007)

RU-Fyo 56.45 32.90 265 Picea abies 4.5 200 711 3.9 2002–2009 Launiainen et al. (2016)

CA-Ojp 53.92 -104.69 579 Pinus banksiana 2.6 100 431 0.1 2004–2006 Chen et al. (2006)

FI-Let 60.64 23.96 119 Pinus sylvestris 6.0 40 627 4.6 2010–2012 Launiainen et al. (2016)

RU-Zot 60.80 89.35 121 Pinus sylvestris 1.5 215 493 -3.3 2002–2004 Kelliher et al. (1998)

US-Prr 65.12 -147.49 210 Picea mariana 0.7 72 275 -2.0 2011–2013 Ikawa et al. (2015)

2.2 The JSBACH model

JSBACH (Kaminski et al., 2013) is a process-based ecosystem model and the land surface component of the Earth System

model of the Max Planck Institute for Meteorology (MPI-ESM). We ran JSBACH offline using meteorological measurements
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from the flux towers to force the model. Implications of this one-way coupling with the atmosphere include lack of feedback

from the surface energy balance to the atmosphere, i.e. latent and sensible heat fluxes and surface thermal radiation do not

directly affect prescribed air temperature or humidity. Similarly, the feedback of the surface to the vertical transfer coefficients

within the atmospheric surface layer is missing as the wind speed that drives mixing is prescribed. Furthermore, since we use

site level data (each site is represented as a single grid point), the grid resolution does not affect the results.5

We focus only on the most essential parts of JSBACH relating to our work. A more complete model description with details

on e.g. soil heat transfer, water balance and coupling to the atmosphere can be found in Roeckner et al. (2003), whereas Raddatz

et al. (2007) provides a more descriptive synopsis on land-surface interactions, Reick et al. (2013) complements both with an

addition of land cover change processes, and Hagemann and Stacke (2015) introduces soil hydrological mechanisms within a

multilayer scheme applying five layers.10

In JSBACH, the land surface is divided into grid-cells, which are split into bare soil and vegetative areas. The vegetative

area is further divided into tiles representing the most prevalent vegetation classes, called plant functional types (PFTs) (Reick

et al., 2013). In our site-level simulations, the model was set to use only one PFT, coniferous evergreen trees. The seasonal

development of leaf area index (LAI) for the trees is regulated by air temperature and soil moisture with a single limiting value

(for all sites) for the maximum of LAI. This maximum value was fixed and the site-specific fractions of vegetative area were15

adjusted to reproduce the measured site level LAI.

The predictions of phenology are produced by the Logistic Growth Phenology (LoGro-P) sub-model in JSBACH (Böttcher

et al., 2016). Photosynthesis is described by the biochemical photosynthesis model (Farquhar et al., 1980). Following Kattge

et al. (2009), we set the maximum electron transport rate (Jmax) at 25 degrees Celsius to 1.9 times the maximum carboxylation

rate (VC,max), which is in line with e.g. Leuning (2002); Ueyama et al. (2016). The photosynthetic rate is dependent on the used20

stomatal conductance formulation, introduced in Section 2.3. Radiation absorption is estimated by a two stream approximation

within a three-layer canopy (Sellers, 1985). Especially in sparse canopies, radiation absorption is affected by clumping of the

leaves which is here taken into account according to the formulation by Knorr (1997).

Parameters detailing site-specific soil properties, such as soil porosity and field capacity, were derived from FLUXNET

datasets and the references in Table 1. We approximated the soil composition and generated these properties following Hage-25

mann and Stacke (2015).

2.3 Modifications to the JSBACH model

All parameters of interest, presented in Table 2, were extracted from the JSBACH model code to an external file to facilitate

the simulations. The default values of newly added parameters (not originally in JSBACH: τ , q, g0, g1) were derived from a

synthesis of literature values. Most of the parameter ranges (limiting values for the parameters) were adapted from our previous30

work on a similar topic (Mäkelä et al., 2016). The parameter grouping was done to enhance optimisation and the mechanism

is explained in Section 2.7. Group I consists of parameters most directly affecting photosynthesis, group II parameters are

intimately involved with soil moisture, and group III are the logistic growth phenology (LoGro-P) model parameters. The

equations governed by these parameters are presented in Appendix A.
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Table 2. Descriptions of model parameters with default values, range of acceptable values and references to equations in the manuscript or

in the appendices. Parameters in the same group were calibrated simultaneously.

Parameter def range Units Group Description Eq.

VC,max 62.5 [40,65] � I Farquhar model maximum carboxylation rate at 25◦C of the en-

zyme Rubisco (coupled with maximum electron transport rate at

25◦C with a factor of 1.9) [�= µ mol(CO2) m−2 s−1].

A2

α 0.28 [0.26,0.32] - I Farquhar model efficiency for photon capture at 25◦C. A4

τ 10.0 [5,15] days I Adjustment period length in acclimation of photosynthesis. 1

cb 5.0 [4,7] - I Multiplier in momentum and heat stability functions (Louis, 1979). -

fC3 0.87 [0.7,0.95] - I Ratio of unstressed C3-plant internal/external CO2 concentration. A3

q 0.0 [0,1] - I Exponential scaling of water stress in reducing photosynthesis. A1

g0 0.001 [1E-5,5E-3] O I Residual stomatal conductance [O= mol m−2 s−1]. B3

g1 Values in Table 3 - I Slope of the stomatal conductance function. B3

a 2.8 [1.5,3.5] - I Base rate of stomatal conductance response to atmospheric humid-

ity for the Friend and Kiang model.

B3

d 80 [50,120] - I Exponential rate of stomatal conductance response to atmospheric

humidity for the Friend and Kiang model.

B3

θdr 0.9 [0.5,0.95] - II Volumetric soil water content above which fast drainage occurs. A6

θhum 0.5 [0.2,0.8] - II Fraction depicting relative surface humidity based on soil dryness. A9

θpwp 0.35 [0.15,0.4] - II Volumetric soil moisture content at permanent wilting point. 2

θtsp 0.75 [0.25,0.8] - II Value of volumetric soil moisture content above which transpiration

is unaffected by soil moisture stress (β); and 0.9θtsp ≥ θpwp.

2

pint 0.25 [0.15,0.35] - II Fraction of precipitation intercepted by the canopy. A5

ssm 5.9E-3 [1E-4,0.1] m II Depth for correction of surface temperature for snow melt. -

wskin 2.0E-4 [1E-5,5E-3] m II Maximum water content of the skin reservoir of bare soil. -

Cdecay 13.0 [5,25] days III LoGro-P: memory loss parameter for chill days. A12

Smin 10.0 [5,30] ◦C days III LoGro-P: minimum value of critical heat sum. A12

Srange 150.0 [100,300] ◦C days III LoGro-P: maximal range of critical heat sum. A12

Talt 4.0 [2,10] ◦C III LoGro-P: cutoff in alternating temperature. A10

Tps 10.0 [3,25] ◦C III LoGro-P: memory loss parameter for pseudo soil temperature. A14

The start of the growing season in the JSBACH model is defined by a “spring event” in the LoGro phenology model

(appendix A3) that induces leaf growth. The phenology model calculates a sum of ambient temperature (heatsum) since last

autumn that is above the cutoff value Talt, presented in Eq. (A10). It also calculates a variable threshold, defined in (A12), for

the heatsum to reach. The threshold decreases based on the number of days the ambient temperature is below Talt, whereas the

heatsum increases. When the heatsum reaches the threshold, the plant leaves are free to grow.5
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However, coniferous evergreen trees do not shed all of their leaves for winter and the existing foliage enables them to quickly

initiate photosynthesis in the following spring. The start of the photosynthetically active season in the model has been observed

to occur too early in the Boreal region by e.g Böttcher et al. (2016). In order to correct this behaviour i.e. to restrain the respi-

ration and photosynthesis of conifers in the early spring, we utilise a delayed effect of temperature for photosynthetic activity,

introduced by Mäkelä et al. (2004). To calculate the reduction, we must first define the state of photosynthetic acclimation that5

Mäkelä et al. (2004, p.371) present as: “an aggregated measure of the state of those physiological processes of the leaves that

determine the current photosynthetic capacity at any moment”.

The state of acclimation (S) is calculated from air temperature (T ) with a delay prescribed by parameter τ (this is similar to

the calculation of TS in appendix A14). S is then inserted into sigmoidal relation Eq. (1) to calculate a factor γ, a formulation

that is adapted here from Kolari et al. (2007). Finally, γ is used to reduce the photosynthetic efficiency in Eq. (A1). T1/2 denotes10

the inflection point where γ reaches half of γmax, k is the curvature of the function and γ = 1 when S ≥ 10.

dS

dt
=
T −S
τ

, γ =
γmax

1 + ek(S−T1/2)
(1)

The JSBACH model was also modified to include altogether six different stomatal conductance formulations following

Knauer et al. (2015). These formulations include the pre-existing Baseline and Bethy versions as well as the Ball-Berry model

and three of its variants. Model information is gathered in Table 3 for easy referencing and the detailed formulations are given15

in appendix B. The limits of the slope of the stomatal conductance formulation parameter (g1) were set to reflect commonly

observed values from physiological measurements (Egea et al., 2011). The limits of gUSO1 reflect the results presented by Lin

et al. (2015).

Table 3. Stomatal conductance models with default values and range for g1 and references to equations in Appendix B as well as related

articles. The ? symbol indicates the Ball-Berry model and its variants.

Stomatal conductance model short g1 range references

Baseline Base - - B1 Knorr (1997)

Biosphere-Energy-Transport-Hydrology Bethy - - B2 Knorr (2000)

? Ball-Berry BB 9.0 [4,10] B3 Ball et al. (1987)

? Leuning Leu 8.0 [6,10] B3 Leuning (1995)

? Friend and Kiang F&K 9.5 [7,11] B3 Friend and Kiang (2005)

? Unified stomatal optimisation USO 2.0 [1.5,3.5] B3 Medlyn et al. (2011)

We have also included two additional parameters (a and d in Table 2) for the Friend and Kiang (Friend and Kiang, 2005)

stomatal conductance formulation in B3. These parameters were not originally included in the optimisation, but the resulting20

cost function (9) values were poor when compared to the other formulations. At that point, these parameters were included in

the optimisation process. This increases the degrees of freedom for the Friend and Kiang model by two and therefore may give

it an advantage when compared to the other Ball-Berry type formulations, which has to be considered in the interpretation of

the results.
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All of the stomatal conductance models contain an empirical water stress factor β, which reduces stomatal conductance as a

function of volumetric soil water content (θ).

β =


1, θ ≥ θtsp
θ−θpwp
θtsp−θpwp , θpwp < θ < θtsp

0, θ ≤ θpwp

(2)

In JSBACH, the stomatal conductance (gs) is primarily resolved to estimate carbon fixation. The same gs is then later used

to calculate transpiration (A8). In the original JSBACH formulation (i.e. the Baseline version), the gs is first resolved for5

unstressed canopy and then scaled by the water stress factor β. The Bethy approach is similar, but the conductance can also

be limited by water supply (B2). In cases when the water supply is not the limiting factor, the calculations are similar to the

Baseline version. In all of the empirical Ball-Berry variants, the stomatal conductance can be written as gs = g0 + cβg1. The

residual conductance (g0) and the slope of the function (g1) are both formulation specific parameters as well as the factor c,

that incorporates net photosynthesis and effects of atmospheric humidity and CO2 concentration. The parameters g0 and g1 are10

part of our sampling and optimisation processes (group I in Table 2 when applicable).

The water stress factor (β) limits the carbon fixation and transpiration via the stomatal conductance formulation. Following

Egea et al. (2011), it is also used to directly limit the net assimilation rate (An), as seen in (A1). The additional scaling (or

limiting) factor forAn takes the form βq , so it is a function of both soil water content θ and the parameter q. Maximal reduction

is achieved when q = 1 and the reduction factor reverts to β. The minimal reduction occurs when q = 0 and the reduction factor15

resembles a step function (at θ = θpwp). For any other value of q, it is a continuous convex function between the two extremes

βq : [θpwp,θtsp]→ [0,1].

2.4 Model simulations

The site level measurements, used as model inputs, are air temperature, air pressure, precipitation, humidity, wind speed and

CO2 concentration as well as short- and longwave and potential shortwave radiation. Additionally, evapotranspiration (ET) and20

gross primary production (GPP), derived from the eddy covariance (EC) measurements, are used to constrain and evaluate the

model (as explained later in Sections 2.8 and 2.9). We drive the model with half-hourly data but output daily values.

The initial state of the JSBACH model can be generated from predefined values of state variables (usually empty initial

storage pools) or the model can be restarted from a file describing the state of some previous run. Depending on the area of

interest, a model spin-up may be required to bring the model into a steady state. In our simulations, some of the more slowly25

changing variables (e.g. soil water content and LAI) need to be equilibrated, so a spin-up is required. This can be achieved by

running the model over a set of measurements multiple times, each time restarting from the final state of the previous run.

The calibration period consists of the first five years given for the calibration sites in Table 1. The spin-up is achieved by

looping over these five years, altogether four times (20-year spin-up) and then saving the state of the model at the end of the

run. The actual calibration is started from the beginning of the calibration period, using the previously saved state variables. To30
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reduce any bias this induces, the first year in the calibration run is removed from the cost function calculations. The spin-ups

for the validation sites in Table 1 are similarly generated.

During the summer 2006, the Hyytiälä (FI-Hyy) measurement site suffered from a severe drought (Gao et al., 2017), leading

to visible discolouration of needles. These events are difficult for models to capture and hence are of interest to modellers.

We have previously and unsuccesfully attempted to optimise the JSBACH model (Mäkelä et al., 2016) for this event. Here we5

focus directly on the extended dry period (190–260th day of the year in 2006), during which the actual drought is mostly in

effect between 210–235th DOY. We adjusted some of the parameter values as those uncovered by the more general calibration,

presented above. The spin-up was the same as for the calibration period, but at the end of the spin-up, the model was run forward

to the start of the year 2006. Only values between the 190–260th day of the year (DOY) in 2006 were used in constraining the

model.10

2.5 Sampling process

We describe the modelling setup with the equation y =M(θθθ,x) + e, where the aim is to reproduce the observations (y)

with our model (M), the driving data (x) and the current parameter values (θθθ). The residuals (e) depict how well the model

reproduces the observations and they form the basis of the likelihood function (formulated in Section 2.9), that is used to derive

the parameter posterior distributions.15

Using Bayes’ rule on conditional probability we can write the parameter posterior density (p(θθθ,M|x)) as a function of the

likelihood (L(x|θθθ,M)), parameter prior distributions (π(θθθ)) and the model evidence (Z(x|M)). As usual and from here on,

we do not writeM in the Bayes’ formula:

p(θθθ|x) =
L(x|θθθ)π(θθθ)

Z(x)
(3)

We can now utilise the posterior density as a probability density for the parameters and infer the expectation values:20

E[θiθiθi] =
1

Z

∫
θiθiθip(θθθ|x)dθθθ, Z =

∫
p(θθθ|x)dθθθ (4)

Above θθθi is the i-th element of the parameter vector. Generally, Eq. (4) cannot be analytically solved, hence it is usually

estimated numerically. Commonly this is achieved by one of the many Markov chain Monte Carlo (MCMC) methods, but in

this study we apply the adaptive population importance sampler (APIS) defined by Martino et al. (2015). APIS (Martino et al.,

2015) is a Monte Carlo (MC) method that utilises a population of importance samplers (IS) to jointly estimate the target pdf25

(p(θθθ|x)) and the normalising constant (Z(x)) by a deterministic mixture approach (Veach and Guibas, 1995; Owen and Yi,

2000), whereas the MCMC methods do not care about the value of Z. We denote the importance sampling density as q(θθθ).

E[θiθiθi] =
1

Z

∫
θiθiθir(θθθ)q(θθθ)dθθθ, where r(θθθ) =

p(θθθ|x)

q(θθθ)
(5)

Above r is the reweighing factor that is the driving force in importance sampling. We will next give a summary description of

the sampling process with comparison to a general multichain MCMC approach (since MCMC methods are more commonly30

used in these types of situations).
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1. The initialisation of a multichain MCMC sampler and APIS are very similar. In our simulations, APIS is set up as 40

simultaneous and independent importance samplers. This is similar to an independent 40-chain MCMC sampler. Each

sampler or chain has a random starting location drawn from a uniform distribution defined by the parameter ranges, given

in Table 2. The initial sampling (or prior) distribution for each sampler is also randomly generated – we use truncated

Gaussian distributions with diagonal covariance matrices, where the standard deviations are randomised. The sampling5

distributions will evolve throughout the process.

2. In an MCMC setup, the model would be run once (for each chain), evaluated and then the draw (parameter values)

accepted or rejected accordingly. In APIS, instead of a single element (one run) we use a sample size of 50. This

means that we draw 50 elements with each IS sampler (or “chain”) independently. These draws are then evaluated and

reweighted as presented in Eq. (5).10

3. The 50 reweighted draws (for each IS sampler separtely) are used to calculate a new location for the sampling distribu-

tion. This location is automatically accepted (no rejection criteria) and we also adapt the shape of the distribution using

the self-normalising AMIS estimator by Cornuet et al. (2012).

4. Additionally, all of the draws in APIS are used to calculate “global” estimates of the parameter expected values. This

process utilises the deterministic mixture approach (Veach and Guibas, 1995; Owen and Yi, 2000) and is fully iterative15

with no need for any recalculations as the previous estimates are directly adjusted (no information is lost either).

MCMC chains track the evolution of single elements, and occasionally adjust the sampling distribution. The sample size in

APIS is larger (it is not a Markov chain method) and the focus is on the evolution of the locations of the sampling distributions,

not on the individually drawn elements. These location parameters are expected to be around all the modes of the target and

the deterministic mixture ensures the stability of the estimation of the (global) parameter expected values. As an importance20

sampler, APIS is also a variance reducing method.

Before taking a more detailed look at APIS, we make some further notes about the sampling process. The first element of

the 50 draws (item 2 in the list above) is always fixed as the current mean. We run the spin-up (Section 2.4) and generate the

model starting state only for the proposal means, and use the same state for the other 49 draws (perturbed around the proposal

mean). This requirement stems from a need to reduce computational time as running the model to a steady state is costly. This25

approach might induce some discrepancies, but they are mitigated by removing the first year of the calibration simulations

(as explained in Section 2.4). We also slightly reduce the importance weights of the 49 samples (more reduction for samples

further from the proposal mean), when calculating the new location parameters (item 3 in the list above) – the reduction only

(slightly) slows the adaptation of the IS sampler locations. Finally, we note that this approach ensures that we run the proposal

means, that are the focus in APIS, with the correct spin-up.30
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2.6 Adaptive population importance sampler

Normally, only the location parameters of the IS proposals are adapted, but we also adapt the shape parameters using the self-

normalising AMIS estimators by Cornuet et al. (2012). APIS is able to utilise different or a mixture of normalised proposals

densities, but we use truncated Gaussian proposals with diagonal covariance matrices.

In our simulations, APIS is formed of 40 independent IS estimators. Each estimator draws a sample θθθi, i ∈ {1, ...,N}, of5

size N = 50 at a time from their own proposal distribution qj(θθθ), j ∈ {1, ...,M},M = 40. The estimator then calculates the

importance weights (wij = p(θθθi|x)
qj(θθθi)

) for each sample. The location (µµµj) and shape (Cj) parameters (Cornuet et al., 2012) of

each proposal are updated using only samples (and weights) drawn from qj . The new shape parameters are formed as a mean

of the previous estimate and Cj , as calculated below.

µµµj =

∑
iwijθθθi∑
iwij

, Cj =

∑
iwij(θθθi−µµµj)(θθθi−µµµj)T∑

iwij
(6)10

The simple IS estimators alone are rarely sufficient if the target is even slightly complicated. One classical way of tackling

this problem is to join multiple IS estimators together. The simplest approach is to calculate the weights for each of these

estimators separately and to normalise the result by the combined sum of all weights. However, this leaves the estimators

susceptible to “bad” proposals. APIS suppresses the bad proposals by utilising the deterministic mixture approach (Veach and

Guibas, 1995; Owen and Yi, 2000) presented in Eq. (7), where each proposal qj is evaluated at all the drawn samples and15

weighed by the amount of samples drawn (Nj = 50) from that proposal. This is equivalent to joining the normalised proposal

densities together and evaluating the joint pdf.

wij =
p(θθθij |x)∑

j

(
Nj∑
kNk

)
qj(θθθij)

(7)

The parameter expectation values and the normalising constant in Eq. (5) can now be estimated by Monte Carlo integration

using weights calculated in Eq. (7).20

2.7 Parameter optimisation

The APIS algorithm is a rather robust method meant for examining the full target probability distribution and locating the

modes of the target distribution. Adaptation in APIS utilises multiple draws simultaneously, which can easily lead to few

parameters controlling this process (the marginal density of one or few parameters dominates the calculations). Since we also

did not run the model spin-up for all drawn samples (although the discrepancies should be minimal), we utilise a simple custom25

stochastic optimiser to locate the optimal set of parameter values. This optimiser is run after the APIS calibration simulations

and separately for the drought period. The optimiser utilises the exact same datasets (calibration, validation, observations etc.)

as APIS, the spin-up is generated for all drawn samples separately and the initial state of the algorith is the mean value of the

APIS final configuration (location parameters).

Our optimiser is a simple random sampler amplified by the “velocity” of the last jump (the idea is similar to Hamiltonian30

or Hybrid Monte Carlo by Duane et al. (1987)). We draw a set of samples from a small Gaussian proposal distribution in the
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vicinity of the current best estimate and calculate the cost function for the samples. Whenever a better point is found (smaller

cost function), we jump to that (update the mean of the proposal distribution). The “velocity” of the jump (for us merely

distance of change in each parameter) is then added to the new mean (with a maximal limit of one standard deviation in the

proposal distribution), but it is reduced and eventually removed if a better sample is not found.

The covariance matrix of the proposal distribution is recalculated at predefined intervals (for all parameters). Additionally,5

we utilise a subset sampling procedure, where the samples are first drawn from the full parameter space, in the next step they

are drawn only from group I in Table 2 (the rest are kept at their current optimal values), followed by groups II and III and

then back to the full parameter space. When the number of parameters is reduced, we are more likely to find a better set of

parameter values. We have kept the parameters mostly affecting the same processes in the same group, but some dependencies

may not be apparent and hence it is also important to draw samples from the full parameter space.10

2.8 Simulation analysis

Even though APIS is not a Markov chain method, we can (naively) interpret the evolution of the location paramaters of each

IS sampler as chains. The resulting 40 chains have random starting positions but they are relatively short (we present results

from the Bethy calibration, where the chains were adjusted 100 times), hence we did not discard any of the samples. We test

the convergence of these chains with the Gelman-Rubin diagnostic tests (Gelman and Rubin, 1992), comparing the variance15

between the chains to the variance within each chain, and calculating the potential scale reduction factors (R̂). We also test

the stability of the (parameter) global expected value estimate (using the deterministic mixture approach) by calculating the

difference of the final global expected value and the mean of the location parameters (at each iteration). We denote this test as

δ and report the number of the iterations when this difference is below 5% of the parameters range, given in Table 2.

In order to visualise the results, we have utilised a Gaussian kernel density estimation (KDE) to produce distributions from20

the APIS simulation location parameters. In practice, KDE places a Gaussian distribution centred at each sample and the

constructed composite distribution is an estimate of the underlying actual distribution. The bandwidth for the distributions is

calculated using the Scott’s rule (Scott, 2004): the data covariance matrix is multiplied by a factor n
−1
d+4 , where n is the number

of data points and d is the number of dimensions.

The effectiveness of each parameter was calculated from the final state of each optimisation process. This was done by25

first setting all parameters to their optimised values. Then we (evenly) sampled each parameter separately from their range

of acceptable values, given in Table 2, and calculated the corresponding cost functions. For each parameter the maximum

difference in these cost function values (and the optimised value) was recorded. The parameters (within each optimisation)

were then ordered by these numbers (with highest difference meaning highest effectiveness) and separated into three groups

with highest (most effective) and lowest (least effective) effectiveness values, and the rest. This effectiveness relates to how the30

APIS “sees” the sampling process – the 50 draws are evaluated simultaneously and a very effective parameter can easily mask

the influence of a less effective (the marginal density of one or few parameters dominates the calculations).

We report the slope of the regression line (b) and the coefficient of determination (r2), between the observations (yi) and the

model output (xi). The slope of the regression line is highly indicative of the model bias (difference of the expected values of
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the observations and the model). Hence we interpret the bias directly from b (in our results the regression lines pass near origin

so the differences this induces are negligible).

b=

∑
i(xi−xi)(yi− yi)∑

i(yi− yi)2
, r2 = 1−

∑
i(xi− yi)2∑
i(yi− yi)2

(8)

2.9 Cost function

The Bayesian framework requires a likelihood function that optimally combines pointwise model and observational errors. The5

JSBACH model error is unknown as is the (pointwise) observation error. We could use a general type of error estimate (such

as that of 20% of the flux value) for the observations, but would have to include a minimal site and instrumentation dependent

precision. In this study, the full error is treated as Gaussian white noise. Because of these limitations, we are calling and

defining our likelihood as a cost function. It is calculated with the same parameter values for each site, using site spesific daily

measurements with the gap-filled, low-quality and winter (between the 315th and the 75th day of the year) values removed10

(resulting in NET and NGPP points). These site level estimates are averaged to produce the actual cost function, which is then

returned for the algorithm to produce an estimate that is independent of the characteristics of any single site.

The cost function (9) in our simulations is based on the normalised mean squared error (NMSE) estimates of the daily

gross primary production (GPP) and the daily evapotranspiration (ET). The residual of each variable is divided by the mean

of observations, as has been previously done by e.g. Mäkelä et al. (2016); Knauer et al. (2015); Groenendijk et al. (2010);15

Trudinger et al. (2007). We make use of this approach since we needed to balance two series of different magnitudes (ET and

GPP). The residuals are additionally divided by the (site specific) number of observations so that the cost function is not biased

towards any specific site. The cost function (without the normalisation) can be interpreted as a negative log-likelihood function

with a (Gaussian) error term equal to the observational mean.

cf1 =

NMSEET︷ ︸︸ ︷
1

NET

∑(
ETmod−ET obs

ETobs

)2

+

NMSEGPP︷ ︸︸ ︷
1

NGPP

∑(
GPPmod−GPP obs

GPPobs

)2

(9)20

We also use a modified version of this cost function, where the NMSE’s are weighted by factors based on coefficients of

determination (r2) defined in Eq. (8). This latter cost function is only used during the separate drought period optimisation for

Hyytiälä. During the drought we are more interested in the correct timing of the change in GPP and ET fluxes, rather than the

size of the actual change. The aim is to correctly reproduce the changes in the water use efficiency (WUE) of plants, which we

interpret here as the pointwise ratio of (ecosystem level) GPP to ET. The NMSE values ensure that the overall amplitude of the25

fluxes will remain satisfactory.

cf2 = (1− r2ET )NMSEET + (1− r2GPP )NMSEGPP (10)
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3 Results

First we present the performance of the APIS algorithm and the parameters themselves, followed by site and stomatal conduc-

tance model specific results, and finally an examination of the Hyytiälä drought event in 2006. For simplicity, we use the name

of the stomatal conductance model to refer to the JSBACH model utilising that stomatal conductance formulation.

The evolution of the APIS algorithmic process is presented in Fig. 1 for three parameters from the calibration of the Bethy5

model. The chosen parameters highlight different levels of identifiability for the algorithm (with the given cost function). The

first parameter (fC3) shows a well identifiable situation, where the algorithm quickly locates the area of high probability. The

second parameter (θdr) is also identifiable but the speed of convergence is diminished. The last example (Cdecay) represents

situations where the parameter is not constrained. We have included images of the APIS chains for the other parameters as

supplement S1 along with parameter posterior estimates at 20 iterations with the Bethy and Ball-Berry formulations.10

We also report the results of the Gelman-Rubin (Gelman and Rubin, 1992) and δ tests in Table 4. Both of these tests indicate

that the algorithm is performing well at 20 iterations – the values of R̂≈ 1, which means that further simulations are unlikely

to improve the variance estimates. However, for some parameters, the convergence of the global estimate is slow (as also seen

in the supplementary image S1 for e.g. τ , cb and q). The APIS sampling process did not reveal any multimodal distributions

and thus provided suitable initial conditions for the optimisation.15

Table 4. Parameter scale reduction R̂ (at APIS iteration) and stability δ (threshold number of iterations) estimates from the Bethy simulations.

VC,max α τ cb fC3 q θdr θhum θpwp

R̂ at 20 1.12 0.99 1.02 0.99 1.0 0.99 1.0 1.3 1.08

R̂ at 100 1.3 1.03 1.25 1.16 1.03 1.08 1.03 1.52 1.16

δ (±0.05) 20 21 27 40 0 36 18 14 17

θtsp pint sm wskin Cdecay Smin Srange Talt Tps

R̂ at 20 0.99 1.01 0.99 1.0 0.99 0.99 0.99 0.99 0.99

R̂ at 100 1.06 1.13 1.0 0.99 0.99 1.0 0.99 0.99 0.99

δ (±0.05) 26 35 8 0 12 22 0 1 0

3.1 Optimised parameters

The results of the optimisation process are gathered in Table 5. There is an overall agreement on the values of the most prevalent

parameters (see the bold and italic characters in Table 5 between the models). Most notably, the permanent wilting point (θpwp)

and the point above which transpiration is unaffected by soil moisture stress (θtsp) have been significantly lowered. The LoGro

phenology parameters, which affect the timing of the spring and autumn events, are expected to contribute only little to the20

cost function. The coniferous evergeen trees do not shed all their leaves for winter and therefore the timing of the bud burst is

not as critical as for e.g. deciduous trees. Additionally, because of the existing foliage, the state of acclimation parameter τ that
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depicts the reduction of carbon assimimilation in the early spring likely dominates the phenology parameters that determine

when new leaves start to grow.

Table 5. Parameter default and optimised values for the calibration period with corresponding cost function value. The values written in

boldface were the most effective and the italic values the least effective for the given experiment. Also presented are the fixed parameter

values for the drought period optimisation, with opt referring to the use of the corresponding optimised value from this table.

Parameter def Base Bethy BB Leu F&K USO dry set

VC,max 62.5 48.4 57.1 55.4 49.7 50.8 50.5 52.0

α 0.28 0.318 0.318 0.319 0.317 0.319 0.318 0.318

τ 10.0 14.6 15.0 14.8 14.9 14.7 14.8 14.8

cb 5.0 5.4 4.1 6.7 4.4 4.3 4.6 5.0

fC3 0.87 0.75 0.83 - - - - Table 7

q 0.0 0.03 0.94 0.62 0.60 0.82 0.65 Table 7

g0 1.0E-3 - - 4.7E-3 4.7E-3 4.4E-3 4.2E-3 Table 7

g1 Table 3 - - 9.9 8.8 10.9 1.6 Table 7

a 2.8 - - - - 3.2 - opt

d 80 - - - - 71 - opt

θdr 0.9 0.86 0.65 0.88 0.83 0.8 0.90 0.85

θhum 0.5 0.2 0.2 0.21 0.2 0.2 0.2 Table 7

θpwp 0.35 0.16 0.15 0.17 0.15 0.16 0.15 Table 7

θtsp 0.75 0.31 0.35 0.3 0.31 0.32 0.33 Table 7

pint 0.25 0.35 0.35 0.35 0.35 0.35 0.35 0.35

sm 5.9E-3 0.099 0.094 0.097 0.098 0.097 0.078 0.097

wskin 2.0E-4 3.7E-4 3.1E-4 3.5E-4 3.6E-4 3.3E-4 3.2E-4 3.4E-4

Cdecay 13.0 17.0 22.2 23.3 23.3 24.9 13.9 opt

Smin 10.0 29.2 26.3 10.7 6.3 26.1 6.3 opt

Srange 150 247 176 162 157 202 223 opt

Talt 4.0 2.0 2.8 5.8 8.2 2.5 8.3 opt

Tps 10.0 18.6 24.4 3.8 3.2 15.0 3.1 opt

cf1 0.571 0.531 0.521 0.529 0.518 0.528

Some of the parameters have converged to their limiting values, which can reflect deficiencies in the model structure or

the preset parameter ranges. Convergence to the boundary can also be a problem in model calibration, but in this experiment,

the algorithms were able to cope with the situation as APIS located the area of high probability and the optimiser located the5

maxima. The different parameter effectiveness levels reported in Table 5 can be roughly equated to the identifiability situations

in Fig. 1. The effectiveness levels are highly situational (e.g. they depend on the sampling limits in Table 2 given for each
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parameter) and merely reflect the parameter identifiability in the APIS process. Low effectiveness complements the test results

in Table 4, as the tests may indicate good performance for a parameter (e.g. for Srange) that is ineffective in the simulations.

3.2 Annual cycles

We present the average annual cycles for the validation period and for all sites in Fig. 2 using the Bethy formulation that is

part of the standard model. The annual cycles generated with the other stomatal conductance models are added as supplement5

S2. The parameters of the regression lines (b and r2) between the measured and modelled ET and GPP fluxes of all the models

are gathered in Table 6. These indicators have been calculated using all corresponding values regardless of the quality of the

data. The sites are in the same order as in Table 1 with the six calibration sites first, followed by the four sites used only for

validation. We have also included a supporting synthesis of the b and r2 values between the model simulations with the default

and optimised parameter values as supplement S3.10

The optimisation has improved the model bias and the correlation coefficients for the GPP in Fig. 2 for nearly every site,

with the exception of deteriorating bias for Poker Flat (US-Prr) and Zotino (RU-Zot). Additionally, the improvement in the

timing of the springtime increase in the GPP is apparent. All of the correlation coefficients for the ET in Fig. 2 have also been

improved but the model bias has mostly increased.

3.3 Drought event15

The resulting parameter values, from the optimisation during the drought conditions in Hyytiälä (FI-Hyy) in the summer of

2006, are presented in Table 7. Setting the maximum carboxylation rate to a constant value (VC,max = 52.0) enabled the full

use of the dynamical range of q – the idea was to ensure that VC,max does not dominate the optimisation, any value for q is

possible and it is able to influence the outcome. The LoGro phenology parameters and τ were fixed to their optimised values,

presented in Table 5, as they should not be affected by the drought. Likewise, the values of other parameters (not presented in20

Table 7) were set as compromises between the stomatal conductance formulations.

We can now compare the parameter values in Table 7 to those in Table 5. The values of the relative humidity parameter

(θhum) and the residual stomatal conductance (g0) have remained nearly unchanged, but for the rest of the parameters have

quite varied values. The leaf internal-to-external CO2 concentration (fC3) as well as the slope of the stomatal conductance (g1)

are at the lower bound (expect g1 for BB). Noticeably, the USO optimisation only changes the values of θtsp and q, and leaves25

the rest of the parameters almost untouched.

The changes these different parameterisations have on the model output are visualised in Fig. 3. All of the stomatal con-

ductance models, with default parameterisation, suffer from too low ET values before (and during) the actual drought. This

behaviour was corrected during the general optimisation, but has partially re-emerged with the dry period parameters for the

Baseline, Ball-Berry, Leuning, and to a lesser degree the Friend and Kiang formulations. Most of the models also exhibit too30

high ET values during the actual drought with the generally optimised parameter values. This behaviour was also corrected

with the dry period optimisation, but the Baseline and especially the Bethy model now suffer from a too strong drawdown

of ET. These models also demonstrate the too strong drawdown for the GPP. The GPP itself was greatly improved with both
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Table 6. Slope of the regression line (b) and the coefficient of determination (r2) for the different stomatal conductance formulations during

the validation period with the optimised parameters. We have written the best values of b and r2 in boldface for each site, and italicised the

abbreviations of the separate validation sites.

Evapotranspiration (ET)

b r2

Site B
as

e

B
et

hy

B
B

L
eu

F&
K

U
SO

B
as

e

B
et

hy

B
B

L
eu

F&
K

U
SO

CA-Obs 0.91 0.9 0.91 0.86 0.81 0.76 0.75 0.77 0.76 0.76 0.75 0.74

CA-Qfo 0.96 0.98 0.99 0.92 0.89 0.83 0.71 0.72 0.7 0.71 0.7 0.69

FI-Hyy 0.97 1.05 1.07 0.95 0.98 0.79 0.73 0.77 0.77 0.75 0.77 0.69

FI-Ken 0.54 0.64 0.62 0.56 0.58 0.48 0.48 0.51 0.52 0.49 0.51 0.45

FI-Sod 0.64 0.73 0.74 0.63 0.64 0.56 0.58 0.64 0.61 0.6 0.62 0.55

RU-Fyo 0.98 1.02 1.01 0.98 0.99 0.85 0.7 0.71 0.71 0.71 0.71 0.7

CA-Ojp 0.8 0.84 0.84 0.75 0.72 0.67 0.64 0.65 0.64 0.65 0.64 0.63

FI-Let 1.09 0.98 1.08 1.04 1.01 0.94 0.49 0.47 0.49 0.5 0.51 0.48

RU-Zot 0.49 0.56 0.56 0.47 0.46 0.41 0.45 0.52 0.5 0.47 0.48 0.41

US-Prr 0.38 0.37 0.42 0.35 0.33 0.35 0.48 0.53 0.53 0.46 0.44 0.43

best values 0 2 5 0 3 0 0 6 2 0 2 0

Gross primary production (GPP)

b r2

Site B
as

e

B
et

hy

B
B

L
eu

F&
K

U
SO

B
as

e

B
et

hy

B
B

L
eu

F&
K

U
SO

CA-Obs 0.83 0.77 0.82 0.81 0.81 0.77 0.87 0.9 0.89 0.89 0.91 0.9

CA-Qfo 0.97 0.95 0.98 0.96 0.96 0.9 0.84 0.87 0.85 0.86 0.88 0.87

FI-Hyy 1.02 1.01 1.05 1.03 1.06 0.98 0.94 0.94 0.94 0.95 0.95 0.95

FI-Ken 0.9 0.97 0.97 0.93 0.95 0.9 0.93 0.9 0.9 0.93 0.93 0.94

FI-Sod 0.66 0.71 0.71 0.67 0.69 0.65 0.88 0.87 0.86 0.89 0.9 0.9

RU-Fyo 0.95 0.88 0.91 0.96 0.98 0.91 0.89 0.88 0.88 0.91 0.91 0.91

CA-Ojp 0.72 0.74 0.75 0.7 0.69 0.66 0.83 0.85 0.84 0.85 0.86 0.86

FI-Let 1.27 0.99 1.09 1.25 1.26 1.21 0.93 0.88 0.89 0.94 0.94 0.94

RU-Zot 0.42 0.44 0.44 0.42 0.42 0.4 0.86 0.85 0.84 0.88 0.88 0.88

US-Prr 0.2 0.21 0.21 0.2 0.19 0.19 0.62 0.6 0.6 0.62 0.63 0.62

best values 1 4 4 0 1 0 0 0 0 0 6 4

optimisations and for all models. The dry period optimisation of the USO model also managed to correct the erroneous GPP

of the general optimisation during the actual drought, where as the GPP of other formulations has remained roughly the same

as with the general optimisation. The USO formulation results in the best fits for r2 and b with the dry period optimisation.
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Table 7. Optimised parameter and corresponding cost function values with different stomatal conductance formulations for the extended dry

period.

Parameter def Base Bethy BB Leu F&K USO

fC3 0.87 0.7 0.7 - - - -

q 0.0 0.09 0.0 0.15 0.57 0.16 0.30

θtsp 0.75 0.57 0.46 0.48 0.44 0.45 0.41

θpwp 0.35 0.40 0.38 0.27 0.23 0.28 0.16

θhum 0.5 0.2 0.2 0.2 0.2 0.2 0.2

g0 Table 3 - - 4.9E-3 5.0E-3 3.8E-3 4.6E-3

g1 Table 3 - - 7.5 6.0 7.0 1.5

cf2 0.42 0.44 0.39 0.41 0.41 0.41

The Bethy and the USO models demonstrate the most variability in the β-function values in Fig. 3 (rightmost panels), for

the dry period optimisation. We selected these two stomatal conductance formulations to examine the changes to the water use

efficiency (WUE) of plants during the extended dry period. The highlighted observations in Fig. 4 (rightmost panels) show a

clear path of development for the drought where the observations imitate the letter δ. The colourings follow the β-function

values in Fig. 3 between the red vertical lines. Both observational colourings (same as the model colouring) are similar and5

depict, initially, a linear decrease in both ET and GPP, followed by a rapid decline in ET and a delayed decline in GPP. The

recovery of plants from the drought can also be seen as the colouring starts to turn lighter. The models depict a more linear

response of GPP to ET as the drought develops, although with USO we can see a bit more similarities in the pattern of the

values.

Finally, we used both optimised parameter sets (Table 5 and 7) to produce the ET and GPP cycles for all sites and stomatal10

conductance models. This analysis (not shown) verified that in general conditions the Table 5 parameter values produced better

estimates in general. The b and r2 values for the ET were systematically better for all stomatal conductance formulations

(except one). There was some variation in the indicators for the GPP, where approximately a third of the values (of mostly r2)

are better with the dry period parameter set. These differences are mostly attributed to increased model bias (decreased b) that

is explained by the lower values of g1. Overall, the more general optimisation provided systematically better or comparable15

results to the dry period optimisation. The exception is the USO formulation, which had an approximately 1:1 distribution of

best values for both variables in-between the parameter sets.

4 Discussion

We will first discuss the validity of our approach and the simulation setup, followed by examination of the success of the

modifications made to the model, and close with some further remarks on the parameter values.20
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4.1 Validity of the simulations

Before we calibrated the model, we fixed the limiting value for LAI and adjusted the site-specific vegetative area fractions to

reproduce the measured site level maximum of LAI. In the simulations, we focused on boreal coniferous forests, where light

penetration is deep and the light conditions are homogenous – consequently we could assume a homogenous leaf distribution.

Furthermore, the JSBACH model takes into account leaf clumping and we can assume the leaf orientation and shape to be5

similar throughout the study sites. Therefore, we argue that reproducing the site level maximum of LAI is appropriate approach

in this study. Together with parameter calibration it has resulted in improved ET and GPP fluxes as can be verified from the b

and r2 values in Fig. 2. The improvements in b and r2 are mostly seen in the GPP flux, which can be explained by the fact that

the stomatal conductance in JSBACH is primarily resolved for carbon assimilation, and the same conductance is then used for

transpiration (A8). Additionally, GPP is derived from the EC measurements by flux partitioning – this tends to remove some10

of the flux instabilities (that are still present in the ET).

We encountered difficulties in reproducing the fluxes for the validation sites with low LAI (i.e RU-Zot and US-Prr). This can

be a consequence of the area scaling as the adjustment linearly changes the proportions between vegetative area and bare soil.

Another reason is the lack of the site understory in these simulations. For example, approximately half of the CO2 fluxes (and

consequently roughly half of the GPP) for Poker Flat are produced by the site understory (Ikawa et al., 2015). Additionally,15

there are also many parameters describing site-specific soil properties (such as porosity) that were not part of the optimisation

and may be inaccurate. These effects may also be pronounced due to the changes in parameters affecting soil moisture as well

as the area scaling.

There were no clear differences between sites dominated by pine or spruce. Neither did we notice any particular effect on

the bias, NMSE or correlation coefficient that could be explained by geographical location, stand age or annual precipitation20

or temperature. We optimised the model for individual (calibration) sites as well (not shown). Mostly this changed the values

of parameters (such as VC,max and g1) affecting the amplitude of the modelled fluxes. These parameters can be viewed to be

more site-specific, a characteristics that is reduced in a multi-site calibration – the possibility of highly site-specific properties

(and parameter values) can also explain the difficulties in reproducing the validation site observations. We are omitting these

results as single-site optimisation can be viewed as overfitting the model and the results do not provide any additional insights.25

The APIS performance tests (Gelman-Rubin and δ) indicate that the algorithm is performing well at 20 iterations but the

convergence of the global estimate for some parameters is slow. This is mostly a direct result of the normalisation of the cost

function that inflates the target distribution, which reduces the parameter sensitivity to observations and gives too much weight

to the initial locations and draws. Without the normalisation, the algorithm would also converge faster. Additionally, APIS is

meant to examine the full target distribution with only some sequantiality – 20 iterations (or less) should be sufficient for APIS30

to locate the modes of the target. In longer APIS simulations, the global estimate would likely benefit from discarding the first

half of the samples but this would require the estimate to be recalculated at each iteration (from the drawn samples) as it could

not be calculated iteratively.
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4.2 Delayed effect of temperature

We modified the JSBACH model by introducing the delayed effect of temperature for photosynthesis to restrain the respiration

and photosynthesis of conifers in spring. The effect of this (delayed increase in GPP) is apparent in the annual GPP cycles of

CA-Qfo, FI-Hyy, FI-Ken, FI-Sod and RU-Zot in Fig. 2. The delay is in place for the other sites as well, but the effect is less

apparent in the figure. This delay is to a lesser extent also reflected in transpiration, and consequently in ET, as can be seen e.g.5

at FI-Hyy and FI-Sod – for other sites this effect is not clear. The correction in the ET values can lead to an increase in model

bias as is the case with Sodankylä (FI-Sod), where the too low autumn values in the default model were previously compensated

by too high springtime values (in the sense of annual ET). Correcting the springtime behaviour leads to an increase in bias, but

this should not be viewed as a fault in the optimisation as the model was previously mitigating an erroneous behaviour (too

low autumn ET) with another (too high springtime ET).10

Mäkelä et al. (2004) used a linear dependency of photosynthetic efficiency to the state of acclimation, and reported 13.75

days to be the best fit for the adjustment period length (τ ). Kolari et al. (2007) utilised a sigmoidal relation and reported the

value of 8 days, but noted that the range of values resulting in a good fit was large (5–10.4 days). Linkosalo et al. (2014)

came to a similar conclusion when they encounter a near-flat distribution for τ in the range of 1–12 days. In our simulations τ

exhibits larger optimal values (nearly 15 days), which is most likely due to the model adapting to the multi-site calibration (as15

sites have different characteristics, a longer acclimation period accounts better for these variations).

4.3 Stomatal conductance models

We examined the model behaviour with six stomatal conductance formulations and the resulting b and r2 values are presented

in Table 6. The best performance (bolded values) in simulated ET is achieved by the BB model for bias and the Bethy formu-

lation for r2. These two models also share the best performance in the GPP bias, whereas the best r2 values for the GPP are20

demonstrated by the F&K model, followed by the USO formulation. Calculating the number of best values demonstrated by

each model, we obtain that the best performance is shared by the Bethy (12) and F&K (12) formulations, followed by the BB

(11) model. However, we note that some of the “best values” are only marginally better than comparable values. Additionally,

we used two more parameters (a and d) for the F&K formulation than for the other Ball-Berry formulations. Likewise, we

could have, for example, included the factor D0 (B3) in the optimisation, which would have likely improved the performance25

of the Leuning model. Similarly to the results by Knauer et al. (2015), based on this (general) calibration, there is no clear

single candidate for the best stomatal conductance formulation.

The model behaviour was also examined during the Hyytiälä drought of 2006. Some of the parameter values were kept fixed

during these simulations, most of the fixed parameters should not affect the drought period calibration but there are exceptions,

such as the maximum carboxylation rate VC,max. It can be argued that e.g. both the parameters VC,max and g1 should decrease30

(Egea et al., 2011) during the drought but we decided to fix VC,max to get a better response for q. The best fit to the observations

was achieved by the USO formulation, as seen in Fig. ??, with remarkably similar parameter values to the general optimisation.

The USO model was also able to (somewhat) replicate the “δ” shape of the drought in Fig. 4.
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The stomatal conductance function (gs = g0+cβg1) incorporates also the soil water parameters θtsp and θpwp in the form of

the β-function as portrayed in Eq. (2). The changes in the values of these parameters (mostly g1,θtsp and θpwp) are intertwined.

During the drought, the decrease in the optimised values of g1 is expected as the plants close their stomata to minimise the loss

of water by transpiration (Egea et al., 2011; Zhou et al., 2013). The same effect is also achieved by increasing the values of

θtsp and θpwp as this decreases the values of the β-function. The higher values of g1 during the more general optimisation are5

better reflected by Franks et al. (2018), whereas the lower values during the drought are more in accordance with physiological

observations by Egea et al. (2011). Likewise, Lin et al. (2015) found higher values for g1 (both boreal area and gymnosperm

trees) using the USO model.

In general, the site level estimates of (g0 and) g1 are sensitive not only to the stomatal conductance formulation but also

e.g. to the structure of the underlying model and the value of other parameters, such as maximum carboxylation rate (VC,max).10

Wang (1996) reported g1 = 3.78 (in Table 1, Control), using a Leuning model similar to ours, where (1 +DS/D0) is replaced

by DS . Thum et al. (2007) approximated gBB1 to be 5 for Sodankylä while estimating the variation in the values of VC,max

and maximum rate of electron transport Jmax. We would suggest that the limiting values θpwp and θtsp should be optimised

or fixed before introducing additional tuning factors such as mesophyll conductance or scaling the β in multiple ways in the

stomatal conductance formulations (Egea et al., 2011). Our simulation setup for q corresponds to the configuration 5 (C5) by15

Egea et al. (2011), with variables q = qB and fixed value qS = 1.

4.4 Parameter values

Some of the parameters in this study have been calibrated before by e.g. Kattge et al. (2009); Knorr et al. (2010). Our approach

differs from these as we required the model to reproduce the site level maximum of LAI. In contrast e.g. Knorr et al. (2010)

found the structural limit for (all-sided) LAI to be 4.2, which is considerably lower than the measured LAI for many of the20

sites in Table 1. Our approach directly scales the vegetative area, so it also scales GPP and also the amount of rain available

for plants (as rain is directed to bare soil and vegetative area). This means that the parameter values should not be directly

compared without taking the different paradigms into account. However, our optimised VC,max values are in-between 62.5

reported by Kattge et al. (2009) and 29.3 by Knorr et al. (2010), and are in line with the yearly cycle presented by Ueyama

et al. (2016).25

The exponential scaling factor q in Eq. (A1) of the β-function (2), was revealed to be ineffective in our optimisation as

indicated in Table 5. In our simulations, this situation arises as the effective range of the β-function has been lowered by

reducing θpwp and θtsp. The actual soil moisture is rarely below the fraction θtsp, so q is constrained with a very limited

number of datapoints, and thus has only minimal effect on the fluxes and the cost function. Therefore, the values presented for

q in Table 5 can be unreliable and even unrealistic. This situation is remedied in the drought period optimisation when the soil30

moisture is low. The resulting values for q in Table 7 have a wide dispersion, although they are mostly on the lower end. This

signifies that the additional GPP reduction is mostly gradual, with a steep decrese near the permanent wilting point θpwp.

The values of soil water parameters are closely grouped in the optimisations except for the values of θpwp during the

drought. This can occur due to a larger impact, of the different stomatal conductance formulations on the accumulating soil
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water content, than assumed – this can also be seen from the differences in the β-function values in Fig. 3. Furthermore, the

values of θtsp and θpwp have been considerably lowered from their default values in both optimisations. This change can be

perceived in at least two different ways. Either the boreal forests are not generally limited by soil moisture stress (except in the

case of extreme drought) or the water retention capabilities of the soil (in the model) have been systematically overestimated.

The latter seems unlikely, in the light of results by e.g. Gao et al. (2016).5

5 Conclusions

The adaptive population importance sampler (APIS) is a recent method, capable of estimating complicated multidimensional

probability distributions using a population of different proposal densities. The algorithm was able to produce reasonably stable

estimates for most parameters quickly. Prior to calibrating the model, we adjusted the site-specific vegetative area fractions to

reproduce the measured site level maximum of LAI. This practical approach resulted in improved ET and GPP fluxes, although10

we encountered difficulties in replicating these for sites with low LAI. The model parameters were optimised simultaneously

for all sites without any additional site level tuning. The parameters that were most effective in the optimisation processes,

were consistent for all stomatal conductance formulations.

The introduction of the S-function, to delay the start of the vegetation active season, has corrected the springtime increase in

GPP for conifers throughout the sites used in this study. The parameters θtsp and θpwp, that set the range for the soil moisture15

stress function β, were both systematically lowered and optimised to nearly identical values for all stomatal conductance

models. The low effective range for the β function rendered the experimental parameter q nearly ineffective in the more

general optimisation. The dry period optimisation increased the effective range of the β-function and the importance of q,

which resulted in highly nonlinear (additional) reduction in the net assimilation rate. Overall, this fact and both optimisations

indicate that boreal forest transpiration is not limited by soil moisture stress under normal conditions.20

The optimisation improved the predictive skill of the model with all stomatal conductance formulations as was seen during

the validation period. The Bethy, Ball-Berry and Friend and Kiang versions were the most in agreement with the observations,

although the differences between these and the other formulations were small. Most of the model versions had some problems

during the extended dry period and the best b and r2 values were achieved by the unified stomatal optimisation model. Addi-

tionally, the optimised parameter values of the USO model for the dry period were the most alike (of all stomatal conductance25

formulations) with those of the more general optimisation.

Code and data availability. The data required to calibrate and validate the model is originally part of the FLUXNET2015 dataset that can be

accessed through the FLUXNET database (doi:10.17616/R36K9X). Our modified dataset, containing the forcing data and the observations

used in this article, is available through Zenodo portal (doi:10.5281/zenodo.3240954). The data depicting the simulations (parameter draws,

cost function values etc.) has been added as a supplement. The JSBACH model (branch: cosmos-landveg-tk-topmodel-peat, revision: 7384)30

can be obtained from the Max Planck Institute for Meteorology, where it is available for scientific community under the MPI-M Sofware

License Agreement (http://www.mpimet.mpg.de/en/science/models/license/). The modifications to the model, described in this paper, have
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been uploaded to Github and they can be accessed by contacting the authors at jarmo.makela@fmi.fi (after access to the actual model has

been approved). For any questions, we encourage you to contact the authors at jarmo.makela@fmi.fi.

Appendix A: Parametric equations within JSBACH

In this appendix we present the most relevant equations that are governed by the parameters in Table 2. The appendix is divided

into sections that coincide with the parameter groups.5

A1 Photosynthesis

The Farquhar model (Farquhar et al., 1980) is based on the observation that the assimilation rate in the chloroplast is limited

either by the carboxylation rate (VC), induced by the Rubisco enzyme, or the light-limited assimilation rate (JE). The total rate

of carbon fixation is reduced by the amount of dark respiration (Rd), resulting in net assimilation rate (An). The experimental

scaling factor βq (Egea et al., 2011) is based on soil moisture stress in Eq. (2), that takes effect (β < 1) when soil moisture is10

significantly reduced. This scaling is used by all stomatal conductance formulations. We have also introduced here in equation

form the actual reduction to photosynthesis by γ from the delay in the start of the vegetation active season in Eq. (1).

An = βq(min(γVC ,JE)− γRd) (A1)

Oxygenation of the Rubisco molecule reduces the carboxylation rate, which is given as:

VC = VC,max
Ci−Γ?

Ci +KC(1 +Oi/KO)
(A2)15

Here Ci and Oi are the leaf internal CO2 and O2 concentrations, Γ? is the photorespiratory CO2 compensation point, KC

and KO are Michaelis-Menten constants parameterising the dependence on CO2 and O2 concentrations. Furthermore, leaf

internal CO2 concentration depends on the external (ambient) concentration Ca (in the Baseline and Bethy formulations and

unstressed conditions) by:

Ci = fC3Ca (A3)20

Likewise, the light-limited assimilation rate can be expressed as a function on electron transport rate (J), which is a function

of radiation intensity (I) in the photosynthetically active band, the maximum electron transport rate (Jmax) and the quantum

efficiency for photon capture (α):

JE = J(I)
Ci−Γ?

4(Ci + 2Γ?)
, J(I) = Jmax

αI√
J2
max +α2I2

(A4)

A2 Soil water25

In JSBACH the soil water budget is based on several reservoirs (e.g. skin, soil, bare soil, rain intercepted by canopy etc.) and the

different formulations are plentiful. We present here only the most crucial of these. Changes in volumetric soil water (θs, not
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to be confused with relative soil water content θ = θs
θfc

) due to rainfall (R), evapotranspiration (ET ), snow melt (M ), surface

runoff (Rs) and drainage (D) are calculated with a geographically varying maximum field capacity (θfc) and soil water density

(ρw).

ρw
∂θs
∂t

= (1− pint)R+ET +M −Rs−D (A5)

The interception parameter (pint) also affects the amount of water intercepted by vegetation and bare soil which further5

affects evaporation and transpiration. The skin reservoir is limited by wskin and excess water is transferred to soil water.

Likewise when the soil water content (θ) is greater than parameter θdr, the excess water is rapidly drained (in addition to the

limited drainage below this threshold), where d, dmin and dmax are constant parameters:

D = dminθ+ (dmax− dmin)

(
θ− θdr
1− θdr

)d
, θ ≥ θdr (A6)

Evaporation from wet surfaces (Ews) depends on air density (ρ), specific humidity (qa), saturation specific humidity (qs)10

at surface temperature (Ts) and pressure (ps) and aerodynamic resistance (Ra). The aerodynamic resistance depends on heat

transfer coefficient (Ch) and horizontal velocity (vh).

Ews = ρ
qa− qs(Ts,ps)

Ra
, Ra = Ch|vh|−1 (A7)

Transpiration from vegetation (Tv) is likewise formulated but additionally depends on the stomatal resistance of the canopy

(Rc), which is an inverse of the stomatal conductance and as such, depends on which conductance model is used.15

Tv = ρ
qa− qs(Ts,ps)
Ra +Rc

(A8)

Evaporation from dry bare soil (Es) also has an added dependence on surface relative humidity (hs) calculated from soil

dryness:

Es = ρ
qa−hsqs(Ts,ps)

Ra
, hs = max

[
θhum(1− cos(πθ)),min

(
1,

qa
qs(Ts,ps)

)]
(A9)

The total evapotranspiration is a weighted average of Ews, Tv and Es, where the weights are based on fill levels of reservoirs20

and the vegetative fraction of the grid cell.

A3 Logistic Growth Phenology (LoGro-P) model

The parameters from the LoGro-P are mainly used to determine the spring and autumn events for JSBACH. To determine the

date of the spring event we first introduce a few additional variables, namely the heatsum ST (d), the number of chill days C(d)

and the critical heatsum Scrit(d). T (d) denotes the mean temperature at day d.25

ST (d) =

d∑
d′=d0

max(T (d′)−Talt,0) (A10)
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Heatsum ST (d) cumulates the amount of “heat“ above the parameter Talt after the previous growing season. The actual

starting date d0 of the summation need not be known since it is enough to start the summation “reasonably late“ after the last

growth season.

C(d) =

d∑
d′=da

H (Talt−T (d)) (A11)

The number of chill days is calculated as the number of days when the mean temperature is below Talt. Here H() denotes5

the Heaviside step function and the summation starts at the day (da) of the last autumn event.

Scrit(d) = Smin +Srangee
−C(d)/Cdecay (A12)

The critical heatsum (Scrit) decreases as the number of chill days C(d) increases, with an exponential memory loss param-

eter Cdecay . The spring event happens when:

ST (d)≥ Scrit(d) (A13)10

The autumn event requires the definition of one more variable, the (pseudo) soil temperature (Ts(t)), which at time t is

calculated as an average air temperature (T ) with an exponential memory loss (Tps). The autumn event occurs when Ts falls

below a certain threshold. In the equation N is the normalization constant and τ is the length of a time step.

Ts(t) =
1

N

t∑
n=−∞

T (n)e
−(t−n) τ

Tps (A14)

Appendix B: Stomatal conductance formulations15

In this appendix we present the stomatal conductance model formulations used in this study. In the original JSBACH formula-

tion, the Baseline model (Knorr, 1997), the photosynthetic rate is resolved in two steps. First the stomatal conductance under

conditions with no water stress is assumed to be controlled by photosynthetic activity (Schulze et al., 1994). Here the leaf

internal CO2 concentration is assumed to be a constant fraction (Ci,pot = fC3Ca) of ambient CO2 concentration (Ca). This

allows for an explicit resolution of the photosynthesis (Knorr, 1997). Then the impact of soil water availability is accounted20

for by a soil moisture-dependent multiplier (β) that is identical for each canopy layer (Knorr, 1997).

gs,pot =
1.6An,pot
Ca−Ci,pot

⇒ gs = βgs,pot (B1)

After accounting for soil water stress, the net assimilation rate (An) and intercellular CO2 concentration are (Ci) are recalcu-

lated using gs, and integrated over the leaf area index to produce canopy level estimates.

In the Bethy approach (Knorr, 2000), the unstressed canopy conductance (Gc,pot) is calculated similarly to the Baseline25

model, but potentially further limited by the water supply function of the maximum transpiration rate (Tsupply = βTmax).

Tmax is a fixed and predefined upper limit for transpiration as in Knauer et al. (2015).

Gc =

 Gc,pot
Tsupply
Tpot

, Tpot ≥ Tsupply ≥ 0

Gc,pot, Tpot < Tsupply
, Tpot = ρ

qs− qa
1/Ga + 1/Gc,pot

(B2)
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The potential (unstressed) transpiration rate (Tpot) is a function of air density (ρ), saturation specific humidity (qs) at given

temperature and pressure, specific humidity (qa), aerodynamic conductance (Ga) and unstressed canopy conductance (Gc,pot).

After this scaling, the net assimilation rate and intercellular CO2 concentration are recalculated as in the Baseline model.

The Ball-Berry variants relate the stomatal conductance (gs) to empirically fitted parameters g0 (mol m−2s−1) and g1

(unitless, except for gUSO1 which has units of
√

kPa) that respectively represent the residual stomatal conductance and the slope5

of the function. The stomatal conductance is a function of the net assimilation rate (An), the water stress factor (β) and the

atmospheric CO2 concentration (Ca). The original Ball-Berry formulation (Ball et al., 1987) also depends on relative humidity

at leaf surface (hs). In the Leuning model (Leuning, 1995), the CO2 concentration is reduced by the CO2 compensation point

(Γ) as well as scaled by the vapour pressure deficit (Ds) and a constant (D0) depicting the stomatal sensitivity to changes in

Ds. The Friend and Kiang model (Friend and Kiang, 2005) adds an exponential dependency on the difference of specific (qa)10

and saturation specific humidity (qsat) with empirically fitted constants a= 2.8 and b= 80. The unified stomatal optimisation

model (Medlyn et al., 2011) also adds a dependency to the vapour pressure deficit (Ds).

gBBs = gBB0 + gBB1 β
Anhs
Ca

gLeus = gLeu0 + gLeu1 β
An

(Ca−Γ)(1 +Ds/D0)
(B3)

gF&K
s = gF&K

0 + gF&K
1 β

Ana
−d(qsat−qa)

Ca
gUSOs = gUSO0 + 1.6

(
1 +

gUSO1 β√
Ds

)
An
Ca

Author contributions. The experiments were planned by J. Mäkelä, T. Aalto, T. Markkanen and T. Thum. J. Mäkelä ran the simulations and15

prepared the manuscript with contributions from co-authors. J. Knauer originally implemented the Ball-Berry type stomatal conductance

formulations into JSBACH under S. Zaehles supervision. J. Susiluoto maintained the framework for testing the algorithm. M. Aurela, A.

Black, M. Heimann, A. Lohila, I. Mammarella, H. Margolis and H. Kobayashi provided the site level observations required in this study. T.

Aalto, T. Markkanen and T. Viskari extensively commented and revised the document.

Competing interests. The authors declare that they have no conflicts of interest.20

Acknowledgements. This work has been supported by Jenny and Antti Wihuri Foundation, the NordForsk Nordic Centre of Excellence

under Grant no. 57001 (eSTICC) and the Academy of Finland under Grant no. 295874 (OPTICA), as well as Academy of Finland Centre

of Excellence under Grant no. 307331 and ICOS-Finland (project No. 281255) and EU-Life+ project MONIMET (LIFE12 ENV/FI000409).

This work used eddy covariance data acquired and shared by the FLUXNET community, including these networks: AmeriFlux, AfriFlux,

AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC,25

OzFlux-TERN, TCOS-Siberia, and USCCC. The FLUXNET eddy covariance data processing and harmonization was carried out by the

ICOS Ecosystem Thematic Center, AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC, and the

OzFlux, ChinaFlux and AsiaFlux offices.

26



References

Aurela, M., Lohila, A., Tuovinen, J., Hatakka, J., Penttilä, T., and Laurila, T.: Carbon dioxide and energy flux measurements in four northern-

boreal ecosystems at Pallas, Boreal Environ. Res., 20, 455–473, http://www.borenv.net/BER/pdfs/ber20/ber20-455.pdf, 2015.

Ball, J., Woodrow, I., and Berry, J.: A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosyn-

thesis Under Different Environmental Conditions, Springer, Progress in Photosynthesis Research (edited by Biggins, J.), 221–224,5

https://doi.org/10.1007/978-94-017-0519-6_48, 1987.

Bergh, J. and Linder, S.: Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands, Glob. Change

Biol., 5, 245–253, https://doi.org/10.1046/j.1365-2486.1999.00205.x, 1999.

Bergh, J., Mcmurtrie, R., and Linder, S.: Climatic factors controlling the productivity of Norway spruce: A model-based analysis, Forest

Ecol. Manag., 110, 127–139, https://doi.org/10.1016/S0378-1127(98)00280-1, 1998.10

Bonan, G.: Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests, Science, 320, 1444–1449,

https://doi.org/10.1126/science.1155121, 2008.

Bréda, N., Cochard, H., Dreyer, E., and Granier, A.: Water transfer in a mature oak stand (Quercuspetraea): seasonal evolution and effects of

a severe drought, Ca. J. Forest Res., 23, 1136–1143, https://doi.org/10.1139/x93-144, 1993.

Böttcher, K., Markkanen, T., Thum, T., Aalto, T., Aurela, M., Reick, C., Kolari, P., Arslan, A., and Pulliainen, J.: Evaluating Biosphere15

Model Estimates of the Start of the Vegetation Active Season in Boreal Forests by Satellite Observations, Remote Sensing, 8, 1–31,

https://doi.org/10.3390/rs8070580, 2016.

Chen, J., Govind, A., Sonnentag, O., Zhang, Y., Barr, A., and Amiro, B.: Leaf area index measurements at Fluxnet Canada forest sites, Agr.

Forest Meteorol., 140, 257–268, https://doi.org/10.1016/j.agrformet.2006.08.005, 2006.

Cornuet, J.-M., Marin, J.-M., Mira, A., and Robert, C.: Adaptive Multiple Importance Sampling, Scand. J. Stat., 39, 798–812,20

https://doi.org/10.1111/j.1467-9469.2011.00756.x, 2012.

Duane, S., Kennedy, A., Pendleton, B., and Roweth, D.: Hybrid Monte Carlo, Phys. Lett. B, 195, 216–222, https://doi.org/10.1016/0370-

2693(87)91197-X, 1987.

Egea, G., Verhoef, A., and Vidale, P.: Towards an improved and more flexible representation of water stress in coupled photosynthe-

sis–stomatal conductance models, Agric. Forest Meteorol., 151, 1370–1384, https://doi.org/10.1016/j.agrformet.2011.05.019, 2011.25

Farquhar, G., Caemmerer von, S., and Berry, J.: A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 species, Planta,

149, 78–90, https://doi.org/10.1007/BF00386231, 1980.

Franks, P., G.B., B., J.A., B., D.L., L., N.M., H., N., H., and K.W., O.: Comparing optimal and empirical stomatal conductance models for

application in Earth system models, Glob. Change Biol., 24, 5709–5723, https://doi.org/10.1111/gcb.14445, 2018.

Friend, A. and Kiang, N.: Land surface model development for the GISS GCM: Effects of improved canopy physiology on simulated climate,30

J. Climate, 18, 2883–2902, https://doi.org/10.1175/JCLI3425.1, 2005.

Gao, Q., Zhao, P., Zeng, X., Cai, X., and Shen, W.: A model of stomatal conductance to quantify the relationship between leaf transpiration,

microclimate and soil water stress, Plant Cell Environ., 25, 1373–1381, https://doi.org/10.1046/j.1365-3040.2002.00926.x, 2002.

Gao, Y., Markkanen, T., Thum, T., Aurela, M., Lohila, A., Mammarella, I., Kämäräinen, M., Hagemann, S., and Aalto, T.: Assess-

ing various drought indicators in representing summer drought in boreal forests in Finland, Hydrol. Earth Syst. Sci., 20, 175–191,35

https://doi.org/10.5194/hess-20-175-2016, 2016.

27

http://www.borenv.net/BER/pdfs/ber20/ber20-455.pdf
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1046/j.1365-2486.1999.00205.x
https://doi.org/10.1016/S0378-1127(98)00280-1
https://doi.org/10.1126/science.1155121
https://doi.org/10.1139/x93-144
https://doi.org/10.3390/rs8070580
https://doi.org/10.1016/j.agrformet.2006.08.005
https://doi.org/10.1111/j.1467-9469.2011.00756.x
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/j.agrformet.2011.05.019
https://doi.org/10.1007/BF00386231
https://doi.org/10.1111/gcb.14445
https://doi.org/10.1175/JCLI3425.1
https://doi.org/10.1046/j.1365-3040.2002.00926.x
https://doi.org/10.5194/hess-20-175-2016


Gao, Y., Markkanen, T., Aurela, M., Mammarella, I., Thum, T., Tsuruta, A., Yang, H., and Aalto, T.: Response of water use efficiency to

summer drought in boreal Scots pine forests in Finland, Biogeosciences, 14, 4409–4422, https://doi.org/10.5194/bg-14-4409-2017, 2017.

Gelman, A. and Rubin, D.: Inference from Iterative Simulation Using Multiple Sequences, Statist. Sci., 7, 457–472,

https://doi.org/10.1214/ss/1177011136, 1992.

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D.: Bayesian Data Analysis, Chapman and Hall/CRC, third edn., 2013.5

Groenendijk, M., Dolman, A., van der Molen, M., Leuning, R., Arneth, A., Delpierre, N., Gash, J., Lindroth, A., Richardson, A.D. Verbeeck,

H., and Wohlfahrt, G.: Assessing parameter variability in a photosynthesis model within and between plant functional types using global

Fluxnet eddy covariance data, Agric. Forest Meteorol., in press, 1–17, https://doi.org/10.1016/j.agrformet.2010.08.013, 2010.

Hagemann, S. and Stacke, T.: Impact of the soil hydrology scheme on simulated soil moisture memory, Clim. Dynam., 44, 1731–1750,

https://doi.org/10.1007/s00382-014-2221-6, 2015.10

Ikawa, H., Nakai, T., Busey, R., Kim, Y., Kobayashi, H., Nagai, S., Ueyama, M., Saito, K., Nagano, H., Suzuki, R., and Hinzman, L.:

Understory CO2, sensible heat, and latent heat fluxes in a black spruce forest in interior Alaska, Agr. Forest Meteorol., 214–215, 80–90,

https://doi.org/10.1016/j.agrformet.2015.08.247, 2015.

Iwema, J., Rosolem, R., Rahman, M., Blyth, E., and Wagener, T.: Land surface model performance using cosmic-ray and point-scale soil

moisture measurements for calibration, Hydrology and Earth System Sciences, 21, 2843–2861, https://doi.org/10.5194/hess-21-2843-15

2017, 2017.

Kaminski, T., Knorr, W., Schürmann, G., Scholze, M., Rayner, P., Zaehle, S., Blessing, S., Dorigo, W., Gayler, V., Giering, R., Gobron, N.,

Grant, J., Heimann, M., Hooker-Stroud, A., Houweling, S., Kato, T., Kattge, J., Kelley, D., Kemp, S., Koffi, E., Köstler, C., Mathieu, P.-P.,

Pinty, B., Reick, C., Rödenbeck, C., Schnur, R., Scipal, K., Sebald, C., Stacke, T., Terwisscha van Scheltinga, A., Vossbeck, M., Widmann,

H., and Ziehn, T.: The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and challenges, J. Geophys. Res-Biogeo.,20

118, 1414–1426, https://doi.org/10.1002/jgrg.20118, 2013.

Kattge, J., Knorr, W., Raddatz, T., and Wirth, C.: Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-

scale terrestrial biosphere models, Glob. Change Biol., 15, 976–991, https://doi.org/10.1111/j.1365-2486.2008.01744.x, 2009.

Kelliher, F., Lloyd, J., Arneth, A., Byers, J., McSeveny, T., Milukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Varlargin, A., Ziegler,

W., Bauer, G., and E.-D., S.: Evaporation from a central Siberian pine forest, J. Hydrol., 205, 279–296, https://doi.org/10.1016/S0022-25

1694(98)00082-1, 1998.

Knauer, J., Werner, C., and Zaehle, A.: Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A

multibiome analysis, J. Geophys. Res-Biogeo., 120, 1894–1911, https://doi.org/10.1002/2015JG003114, 2015.

Knorr, W.: Satellite Remote Sensing and Modelling of the Global CO2 Exchange of Land Vegetation: A Synthesis Study, Max-Planck-Institut

für Meteorologie Examensarbeit, 49, 1894–1911, http://quest.bris.ac.uk/publications/knorr/thesis/thesis.html, 1997.30

Knorr, W.: Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties, Global Ecol.

Biogeogr., 9, 225–252, https://doi.org/10.1046/j.1365-2699.2000.00159.x, 2000.

Knorr, W., Kaminski, T., Scholze, M., Gobron, N., Pinty, B., Giering, R., and Mathieu, P.-P.: Carbon cycle data assimilation with a generic

phenology model, J. Geophys. Res-Biogeo., 115, G04 017, https://doi.org/10.1029/2009JG001119, 2010.

Kolari, P., Lappalainen, H., Hänninen, H., and Hari, P.: Relationship between temperature and the seasonal course of photosynthesis in Scots35

pine at northern timberline and in southern boreal zone, Tellus B, 59, 542–552, https://doi.org/10.1111/j.1600-0889.2007.00262.x, 2007.

Kolari, P., Kulmala, L., Pumpanen, J., Launiainen, S., Ilvesniemi, H., Hari, P., and Nikinmaa, E.: CO2 exchange and component CO2 fluxes

of a boreal Scots pine forest, Boreal Environ. Res., 14, 761–783, http://www.borenv.net/BER/pdfs/ber14/ber14-761.pdf, 2009.

28

https://doi.org/10.5194/bg-14-4409-2017
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1016/j.agrformet.2010.08.013
https://doi.org/10.1007/s00382-014-2221-6
https://doi.org/10.1016/j.agrformet.2015.08.247
https://doi.org/10.5194/hess-21-2843-2017
https://doi.org/10.5194/hess-21-2843-2017
https://doi.org/10.5194/hess-21-2843-2017
https://doi.org/10.1002/jgrg.20118
https://doi.org/10.1111/j.1365-2486.2008.01744.x
https://doi.org/10.1016/S0022-1694(98)00082-1
https://doi.org/10.1016/S0022-1694(98)00082-1
https://doi.org/10.1016/S0022-1694(98)00082-1
https://doi.org/10.1002/2015JG003114
http://quest.bris.ac.uk/publications/knorr/thesis/thesis.html
https://doi.org/10.1046/j.1365-2699.2000.00159.x
https://doi.org/10.1029/2009JG001119
https://doi.org/10.1111/j.1600-0889.2007.00262.x
http://www.borenv.net/BER/pdfs/ber14/ber14-761.pdf


Kozlowski, T. and Pallardy, S.: Acclimation and adaptive responses of woody plants to environmental stresses, Bot. Rev., 68, 270–334,

https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2, 2002.

Kropp, H., Loranty, M., Alexander, H., Berner, L., Natali, S., and Spawn, S.: Environmental constraints on transpiration and stomatal

conductance in a Siberian Arctic boreal forest, Biogeosciences, 122, 761–783, https://doi.org/10.1002/2016JG003709, 2017.

Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., and Richardson, A.: Constraining a global ecosystem model with multi-site5

eddy-covariance data, Biogeosciences, 9, 3757–3776, https://doi.org/10.5194/bg-9-3757-2012, 2012.

Lagergren, F. and Lindroth, A.: Transpiration response to soil moisture in pine and spruce trees in Sweden, Agr. Forest Meteorol., 112,

67–85, https://doi.org/10.1016/S0168-1923(02)00060-6, 2002.

Launiainen, S., Katul, G., Kolari, P., Lindroth, A., Lohila, A., Aurela, M., Varlagin, A., Grelle, A., and Vesala, T.: Do the energy

fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?, Glob. Change Biol., 22, 4096–4113,10

https://doi.org/10.1111/gcb.13497, 2016.

Leuning, R.: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 18, 339–355,

https://doi.org/10.1111/j.1365-3040.1995.tb00370.x, 1995.

Leuning, R.: Temperature dependence of two parameters in a photosynthesis model, Plant Cell Environ., 25, 1205–1210,

https://doi.org/10.1046/j.1365-3040.2002.00898, 2002.15

Lin, Y.-A., Medlyn, B., Duursma, R., Prentice, I., Wang, H., Baig, S., Eamus, D., de Dios, V., Mitchell, P., Ellsworth, D., de Beeck, M., Wallin,

G., Uddling, J., Tarvainen, L., Linderson, M.-L., Cernusak, L., Nippert, J., Ocheltree, T., Tissue, D., Martin-StPaul, N., Rogers, A., Warren,

J., De Angelis, P., Hikosaka, K., Han, Q., Onoda, Y., Gimeno, T., Barton, C., Bennie, J., Bonal, D., Bosc, A., Löw, M., Macinins-Ng, C.,

Rey, A., Rowland, L., Setterfield, S., Tausz-Posch, S., Zaragoza-Castells, J., Broadmeadow, M., Drake, J., Freeman, M., Ghannoum, O.,

Hutley, L., Kelly, J., Kikuzawa, K., Kolari, P., Koyama, K., Limousin, J.-M., Meir, P., Lola da Costa, A., Mikkelsen, T., Salinas, N., and20

Sun, W.: Optimal stomatal behaviour around the world, Nat. Clim. Change, 5, 459–464, https://doi.org/10.1038/nclimate2550, 2015.

Linkosalo, T., Heikkinen, J., Pulkkinen, P., and Mäkipää, R.: Fluorescence measurements show stronger cold inhibition of photosynthetic

light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn, Front. Plant Sci., 13, 1–8,

https://doi.org/10.3389/fpls.2014.00264, 2014.

Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Layer Meteor., 17, 187–202, 1979.25

Mäkelä, A., Hari, P., Berninger, F., Hänninen, H., and Nikinmaa, E.: Acclimation of photosynthetic capacity in Scots pine to the annual cycle

of temperature, Tree Physiol., 24, 369–376, https://doi.org/10.1093/treephys/24.4.369, 2004.

Mäkelä, J., Susiluoto, J., Markkanen, T., Aurela, M., Järvinen, H., Mammarella, I., Hagemann, S., and Aalto, T.: Constraining ecosystem

model with adaptive Metropolis algorithm using boreal forest site eddy covariance measurements, Nonlinear Processes in Geophysics, 23,

447–465, https://doi.org/10.5194/npg-23-447-2016, 2016.30

Martino, L., Elvira, V., Luengo, D., and Corander, J.: An Adaptive Population Importance Sampler: Learning From Uncertainty., IEEE

Transactions on Signal Processing, 63, 4422–4437, https://doi.org/10.1109/TSP.2015.2440215, 2015.

Medlyn, B., Duursma, R., Eamus, D., Ellsworth, D., Prentice, I., Barton, C., Crous, K., De Angelis, P., Freeman, M., and Wingate,

L.: Reconciling the optimal and empirical approaches to modelling stomatal conductance, Glob. Change Biol., 17, 2134–2144,

https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011.35

Medlyn, B., De Kauwe, M., and Duursma, R.: New developments in the effort to model ecosystems under water stress, New Phytol., 212,

5–7, https://doi.org/10.1111/nph.14082, 2016.

29

https://doi.org/10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
https://doi.org/10.1002/2016JG003709
https://doi.org/10.5194/bg-9-3757-2012
https://doi.org/10.1016/S0168-1923(02)00060-6
https://doi.org/10.1111/gcb.13497
https://doi.org/10.1111/j.1365-3040.1995.tb00370.x
https://doi.org/10.1046/j.1365-3040.2002.00898
https://doi.org/10.1038/nclimate2550
https://doi.org/10.3389/fpls.2014.00264
https://doi.org/10.1093/treephys/24.4.369
https://doi.org/10.5194/npg-23-447-2016
https://doi.org/10.1109/TSP.2015.2440215
https://doi.org/10.1111/j.1365-2486.2010.02375.x
https://doi.org/10.1111/nph.14082


Muukkonen, P., Nevalainen, S., Lindgren, M., and Peltoniemi, M.: Spatial occurrence of drought-associated damages in Finnish boreal

forests: results from forest condition monitoring and GIS analysis, Boreal Environ. Res., 20, 172–180, http://www.borenv.net/BER/pdfs/

ber20/ber20-172.pdf, 2015.

Nemani, R., Keeling, C., Hashimoto, H., Jolly, W., Piper, S., Tucker, C., Myneni, R., and Running, S.: Climate-Driven Increases in Global

Terrestrial Net Primary Production from 1982 to 1999, Science, 300, 1560–1563, https://doi.org/10.1126/science.1082750, 2003.5

Nobel, P., ed.: Physicochemical and environmental plant physiology, Academic Press, https://doi.org/10.1016/B978-0-12-374143-1.X0001-

4, 1999.

Owen, A. and Yi, Z.: Safe and Effective Importance Sampling, J. Am. Stat. Assoc., 95, 135–143, https://doi.org/10.2307/2669533, 2000.

Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kuppel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P., and Prunet,

P.: A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle,10

Geoscientific Model Development, 9, 3321–3346, https://doi.org/10.5194/gmd-9-3321-2016, 2016.

Post, H., Vrugt, J.A. amd Fox, A., Vereecken, H., and Hendricks Franssen, H.-J.: Estimation of Community Land Model pa-

rameters for an improved assessment of net carbon fluxes at European sites, J. Geophys. Res.-Biogeosci., 122, 661–689,

https://doi.org/10.1002/2015JG003297, 2017.

Powell, T., Galbraith, D., Christoffersen, B., Harper, A., Imbuzeiro, H., Rowland, L., Almeida, S., Brando, P., Lola da Costa, A., Costa, M.,15

Naomi M. Levine, N., Malhi, Y., Saleska, S., Sotta, E., Williams, M., Meir, P., and Moorcroft, P.: Confronting model predictions of carbon

fluxes with measurements of Amazon forests subjected to experimental drought, New Phytol., 200, 350–365, 10.1111/nph.12390, 2013.

Raddatz, T., Reick, C., Korr, W., Kattge, J., Roeckner, E., Schnur, R., Schnitzler, K.-G., Wetzel, P., and Jungclau, J.: Will the trop-

ical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century?, Clim. Dynam., 29, 565–574,

https://doi.org/10.1007/s00382-007-0247-8, 2007.20

Rannik, U., Peltola, O., and Mammarella, I.: Random uncertainties of flux measurements by the eddy covariance technique, Atmos. Meas.

Tech. Discuss., in review, 1–31, https://doi.org/10.5194/amt-2016-31, 2016.

Raoult, N.M., J. T. C. P. and Luke, C.: Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0,

Geosci. Model Dev., 9, 2833–2852, https://doi.org/10.5194/gmd-9-2833-2016, 2016.

Reick, C., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of natural and anthropogenic land cover change in MPI-ESM, Journal of25

Advances in Modeling Earth Systems, 5, 1–24, https://doi.org/10.1002/jame.20022, 2013.

Richardson, A., Hollinger, D., Burba, G., Davis, K., Flanagan, L., Katul, G., Munger, J., Ricciutio, D., Stoy, P., Suyker, A., Verma, S., and

Wofsy, S.: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes, Agr. Forest Meteorol., 136,

1–18, https://doi.org/10.1016/j.agrformet.2006.01.007, 2006.

Richardson, A., Mahecha, M., Falge, E., Kattge, J., Moffat, A., Papale, D., Reichstein, M., Stauch, V., Braswell, B., Churkina, G., Kruijt,30

B., and Hollinger, D.: Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals, Agr. Forest

Meteorol., 148, 38–50, https://doi.org/10.1016/j.agrformet.2007.09.001, 2008.

Richardson, A., Anderson, R., Arain, M., Barr, A., Bohrer, G., Chen, G., Chen, J., Ciais, P., Davis, K., Desai, A., Dietze, M., Dragoni, D.,

Garrity, S., Gough, C., Grant, R., Hollinger, D., Margolis, H., Mccaughey, H., Migliavacca, M., Monson, R., Munger, J.W. Poulter, B.,

Raczka, B., Ricciuto, D., Sahoo, A., Schaefer, K., Tian, H., Vargas, R., Verbeeck, H., Xiao, J., and Xue, Y.: Terrestrial biosphere models35

need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis, Glob. Change Biol.,

18, 566–584, https://doi.org/10.1111/j.1365-2486.2011.02562.x, 2012.

30

http://www.borenv.net/BER/pdfs/ber20/ber20-172.pdf
http://www.borenv.net/BER/pdfs/ber20/ber20-172.pdf
http://www.borenv.net/BER/pdfs/ber20/ber20-172.pdf
https://doi.org/10.1126/science.1082750
https://doi.org/10.1016/B978-0-12-374143-1.X0001-4
https://doi.org/10.1016/B978-0-12-374143-1.X0001-4
https://doi.org/10.1016/B978-0-12-374143-1.X0001-4
https://doi.org/10.2307/2669533
https://doi.org/10.5194/gmd-9-3321-2016
https://doi.org/10.1002/2015JG003297
10.1111/nph.12390
https://doi.org/10.1007/s00382-007-0247-8
https://doi.org/10.5194/amt-2016-31
https://doi.org/10.5194/gmd-9-2833-2016
https://doi.org/10.1002/jame.20022
https://doi.org/10.1016/j.agrformet.2006.01.007
https://doi.org/10.1016/j.agrformet.2007.09.001
https://doi.org/10.1111/j.1365-2486.2011.02562.x


Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini,

E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation model ECHAM5. PART I: Model

description, Max Planck Institute for Meteorology Report, 349, 1–127, http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_

scirep_349.pdf, 2003.

Schulze, E., Kelliher, F., Korner, C., Lloyd, J., and Leuning, R.: Relationships among Maximum Stomatal Conductance, Ecosystem Surface5

Conductance, Carbon Assimilation Rate, and Plant Nitrogen Nutrition: A Global Ecology Scaling Exercise, Annu. Rev. Ecol. Syst., 25,

629–662, http://www.jstor.org/stable/2097327, 1994.

Scott, D. W.: Multivariate Density Estimation and Visualization, http://EconPapers.repec.org/RePEc:zbw:caseps:200416, 2004.

Sellers, P.: Canopy reflectance, photosynthesis and transpiration, Int. J. Remote Sens., 6, 1335–1372,

https://doi.org/10.1080/01431168508948283, 1985.10

Thum, T., Aalto, T., Laurila, T., Aurela, M., Kolari, P., and Hari, P.: Parametrization of two photosynthesis models at the canopy scale in

northern boreal Scots pine forest, Tellus, 59B, 874–890, https://doi.org/10.1111/j.1600-0889.2007.00305.x, 2007.

Trudinger, C., Raupach, M., Rayner, P., Kattge, J., Liu, Q., Pak, B., Reichstein, M., Renzullo, L., Richardson, A., Roxburgh, S., Styles, J.,

Wang, Y., Briggs, P., Barrett, D., and Nikolova, S.: OptIC project: An intercomparison of optimization techniques for parameter estimation

in terrestrial biogeochemical models, J. Geophys. Res-Biogeo., 112, G02 027, https://doi.org/10.1029/2006JG000367, 2007.15

Ueyama, M., Tahara, N., Iwata, H., Euskirchen, E., Ikawa, H., Kobyashi, H., Nagano, H., Nakai, T., and Harazono, Y.: Optimization if a

biochemical model with eddy covariance measurements in black spruce forests of Alaska for estimating CO2 fertilization effects, Agr.

Forest Meteorol., 222, 98–111, https://doi.org/10.1016/j.agrformet.2016.03.007, 2016.

Veach, E. and Guibas, L.: Optimally Combining Sampling Techniques for Monte Carlo Rendering, SIGGRAPH 1995 Proceedings, pp.

419–428, https://doi.org/10.1145/218380.218498, 1995.20

Wang, K.-Y.: Canopy CO2 exchange of Scots pine and its seasonal variation after four-year exposure to elevated CO2 and temperature, Agr.

Forest Meteorol., 82, 1–27, https://doi.org/10.1016/0168-1923(96)02342-8, 1996.

Xu, Z., Shimizu, H., Yagasaki, Y., Ito, S., Zheng, Y., and Zhou, G.: Interactive Effects of Elevated CO2, Drought, and Warming on Plants, J.

Plant Growth Regul., 32, 692–707, https://doi.org/10.1007/s00344-013-9337-5, 2013.

Zhou, S., Duursma, R., Medlyn, B., Kelly, J., and Prentice, I.: How should we model plant responses to drought? An analysis of stomatal25

and non-stomatal responses to water stress, Agric. Forest Meteorol., 182–183, 204–214, https://doi.org/10.1016/j.agrformet.2013.05.009,

2013.

31

http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf
http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf
http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf
http://www.jstor.org/stable/2097327
http://EconPapers.repec.org/RePEc:zbw:caseps:200416
https://doi.org/10.1080/01431168508948283
https://doi.org/10.1111/j.1600-0889.2007.00305.x
https://doi.org/10.1029/2006JG000367
https://doi.org/10.1016/j.agrformet.2016.03.007
https://doi.org/10.1145/218380.218498
https://doi.org/10.1016/0168-1923(96)02342-8
https://doi.org/10.1007/s00344-013-9337-5
https://doi.org/10.1016/j.agrformet.2013.05.009


0.70

0.75

0.80

0.85

0.90

0.95

fC3

KDE

0 20 40 60 80 100

Evolution of parameter estimates

0.5

0.6

0.7

0.8

0.9

θdr

0 20 40 60 80 100

5

10

15

20

25

Cdecay

0 20 40 60 80 100
APIS iteration step

Figure 1. Examples of the evolution of the APIS algorithm from the Bethy calibration. The left panel is the kernel density estimate of the

location parameters at the start of the process (black), after 20 iterations (blue) and after 100 iterations (green). The right panel shows the

location parameters (gray), their mean (red) and one standard deviation (dashed) as well as the global estimate (yellow, calculated with the

deterministic mixture approach) of the parameter expected value.
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Figure 2. Validation period average annual cycles of evapotranspiration and gross primary production; observations (black) and the model

using the Bethy stomatal conductance formulation with default (green) and optimised (blue) parameterisation. Also presented are daily model

values cross plotted against observations with corresponding slope of the regression line (b) and the coefficient of determination (r2).
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Figure 3. Hyytiälä site drought in summer 2006. The time series for evapotranspiration and gross primary production are 5-day running aver-

ages and for β-function daily values. The observations are plotted in black and the model with default parameterisation in green, calibration

period optimisation in blue and the dry year optimisation in magenta. The red vertical lines indicate the start and end of the actual drought.
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Figure 4. Hyytiälä site water use efficiency for the Bethy and USO formulations. Scatter plotted are the dry period 5-day running averages

of ET and GPP, coloured by the intensity of the drought (β-function). The left column depicts the model with the more generally optimised

parameter values, the middle column with the drought optimisation and the right column presents the corresponding observations, coloured

by the same intensity as in the middle column. The grey points are from the corresponding time during the two previous years.
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