
This document contains the reviewer comments (and our responses) to the second iteration of the 
manuscript: https://www.geosci-model-dev-discuss.net/gmd-2018-313/

• attached is also a new supplement S3 (see response to general comment 2)

• and the latexdiff file containing the modifications to the previous version of the manuscript (the 
images have been cut from the file to keep the file size moderate).

The comments are gathered here as indented text and we have added numbering to them, so they can be
individually referred to, if need be. Our responses to these comments are shown as unindented text (such
as this) after each comment. We have made few additional grammar corrections, and also modified Fig. 4
by changing the axis units (so both are in mass units) and added gridlines to the image.

Comments by Reviewer 1
I thank the authors for correcting the previous manuscript according to my comments. The procedure
of the experiment becomes much clearer, and generally, I agree with the interpretation of the results.
However, now I found some contradictions in the results and discussion. Authors need to carefully
explain the results for ET and the estimated parameters related to the water stress. As the other
reviewer suggested, the conclusions should be supported by the numerical results.

I also suggest some improvements for the manuscript so that the readers can easily understand
(notified with “Draft amendment”). They are just my recommendations for the improvements of the
manuscript, and there may be misunderstandings. Therefore, the authors needed to reconsider the
way of writings. I read these sentences, again and again, therefore, the difficulties should be the
same for other readers.

General comments:

The authors need to describe the below results carefully.

1. Improvement of springtime increase

GPP is greatly improved indeed, but improvement for ET is not so clear.

On this we agree but it should also be noted that there is not such an obvious discrepancy between the
modelled and observed springtime ET as there is for GPP. We can see improvements e.g in FI-Hyy and FI-
Sod, where the default model early bias has been removed.

2. b and r^2

◦ Fig. 2 and S2 show that both b and r^2 are improved for GPP. However, b for ET is not so
much improved or sometimes gets worse (especially the biases at FI-Ken and FL-Sod are
apparent). I think it is better to show the results which get worse compared to the default
using italic letters in Table 6. Then the bias increment for ET at FI-Ken, FL-Sod, and both
for ET and GPP at RU-Zot and US-Prr will also be clear.

The focus of Table 6 is to identify the “best” conductance formulation from the results point of view whereas
the suggested metric would show differences between default  and optimised model versions and thus
evaluate the performance of the calibration. We believe that combining the suggested metric to this table
would not be beneficial as it would blur the focus that is to compare the conductance model behaviour.
However, we have produced a bit more detailed analysis along the suggested lines and added it as a
supporting  supplement  S3.  The  supplement  contains  details  on  both  model  specific  and  site  specific
improvements and deterioration's in the calibration process, separated for GPP and ET and the metrics (b
and r²). The bias increments and deteriorations in the model are clearly apparent in the supplement.
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We are treating these results only as supporting material and not including them in the main text because
the interpretation of the analysis is not straightforward. In the supplement we are not comparing like-to-like
– the JSBACH default parameters reflect the Baseline and Bethy behaviour (as they are originally part of
the model) but the BB (and variants) are newly introduced to the JSBACH. The default parameters for the
BB models can be seen as arbitrary and we have not done/presented any initial  calibration/validation.
Therefore, we like to keep the focus of the manuscript in the comparison of the “end results”.

◦ r^2 for ET is improved compared to the default, but much lower than r^2 for GPP. These
results are also needed to be explained in the result section. The bold letter may be better
for, e.g. from 0.9 to 1.1 so that the readers easily recognize the higher values.

The main reasons for this is that in JSBACH, e.g. the conductance is resolved for carbon assimilation, and
the same conductance is then used for transpiration. In the model, GPP always takes a priority and is the
determining factor  (we could  almost  say that  ET/transpiration  is  an afterthought).  Additionally,  GPP is
derived from EC measurements by flux partitioning – this tends remove some of the flux instabilities (that
are still present in ET). This also plays a role as the more stable GPP flux is easier to model than the more
chaotic ET. This explanation was added to discussion in section “Validity of the simulations”.

We appreciate the suggestion about the metric and explored the idea but ultimately feel that our original
“metric” is more suited for the situation. The purpose of the bolded values is not to draw attention to where
the  model  reproduces  the  observations  well.  The  focus  is  on  the  comparison  of  the  conductance
formulations and systematic differences in the model performance – so we are also interested in the best
performance on poorly replicated sites. The suggested metric would only focus on the “good” sites.

In addition to the suggestion, we also tested highlighting the best value (for each site and b, r² separately)
and all values that are within 5% of it (similarly to S3). This approach yielded similar, but slightly obscured
results to the original metric (so the interpretation was not as straightforward).

◦ For model validation,  b and r^2 may better  to be evaluated separately to prevent  the
overestimate, because sometimes r^2 is high but b gets worth. From this aspect, it may
better to cumulate the number of the “good” result e.g. from 0.9 to 1.1 for b and 0.9 to 1.0
for r^2, respectively. Then b and r^2 is better to be explained and discussed for ET and
GPP respectively.

We do not follow, what overestimate the reviewer means. The question about using a different metric to
examine  the  model  performance  was  addressed  above.  We  have  separated  the  ET  and  the  GPP
discussion  along  these  lines,  in  the  places  where  the  reviewer  has  suggested  it  (see  the  specific
comments).

The “good” results yielded with the suggested metric (with the suggested limits) are presented below and
they do not provide clear added value to the results of Table 6:

Base Bethy BB Leu F&K USO

ET: b 5 5 5 4 3 1

ET: r² 0 0 0 0 0 0

GPP: b 3 4 5 4 4 4

GPP: r² 3 3 2 4 5 5

3. q, θpwp, θtsppwp, θpwp, θtsptsp

The effects of these parameters are complicated. Therefore, a clear explanation is needed
so that the readers can understand it easily. The optimised θpwp, θtsppwp and θpwp, θtsptsp for the general



condition  are  smaller  than  the  default;  that  makes  β  larger  (which  means,  β  became
ineffective). The oprimised θpwp, θtsp tsp for the dry condition is also smaller than the default but
larger  than that  of  general  condition  and θpwp, θtsppwp varies  between the sites;  that  makes β
different between the sites. Larger q makes β smaller, whereas smaller q makes β larger
(because β is between 0 and 1). In my understanding, q changes An, which control GPP but
not affect ET. Is that correct?

We have added description about the combined effect of these parameters to the end of the section 2.3
“Modifications  to  the  JSBACH model”.  The  changes  to  parameter  values  do  not  necessarily  make  β
ineffective, they can also be viewed to change the response intensity to drought (instead of slow gradual
restriction we get a more abrupt and strong response).  The parameter θpwp, θtsppwp does not vary between the
sites in our simulations – it varies between the conductance formulations (i.e. Fig. 3 rightmost panels) as
the reviewer probably meant.

The  β function is first  used to calculate the stomatal conductance for  carbon  assimilation.  The same
conductance is later used for transpiration calculations (A8). However, the factor βq only affects the net
assimilation, not ET. So q affects only GPP.

4. I understand that the authors used the mean of the site level cost function values for APIS.
Then, the parameters of the 50 draw for each IS sampler are the same for all study site?
Does Figure 1 show the “global” estimate by using the “mean” of the site level cost function?
I think it is better to add these descriptions to P9 Lines 25-27 and Fig. 1 so that the readers
can easily understand the procedure.

Essentially, each site generates the ET and GPP fluxes with the same parameter values. Then the actual
cost  function  (which  is  returned  to  APIS/optimiser)  is  calculated  as  the  mean  of  the  site  level  “cost
functions”. So when we refer to the cost function, it is always this mean (except for the dry period). We
modified the cost function definition in 2.9 (which we believe is the correct location) to better reflect this.

All of the estimates in Fig. 1 are calculated with the “average cost function”. The  global estimate (yellow) is
produced with the deterministic mixture approach (item 4 in the MCMC-APIS comparison list) whereas the
red is just the mean of the IS sampler locations. We added the mention of the deterministic mixture to the
image caption.

Specific Comments:

1. P1. The title is needed to be reconsidered. For example, "Parameter calibration for stomatal
conductance and photosynthesis.."

We calibrate also parameters that are not directly linked to stomatal conductance or photosynthesis, so the
suggested revision is imprecise. AS a compromise, we could change the title to: “Parameter calibration and
stomatal  conductance  formulation  comparison  for  boreal  forests  with  adaptive  population  importance
sampler in the land surface model JSBACH”

2. P1.  Lines  6-8:  Draft  amendment,  also  please  reconsider  the  description  with  regarding
general  comments  1.  “This  modification  enabled  the  model  to  correctly  reproduce  the
springtime increase in GPP for  conifers throughout  the measurements sites used in this
study. However, the improvement for ET was limited. The key parameters identified along
with this modification were the parameters which control the soil moisture stress function
and the overall rate of carbon fixation.”

3. P1. Lines 8-10: Please reconsider the description, "Overall, … models", concerning general
comments 2.



We have amended the manuscript to better reflect the two suggestions above. However, the delayed effect
of temperature is mostly correcting the erroneous behaviour of the springtime GPP – the springtime ET is
not the “original” problem, so it should not be the focus here. We now state the “improvements” for ET and
GPP separately in the manuscript.

4. P5. Line21: What is “new”? Is that mean new to the JSBACH model? The explanation for q
(one of the key parameters) is also not found in the main text.

Yes, the text has been amended to reflect this better. We have also added the explanations of q to the end
of the section 2.3.

5. P10. Lines 4-11: I do not understand this paragraph. Please reconsider the descriptions. In
my  understanding,  each  IS  sampler  use  just  one  parameter  set  for  spin-up.  Then  the
remaining 49 members use the same spin-up but the parameters are perturbed around the
first parameter set. If so, such description may help the readers to understand the spin-up
process  easily.  The  initial  parameter  combination  for  each  IS  sampler  is  also  selected
randomly  from  the  ranges  in  Table  2.  This  information  is  also  needed.  I  also  do  not
understand the procedure, “We also slightly scale (reduce) the importance weights based on
the distance of ..”. Is it the same as procedure 3 or different procedure just for spin-up?

We rearranged the sentenced in the paragraph and added the proposed description. The initial parameter
combination is now more explicitly stated in the MCMC-APIS comparison list. The scaling procedure is the
same as depicted in the list before.

6. P11. Lines 6-8: I still do not understand “Since we also did not run the model spin-up for ..
parameter values”. The authors described that the post procedure for APIS is used for the
“correct spin-up” at P10. Lines 4-11. Is not enough? If so, why?

We do believe that the “spin-up correction” should be sufficient but it is also a good practice to verify the
results of the more complicated sampling algorithms with simpler optimisers (as we have done here). The
optimiser is also the only algorithm used for the drought period (we noticed this detail was missing from the
manuscript and added it to this section).

7. P11. Line 8: Does “the same datasets as APIS” mean, same calibration period (the first five
years), same climate forcing data, and the same observation data? Is the initial state also
generated by APIS, or same as spin-up for APIS? Please make these settings clear.

The dataset  is  exactly  the  same as for  APIS.  The initial  state is  the mean of  the APIS final  location
parameters. The spin-up is run separately for all the samples the optimiser draws. These details have been
added to the manuscript.

8. P12. Line 5: What are the "acceptable values"? Is that mean the final state of the parameter
distribution range of the parameter optimisation? Please make it clear.

No, this refers to the absolute range of the parameters. We added a reference to the Table 2, which should
make this clear.

9. P14. Lines 6-8: The former sentence indicates that bud burst is not as critical, whereas the
latter  sentence  indicates  that  the  acclimation  parameter  dominates  the  phenology
parameters.  At  first,  I  thought  these  sentences  contradict,  but  later  I  understand  the
difference of these procedures. I think it is better to describe the different functions of these
parameters clearly so that the readers easily understand.

We added a description for the function of tau and the LoGro parameters.

10. P15. Lines 10-11: "The annual cycles of the Bethy model are more in line with the Ball-Berry
variants than those of the Baseline model (see supplements S2 for the yearly cycles of the



other models)." I think this is not always true. This result is not used in discussion, so I think
it  is  better  to  remove this  sentence.  The authors can rewrite  that  "The results  of  other
stomatal conductance models are shown in S2".

We modified the sentences according to the suggestions. We also added here a mention of the supporting
material in supplement S3.

11. P15. Lines 15-18: Please reconsider this paragraph according to my general comment 1
and 2.

We modified this paragraph and stated separately the ET and GPP behaviour.

12. P16. Table 6: “best values” -> “N over threshold” (please refer general comment 2).

Not changed as we did not change the metric (see answer to general comment 2).

13. P17. Line 10-16: The authors do not show the results. Therefore, I do not understand the
experimental setting and what is validated.

We produce similar results as in Fig. 2 and supplement S2 but using the dry period optimised parameters.
We  compare  these  to  Fig.  2  and  S2.  The  paragraph  in  question  merely  states  that  the  dry  period
optimisation does not generally produce better results. We amended the paragraph so the setup is easier
to understand.

14. P18. Lines 24-26: “This is mostly a direct result of the normalisation of the cost function that
inflates the target distribution and gives too much weight to the initial locations and draws.” I
do not understand this sentence. I think the convergence is rather related to the parameter
sensitivity to the observations.

Yes, the reviewer is absolutely correct. The cost function depicts the parameter sensitivity to observations.
So when we normalise the cost function, we inflate the target distribution – so the parameter (relative)
sensitivity to the observations is reduced.

15. P19. Lines 1-5: Draft amendment, also please refer general comment 1.

“This delay is also reflected in transpiration, and consequently in ET at FI-Hyy and FI-Sod to
some extent. However, the effect at the other sites is not clear." (see general comment 1).
The description for FI-Sod seems too much detailed, and discussion is rather needed to be
done for general comment 2. Also, I wonder why ET is not improved greatly compared to
GPP,  although both  the observations  are  used  for  the  calibration.  There  may be some
possible reasons for  the mismatch.  1)  interaction in  the optimisaion process.  For me,  it
seems that  GPP is  optimised by soil  water parameters,  and that  affect  ET estimate.  2)
Parameter estimation bias (e.g. θpwp, θtsphum strongly decreased and get to its lower limit). 3) Bias
correction by q. In my understanding, GPP bias can be corrected using q, but q does not
affect  the  bias  of  ET.  Considering  these  issues  are  important  for  the  study  with  multi
observations  and  to  improve  ET.  I  recommend  the  authors  to  run  some  additional
experiment  to  clarify  the  issues  mentioned  above  for  the  discussion  (only  one  site  is
enough). If it is beyond the scope, please discuss the possible reasons for future study.

We modified the sentences following the suggestions. We clarified the FI-Sod description and feel that it is
an important point to make  – improving model behaviour can lead to an increase in the ET bias if  the
improvement negates a previously erronous behaviour.  The differences in ET/GPP improvements have
been addressed in our response to general comment 2.

16. P19. Lines 13-16: Please reconsider this paragraph according to my general comment 2.

We modified this paragraph slightly, but as we did not change the metric in Table 6, the changes are minor.



17. P20.  Lines  1-3:  I  do  not  find  "the result  of  the site  level  estimates  of  g1”,  so I  do not
understand this sentence. “not only” is needed at Line 1. I also do not understand what does
“control” for Wang mean.

This  is  a  general  comment  regarding  e.g.  literature  values,  not  specific  simulations/results  in  the
manuscript – the sentence was modified to reflect this. The control refers to the setting in the Wang (1996)
paper, this has been modified to “(in Table 1, Control)”, which should clarify the reference. 

18. P20. Lines 18-28: Please reconsider this paragraph with general comments 3.

We added the clarifications in the “Model modifications” section as explained in the answer to general
comment 3. Therefore, we mainly added some clarifications to this paragraph.

19. P20, Line 20: Not only θpwp, θtsptsp but also θpwp, θtsppwp is lower.

Added.

20. P21. Lines 3-4: "The parameters affecting the optimisation process the most were consistent
for all stomatal conductance formulations." I do not understand this sentence.

Yes this sentence was missing commas, but we modified the sentence to be more understandable: “The
parameters  that  were  most  effective  in  the  optimisation  processes,  were  consistent  for  all  stomatal
conductance formulations.”

21. P21. Lines 8-11: Please reconsider this paragraph with general comments 3.

◦ How did the authors evaluate the "importance of q for the Ball-Berry type model"? The
same validation of importance in Table 5 may need for Table 7.

◦ “Overall, both optimisations strongly indicate that boreal forest transpiration is not limited
by soil moisture stress under normal conditions.” In the discussion, the authors indicated
two  reasons  (the  other  is  the  water  retention  capabilities  of  the  soil).  Also,  ET  is
sometimes underestimated. Therefore, the authors can just indicate the possibility.

The importance can be verified from the sampling states directly,  but  it  can also be seen from Fig.  3
rightmost panels, where we have plotted the β-function values during the drought. Since we are focusing
on the dry event, the relative amount of values affected by q (i.e. low soil moisture) is considerable higher
than under general conditions (so q becomes more important). The “importance metric” was not used here
because it was meant to reflect the APIS simulation identifiability (so it would be detrimental to add it to
Table 7, where APIS was not used). 

We added a mention about the nonlinearity of the additional reduction (βq), which also indicates that soil
moisture stress is not the limiting factor during normal conditions. We removed  the word “strongly” but feel
that this formulation should be sufficient as it is indicative. If ET is underestimated, then likely transpiration
is also – so this is not a contradiction as such but points to other possible problems in the model.

22. P21. Line 13: Please reconsider this paragraph with general comments 2.

We examined the different  metric  proposed in GC2,  but  decided against  this.  Therefore,  only  minimal
changes were made to this paragraph.

Technical corrections

1. P1. Lines 2-3: Draft amendment

“The  parameter  posterior  distributions  were  generated  by  the  adaptive  population
importance sampler (APIS), then the optimal values were estimated by a simple stochastic
optimisation algorithm”

Accepted.



2. P1. Lines 3-5: Draft amendment

“Using the in-situ measurements of evapotranspiration (ET) and gross primary production
(GPP), we calibrated three model parameter groups (**, **, and **), and identified the key
parameters. “

This is slightly inaccurate, because we don’t calibrate the groups – APIS does not use the grouping and the
optimiser  also draws samples from the full  parameter space.  We modified the previous formulation to
include the “in-situ observations”.

3. P1. Lines 11-13: Draft amendment

“This optimisation improved the model behaviour, but the changes to the parameter values
were significant except for the unified stomatal optimization model (USO). Interestingly, the
USO model demonstrated the best performance during this event with only small changes to
the parameter values."

Accepted with modifications: “This optimisation improved the model behaviour, but resulted in significant
changes to the parameter values except for the unified stomatal optimisation model (USO). Interestingly,
the USO model demonstrated the best performance during this event.”

4. P2. Lines 20-22: Draft amendment

"It  can be hypothesised that  the  choice of  the  stomatal  conductance  model  affects  the
ecosystem model parameters broadly. Because the stomatal conductance formulations vary
in  their  responses  to  the  different  conditions.  However,  a  holistic  assessment  of  the
performance  of  the  stomatal  conductance  models  together  with  other  parameters  (e.g.
photosynthesis parameters) has been missing."

Accepted with slight modifications.

5. P3. Lines 6-7: Draft amendment

“The APIS algorithm samples the full parameter space (as do MCMC methods) and it can
treat a mixture of parameter prior distributions. Therefore, APIS can estimate complicated
multidimensional probability distributions.”

Accepted with slight modifications.

6. P3. Lines 11-14: Draft amendment

“First,  we  utilise  APIS  to  sample  the  full  parameter  space  with  the  different  stomatal
conductance formulations and to locate different modes of the target parameter distributions
(peaks of high probability). Second, using the distributions generated by APIS as the prior
distributions, the parameters are optimized using a simple stochastic optimisation method.
Finally, we assess the inter-site variability and the robustness of the calibrated parameters
together  with  different  stomatal  conductance  formulations.  Optimised  parameters  for  a
specific  drought  is  also  investigated and compared with the parameters for  the general
optimisation.”

Accepted with slight modifications.

7. P3. Line 20: Draft amendment

“The site level half-hourly measurements of eddy covariance (EC)”

Accepted with modified word order.

8. P3. Lines 21-24: Draft amendment



“The gap-filled and low quality (based on FLUXNET data quality flags) measurements were
masked, and the daily aggregates (usually means) were accepted as part of the calibration
process if at least 60% of values between 4:00 and 20:00 (i.e. daytime measurements) for
that  day  were  unmasked.  The daily  aggregated data  (ET and  GPP)  were used for  the
calibration and the validation, whereas all of the half-hourly data were used as the climate
forcing data (as explained in section 2.4).”

Accepted with slight modifications.

9. P5. Line 32: Draft amendment

“However,  coniferous evergreen trees do not  shed all  of  their  leaves for  winter,  and the
original phenology model is not suitable for a boreal forest.”

This is not entirely correct. The purpose of the phenology model is to determine when new leaves start to
grow and the consequent growth rate. The state of acclimation that in our simulations corrects the early
spring GPP, restricts the net assimilation rate but does not (directly) influence the phenology model. We
believe that the phenology model itself is performing adequately.

10. P6. Table 2: The additional parameters for Friend and Kiang model is also needed to be
included.

Added.

11. P7. Line 1: There are many “b” in this manuscript: photosynthetic acclimation, additional
parameter for Friend and Kiang model, and the slope of the regression line. The authors
should change them so that the readers can recognize these parameters are different.

Modifed, the F&K exponent is now d and the curvature in photosynthetic acclimation is k.

12. P7. Line 17: Draft amendment

“In the original JSBACH formulation (i.e. the Baseline version),”

Accepted.

13. P9. Lines 5-8: Draft amendment

“Above i is the elements with each IS sampler (described later). Generally, Eq. (4) cannot be
analytically solved, hence it is usually estimated numerically. Commonly this is achieved by
one of the many Markov chain Monte Carlo (MCMC) methods, but in this study, we apply the
adaptive population importance sampler (APIS) defined by Martino et al. (2015). APIS is a
Monte Carlo (MC) method that utilises a population of importance samplers (IS) to jointly
estimate the target pdf (p(θpwp, θtsp|x)) and the normalising constant (Z(x)) by a deterministic mixturex)) and the normalising constant (Z(x)) by a deterministic mixture
approach (Veach and Guibas, 1995; Owen and Yi, 2000), whereas the MCMC methods do
not care about the value of Z. Importance sampling density q(θpwp, θtsp) is also introduced in APIS
algorism.”

Then P10. Lines 13-15 needed to be removed to here.

Accepted with slight modifications. The “i” refers to the i-th element in the (parameter) vector as is the
standard notation (we added this information also). It is just calculated as the marginal integral over the
whole parameter space.

14. P11. Line 6: Draft amendment

“overshadows the calculations” -> I do not understand "overshadow". Appropriate word is
needed.

This was reworded to “dominates the calculations”.



15. P13. Line 17: I could not find Ball-Berry results in S1.

The supplement included the image “APIS-S1-posteriors.png” that includes both Bethy and BB posteriors
at  20 iterations.  Apparently I  forgot  to add the chains for  the BB results when I  reproduced the other
images. Will be added to the supplement.

16. P13. Table 4: Draft amendment

“Parameter scale reduction ^R (at APIS iteration) and stability δ(threshold number of the
iteration) estimates from the Bethy simulations.”

Accepted.

17. P14. Lines 2-3: Draft amendment

“There is an overall agreement on the values of the most prevalent parameters (see the bold
and the italic letters in Table 5 between the models.”

Accepted, with “letters” changed to characters.

18. P14. Table 5: The order of the parameters is different from Table 2. I think that the same
order is better to be understood. “b” also should be reconsidered.

Yes, the g0, g1, a, d (previously b) were moved to the end of the Table. We will change this to the same
order as before.

19. P15. Lines 26-27: Draft amendment

“The values of the relative humidity parameter θpwp, θtsphum, the residual stomatal conductance g0,
and fC3 have remained nearly unchanged,”

The relative change in the values of fC3 is quite large and the parameter is now at the lower limit. We added
remarks on this (and the low values of g1) to the text.

20. P15. Lines 28-29: Draft amendment

“Noticeably the USO optimisation only changes the value of θpwp, θtsptsp and q, and leaves the rest
of the parameters almost untouched.”

Accepted with slight modifications.

21. P15. Lines 30-33: Draft amendment

“For ET, the Baseline, Ball-Berry, and USO are greatly improved especially at the drought in
summer 2006 when compared to more general optimisation, however too much drawdown
was found for Bethy. The Baseline, Ball-Berry, Leuning, and to a lesser degree the Friend
and Kiang formulations, now suffer from the too low ET values before the actual drought.
GPP was greatly  improved both for  general  and dry period optimisatons except  for  the
drawdown for the Baseline and Bethy at the drought in summer 2006. Drawdown for USO is
also  clear  but  successfully  reproduce  the  observed  drawdown.  The  GPP  of  other
formulations  has  remained  roughly  the  same  as  with  the  more  generally  optimised
parameter values. Overall, The Bethy model has a too strong drawdown for both ET and
GPP during the drought.”

We did not directly accept this amendment (as there is some repetition), but modified the paragraph in
question to clarify it.

22. P17. Line 4: “Fig. 4, right”

We added “rightmost panels”.



23. P18. Line 9: Draft amendment

“reproducing the fluxes for the validation sites with low LAI (i.e. RU-Zot and US-Prr)”

Accepted.

24. L18. Line 17: Draft amendment

“We optimised the model for individual (calibration) sites as well (not shown).”

Accepted.

25. P20. Line 1: “The site level estimates of (g0 and) g1 are sensitive not only to”

Accepted.

26. P3. Figure 4: “Bethy (general)” seems better.

We are not entirely certain, what the reviewer indicates here. In Fig. 4, we can understand why Bethy
(opt/general) seems better than Bethy (dry), but the b and r² values in Fig. 3 show that it is not.

Comments by Reviewer 3
Dear authors,

I checked the authors appropriately addressed all items raised by the referee #2 except following 2
items.

(1) For the following referee's comment.

20. 5.5. The sentence is unintelligible. Moreover, the explanation of how parameter ranges
(i.e.  priors  -  why don’t  you call  them priors)  are derived is  not  sufficient.  Provide a clear
rationale for prior elicitation.

Authors replied as follows.

Parameter ranges are not priors. This is explained at the beginning of this document.

But I could not find corresponding explanation on the manuscript.

We have modified the section 2.5: “Sampling process”, where the difference between the parameter ranges
and priors is now explicitly stated. We also added a focus to the Table 2 (parameter descriptions) caption:
“model parameters with default values, range __of acceptable values__”, which should also clarify the role
of the parameter ranges.

(2) On the last item from the referee#2, authors replied as follows.

The code is under MPI-M License agreement and we cannot distribute it. The driving data
(approximately 500Mb) and chains can be uploaded e.g. as supplements.

For  ensuring  computational  reproducibility,  driving  data,  at  least,  should  be  available  on  an
appropriate repository, which is reasonably accessible for readers.

The driving data (calibration and validation) was uploaded to the Zenodo data portal, as stated in the code
availability section of the manuscript. We amended the description in the data availability section to include
this information more precisely (instead of just “dataset” we state that it  contains the forcing data and
observations).



Supplement S3

This supplement is a supporting analysis of the calibration process improvements, when compared to the model with default
parametrisations. The analysis is based on the slope of the regression line (b) and the coefficient of determination (r2) from Fig.5
2 and the corresponding supplementary images (S2). We calculated how many times the calibrated parameter values resulted in
improvements for these variables (in boldface), how many times these values are roughly the same (the value from the default
simulation is within 5 % of the corresponding value from the calibration process) and how many times the calibration has
worsened the results (italic).

We urge caution in making detailed or definate conclusions based on these supporting results. This is because the Ball-10
Berry model and the variants are here coupled to the JSBACH model without any initial calibration. The default parameter
values for these models are taken from literature – it is possible that the combination of these values and the JSBACH default
parametrisation (for the other parameters) results in inferior behaviour. Therefore, comparing the calibrated results to these
simulations may not be meaningful.

Table S3a. Model spesific analysis of the calibration process for the validation period. Improvements are given in boldface, similar behaviour
without any accent and deteriorations in italic.

mode b(ET) r2(ET) b(GPP) r2(GPP) Σ
Base 2,3,5 9,1,0 8,0,2 8,2,0 27,6,7
Bethy 3,1,6 9,1,0 8,0,2 10,0,0 30,2,8
BB 7,1,2 10,0,0 9,0,1 9,1,0 35,2,3
Leu 5,0,5 10,0,0 8,0,2 8,2,0 31,2,7
F&K 2,2,6 10,0,0 8,0,2 10,0,0 30,2,8
USO 2,2,6 9,1,0 7,0,3 8,2,0 26,5,9

Σ 21,9,30 57,3,0 48,0,12 53,7,0

Table S3b. Site spesific analysis of the calibration process for the validation period. Improvements are given in boldface, similar behaviour
without any accent and deteriorations in italic. Validation site identifiers have also been italised.

site b(ET) r2(ET) b(GPP) r2(GPP) Σ
CA-Obs 3,3,0 6,0,0 6,0,0 6,0,0 21,3,0
CA-Qfo 2,1,3 6,0,0 6,0,0 6,0,0 20,1,3
FI-Hyy 3,2,1 6,0,0 6,0,0 3,3,0 18,5,1
FI-Ken 1,0,5 3,3,0 5,0,1 6,0,0 15,3,6
FI-Sod 0,0,6 6,0,0 6,0,0 6,0,0 18,0,6
RU-Fyo 3,3,0 6,0,0 6,0,0 2,4,0 17,7,0
CA-Ojp 2,0,4 6,0,0 6,0,0 6,0,0 20,0,4
FI-Let 6,0,0 6,0,0 6,0,0 6,0,0 24,0,0
RU-Zot 1,0,5 6,0,0 1,0,5 6,0,0 14,0,10
US-Prr 0,0,6 6,0,0 0,0,6 6,0,0 12,0,12

Σ 21,9,30 57,3,0 48,0,12 53,7,0
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Abstract. We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from

10 FLUXNET coniferous evergreen sites in the Boreal zone. The parameter posterior distributions were generated by the adap-

tive population importance sampler (APIS)and ,
::::
then

:
the optimal values

::::
were

::::::::
estimated

:
by a simple stochastic optimisation

algorithm. The observations used to constrain the model are
:::::
model

:::
was

::::::::::
constrained

::::
with

::::::
in-situ

::::::::::
observations

::
of

:
evapotranspi-

ration (ET) and gross primary production (GPP). We identified the key parameters in the calibration process. These parameters5

control the soil moisture stress function and the overall rate of carbon fixation.

The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity in spring. This

modification enabled the model to correctly reproduce the springtime increase in GPP (which was also reflected in ET) for

conifers throughout the measurements
:::
for

::
all

::::::
conifer

:
sites used in this study. Overall, we were able to improve

:::
the

:::::::::
calibration

:::
and

:::::
model

::::::::::::
modifications

::::::::
improved the coefficient of determination and the model bias

::
for

::::
GPP

:
with all stomatal conductance10

formulations.
::::::::
However,

::::
only

:::
the

:::::::::
coefficient

::
of

::::::::::::
determination

::::
was

::::::
clearly

::::::::
improved

:::
for

:::
ET.

:
The optimisation resulted in best

performance by the Bethy, Ball-Berry and the Friend and Kiang stomatal conductance models.

We also optimised the model during a drought event in a Finnish Scots pine forest site. This optimisation improved the

model behaviourbut the ,
:::
but

:::::::
resulted

::
in

:::::::::
significant

:
changes to the parameter values were significant. Interestingly,

:::::
except

:::
for

the unified stomatal optimisation model demonstrated
::::::
(USO).

:::::::::::
Interestingly,

:::
the

::::
USO

::::::
model

:::::::::::
demonstrated

:::
the best performance15

during this eventwith only small changes to the parameter values.
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1 Introduction

Plants exchange carbon dioxide (CO2) and water
:::::
vapour

:
(H2O) with

:::
the atmosphere. Sufficient soil water, irradiance and ade-

quate temperature are required to maintain the exchange rate
:::
rates

:
during the growing season. Disturbances in these conditions

such as drought, cold temperature or low radiation cause the plants to respond to the environmental stress via stomatal clo-

sure and the drawdown of
:::::::
decrease

::
in

:
photosynthesis and transpiration (???). The capability of plants to recover from such5

events depends on species and their adaptation to site conditions (?). Stress is part of the normal annual cycle of the plants, but

occasionally it may exceed the limits of recovery.

Soil water deficit and high water vapour pressure deficit can result in suppressed plant transpiration (??). Globally, soil

drought has been recognised as one of the main limiting factors for plant photosynthesis (?) and boreal forests are known to

occasionally suffer from soil drought (??). The recovery of photosynthetic capacity in spring has been connected to temperature10

history, and to frequency of severe night frosts (??) , that can reverse the recovery. Understanding, and correctly modelling,

these phenomena are especially important for boreal forests (?) under changing environmental conditions.

Ecosystem and land surface models, describing the plant photosynthesis, transpiration and soil hydrology related processes,

usually include descriptions and parametrisations
::::::::::::::
parameterisations for various stress effects. These parameters often lack a

theoretical foundation (??) and descriptions of vegetation drought response and phenology have been recognized to need better15

representations
::::::::::
formulations

:::
and

::::::
design

:
(????). These deficiencies restrict the

:
a
:
model’s predictive capability under changing

environmental conditions, and call for specific parametrisations
::::::::::::::
parameterisations

:
for different plant types and vegetation

zones.

The stomatal
:::::::
Stomatal

:
conductance models describe the pathway of CO2 and water through the leaf stomata by an electric

circuit analogy (?). The variations in stomatal opening and mesophyll structure are interpreted as resistances to the water20

flow and the process is idealised via generalised parameterisation. The stomatal
:::::::
Stomatal conductance models mainly differ in

their choice of variable
:::::::
variables

:
driving the stomatal closure

:
, and their performance has been recently assessed in modelling

studies by e.g. ???. However, it can be hypothesised that the choice of the stomatal conductance model affects the ecosystem

model parameters more broadly than just those directly related to the actual
::
as

::
the

:
stomatal conductance formulations as these

formulations vary in their responses to the different conditions. A holistic assessment of the performance of the stomatal25

conductance models together with
::::::::
ecosystem

::::::
model parameter optimisation has been missing.

In many other studies, where the aim has been to optimise land surface model parameters, the optimisation is based

on estimating the gradient of the cost function: ? for JSBACH, ?? for ORCHIDEE and ? for JULES. The gradient-based

::::::::::::
Gradient-based

:
methods are faster than Markov chain Monte Carlo (MCMC) methods as they strongly steer the sampling

process to reach a minima of
::::::::
minimum

::
in

:
the cost function (see e.g. ?). This approach also enables a more indefinite setting30

of parameter ranges
::::::
(limits

::
for

:::::::::
acceptable

:::::::::
parameter

::::::
values)

:
when compared to methods that sample the full parameter space.

However, they are prone to get stuck in a local minima, especially when the dimensionality of the parameter space increases.

Lately
:
In

:::
the

:::
last

::::
few

:::::
years,

:
similar parameter estimations have also been done for CLM by ? using the DREAM(zs) (MCMC)

algorithm with multiple chains, and for JULES by ? with the BORG algorithm that employs multiple optimisation algorithms

2



simultaneously. The DREAM algorithm is fully iterative, which limits the number of parallel processes to the number of

parallel chains in use (when we do not account for the possibility of the model parallelisation that can be substantial). The

applicability of the BORG algorithm is dependent on the algorithms in use and the expertise of the user (to choose the right

algorithms etc.).

APIS is a Monte Carlo (MC) method that can be run iteratively as presented by ? but it is also straightforward to parallelise,5

since all samples prior to each adaptation (in our simulations 2000 draws) can be drawn and estimated simultaneously. This

latter feature is useful to decrease the amount of real time required to run the algorithm when computer resources are not the

limiting factor – APIS requires considerably fewer sequential estimates than typical Markov chain methods. In the iterative

mode, automatic stopping rules can be easily implemented to indicate when additional samples are not required to improve the

estimates. The APIS algorithm samples the full parameter space (as do MCMC methods) , is able to
:::
and

:::
can

:
utilise a mixture of10

parameter prior distributionsand .
:::::::::
Therefore,

:::::
APIS

:
can estimate complicated multidimensional probability distributions

::::
with

::::::
relative

::::
ease. These aspects make APIS an attractive alternative to the other sampling and optimisation methods mentioned

above.

In this study we apply the land surface model JSBACH for 10 boreal coniferous evergreen forest eddy covariance sites

to examine the performance of different stomatal conductance models, and their effect on calibrated parameters related to15

photosynthesis, phenology and hydrology. We will assess the inter-site variability and focus on a specific drought period at

one site. We will provide an assessment of the robustness of the calibration of parameters together with different stomatal

conductance descriptions. We
::::
First,

:::
we

:
utilise APIS to sample the full parameter space with the different stomatal conductance

formulations and to locate different modes of the target
::::::::::
distributions (peaks of high probability).

:::::::
Second,

::::
using

:::
the

:::::::::::
distributions

::::::::
generated

::
by

:::::
APIS

::
as

:::
the

::::
prior

:::::::::::
distributions,

:::
we

:::::::
optimise

:::
the

:::::::::
parameters

:::::
using

:
a
::::::
simple

::::::::
stochastic

::::::::::
optimisation

:::::::
method.

:::::::
Finally,20

::
we

::::::
assess

:::
the

:::::::
inter-site

:::::::::
variability

:::
and

:::
the

:::::::::
robustness

::
of

:::
the

::::::::
calibrated

::::::::::
parameters

:::::::
together

::::
with

:::::::
different

:::::::
stomatal

:::::::::::
conductance

:::::::::::
formulations.

:::::::::
Optimised

:::::::::
parameters

:::
for

::
a
:::::::
specific

:::::::
drought

:::
are

::::
also

::::::::::
investigated

::::
and

::::::::
compared

:::::
with

:::
the

:::::::::
parameters

::::
for

:::
the

::::::
general

:::::::::::
optimisation.

2 Materials and methods

We will next introduce the measurement sites, followed by the model and modifications made to it. Afterwards we will give a25

general overview of the simulations as well as the sampling process, the algorithms and methods used to analyse the results.

2.1 Sites and measurements

We use data from 10 FLUXNET (doi:10.17616/R36K9X) sites characterised as coniferous evergreen forests. Site descrip-

tions with appropriate references are gathered
:::::::
provided in Table 1. The site level

:::::::
site-level

:
half-hourly

:::::::::::::
eddy-covariance

:::::
(EC)

measurements were quality checked and gap-filled when needed to produce continuous half-hourly and daily time series. The30

gap-filled and low quality
:::::::::
low-quality

:
(based on FLUXNET data quality flags) measurements were masked

:
, and the daily ag-

gregates (usually means)
::::
were

:
accepted as part of the calibration process if at least 60% of

::
the

:
values between 4:00 and 20:00
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:::
(i.e.

:::::::
daytime

:::::::::::::
measurements) for that day were unmasked– the acceptance of the daily values for the calibration is based on the

quality of the “daytime” measurements but all of the values are used to drive the model
:
.
:::
The

:::::
daily

:::::::::
aggregates

::
of

:::
ET

::::
and

::::
GPP

::::
were

::::
used

::
to

::::::::
calibrate

:::
and

:::::::
validate

:::
the

::::::
model,

:::::::
whereas

:::
the

:::::::::
half-hourly

::::
data

::::
were

:::::
used

::
as

::::::
climate

::::::
forcing

:::
(as

:::::::::
explained

::::
later

::
in

::::::
Section

:::
2.4.

Based on the quality and quantity of their respective measurements, the sites were divided into calibration and validation5

sites. Essentially, if we have enough data from a site, it is used for both calibration and validation purposes. We require
:::::::
required

the site to have at least eight years of measurements, where the first five are
::::
were used for calibration, and the consecutive three

for validation. Otherwise we use
:::
used

:
the site only for a three year validation. The FLUXNET datasets were missing both the

long- and shortwave radiation for the two Russian sites, Fyodorkovskoye (RU-Fyo) and Zotino (RU-Zot). These were generated

from ERA Interim data. The soil types of all of these sites can mostly be identified as mineral soils with varying sand, clay and10

peat contents. Fyodorovskoye and Poker Flat (US-Prr) are natural peatlands and Lettosuo (FI-Let) is a drained peatland site.

The measurement error in the EC flux data can be
::::
were separated into systematic and random errors. The main systematic

errors (density fluctuations, high-frequency losses, calibration issues) are
::::
were

:
taken into account as part of the post-processing

of the data, and the random errors tend to dominate the uncertainty of the instantaneous fluxes. The random error is often as-

sumed Gaussian but can be more accurately approximated by a symmetric exponential distribution (?). It increases linearly with15

the magnitude of the flux, with a standard deviation typically less than 20% of the flux (??). Our treatment of the measurement

(and model) errors is explained in section
::::::
Section 2.9.

Table 1. Descriptions for the sites used in this study sorted by their FLUXNET identifier. The first six sites are used for both calibration and

validation purposes, with the first five years of each site used for calibration. The last three years as well as the last four sites are used for

validation only. The reported elevation is in meters above sea level, LAI is the one-sided leaf area index and the average stand age is in years,

along with average annual precipitation (P) in mm and temperature (T) in degrees Celsius.

Site id lat lon elev. dom. species LAI age P T years reference

CA-Obs 53.99 -105.12 629 Picea mariana 3.8 135 406 0.8 1999–2006 ?

CA-Qfo 49.69 -74.34 382 Picea mariana 3.7 112 962 -0.4 2003–2010 ?

FI-Hyy 61.85 24.29 180 Pinus sylvestris 3.5 45 709 2.9 1999–2006 ?

FI-Ken 67.99 24.24 337 Picea abies 2.1 100 484 0.4 2003–2010 ?

FI-Sod 67.36 26.64 179 Pinus sylvestris 1.7 150 527 -0.4 2001–2008 ?

RU-Fyo 56.45 32.90 265 Picea abies 4.5 200 711 3.9 2002–2009 ?

CA-Ojp 53.92 -104.69 579 Pinus banksiana 2.6 100 431 0.1 2004–2006 ?

FI-Let 60.64 23.96 119 Pinus sylvestris 6.0 40 627 4.6 2010–2012 ?

RU-Zot 60.80 89.35 121 Pinus sylvestris 1.5 215 493 -3.3 2002–2004 ?

US-Prr 65.12 -147.49 210 Picea mariana 0.7 72 275 -2.0 2011–2013 ?
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2.2 The JSBACH model

JSBACH (?) is a process-based ecosystem model and the land surface component of the Earth System model of the Max Planck

Institute for Meteorology (MPI-ESM). We ran JSBACH offline using meteorological measurements from the flux towers to

force the model. Implications of this one-way coupling with the atmosphere include lack of feedback from the surface energy

balance to the atmosphere, i.e. latent and sensible heat fluxes and surface thermal radiation do not directly affect prescribed5

air temperature or humidity. Similarly, the feedback of the surface to the vertical transfer coefficients within the atmospheric

surface layer is missing as the wind speed that drives mixing is prescribed. Furthermore, since we use site level data (each site

is represented as a single grid point), the grid resolution does not affect the results.

We focus only on the most essential parts of JSBACH relating to our work. A more complete model description with

details on e.g. soil heat transfer, water balance and coupling to the atmosphere can be found in ?, whereas ? provides a more10

descriptive synopsis on land-surface interactions, ? supplements both with
::::::::::
complements

:::::
both

::::
with

::
an

:::::::
addition

:::
of land cover

change processes,
:
and ? introduces soil hydrological mechanisms within a multilayer scheme applying five layers.

In JSBACH,
:
the land surface is divided into grid-cells, which are split into bare soil and vegetative areas. The vegetative

area is further divided into tiles representing the most prevalent vegetation classes, called plant functional types (PFTs) (?). In

our site-level simulations, the model was set to use only one PFT, coniferous evergreen trees. The seasonal development of leaf15

area index (LAI) for the trees is regulated by air temperature and soil moisture with a single limiting value (for all sites) for the

maximum of LAI. This maximum value was fixed and the site-specific fractions of vegetative area were adjusted to reproduce

the measured site level LAI.

The predictions of phenology are produced by the Logistic Growth Phenology (LoGro-P) model of
:::::::::
sub-model

::
in JSBACH

(?). Photosynthesis is described by the biochemical photosynthesis model (?). Following ?,
:

we set the maximum electron20

transport rate (Jmax) at 25 degrees Celsius to 1.9 times the maximum carboxylation rate (VC,max), which is in line with

e.g. ??. The photosynthetic rate is dependent on the used stomatal conductance formulation, introduced in chapter
::::::
Section

:
2.3.

Radiation absorption is estimated by a two stream approximation within a three-layer canopy (?). Especially in sparse canopies,

the radiation absorption is affected by clumping of the leaves which is here taken into account according to the formulation by

?.25

Parameters detailing site-specific soil properties, such as soil porosity and field capacity, were derived from FLUXNET

datasets and the references in Table 1. We approximated the soil compositions
::::::::::
composition

:
and generated these properties

following ?.

2.3 Modifications to the JSBACH model

All parameters of interest, presented in Table 2, were extracted from the JSBACH model code to an external file to facilitate the30

simulations. The default values of new parameters (
:::::
newly

::::::
added

:::::::::
parameters

::::
(not

::::::::
originally

::
in

::::::::
JSBACH:

:
τ , q, g0, g1) are

::::
were

::::::
derived

::::
from

::
a synthesis of literature values. Most of the parameter ranges (limiting values for the parameters) were adapted

from our previous work on a similar topic (?). The parameter grouping was done to enhance optimisation and the mechanism
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is explained in chapter
::::::
Section 2.7. Group I consists of parameters most directly affecting photosynthesis, group II parameters

are intimately involved with soil moisture,
:
and group III are the logistic growth phenology (LoGro-P) model parameters. The

equations governed by these parameters are presented in Appendix A.

Table 2. Descriptions of model parameters with default values, range
:
of

::::::::
acceptable

:::::
values

:
and references to equations in the manuscript or

in the appendixes
::::::::
appendices. Parameters in the same group were calibrated simultaneously.

Parameter def range Units Group Description Eq.

VC,max 62.5 [40,65] � I Farquhar model maximum carboxylation rate at 25◦C of the en-

zyme Rubisco (coupled with maximum electron transport rate at

25◦C with a factor of 1.9) [�= µ mol(CO2) m−2 s−1].

A2

α 0.28 [0.26,0.32] - I Farquhar model efficiency for photon capture at 25◦C. A4

τ 10.0 [5,15] days I Adjustment period length in acclimation of photosynthesis. 1

cb 5.0 [4,7] - I Multiplier in momentum and heat stability functions (?). -

fC3 0.87 [0.7,0.95] - I Ratio of unstressed C3-plant internal/external CO2 concentration. A3

q 0.0 [0,1] - I Exponential scaling of water stress in reducing photosynthesis. A1

g0 0.001 [1E-5,5E-3] O I Residual stomatal conductance [O= mol m−2 s−1]. B3

g1 Values in Table 3 - I Slope of the stomatal conductance function. B3

:
a
: :::

2.8 [
:::::
1.5,3.5]

:
-

:
I

:::
Base

::::
rate

:::
of

::::::::
stomatal

::::::::::
conductance

::::::::
response

::
to
::::::::::

atmospheric

:::::::
humidity

::
for

:::
the

:::::
Friend

:::
and

:::::
Kiang

:::::
model.

:

::
B3

:

:
d
: ::

80
:

[
:::::
50,120]

:
-

:
I

:::::::::
Exponential

:::
rate

::
of

:::::::
stomatal

:::::::::
conductance

:::::::
response

::
to

:::::::::
atmospheric

:::::::
humidity

::
for

:::
the

:::::
Friend

:::
and

:::::
Kiang

:::::
model.

:

::
B3

:

θdr 0.9 [0.5,0.95] - II Volumetric soil water content above which fast drainage occurs. A6

θhum 0.5 [0.2,0.8] - II Fraction depicting relative surface humidity based on soil dryness. A9

θpwp 0.35 [0.15,0.4] - II Volumetric soil moisture content at permanent wilting point. 2

θtsp 0.75 [0.25,0.8] - II Value of volumetric soil moisture content above which transpiration

is unaffected by soil moisture stress (β); and 0.9θtsp ≥ θpwp.

2

pint 0.25 [0.15,0.35] - II Fraction of precipitation intercepted by the canopy. A5

ssm 5.9E-3 [1E-4,0.1] m II Depth for correction of surface temperature for snow melt. -

wskin 2.0E-4 [1E-5,5E-3] m II Maximum water content of the skin reservoir of bare soil. -

Cdecay 13.0 [5,25] days III LoGro-P: memory loss parameter for chill days. A12

Smin 10.0 [5,30] ◦C days III LoGro-P: minimum value of critical heat sum. A12

Srange 150.0 [100,300] ◦C days III LoGro-P: maximal range of critical heat sum. A12

Talt 4.0 [2,10] ◦C III LoGro-P: cutoff in alternating temperature. A10

Tps 10.0 [3,25] ◦C III LoGro-P: memory loss parameter for pseudo soil temperature. A14
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The start of the growing season in the JSBACH model is defined by a “spring event” in the LoGro phenology model

(appendix A3) that induces leaf growth. The phenology model calculates a sum of ambient temperature (heatsum) since last

autumn that is above the cutoff value Talt, presented in Eq. (A10). It also calculates a variable threshold, defined in (A12), for

the heatsum to reach. The threshold decreases based on the number of days the ambient temperature is below Talt, whereas the

heatsum increases. When the heatsum reaches the threshold, the plant leaves are free to grow.5

However, coniferous evergreen trees do not shed all of their leaves for winter . The
:::
and

:::
the existing foliage enables them to

quickly instigate
:::::
initiate

:
photosynthesis in the following spring. The start of the photosynthetically active season in the model

has been observed to occur too early in the Boreal region by e.g ?. To
::
In

:::::
order

::
to

:
correct this behaviour i.e. to restrain the

respiration and photosynthesis of conifers
:
in
::::

the
::::
early

::::::
spring, we utilise a delayed effect of temperature for photosynthetic

activity, introduced by ?. To calculate the reduction, we must first define the state of photosynthetic acclimation that ?, p.37110

present as: “an aggregated measure of the state of those physiological processes of the leaves that determine the current

photosynthetic capacity at any moment”.

The state of acclimation (S) is calculated from air temperature (T ) with a delay prescribed by parameter τ (this is similar to

the calculation of TS in appendix A14). S is then inserted into sigmoidal relation Eq. (1) to calculate a factor γ, a formulation

that is adapted here from ?. Finally
:
, γ is used to reduce the photosynthetic efficiency in Eq. (A1). T1/2 denotes the inflection15

point where γ reaches half of γmax, b
:
k is the curvature of the function and γ = 1 when S ≥ 10.

dS

dt
=
T −S
τ

, γ =
γmax

1 + eb(S−T1/2)

γmax

1 + ek(S−T1/2)
::::::::::::

(1)

The JSBACH model was also modified to include altogether six different stomatal conductance formulations following ?.

These formulations include the pre-existing Baseline and Bethy versions as well as the Ball-Berry model and three of its

variants. Model information is gathered in Table 3 for easy referencing and the detailed formulations are given in appendix B.20

The limits of the slope of the
:::::::
stomatal conductance formulation parameter (g1) were set to reflect commonly observed values

from physiological measurements (?). The limits of gUSO1 reflect the results presented by ?.

Table 3. Stomatal conductance models with default values and range for g1 and references to equations in Appendix B as well as related

articles. The ? symbol indicates the Ball-Berry model and its variants.

Stomatal conductance model short g1 range references

Baseline Base - - B1 ?

Biosphere-Energy-Transport-Hydrology Bethy - - B2 ?

? Ball-Berry BB 9.0 [4,10] B3 ?

? Leuning Leu 8.0 [6,10] B3 ?

? Friend and Kiang F&K 9.5 [7,11] B3 ?

? Unified stomatal optimisation USO 2.0 [1.5,3.5] B3 ?

7



We have also included two additional parameters
:
(a

::::
and

:
d
:::

in
:::::
Table

::
2)

:
for the Friend and Kiang (?) stomatal conductance

formulation in B3. These parameters were not originally included in the optimisation, but the resulting cost function (9) values

were poor when compared to the other formulations. At that point, these parameters were included in the optimisation process.

This increases the degrees of freedom for the Friend and Kiang model by two and therefore may give it an advantage when

compared to the other Ball-Berry type formulations, which has to be considered in the interpretation of the results.5

All of the stomatal conductance models contain an empirical water stress factor β, which reduces stomatal conductance as a

function of volumetric soil water content (θ).

β =


1, θ ≥ θtsp
θ−θpwp
θtsp−θpwp , θpwp < θ < θtsp

0, θ ≤ θpwp

(2)

In
::::::::
JSBACH,

:::
the

:::::::
stomatal

:::::::::::
conductance

:::
(gs)::

is
::::::::
primarily

::::::::
resolved

::
to

:::::::
estimate

::::::
carbon

:::::::
fixation.

::::
The

::::
same

:::
gs :

is
::::
then

:::::
later

::::
used

::
to

:::::::
calculate

:::::::::::
transpiration

:
(A8)

:
.
::
In

:
the original JSBACH formulation ,

:::
(i.e. the Baseline version, the stomatal conductance (

:
),10

::
the

:
gs ) is first resolved for unstressed canopy and then scaled by

:::
the

:::::
water

:::::
stress

:::::
factor β. The Bethy approach assumes that

transpiration is either limited by atmospheric demand or water supply
::
is

::::::
similar,

:::
but

:::
the

:::::::::::
conductance

:::
can

::::
also

:::
be

::::::
limited

:::
by

::::
water

::::::
supply

:
(B2). In cases when

::
the

:
water supply is not the limiting factor, the calculations are similar to the Baseline version.

In all of the empirical Ball-Berry variants, the stomatal conductance can be written as gs = g0+cβg1. The residual conductance

(g0) and the slope of the function (g1) are both formulation specific parameters as well as
::
the

:
factor c, that incorporates net15

photosynthesis and effects of atmospheric humidity and CO2 concentration. The parameters g0 and g1 are part of our sampling

and optimisation processes (group I in Table 2 when applicable).

:::
The

:::::
water

:::::
stress

:::::
factor

:::
(β)

:::::
limits

:::
the

::::::
carbon

:::::::
fixation

:::
and

:::::::::::
transpiration

:::
via

:::
the

:::::::
stomatal

:::::::::::
conductance

::::::::::
formulation.

:::::::::
Following

:
?
:
,
:
it
::
is

::::
also

::::
used

::
to

:::::::
directly

::::
limit

:::
the

:::
net

::::::::::
assimilation

::::
rate

:::::
(An),

::
as

::::
seen

::
in

:
(A1)

:
.
::::
The

::::::::
additional

::::::
scaling

:::
(or

::::::::
limiting)

:::::
factor

:::
for

:::
An ::::

takes
:::
the

::::
form

::::
βq ,

::
so

:
it
::
is
::
a

:::::::
function

::
of

::::
both

:::
soil

:::::
water

:::::::
content

:
θ
:::
and

:::
the

:::::::::
parameter

::
q.

::::::::
Maximal

::::::::
reduction

:
is
::::::::
achieved

:::::
when20

::::
q = 1

::::
and

:::
the

::::::::
reduction

:::::
factor

::::::
reverts

::
to

::
β.

:::
The

::::::::
minimal

::::::::
reduction

:::::
occurs

:::::
when

:::::
q = 0

:::
and

:::
the

::::::::
reduction

:::::
factor

:::::::::
resembles

:
a
::::
step

:::::::
function

::
(at

:::::::::
θ = θpwp).

:::
For

:::
any

:::::
other

:::::
value

::
of

:
q,
::
it
::
is

:
a
:::::::::
continuous

::::::
convex

:::::::
function

:::::::
between

:::
the

:::
two

::::::::
extremes

::::::::::::::::::::
βq : [θpwp,θtsp]→ [0,1].

2.4 Model simulations

The site level measurements, used as model inputs, are air temperature, air pressure, precipitation, humidity, wind speed and25

CO2 concentration as well as short- and longwave and potential shortwave radiation. Additionally, evapotranspiration (ET) and

gross primary production (GPP), derived from the eddy covariance (EC) measurements, are used to constrain and evaluate the

model (as explained later in sections
::::::
Sections

:
2.8 and 2.9). We drive the model with half-hourly data but output daily values.

The initial state of the JSBACH model can be generated from predefined values of state variables (usually empty initial

storage pools) or the model can be restarted from a file describing the state of some previous run. Depending on the area of30

interest, a model spin-up may be required to bring the model into a steady state. In our simulations,
:
some of the more slowly
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changing variables (e.g. soil water content and LAI) need to be equilibrated, so a spin-up is required. This can be achieved by

running the model over a set of measurements multiple times, each time restarting from the final state of the previous run.

The calibration period consists of the first five years given for the calibration sites in Table 1. The spin-up is achieved by

looping over these five years, altogether four times (20 year
::::::
20-year

:
spin-up) and then saving the state of the model at the

end of the run. The actual calibration is started from the beginning of the calibration period, using the previously saved state5

variables. To reduce any bias this induces, the first year in the calibration run is removed from the cost function calculations.

The spin-ups for the validation sites in Table 1 are similarly generated.

During the summer 2006, the Hyytiälä (FI-Hyy) measurement site suffered from a severe drought (?), leading e.g. to visible

discolouration of needles. These events are difficult for models to capture and hence are of interest to modellers. We have

previously and unsuccesfully attempted to optimise the JSBACH model (?) for this event. Here we focus directly on the10

extended dry period (190–260th day of the year in 2006), during which the actual drought is mostly in effect between 210–

235th DOY. We fix
::::::
adjusted

:
some of the parameter values as those uncovered by the more general calibration, presented above.

The spin-up was the same as for the calibration period, but at the end of the spin-up,
:
the model was run forward to the start of

the year 2006. Only values between the 190–260th day of the year (DOY) in 2006 were used in constraining the model.

2.5 Sampling process15

We describe the modelling setup with the equation y =M(θθθ,x) + e, where the aim is to reproduce the observations (y)

with our model (M), the driving data (x) and the current parameter values (θθθ). The residuals (e) depict how well the model

reproduces the observations and they form the basis of the likelihood function (formulated in section
::::::
Section

:
2.9), that is used

to derive the parameter posterior distributions.

Using Bayes’ rule on conditional probability we can write the parameter posterior density (p(θθθ,M|x)) as a function of the20

likelihood (L(x|θθθ,M)), parameter prior distributions (π(θθθ)) and the model evidence (Z(x|M)). As usual and from here on,

we do not writeM in the Bayes’
:
formula:

p(θθθ|x) =
L(x|θθθ)π(θθθ)

Z(x)
(3)

We can now utilise the posterior density as a probability density for the parameters and infer the expectation values:

E[θiθiθi] =
1

Z

∫
θiθiθip(θθθ|x)dθθθ, Z =

∫
p(θθθ|x)dθθθ (4)25

:::::
Above

:::
θθθi ::

is
:::
the

::::
i-th

:::::::
element

::
of

:::
the

:::::::::
parameter

::::::
vector.

:
Generally, Eq. (4) cannot be analytically solved, hence it is usually

estimated numerically. Commonly this is achieved by one of the many Markov chain Monte Carlo (MCMC) methods, but in

this study we apply the adaptive population importance sampler (APIS) , defined by ?. The
:::::
APIS

:::
(?)

:
is
::
a
::::::
Monte

:::::
Carlo

:::::
(MC)

::::::
method

::::
that

::::::
utilises

:
a
::::::::::

population
::
of

:::::::::
importance

::::::::
samplers

::::
(IS)

::
to

::::::
jointly

:::::::
estimate

:::
the

:::::
target

::::
pdf

:::::::
(p(θθθ|x))

:::
and

::::
the

::::::::::
normalising

:::::::
constant

::::::
(Z(x))

::
by

::
a
:::::::::::
deterministic

:::::::
mixture

::::::::
approach

:::
(??)

:
,
:::::::
whereas

:::
the

:
MCMC methods do not care about the value of Zand30

for APIS we introduce .
:::
We

::::::
denote the importance sampling density

::
as q(θθθ).

E[θiθiθi] =
1

Z

∫
θiθiθir(θθθ)q(θθθ)dθθθ, where r(θθθ) =

p(θθθ|x)

q(θθθ)
(5)
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Above r is the reweighing factor that is the driving force in importance sampling. We will next give a summary description of

the sampling process with comparison to a general multichain MCMC approach (since MCMC methods are more commonly

used in these types of situations).

1. The initialisation of a multichain MCMC sampler and APIS are very similar. In our simulations
:
, APIS is set up as 40

simultaneous and independent importance samplers. This is similar to an independent 40-chain MCMC sampler. Each5

sampler or chain has a random starting location and sampling distribution (we use truncated Gaussian distributions) that

will evolve throughout the process. The starting locations were sampled
:::::
drawn from a uniform distribution defined by the

parameter limits (
::::::
ranges, given in Table 2).

::::
The

:::::
initial

::::::::
sampling

:::
(or

:::::
prior)

:::::::::
distribution

:::
for

::::
each

:::::::
sampler

::
is

::::
also

::::::::
randomly

::::::::
generated

:
–
:::

we
::::
use

::::::::
truncated

::::::::
Gaussian

::::::::::
distributions

::::
with

::::::::
diagonal

:::::::::
covariance

::::::::
matrices,

:::::
where

::::
the

:::::::
standard

:::::::::
deviations

::
are

:::::::::::
randomised.

:::
The

::::::::
sampling

:::::::::::
distributions

:::
will

::::::
evolve

:::::::::
throughout

:::
the

:::::::
process.10

2. In an MCMC setup, the model would be run once (for each chain), evaluated and then the draw (parameter values)

accepted or rejected accordingly. In APIS, instead of a single element (one run) we use a sample size of 50. This

means that we draw 50 elements with each IS sampler (or “chain”) independently. These draws are then evaluated and

reweighted as presented in Eq. (5).

3. The 50 reweighted draws (for each IS sampler separtely) are used to calculate a new location for the sampling distribu-15

tion. This location is automatically accepted (no rejection criteria) and we also adapt the shape of the distribution using

the self-normalising AMIS estimator by ?.

4. Additionally, all of the draws in APIS are used to calculate “global” estimates of the parameter expected values. This

process utilises the deterministic mixture approach (??) and it is fully iterative –
::::
with no need for any recalculations as

the previous estimates are directly adjusted (no information is lost either).20

MCMC chains track the evolution of single elements, and occasionally adjust the sampling distribution. The sample size in

APIS is larger (it is not a Markov chain method) and the focus is on the evolution of the locations of the sampling distributions,

not on the individually drawn elements. These location parameters are expected to be around all the modes of the target and

the deterministic mixture ensures the stability of the estimation of the (global) parameter expected values. As an importance

sampler, APIS is also a variance reducing method.25

Before taking a more detailed look at APIS, we make some further notes about the sampling process. The first element of

the 50 draws (item 2 in the list above) is always fixed as the current mean. This requirement stems from a need to reduce

computational time. Running the model to a steady state (chapter 2.4) for each parameter set is costly. Hence we
::
We

::::
run

:::
the

::::::
spin-up

:::::::
(Section

::::
2.4)

::::
and generate the model starting state only for the proposal means,

:
and use the same state for the other

49 draws . This induces
::::::::
(perturbed

::::::
around

:::
the

::::::::
proposal

::::::
mean).

::::
This

::::::::::
requirement

:::::
stems

:::::
from

:
a
:::::
need

::
to

::::::
reduce

::::::::::::
computational30

::::
time

::
as

:::::::
running

:::
the

:::::
model

::
to
::
a
::::::
steady

::::
state

::
is

::::::
costly.

::::
This

::::::::
approach

:::::
might

::::::
induce some discrepancies, but they are mitigated

by removing the first year of the calibration simulations (as explained in section
::::::
Section 2.4). We also slightly scale (reduce

)
::::::
reduce the importance weights based on the distance of the corresponding sample to the mean of the proposal. This scaling
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is only used in the
::
of

:::
the

:::
49

:::::::
samples

::::::
(more

::::::::
reduction

:::
for

:::::::
samples

::::::
further

:::::
from

:::
the

::::::::
proposal

::::::
mean),

:::::
when

::::::::::
calculating

:::
the

:::
new

:::::::
location

::::::::::
parameters

:::::
(item

:
3
:::

in
:::
the

:::
list

::::::
above)

::
–

:::
the

::::::::
reduction

::::
only

::::::::
(slightly)

::::::
slows

:::
the adaptation of the new location.

Additionally
::
IS

:::::::
sampler

::::::::
locations.

::::::
Finally, we note that this approach ensures that we run the proposal means, that are the focus

in APIS, with the correct spin-up.

2.6 Adaptive population importance sampler5

APIS (?) is a Monte Carlo (MC) method that utilises a population of importance samplers (IS) to jointly estimate the target pdf

(p(θθθ|x)) and the normalising constant (Z(x)) by a deterministic mixture approach (??).

Normally, only the location parameters of the IS proposals are adapted, but we also adapt the shape parameters using the

self-normalising AMIS estimators by ?. The APIS is able to utilise different or a mixture of normalised proposals densities,

but we use truncated Gaussian proposals with diagonal covariance matrices.10

In our simulations, APIS is formed of 40 independent IS estimators. Each estimator draws a sample θθθi, i ∈ {1, ...,N}, of

size N = 50 at a time from their own proposal distribution qj(θθθ), j ∈ {1, ...,M},M = 40. The estimator then calculates the

importance weights (wij = p(θθθi|x)
qj(θθθi)

) for each sample. The location (µµµj) and shape (Cj) parameters (?) of each proposal are

updated using only samples (and weights) drawn from qj . The new shape parameters are formed as a mean of the previous

estimate and Cj , as calculated below.15

µµµj =

∑
iwijθθθi∑
iwij

, Cj =

∑
iwij(θθθi−µµµj)(θθθi−µµµj)T∑

iwij
(6)

The simple IS estimators alone are rarely sufficient if the target is even slightly complicated. One classical way of tackling

this problem is to join multiple IS estimators together. The simplest approach is to calculate the weights for each of these

estimators separately and to normalise the result by the combined sum of all weights. However, this leaves the estimators

susceptible to “bad” proposals. The APIS suppresses the bad proposals by utilising the deterministic mixture approach (??)20

presented in Eq. (7), where each proposal qj is evaluated at all the drawn samples and weighed by the amount of samples drawn

(Nj = 50) from that proposal. This is equivalent to joining the normalised proposal densities together and evaluating the joint

pdf.

wij =
p(θθθij |x)∑

j

(
Nj∑
kNk

)
qj(θθθij)

(7)

The parameter expectation values and the normalising constant in Eq. (5) can now be estimated by Monte Carlo integration25

using weights calculated in Eq. (7).

2.7 Parameter optimisation

The APIS algorithm is a rather robust method meant for examining the full target probability distribution and e.g. locating

the modes of the target distribution. Adaptation in APIS utilises multiple draws simultaneously, which can easily lead to

few parameters dominating
:::::::::
controlling this process (the marginal density of one or few parameters overshadows

::::::::
dominates30
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the calculations). Since we also did not run the model spin-up for all drawn samples
::::::::
(although

:::
the

:::::::::::
discrepancies

::::::
should

:::
be

:::::::
minimal), we utilise a simple custom stochastic optimiser to locate the optimal set of parameter values. This optimiser is run

after the APIS calibration simulations and it utilises the same datasets as APIS
:::::::::
separately

::
for

:::
the

:::::::
drought

::::::
period.

::::
The

::::::::
optimiser

::::::
utilises

:::
the

:::::
exact

:::::
same

:::::::
datasets

::::::::::
(calibration,

:::::::::
validation,

:::::::::::
observations

:::::
etc.)

::
as

::::::
APIS,

:::
the

:::::::
spin-up

::
is

::::::::
generated

:::
for

:::
all

::::::
drawn

::::::
samples

:::::::::
separately

:::
and

:::
the

::::::
initial

::::
state

::
of

:::
the

:::::::
algorith

:
is
:::
the

:::::
mean

:::::
value

::
of

:::
the

:::::
APIS

::::
final

:::::::::::
configuration

::::::::
(location

::::::::::
parameters).5

Our optimiser is a simple random sampler amplified by the “velocity” of the last jump (the idea is similar to Hamiltonian or

Hybrid Monte Carlo by ?). We draw a set of samples from a small Gaussian proposal distribution in the vicinity of the current

best estimate and calculate the cost function for the samples. Whenever a better point is found (smaller cost function), we jump

to that (update the mean of the proposal distribution). The “velocity” of the jump (for us merely distance of change in each

parameter) is then added to the new mean (with a maximal limit of one standard deviation in the proposal distribution), but it10

is reduced and eventually removed if a better sample is not found.

The covariance matrix of the proposal distribution is recalculated at predefined intervals (for all parameters). Additionally
:
,

we utilise a subset sampling procedure, where the samples are first drawn from the full parameter space, in the next step they

are drawn only from group I in Table 2 (the rest are kept at their current optimal values), followed by groups II and III and

then back to the full parameter space. When the number of parameters is reduced, we are more likely to find a better set of15

parameter values. We have kept the parameters mostly affecting the same processes in the same group, but some dependencies

may not be apparent and hence it is also important to draw samples from the full parameter space.

2.8 Simulation analysis

Even though APIS is not a Markov chain method, we can (naively) interpret the evolution of the location paramaters of each

IS sampler as chains. The resulting 40 chains have random starting positions but they are relatively short (we present results20

from the Bethy calibration, where the chains were adjusted 100 times), hence we did not discard any of the samples. We

test the convergence of these chains with the Gelman-Rubin diagnostic tests (?), comparing the variance between the chains

to the variance within each chain, and calculating the potential scale reduction factors (R̂). We also test the stability of the

(parameter) global expected value estimate
:::::
(using

:::
the

::::::::::
deterministic

:::::::
mixture

:::::::::
approach) by calculating the difference of the final

global expected value and the mean of the location parameters (at each iteration). We denote this test as δ and report the number25

of the iteration
::::::::
iterations when this difference is below 5% of the parameters range, given in Table 2.

In order to visualise the results, we have utilised a Gaussian kernel density estimation (KDE) to produce distributions from

the APIS simulation location parameters. In practice, KDE places a Gaussian distribution centred at each sample and the

constructed composite distribution is an estimate of the underlying actual distribution. The bandwidth for the distributions is

calculated using the Scott’s rule (?): the data covariance matrix is multiplied by a factor n
−1
d+4 , where n is the number of data30

points and d is the number of dimensions.

The effectiveness of each parameter was calculated from the final state of each optimisation process. This was done by

first setting all parameters to their optimised values. Then we (evenly) sampled each parameter separately from their range

of acceptable values,
:::::
given

::
in
::::::

Table
::
2,

:
and calculated the corresponding cost functions. For each parameter the maximum
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difference in these cost function values (and the optimised value) was recorded. The parameters (within each optimisation)

were then ordered by these numbers (with highest difference meaning highest effectiveness) and separated into three groups

with highest (most effective) and lowest (least effective) effectiveness values, and the rest. This effectiveness relates to how the

APIS “sees” the sampling process – the 50 draws are evaluated simultaneously and a very effective parameter can easily mask

the influence of a less effective (the marginal density of one or few parameters dominates the calculations).5

We report the slope of the regression line (b) and the coefficient of determination (r2), between the observations (yi) and the

model output (xi). The slope of the regression line is highly indicative of the model bias (difference of the expected values of

the observations and the model). Hence we interpret the bias directly from b (in our results the regression lines pass near origin

so the differences this induces are negligible).

b=

∑
i(xi−xi)(yi− yi)∑

i(yi− yi)2
, r2 = 1−

∑
i(xi− yi)2∑
i(yi− yi)2

(8)10

2.9 Cost function

The Bayesian framework requires a likelihood function that optimally combines pointwise model and observational errors.

The JSBACH model error is unknown as is the (pointwise) observation error. We could use a general type of error estimate

(such as that of 20% of the flux value) for the observations, but would have to include a minimal site and instrumentation

dependent precision. In this study, the full error is treated as Gaussian white noise. Because of these limitations, we are calling15

and defining our likelihood as a cost function. It is calculated
:::
with

:::
the

::::
same

:::::::::
parameter

:::::
values

:
for each siteseparately using daily

values,
:
,
::::
using

::::
site

::::::
spesific

::::
daily

::::::::::::
measurements

:
with the gap-filled, low-quality and winter (between the 315th and the 75th day

of the year) values removed (resulting in NET and NGPP points). The cost functionis then averaged over the sites and
:::::
These

:::
site

::::
level

::::::::
estimates

:::
are

::::::::
averaged

::
to
:::::::
produce

::::
the

:::::
actual

::::
cost

::::::::
function,

:::::
which

::
is

::::
then

:
returned for the algorithm to produce an

estimate that is independent of the characteristics of any single site.20

The cost function (9) in our simulations is based on the normalised mean squared error (NMSE) estimates of the daily

gross primary production (GPP) and the daily evapotranspiration (ET). The residual of each variable is divided by the mean of

observations, as has been previously done by e.g. ????. We make use of this approach since we needed to balance two series

of different magnitudes (ET and GPP). The residuals are additionally divided by the (site specific) number of observations so

that the cost function is not biased towards any specific site. The cost function (without the normalisation) can be interpreted25

as a negative log-likelihood function with a (gaussian
:::::::
Gaussian) error term equal to the observational mean.

cf1 =

NMSEET︷ ︸︸ ︷
1

NET

∑(
ETmod−ET obs

ETobs

)2

+

NMSEGPP︷ ︸︸ ︷
1

NGPP

∑(
GPPmod−GPP obs

GPPobs

)2

(9)

We also use a modified version of this cost function, where the NMSE’s are weighted by factors based on coefficients of

determination (r2) defined in Eq. (8). This latter cost function is only used during the separate drought period optimisation for

Hyytiälä. During the drought we are more interested in the correct timing of the change in GPP and ET fluxes, rather than the30

size of the actual change. The aim is to correctly reproduce the changes in the water use efficiency (WUE) of plants, which we
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interpret here as the pointwise ratio of (ecosystem level) GPP to ET. The NMSE values ensure that the overall amplitude of the

fluxes will remain satisfactory.

cf2 = (1− r2ET )NMSEET + (1− r2GPP )NMSEGPP (10)

3 Results

First we present the performance of the APIS algorithm and the parameters themselves, followed by site and stomatal con-5

ductance model specific resultsand lastly ,
::::
and

::::::
finally an examination of the Hyytiälä drought event in 2006. For simplicity,

we equate
::
use

:
the name of the stomatal conductance model to

:::
refer

:::
to the JSBACH model version utilising that

::::::
utilising

::::
that

:::::::
stomatal conductance formulation.

The evolution of the APIS algorithmic process is presented in Fig. 1 for three parameters from the calibration of the Bethy

model. The chosen parameters highlight different levels of identifiability for the algorithm (with the given cost function). The10

first parameter (fC3) shows a well identifiable situation, where the algorithm quickly locates the area of high probability. The

second parameter (θdr) is also identifiable but the speed of convergence is diminished. The last example (Cdecay) represents

situations where the parameter is not constrained. We have included images of the APIS chains for the other parameters as sup-

plement S1 along with parameter posterior estimates at 20 iterations with the Bethy and Ball-Berry formulaations
::::::::::
formulations.

We also report the results of the Gelman-Rubin (?) and δ tests in Table 4. Both of these tests indicate that the algorithm is15

performing well at 20 iterations – the values of R̂≈ 1, which means that further simulations are unlikely to improve the variance

estimates. However, for some parameters
:
,
:
the convergence of the global estimate is slow (as also seen in the supplementary

image S1 for e.g. τ , cb and q). The APIS sampling process did not reveal any multimodal distributions and thus provided

suitable initial conditions for the optimisation.

Table 4. Parameter scale reduction R̂ (at APIS iteration) and stability δ (with a threshold
::::::
number

::
of

:::::::
iterations) estimates from the Bethy

simulations.

VC,max α τ cb fC3 q θdr θhum θpwp

R̂ at 20 1.12 0.99 1.02 0.99 1.0 0.99 1.0 1.3 1.08

R
:
R̂
:

at 100 1.3 1.03 1.25 1.16 1.03 1.08 1.03 1.52 1.16

δ (±0.05) 20 21 27 40 0 36 18 14 17

θtsp pint sm wskin Cdecay Smin Srange Talt Tps

R
:
R̂
:

at 20 0.99 1.01 0.99 1.0 0.99 0.99 0.99 0.99 0.99

R̂ at 100 1.06 1.13 1.0 0.99 0.99 1.0 0.99 0.99 0.99

δ (±0.05) 26 35 8 0 12 22 0 1 0
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3.1 Optimised parameters

The results of the optimisation process are gathered in Table 5. There is an overall agreement on the values of the most prevalent

parameters (bolded
::
see

:::
the

::::
bold

:::
and

:::::
italic

::::::::
characters

:
in Table 5 between the models). Most notably,

:
the permanent wilting point

(θpwp) and the point above which transpiration is unaffected by soil moisture stress (θtsp) have been significantly lowered. The

LoGro phenology parameters, that
::::
which

:
affect the timing of the spring and autumn events, are expected to contribute only5

little to the cost function. The coniferous evergeen trees do not shed all their leaves for winter and therefore the timing of the

bud burst is not as critical as for e.g. deciduous trees. Additionally,
:::::::
because

::
of

:::
the

:::::::
existing

:::::::
foliage,

:
the state of acclimation

parameter τ also affects the vegetation active period and
:::
that

::::::
depicts

:::
the

::::::::
reduction

:::
of

::::::
carbon

::::::::::::
assimimilation

::
in

:::
the

::::
early

::::::
spring

likely dominates the phenology parameters
:::
that

::::::::
determine

:::::
when

::::
new

:::::
leaves

::::
start

::
to
:::::
grow.

Some of the parameters have converged to their limiting values, which can reflect deficiencies in the model structure or10

the preset parameter ranges. Convergence to the boundary can also be a problem in model calibration, but in this experiment
:
,

the algorithms were able to cope with the situation as APIS located the area of high probability and the optimiser located the

maxima. The different parameter effectiveness levels reported in Table 5 can be roughly equated to the identifiability situations

in Fig. 1. The effectiveness levels are highly situational (e.g. they depend on the sampling limits in Table 2 given for each

parameter) and merely reflect the parameter identifiability in the APIS process. Low effectiveness complements the test results15

in Table 4, as the tests may indicate good performance for a parameter (e.g. for Srange) that is ineffective in the simulations.

3.2 Annual cycles

We present the average annual cycles for the validation period and for all sites in Fig. 2 using the Bethy formulation that is

part of the standard model. The annual cycles of the Bethy model are more in line with the Ball-Berry variants than those of

the Baseline model (see supplements
::::::::
generated

::::
with

:::
the

::::
other

:::::::
stomatal

:::::::::::
conductance

::::::
models

:::
are

:::::
added

::
as

::::::::::
supplement S2for the20

yearly cycles of the other models). The parameters of the regression lines (b and r2) between the measured and modelled ET

and GPP fluxes of all the models are gathered in Table 6. These indicators have been calculated using all corresponding values

regardless of the quality of the data. The sites are in the same order as in Table 1 with the six calibration sites first, followed by

the four sites used only for validation.
:::
We

::::
have

::::
also

:::::::
included

:
a
:::::::::
supporting

::::::::
synthesis

::
of

:::
the

::
b
:::
and

:::
r2

:::::
values

:::::::
between

:::
the

::::::
model

:::::::::
simulations

::::
with

:::
the

::::::
default

::::
and

::::::::
optimised

:::::::::
parameter

:::::
values

::
as

::::::::::
supplement

:::
S3.

:
25

The optimisation has improved the model results
:::
bias

:::
and

:::
the

::::::::::
correlation

::::::::::
coefficients

:::
for

:::
the

::::
GPP

:
in Fig. 2 for all of the

calibration sites and at least for half of the validation sites. The
:::::
nearly

:::::
every

:::
site,

:::::
with

:::
the

::::::::
exception

::
of

:::::::::::
deteriorating

::::
bias

:::
for

:::::
Poker

:::
Flat

::::::::
(US-Prr)

:::
and

::::::
Zotino

::::::::
(RU-Zot).

:::::::::::
Additionally,

:::
the

:
improvement in the timing of the springtime increase in

:::
the GPP is

apparent. The
:::
All

::
of

:::
the

:
correlation coefficients for ET and GPP have improved for every site and the GPP bias has diminished

for all calibration sites – the two validation sites where GPP bias has increased are Poker Flat (US-Prr) and Zotino (RU-Zot)
:::
the30

::
ET

:::
in
::::

Fig.
::
2

::::
have

::::
also

::::
been

::::::::
improved

:::
but

:::
the

:::::
model

::::
bias

:::
has

::::::
mostly

::::::::
increased.
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Table 5. Parameter default and optimised values for the calibration period with corresponding cost function value. The values written in

boldface were the most effective and the italic values the least effective for the given experiment. Also presented are the fixed parameter

values for the drought period optimisation, with opt referring to the use of the corresponding optimised value from this table.

Parameter def Base Bethy BB Leu F&K USO dry set

VC,max 62.5 48.4 57.1 55.4 49.7 50.8 50.5 52.0

α 0.28 0.318 0.318 0.319 0.317 0.319 0.318 0.318

τ 10.0 14.6 15.0 14.8 14.9 14.7 14.8 14.8

cb 5.0 5.4 4.1 6.7 4.4 4.3 4.6 5.0

fC3 0.87 0.75 0.83 - - - - Table 7

q 0.0 0.03 0.94 0.62 0.60 0.82 0.65 Table 7

::
g0 :::::

1.0E-3
:
-

:
-

:::::
4.7E-3

:::::
4.7E-3

:::::
4.4E-3

:::::
4.2E-3

::::
Table

::
7

::
g1 ::::

Table
::
3

:
-

:
-

::
9.9

::
8.8

:::
10.9

::
1.6

::::
Table

::
7

:
a
: :::

2.8
:
-

:
-

:
-

:
-

::
3.2

:
-

:::
opt

:
d
: ::

80
:
-

:
-

:
-

:
-

:
71

:
-

:::
opt

θdr 0.9 0.86 0.65 0.88 0.83 0.8 0.90 0.85

θhum 0.5 0.2 0.2 0.21 0.2 0.2 0.2 Table 7

θpwp 0.35 0.16 0.15 0.17 0.15 0.16 0.15 Table 7

θtsp 0.75 0.31 0.35 0.3 0.31 0.32 0.33 Table 7

pint 0.25 0.35 0.35 0.35 0.35 0.35 0.35 0.35

sm 5.9E-3 0.099 0.094 0.097 0.098 0.097 0.078 0.097

wskin 2.0E-4 3.7E-4 3.1E-4 3.5E-4 3.6E-4 3.3E-4 3.2E-4 3.4E-4

Cdecay 13.0 17.0 22.2 23.3 23.3 24.9 13.9 opt

Smin 10.0 29.2 26.3 10.7 6.3 26.1 6.3 opt

Srange 150 247 176 162 157 202 223 opt

Talt 4.0 2.0 2.8 5.8 8.2 2.5 8.3 opt

Tps 10.0 18.6 24.4 3.8 3.2 15.0 3.1 opt

g0 1.0E-3 - - 4.7E-3 4.7E-3 4.4E-3 4.2E-3 Table 7 g1 Table 3 - - 9.9 8.8 10.9 1.6 Table 7 a 2.8 - - - - 3.2 - opt b 80 - - - - 71 - opt heightcf1 0.571 0.531 0.521 0.529 0.518 0.528

3.3 Drought event

The resulting parameter values, from the optimisation during the drought conditions in Hyytiälä (FI-Hyy) in the summer of

2006, are presented in Table 7. Setting the maximum carboxylation rate to a constant value (VC,max = 52.0) enabled the full

use of the dynamical range of q – the idea was to ensure that VC,max does not dominate the optimisation, any value for q is

possible and it is able to influence the outcome. The LoGro phenology parameters and τ were fixed to their optimised values,5

presented in Table 5, as they should not be affected by the drought. Likewise, the values of other parameters (not presented in

Table 7) were set as compromises between the stomatal conductance formulations.
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Table 6. Slope of the regression line (b) and the coefficient of determination (r2) for the different stomatal conductance formulations during

the validation period with the optimised parameters. We have written the best values of b and r2 in boldface for each site, and italicised the

abbreviations of the separate validation sites.

Evapotranspiration (ET)

b r2

Site B
as

e

B
et

hy

B
B

L
eu

F&
K

U
SO

B
as

e

B
et

hy

B
B

L
eu

F&
K

U
SO

CA-Obs 0.91 0.9 0.91 0.86 0.81 0.76 0.75 0.77 0.76 0.76 0.75 0.74

CA-Qfo 0.96 0.98 0.99 0.92 0.89 0.83 0.71 0.72 0.7 0.71 0.7 0.69

FI-Hyy 0.97 1.05 1.07 0.95 0.98 0.79 0.73 0.77 0.77 0.75 0.77 0.69

FI-Ken 0.54 0.64 0.62 0.56 0.58 0.48 0.48 0.51 0.52 0.49 0.51 0.45

FI-Sod 0.64 0.73 0.74 0.63 0.64 0.56 0.58 0.64 0.61 0.6 0.62 0.55

RU-Fyo 0.98 1.02 1.01 0.98 0.99 0.85 0.7 0.71 0.71 0.71 0.71 0.7

CA-Ojp 0.8 0.84 0.84 0.75 0.72 0.67 0.64 0.65 0.64 0.65 0.64 0.63

FI-Let 1.09 0.98 1.08 1.04 1.01 0.94 0.49 0.47 0.49 0.5 0.51 0.48

RU-Zot 0.49 0.56 0.56 0.47 0.46 0.41 0.45 0.52 0.5 0.47 0.48 0.41

US-Prr 0.38 0.37 0.42 0.35 0.33 0.35 0.48 0.53 0.53 0.46 0.44 0.43

best values 0 2 5 0 3 0 0 6 2 0 2 0

Gross primary production (GPP)

b r2

Site B
as

e

B
et

hy

B
B

L
eu

F&
K

U
SO

B
as

e

B
et

hy

B
B

L
eu

F&
K

U
SO

CA-Obs 0.83 0.77 0.82 0.81 0.81 0.77 0.87 0.9 0.89 0.89 0.91 0.9

CA-Qfo 0.97 0.95 0.98 0.96 0.96 0.9 0.84 0.87 0.85 0.86 0.88 0.87

FI-Hyy 1.02 1.01 1.05 1.03 1.06 0.98 0.94 0.94 0.94 0.95 0.95 0.95

FI-Ken 0.9 0.97 0.97 0.93 0.95 0.9 0.93 0.9 0.9 0.93 0.93 0.94

FI-Sod 0.66 0.71 0.71 0.67 0.69 0.65 0.88 0.87 0.86 0.89 0.9 0.9

RU-Fyo 0.95 0.88 0.91 0.96 0.98 0.91 0.89 0.88 0.88 0.91 0.91 0.91

CA-Ojp 0.72 0.74 0.75 0.7 0.69 0.66 0.83 0.85 0.84 0.85 0.86 0.86

FI-Let 1.27 0.99 1.09 1.25 1.26 1.21 0.93 0.88 0.89 0.94 0.94 0.94

RU-Zot 0.42 0.44 0.44 0.42 0.42 0.4 0.86 0.85 0.84 0.88 0.88 0.88

US-Prr 0.2 0.21 0.21 0.2 0.19 0.19 0.62 0.6 0.6 0.62 0.63 0.62

best values 1 4 4 0 1 0 0 0 0 0 6 4

We can now compare the parameter values in Table 7 to those in Table 5. The values of the relative humidity parameter

:
(θhum:

) and the residual stomatal conductance (g0:):have remained nearly unchanged, but for the rest of the parameter we

see wildly different results. Noticeably
::::::::
parameters

:::::
have

::::
quite

::::::
varied

::::::
values.

::::
The

::::
leaf

::::::::::::::::
internal-to-external

::::
CO2::::::::::::

concentration
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Table 7. Optimised parameter and corresponding cost function values with different stomatal conductance formulations for the extended dry

period.

Parameter def Base Bethy BB Leu F&K USO

fC3 0.87 0.7 0.7 - - - -

q 0.0 0.09 0.0 0.15 0.57 0.16 0.30

θtsp 0.75 0.57 0.46 0.48 0.44 0.45 0.41

θpwp 0.35 0.40 0.38 0.27 0.23 0.28 0.16

θhum 0.5 0.2 0.2 0.2 0.2 0.2 0.2

g0 Table 3 - - 4.9E-3 5.0E-3 3.8E-3 4.6E-3

g1 Table 3 - - 7.5 6.0 7.0 1.5

cf2 0.42 0.44 0.39 0.41 0.41 0.41

::::
(fC3)

:::
as

::::
well

::
as

:::
the

:::::
slope

::
of

:::
the

::::::::
stomatal

::::::::::
conductance

::::
(g1)

:::
are

::
at

:::
the

:::::
lower

::::::
bound

::::::
(expect

:::
g1:::

for
::::
BB).

::::::::::
Noticeably,

:
the USO

optimisation only changes the value
:::::
values

:
of θtsp and

::
q,

:::
and leaves the rest of the parameters almost untouched.

The changes these different parametrisations
::::::::::::::
parameterisations

:
have on the model output are visualised in Fig. 3. The

Baseline, Bethy and USO formulations demonstrate a considerable increase in the agreement in GPP between the model and

observations when compared to the default setting or the previous more general optimisation. The GPP of other formulations5

has remained roughly the same as with the more generally optimised parameter values. The
::
All

:::
of

:::
the

:::::::
stomatal

:::::::::::
conductance

::::::
models,

::::
with

::::::
default

::::::::::::::
parameterisation,

:::::
suffer

:::::
from

:::
too

:::
low

:::
ET

:::::
values

::::::
before

::::
(and

::::::
during)

:::
the

:::::
actual

:::::::
drought.

::::
This

::::::::
behaviour

::::
was

:::::::
corrected

::::::
during

:::
the

:::::::
general

:::::::::::
optimisation,

:::
but

:::
has

:::::::
partially

::::::::::
re-emerged

::::
with

:::
the

:::
dry

::::::
period

:::::::::
parameters

:::
for

:::
the

:
Baseline, Ball-

Berry, Leuning, and to a lesser degree the Friend and Kiang formulations, now suffer from the too low ET values before .
:::::
Most

::
of

:::
the

::::::
models

::::
also

::::::
exhibit

:::
too

::::
high

:::
ET

::::::
values

::::::
during the actual drought . The Bethy model has

:::
with

:::
the

::::::::
generally

:::::::::
optimised10

::::::::
parameter

::::::
values.

::::
This

::::::::
behaviour

::::
was

::::
also

:::::::
corrected

::::
with

:::
the

:::
dry

::::::
period

:::::::::::
optimisation,

:::
but

:::
the

:::::::
Baseline

:::
and

:::::::::
especially

:::
the

:::::
Bethy

:::::
model

::::
now

:::::
suffer

:::::
from a too strong drawdown of both ETand GPP during the drought

:::
ET.

:::::
These

:::::::
models

:::
also

:::::::::::
demonstrate

:::
the

:::
too

:::::
strong

:::::::::
drawdown

:::
for

:::
the

:::::
GPP.

:::
The

:::::
GPP

::::
itself

::::
was

::::::
greatly

::::::::
improved

::::
with

:::::
both

:::::::::::
optimisations

:::
and

:::
for

:::
all

:::::::
models.

:::
The

::::
dry

:::::
period

:::::::::::
optimisation

::
of

:::
the

::::
USO

:::::
model

::::
also

::::::::
managed

::
to

::::::
correct

:::
the

::::::::
erroneous

::::
GPP

::
of

:::
the

::::::
general

:::::::::::
optimisation

::::::
during

::
the

::::::
actual

:::::::
drought,

:::::
where

::
as

::::
the

::::
GPP

::
of

:::::
other

:::::::::::
formulations

:::
has

::::::::
remained

:::::::
roughly

:::
the

::::
same

:::
as

::::
with

:::
the

::::::
general

:::::::::::
optimisation. The USO15

formulation results in the best fits for r2 and b with the dry period optimisationand it makes full use of the dynamical range of

:
.

:::
The

::::::
Bethy

:::
and

:::
the

:::::
USO

::::::
models

:::::::::::
demonstrate

:::
the

::::
most

:::::::::
variability

:::
in the β-function . Overall,

:::::
values

::
in

::::
Fig.

::
3

:::::::::
(rightmost

::::::
panels),

:::
for

:
the dry period optimisationwas succesful for the USO model and to a lesser for the Bethy formulation as well – the

results for the other variants are mixed and inconclusive.20

We selected two of the
:
.
:::
We

:::::::
selected

::::
these

::::
two stomatal conductance formulations , Bethy and USO, to examine the changes

to the water use efficiency (WUE) of plants during the extended dry period. The highlighted observations in Fig. 4
:::::::::
(rightmost

::::::
panels) show a clear path of development for the drought where the observations imitate the letter δ. The colourings follow
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the β-function values in Fig. 3 between the red vertical lines. Both observational colourings (same as the model colouring) are

similar and depictfirst ,
:::::::
initially,

:
a linear decrease in both ET and GPP, followed by a rapid decline in ET and a delayed decline

in GPP. The recovery of plants from the drought can also be seen as the colouring starts to turn lighter. The models depict a

more linear response of GPP to ET as the drought develops, although with USO we can see a bit more similarities in the pattern

of the values.5

Lastly, we inspected
::::::
Finally,

:::
we

:::::
used

::::
both

:::::::::
optimised

::::::::
parameter

::::
sets

::::::
(Table

:
5
::::

and
::
7)

:::
to

:::::::
produce

:
the ET and GPP cycles

::
for

:::
all

::::
sites

:::
and

::::::::
stomatal

::::::::::
conductance

:::::::
models.

::::
This

:::::::
analysis

:
(not shown) for the whole validation period with both optimised

parameter sets, all stomatal conductance formulations and all calibration sites
::::::
verified

::::
that

::
in
:::::::

general
:::::::::
conditions

:::
the

:::::
Table

::
5

::::::::
parameter

::::::
values

::::::::
produced

:::::
better

::::::::
estimates

::
in
:::::::

general. The b and r2 values for ET were
:::
the

:::
ET

::::
were

::::::::::::
systematically

:
better

for all stomatal conductance formulations (except one)using the more generally optimised parameter set. There is
:
.
:::::
There

::::
was10

some variation in the indicators for
::
the

:
GPP, where approximately a third of the values (

::
of

:
mostly r2) are better with the dry

period parameter set. These differences are mostly attributed to increased model bias (decreased b) that is explained by the

lower values of g1. Overall, the more general optimisation provided systematically better or comparable results to the dry

period optimisation. The exception is the USO formulation, which had an approximately 1:1 distribution of best values for

both variables in-between the parameter sets.15

4 Discussion

We will first discuss the validity of our approach and the simulation setup, followed by examinations on
:::::::::
examination

:::
of the

success of the modifications made to the model,
:
and close with some further remarks on the parameter values.

4.1 Validity of the simulations

Before we calibrated the model, we fixed the limiting value for LAI and adjusted the site-specific vegetative area fractions to20

reproduce the measured site level maximum of LAI. In the simulations, we focused on boreal coniferous forests, where light

penetration is deep and the light conditions are homogenous – consequently we could assume a homogenous leaf distribution.

Furthermore, the JSBACH model takes into account leaf clumping and we can assume the leaf orientation and shape to be

similar throughout the study sites. Therefore, we argue that reproducing the site level maximum of LAI is appropriate approach

in this study. Together with parameter calibration it has resulted in improved ET and GPP fluxes as can be verified from the b25

and r2 values in Fig. 2.
:::
The

::::::::::::
improvements

::
in

:
b
::::
and

::
r2

:::
are

::::::
mostly

::::
seen

::
in

:::
the

::::
GPP

::::
flux,

:::::
which

::::
can

::
be

::::::::
explained

:::
by

:::
the

:::
fact

::::
that

::
the

::::::::
stomatal

::::::::::
conductance

::
in

::::::::
JSBACH

::
is

::::::::
primarily

:::::::
resolved

:::
for

::::::
carbon

:::::::::::
assimilation,

:::
and

:::
the

::::
same

:::::::::::
conductance

::
is

::::
then

::::
used

:::
for

::::::::::
transpiration

:
(A8)

:
.
:::::::::::
Additionally,

::::
GPP

::
is
:::::::
derived

::::
from

:::
the

:::
EC

::::::::::::
measurements

:::
by

::::
flux

:::::::::
partitioning

::
–
:::
this

:::::
tends

::
to
:::::::
remove

:::::
some

::
of

:::
the

:::
flux

::::::::::
instabilities

::::
(that

:::
are

::::
still

::::::
present

::
in

:::
the

::::
ET).

We encountered difficulties in replicating
::::::::::
reproducing the fluxes for the validation sites with low LAI

::
(i.e

:::::::
RU-Zot

::::
and30

::::::
US-Prr). This can be a consequence of the area scaling as the adjustment linearly changes the proportions between vegetative

area and bare soil. Another reason is the lack of the site understory in these simulations. For example, approximately half of
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the CO2 fluxes (and consequently roughly half of the GPP) for Poker Flat are produced by the site understory (?). Additionally,

there are also many parameters describing site-specific soil properties (such as porosity) that were not part of the optimisation

and may be inaccurate. These effects may also be pronounced due to the changes in parameters affecting soil moisture as well

as the area scaling.

There were no clear differences between sites dominated by pine or spruce. Neither did we notice any particular effect on5

the bias, NMSE or correlation coefficient that could be explained by geographical location, stand age or annual precipitation

or temperature. We optimised the model for individual (calibration) sites as well
:::
(not

:::::::
shown). Mostly this changed the values

of parameters (such as VC,max and g1) affecting the amplitude of the modelled fluxes. These parameters can be viewed to be

more site-specific, a characteristics that is reduced in a multi-site calibration – the possibility of highly site-specific properties

(and parameter values) can also explain the difficulties in reproducing the validation site observations. We are omitting these10

results as single-site optimisation can be viewed as overfitting the model and the results do not provide any additional insights.

The APIS performance tests (Gelman-Rubin and δ) indicate that the algorithm is performing well at 20 iterations but the

convergence of the global estimate for some parameters is slow. This is mostly a direct result of the normalisation of the cost

function that inflates the target distribution,
::::::
which

::::::
reduces

:::
the

:::::::::
parameter

::::::::
sensitivity

::
to
:::::::::::
observations and gives too much weight

to the initial locations and draws. Without the normalisation, the algorithm would also converge faster. Additionally, APIS is15

meant to examine the full target distribution with only some sequantiality – 20 iterations (or less) should be sufficient for APIS

to locate the modes of the target. In longer APIS simulations, the global estimate would likely benefit from e.g. discarding the

first half of the samples but this would require the estimate to be recalculated at each iteration (from the drawn samples) as it

could not be calculated iteratively.

4.2 Delayed effect of temperature20

We modified the JSBACH model by introducing the delayed effect of temperature for photosynthesis to restrain the respiration

and photosynthesis of conifers in spring. The effect of this (delayed increase in GPP) is apparent in the annual GPP cycles of

CA-Qfo, FI-Hyy, FI-Ken, FI-Sod and RU-Zot in Fig. 2. The delay is in place for the other sites as well, but the effect is less

apparent in the figure. This delay is
::
to

:
a
:::::
lesser

::::::
extent also reflected in transpiration, and consequently in ET. This

:
,
::
as

:::
can

:::
be

::::
seen

:::
e.g.

::
at

::::::
FI-Hyy

::::
and

::::::
FI-Sod

:
–
:::
for

:::::
other

::::
sites

:::
this

:::::
effect

::
is
:::
not

:::::
clear.

::::
The correction in the ET values can lead to an increase25

in model bias as is the case with Sodankylä (FI-Sod), where the too low autumn values
::
in

:::
the

::::::
default

:::::
model

:
were previously

compensated by too high springtime values with the default parametrisation. This
::
(in

:::
the

:::::
sense

:::
of

:::::
annual

:::::
ET).

:::::::::
Correcting

:::
the

:::::::::
springtime

::::::::
behaviour

:::::
leads

::
to

::
an

:
increase in bias,

:::
but

::::
this should not be viewed as a fault in the optimisation as the model was

previously mitigating an erroneous behaviour (too low autumn ET) with another (too high springtime ET).

? used a linear dependency of photosynthetic efficiency to the state of acclimation, and reported 13.75 days to be the best30

fit for the adjustment period length (τ ). ? utilised a sigmoidal relation and reported the value of 8 days, but noted that the

range of values resulting in a good fit was large (5–10.4 days). ? came to a similar conclusion when they encounter a near-flat

distribution for τ in the range of 1–12 days. In our simulations τ exhibits larger optimal values (nearly 15 days), which is most
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likely due to the model adapting to the multi-site calibration (as sites have different characteristics, a longer acclimation period

accounts better for these variations).

4.3 Stomatal conductance models

We examined the model behaviour with six stomatal conductance formulations . The
:::
and

::::
the resulting b and r2 values

:::
are

::::::::
presented in Table 6indicate that the

:
.
::::
The best performance (bolded values)

::
in

::::::::
simulated

:::
ET

::
is
::::::::
achieved

:::
by

:::
the

:::
BB

::::::
model5

::
for

::::
bias

::::
and

:::
the

:::::
Bethy

::::::::::
formulation

:::
for

:::
r2.

::::::
These

:::
two

:::::::
models

::::
also

:::::
share

:::
the

::::
best

::::::::::
performance

:::
in

:::
the

::::
GPP

::::
bias,

::::::::
whereas

:::
the

:::
best

:::
r2

:::::
values

:::
for

:::
the

::::
GPP

:::
are

::::::::::::
demonstrated

::
by

:::
the

::::::
F&K

::::::
model,

::::::::
followed

::
by

:::
the

:::::
USO

::::::::::
formulation.

::::::::::
Calculating

:::
the

:::::::
number

::
of

::::
best

:::::
values

::::::::::::
demonstrated

::
by

:::::
each

::::::
model,

:::
we

:::::
obtain

::::
that

:::
the

::::
best

:::::::::::
performance is shared by the Bethy (12) and F&K (12)

formulations, followed by the BB (11) model. The Bethy model dominates the r2 values of ET, where as the BB model has

the highest “score” for the b values of GPP and the F&K formulation leads in the r2 of GPP. However,
::::::::
However,

:::
we

::::
note10

:::
that

:
some of the differences in the indicator valuesare small and we calibrated

::::
“best

:::::::
values”

:::
are

::::
only

:::::::::
marginally

::::::
better

::::
than

:::::::::
comparable

::::::
values.

::::::::::::
Additionally,

:::
we

::::
used two more parameters

::
(a

:::
and

:::
d) for the F&K formulation (when compared to

::::
than

::
for

:
the other Ball-Berry models)

::::::::::
formulations. Likewise, we could havefor example ,

:::
for

::::::::
example,

:
included the factor D0

(that depicts stomatal sensitivity to changes in vapour pressure deficit Ds) (B3) in the optimisation, which would have likely

improved the performance of the Leuning model. Similarly to the results by ?, based on this (general) calibration
:
, there is no15

clear single candidate for the best stomatal conductance formulation.

The model behaviour was also examined during the Hyytiälä drought of 2006. Some of the parameter values were kept fixed

during these simulations, most of the fixed parameters should not affect the drought period calibration but there are exceptions,

such as the maximum carboxylation rate VC,max. It can be argued that e.g. both the parameters VC,max and g1 should decrease

(?) during the drought but we decided to fix VC,max to get a better response for q. The best fit to the observations was achieved20

by the USO formulation,
::
as

:::::
seen

::
in

:::
Fig.

::::
??, with remarkably similar parameter values to the general optimisation. The USO

model was also able to (somewhat) replicate the “δ” shape of the drought in Fig. 4.

The stomatal conductance function (gs = g0+cβg1) incorporates also the soil water parameters θtsp and θpwp in the form of

the β-function as portrayed in Eq. (2). The changes in the values of these parameters (mostly g1,θtsp and θpwp) are intertwined.

During the drought, the decrease in the optimised values of g1 is expected as the plants close their stomata to minimise the loss25

of water by transpiration (??). The same effect is also achieved by increasing the values of θtsp and θpwp as this decreases the

values of the β-function. The higher values of g1 during the more general optimisation are better reflected by ?, whereas the

lower values during the drought are more in accordance with physiological observations by ?. Likewise, ? found higher values

for g1 (both boreal area and gymnosperm trees) using the USO model.

The
:
In

:::::::
general,

:::
the

:
site level estimates of (g0 and) g1 are sensitive

::
not

::::
only

:
to the stomatal conductance formulation but also30

e.g. to the general structure of the underlying model and the value of other parameters, such as maximum carboxylation rate

(VC,max). ? reported g1 = 3.78 (control
::
in

:::::
Table

::
1,

:::::::
Control), using a Leuning model similar to ours, where (1 +DS/D0) is

replaced by DS . ? approximated gBB1 ≈ 5
:::
gBB1 ::

to
:::

be
::
5 for Sodankylä while estimating the variation in the values of VC,max

and maximum rate of electron transport Jmax. We would suggest that the limiting values θpwp and θtsp should be optimised
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or fixed before introducing additional tuning factors such as mesophyll conductance or scaling the β in multiple ways in the

stomatal conductance formulations (?). Our simulation setup for q corresponds to the configuration 5 (C5) by ?, with variables

q = qB and fixed value qS = 1.

4.4 Parameter values

Some of the parameters in this study have been calibrated before by e.g. ??. Our approach differs from these as we required5

the model to reproduce the site level maximum of LAI. In contrast e.g. ? found the structural limit for (all-sided) LAI to be

4.2, which is considerably lower than the measured LAI for many of the sites in Table 1. Our approach directly scales the

vegetative area, so it also scales GPP and e.g.
::::
also the amount of rain available for plants (as rain is directed to bare soil and

vegetative area). This means that the parameter values should not be directly compared without taking the different paradigms

into account. However
:
, our optimised VC,max values are in-between 62.5 reported by ? and 29.3 by ?

:
, and are in line with the10

yearly cycle presented by ?.

The exponential scaling factor q in Eq. (A1) of the β-function (2), was revealed to be ineffective in our optimisation as

indicated in Table 5. In our simulations, this situation arises as the effective range of the β-function has been reduced by

lowering
::::::
lowered

:::
by

:::::::
reducing

:::::
θpwp:::

and
:
θtsp. The actual soil moisture is rarely below this fraction

::
the

:::::::
fraction

::::
θtsp, so q is

constrained with a very limited number of datapoints. Therefore
:
,
:::
and

::::
thus

:::
has

::::
only

::::::::
minimal

:::::
effect

::
on

:::
the

::::::
fluxes

:::
and

:::
the

::::
cost15

:::::::
function.

:::::::::
Therefore,

:
the values presented for q in Table 5 can be unreliable and even unrealistic. This situation is remedied

in the drought period optimisation but the
::::
when

:::
the

::::
soil

::::::::
moisture

::
is

::::
low.

:::
The

:
resulting values for q

::
in

:::::
Table

:
7
:
have a wide

range
:::::::::
dispersion,

::::::::
although

::::
they

::
are

::::::
mostly

:::
on

:::
the

:::::
lower

::::
end.

::::
This

:::::::
signifies

:::
that

:::
the

:::::::::
additional

::::
GPP

::::::::
reduction

::
is

::::::
mostly

:::::::
gradual,

::::
with

:
a
:::::
steep

::::::
decrese

::::
near

:::
the

:::::::::
permanent

::::::
wilting

:::::
point

::::
θpwp.

The values of soil water parameters are closely grouped in the optimisations except for the values of θpwp during the drought.20

This can occur due to a larger impact, of the different stomatal conductance formulations to
::
on the accumulating soil water

content, than assumed – this can also be seen from the differences in the β-function values in Fig. 3. Furthermore, the values

of θtsp and θpwp have been considerably lowered from their default values in both optimisations. This change can be perceived

in at least two different ways. Either the boreal forests are not generally limited by soil moisture stress (except in the case

of extreme drought) or the water retention capabilities of the soil (in the model) have been systematically overestimated.
:::
The25

::::
latter

:::::
seems

::::::::
unlikely,

::
in

:::
the

::::
light

::
of

::::::
results

::
by

::::
e.g.

:
?
:
.

5 Conclusions

The adaptive population importance sampler (APIS) is a recent method, capable of estimating complicated multidimensional

probability distributions using a population of different proposal densities. The algorithm was able to produce reasonably stable

estimates for most parameters quickly. Prior to calibrating the model, we adjusted the site-specific vegetative area fractions to30

reproduce the measured site level maximum of LAI. This practical approach resulted in improved ET and GPP fluxes, although

we encountered difficulties in replicating these for sites with low LAI. The model parameters were optimised simultaneously
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for all sites without any additional site level tuning. The parameters affecting
:::
that

::::
were

:::::
most

::::::::
effective

::
in

:
the optimisation

processesthe most ,
:
were consistent for all stomatal conductance formulations.

The introduction of the S-function, to delay the start of the vegetation active season, has corrected the springtime increase in

GPP for conifers throughout the sites used in this study. The parameters θtsp and θpwp, that set the range for the soil moisture

stress function β, were both systematically lowered and optimised to nearly identical values for all stomatal conductance5

models. This
:::
The

::::
low

:::::::
effective

:::::
range

:::
for

:::
the

::
β

:::::::
function rendered the experimental parameter q nearly ineffective in the more

general optimisation. The dry period optimisation increased the effective range of the β-function and the importance of qfor

the Ball-Berry type model. The Baseline and Bethy versions optimised q to be practically ineffective
:
,
:::::
which

:::::::
resulted

::
in

::::::
highly

::::::::
nonlinear

:::::::::
(additional)

::::::::
reduction

::
in

:::
the

:::
net

::::::::::
assimilation

:::
rate. Overall, both optimisations strongly

:::
this

:::
fact

::::
and

::::
both

:::::::::::
optimisations

indicate that boreal forest transpiration is not limited by soil moisture stress under normal conditions.10

The optimisation improved the predictive skill of the model with all stomatal conductance formulations as was seen during

the validation period. The Bethy, Ball-Berry and Friend and Kiang versions were the most compliant
::
in

::::::::
agreement

:
with the

observations, although the differences between these and the other formulations were small. Most of the model versions had

::::
some

:
problems during the extended dry period . The unified stomatal optimisation model had

:::
and

:
the best b and r2 values

during the drought
::::
were

:::::::
achieved

:::
by

:::
the

::::::
unified

:::::::
stomatal

:::::::::::
optimisation

:::::
model. Additionally, the optimised parameter values of15

the USO model for the dry period were the most coherent
:::
alike

:
(of all stomatal conductance formulations) with those of the

more general optimisation.

Code and data availability. The data required to calibrate and validate the model is originally part of the FLUXNET2015 dataset that can be

accessed through the FLUXNET database (doi:10.17616/R36K9X). Our modified dataset, containing the forcing data and the observations

used in this article, is available through Zenodo portal (doi:10.5281/zenodo.3240954). The data depicting the simulations (parameter draws,20

cost function values etc.) has been added as a supplement. The JSBACH model (branch: cosmos-landveg-tk-topmodel-peat, revision: 7384)

can be obtained from the Max Planck Institute for Meteorology, where it is available for scientific community under the MPI-M Sofware

License Agreement (http://www.mpimet.mpg.de/en/science/models/license/). The modifications to the model, described in this paper, have

been uploaded to Github and they can be accessed by contacting the authors at jarmo.makela@fmi.fi (after access to the actual model has

been approved). For any questions, we encourage you to contact the authors at jarmo.makela@fmi.fi.25

Appendix A: Parametric equations within JSBACH

In this appendix we present the most relevant equations that are governed by the parameters in Table 2. The appendix is divided

into sections that coincide with the parameter groups.

A1 Photosynthesis

The Farquhar model (?) is based on the observation that the assimilation rate in the chloroplast is limited either by the carboxy-30

lation rate (VC), induced by the Rubisco enzyme, or the light-limited assimilation rate (JE). The total rate of carbon fixation
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is reduced by the amount of dark respiration (Rd), resulting in net assimilation rate (An). The experimental scaling factor

βq (?) is based on soil moisture stress in Eq. (2), that takes effect (β < 1) when soil moisture is significantly reduced. This

scaling is used by all stomatal conductance formulations. We have also introduced here in equation form the actual reduction

to photosynthesis by γ from the delay in the start of the vegetation active season in Eq. (1).

An = βq(min(γVC ,JE)− γRd) (A1)5

Oxygenation of the Rubisco molecule reduces the carboxylation rate, which is given as:

VC = VC,max
Ci−Γ?

Ci +KC(1 +Oi/KO)
(A2)

Here Ci and Oi are the leaf internal CO2 and O2 concentrations, Γ? is the photorespiratory CO2 compensation point,

KC and KO are Michaelis-Menten constants parametrizing
::::::::::::
parameterising

:
the dependence on CO2 and O2 concentrations.

Furthermore, leaf internal CO2 concentration depends on the external (ambient) concentration Ca (in the Baseline and Bethy10

formulations and unstressed conditions) by:

Ci = fC3Ca (A3)

Likewise, the light-limited assimilation rate can be expressed as a function on electron transport rate (J), which is a function

of radiation intensity (I) in the photosynthetically active band, the maximum electron transport rate (Jmax) and the quantum

efficiency for photon capture (α):15

JE = J(I)
Ci−Γ?

4(Ci + 2Γ?)
, J(I) = Jmax

αI√
J2
max +α2I2

(A4)

A2 Soil water

In JSBACH the soil water budget is based on several reservoirs (e.g. skin, soil, bare soil, rain intercepted by canopy etc.) and

the different formulations are plentiful. We present here only the most crucial of these. Changes in
:::::::::
volumetric soil water (θs,

not to be confused with volumetric
::::::
relative

:
soil water content θ = θs

θfc
) due to rainfall (R), evapotranspiration (ET ), snow melt20

(M ), surface runoff (Rs) and drainage (D) are calculated with a geographically varying maximum field capacity (θfc) .
:::
and

:::
soil

:::::
water

::::::
density

:::::
(ρw).

ρw
:

∂θs
∂t

= (1− pint)R+ET +M −Rs−D (A5)

The interception parameter (pint) also affects the amount of water intercepted by vegetation and bare soil which further

affects evaporation and transpiration. The skin reservoir is limited by wskin and excess water is transferred to soil water.25

Likewise when the soil water content (θ) is greater than parameter θdr, the excess water is rapidly drained (in addition to the

limited drainage below this threshold), where d, dmin and dmax are constant parameters:

D = dminθ+ (dmax− dmin)

(
θ− θdr
1− θdr

)d
, θ ≥ θdr (A6)
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Evaporation from wet surfaces (Ews) depends on air density (ρ), specific humidity (qa), saturation specific humidity (qs)

at surface temperature (Ts) and pressure (ps) and aerodynamic resistance (Ra). The aerodynamic resistance depends on heat

transfer coefficient (Ch) and horizontal velocity (vh).

Ews = ρ
qa− qs(Ts,ps)

Ra
, Ra = Ch|vh|−1 (A7)

Transpiration from vegetation (Tv) is likewise formulated but additionally depends on the stomatal resistance of the canopy5

(Rc), which is an inverse of the stomatal conductance and as such, depends on which conductance model is used.

Tv = ρ
qa− qs(Ts,ps)
Ra +Rc

(A8)

Evaporation from dry bare soil (Es) also has an added dependence on surface relative humidity (hs) calculated from soil

dryness:

Es = ρ
qa−hsqs(Ts,ps)

Ra
, hs = max

[
θhum(1− cos(πθ)),min

(
1,

qa
qs(Ts,ps)

)]
(A9)10

The total evapotranspiration is a weighted average of Ews, Tv and Es, where the weights are based on fill levels of reservoirs

and the vegetative fraction of the grid cell.

A3 Logistic Growth Phenology (LoGro-P) model

The parameters from the LoGro-P are mainly used to determine the spring and autumn events for JSBACH. To determine the

date of the spring event we first introduce a few additional variables, namely the heatsum ST (d), the number of chill days C(d)15

and the critical heatsum Scrit(d). T (d) denotes the mean temperature at day d.

ST (d) =

d∑
d′=d0

max(T (d′)−Talt,0) (A10)

Heatsum ST (d) cumulates the amount of “heat“ above the parameter Talt after the previous growing season. The actual

starting date d0 of the summation need not be known since it is enough to start the summation “reasonably late“ after the last

growth season.20

C(d) =

d∑
d′=da

H (Talt−T (d)) (A11)

The number of chill days is calculated as the number of days when the mean temperature is below Talt. Here H() denotes

the Heaviside step function and the summation starts at the day (da) of the last autumn event.

Scrit(d) = Smin +Srangee
−C(d)/Cdecay (A12)

The critical heatsum (Scrit) decreases as the number of chill days C(d) increases, with an exponential memory loss param-25

eter Cdecay . The spring event happens when:

ST (d)≥ Scrit(d) (A13)
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The autumn event requires the definition of one more variable, the (pseudo) soil temperature (Ts(t)), which at time t is

calculated as an average air temperature (T ) with an exponential memory loss (Tps). The autumn event occurs when Ts falls

below a certain threshold. In the equation N is the normalization constant and τ is the length of a time step.

Ts(t) =
1

N

t∑
n=−∞

T (n)e
−(t−n) τ

Tps (A14)

Appendix B: Stomatal conductance formulations5

In this appendix we present the stomatal conductance model formulations used in this study. In the original JSBACH formula-

tion, the Baseline model (?), the photosynthetic rate is resolved in two steps. First the stomatal conductance under conditions

with no water stress is assumed to be controlled by photosynthetic activity (?). Here the leaf internal CO2 concentration is

assumed to be a constant fraction (Ci,pot = fC3Ca) of ambient CO2 concentration (Ca). This allows for an explicit resolution

of the photosynthesis (?). Then the impact of soil water availability is accounted for by a soil moisture-dependent multiplier10

(β) that is identical for each canopy layer (?).

gs,pot =
1.6An,pot
Ca−Ci,pot

⇒ gs = βgs,pot (B1)

After accounting for soil water stress, the net assimilation rate (An) and intercellular CO2 concentration are (Ci) are recalcu-

lated using gs, and integrated over the leaf area index to produce canopy level estimates.

In the Bethy approach (?), the unstressed canopy conductance (Gc,pot) is calculated similarly to the Baseline model, but15

potentially further limited by the water supply function of the maximum transpiration rate (Tsupply = βTmax). Tmax is a fixed

and predefined upper limit for transpiration as in ?.

Gc =

 Gc,pot
Tsupply
Tpot

, Tpot ≥ Tsupply ≥ 0

Gc,pot, Tpot < Tsupply
, Tpot = ρ

qs− qa
1/Ga + 1/Gc,pot

(B2)

The potential (unstressed) transpiration rate (Tpot) is a function of air density (ρ), saturation specific humidity (qs) at given

temperature and pressure, specific humidity (qa), aerodynamic conductance (Ga) and unstressed canopy conductance (Gc,pot).20

After this scaling, the net assimilation rate and intercellular CO2 concentration are recalculated as in the Baseline model.

The Ball-Berry variants relate the stomatal conductance (gs) to empirically fitted parameters g0 (mol m−2s−1) and g1

(unitless, except for gUSO1 which has units of
√

kPa) that respectively represent the residual stomatal conductance and the

slope of the function. The stomatal conductance is a function of the net assimilation rate (An), the water stress factor (β) and

the atmospheric CO2 concentration (Ca). The original Ball-Berry formulation (?) also depends on relative humidity at leaf25

surface (hs). In the Leuning model (?), the CO2 concentration is reduced by the CO2 compensation point (Γ) as well as scaled

by the vapour pressure deficit (Ds) and a constant (D0) depicting the stomatal sensitivity to changes in Ds. The Friend and

Kiang model (?) adds an exponential dependency on the difference of specific (q
::
qa) and saturation specific humidity (qsat)

with empirically fitted constants a= 2.8 and b= 80. The unified stomatal optimisation model (?) also adds a dependency to
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the vapour pressure deficit (Ds).

gBBs = gBB0 + gBB1 β
Anhs
Ca

gLeus = gLeu0 + gLeu1 β
An

(Ca−Γ)(1 +Ds/D0)
(B3)

gF&K
s = gF&K

0 + gF&K
1 β

Ana
b(qs−qa)

Ca

Ana
−d(qsat−qa)

Ca
:::::::::::::

gUSOs = gUSO0 + 1.6

(
1 +

gUSO1 β√
Ds

)
An
Ca
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