GMD-2018-313: Stomatal conductance, photosynthesis and parameter
calibration for boreal forests with adaptive population importance sampler
in the land surface model JSBACH

This document contains the marked-up differences between the previous version of the manuscript and the
revised version of gmd-2018-313. Please note that we had to remove the tables and some of the equations
from the previous version because latexdiff was not able to process the changes (probably this was
because of the multicolumns in Tables etc.). Additionally, latexdiff places most of the new tables at the end
of the manuscript.

We have already previously uploaded the point-by-point answers to the reviewer comments as a
supplement to the author comment AC1: “Author responses to the reviewer and editor comments” (Jarmo
Makela, 02 May 2019).

The revised manuscript has been modified according to the comments and our answers. The major
modifications are:

* Revised title.

» More focus on APIS in the introduction.

* Revised overview on the model simulations with added details.

* Revised text of the APIS algorithm description with comparison to a general MCMC method.
* Added Gelman-Rubin tests.

* Separated and revised the “Results and discussion” into two separate section. The text has been
mostly restructured but there are also some new points made.

* The new discussion focuses on the validity of simulations and the model modifications, with some
further comments on the parameter values.

» Figures have been modified and captions added to the supplementary images.

* The previously wrong numbers of r? in Table 5 (now Table 6) have been corrected (the r? values in
the table had not been squared).

* The algorithm states have been added as supplements.
* The driving data has been uploaded to Zenodo.

* The model modifications have been uploaded to github but access still requires agreement to the
MPI-M License agreement.
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Abstract. We calibrated the JSBACH model with six different stomatal conductance formulations using measurements from 10
FLUXNET coniferous evergreen sites in the Boreal zone. The parameter posterior distributions were generated by the adaptive
population importance sampler (APIS) and the optimal values by a simple stochastic optimisation algorithm. The observations

used to constrain the model are evapotranspiration (ET) and gross primary production (GPP). We identified the key parameters

in the calibration process. These parameters control the soil moisture stress function and the overall rate of carbon fixation.

We-The JSBACH model was also modified to use a delayed effect of temperature for photosynthetic activity in spring. This
modification enabled the model to correctly reproduce the springtime increase in GPP (which was also reflected in ET) for

conifers throughout the measurements sites used in this study. Overall, we were able to improve the coefficient of determination
and the model bias with all stomatal conductance formulations. There-wasno-clearcandidateforthe-beststomatal-conductance

The optimisation resulted in best performance by the Beth

Ball-Berry and the Friend and Kiang stomatal conductance models.
We also optimised the model during a drought event in a Finnish Scots pine forest site.

This optimisation improved the model behaviour but the changes to the parameter values
were significant. Interestingly, the unified stomatal optimisation model demonstrated best performance during this event with
only small changes to the parameter values.
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1 Introduction

Plants exchange carbon dioxide (CO3) and water (H,O) with atmosphere. Sufficient soil water, irradiance and adequate temper-
ature are required to maintain the exchange rate during the growing season. Disturbances in these conditions such as drought,
cold temperature or low radiation cause the plants to respond to the environmental stress via stomatal closure and the draw-
down of photosynthesis and transpiration (???). The capability of plants to recover from such events depends on species and
their adaptation to site conditions (?). Stress is part of the normal annual cycle of the plants, but occasionally it may exceed the
limits of recovery.

Soil water deficit and high water vapour pressure deficit can result in suppressed plant transpiration (??)and-bereal-forests
oceastonalty-sufferfromsott-drought(22)—Globalty, Globally, soil drought has been recognised as one of the main limiting
factors for plant photosynthesis (?) and boreal forests are known to occasionally suffer from soil drought (2?). The recov-
ery of photosynthetic capacity in spring has been connected to temperature history, and to frequency of severe night frosts
(?)reversing-the-development, that can reverse the recovery. Understanding, and correctly modelling, these phenomena are
especially important te-for boreal forests (?) under changing environmental conditions.

Ecosystem and land surface models, describing the plant photosynthesis, transpiration and soil hydrology related processes,
usually include descriptions and parametrisations for various stress effects. These parameters often lack a theoretical foundation
(??) and descriptions of vegetation drought response and phenology have been recognized to need better representations (?2?7?).
These deficiencies restrict the model’s predictive capability under changing environmental conditions, and call for specific
parametrisations for different plant types and vegetation zones.

The stomatal conductance models describe the pathway of CO2 and water through the leaf stomata by an electric circuit
analogy (?). The variations in stomatal opening and mesophyll structure are interpreted as resistances to the water flow and the
process is idealised via generalised parameterisation. The stomatal conductance models mainly differ in their choice of variable
driving the stomatal closure and their performance has been recently assessed in modelling studies by e.g. 2??. However, it
can be hypothesised that the choice of the stomatal conductance model affects the ecosystem model parameters more broadly
than just those directly related to the actual stomatal conductance formulations as these formulations vary in their responses to
the different conditions. A holistic assessment of the performance of the stomatal conductance models together with parameter

optimisation has been missing.

In many other studies, where the aim has been to optimise land surface model parameters, the optimisation is based on
estimating the gradient of the cost function: ? for JISBACH, ?? for ORCHIDEE and ? for JULES. The gradient-based methods
are faster than Markoy chain Monte Carlo (MCMC) methods as they strongly steer the sampling process to reach a minima
of the cost function (see e.g. ?). This approach also enables a more indefinite setting of parameter ranges when compared to
methods that sample the full parameter space. However, they are prone to get stuck in a local minima, especially when the
dimensionality of the parameter space increases. Lately similar parameter estimations have also been done for CLM by ?
using the DREAM. ;) (MCMC) algorithm with multiple chains, and for JULES by ? with the BORG algorithm that employs
multiple optimisation algorithms simultaneously. The DREAM algorithm is fully iterative, which limits the number of parallel



10

15

20

25

30

processes to the number of parallel chains in use (when we do not account for the possibility of the model parallelisation that
can be substantial). The applicability of the BORG algorithm is dependent on the algorithms in use and the expertise of the
APIS is a Monte Carlo (MC) method that can be run iteratively as presented by ? but it is also straightforward to parallelise,
since all samples prior to each adaptation (in our simulations 2000 draws) can be drawn and estimated simultaneously. This
latter feature is useful to decrease the amount of real time required to run the algorithm when computer resources are not the
limiting factor - APIS requires considerably fewer sequential estimates than typical Markov chain methods. In the iterative
mode, automatic stopping rules can be easily implemented to indicate when additional samples are not required to improve
the estimates. The APIS algorithm samples the full parameter space (as do MCMC methods), is able to utilise a mixture of
parameter prior distributions and can estimate complicated multidimensional probability distributions. These aspects make

APIS an attractive alternative to the other sampling and optimisation methods mentioned above.
In this study we apply the land-surface-land surface model JSBACH for 10 boreal coniferous evergreen forest eddy co-

variance sites to examine the performance of different stomatal conductance models, and their effect on calibrated parameters
related to photosynthesis, phenology and hydrology. We will assess the inter-site variability and focus on a specific drought

period at one site. We will provide an assessment of the robustness of the calibration of parameters together with different stom-

atal conductance descriptions. We utilise the-adaptive-population-impertance-sampler-APIS to sample the full parameter space

with the different stomatal conductance formulations and to locate different modes of the target (peaks of high probability).

2 Materials and methods

MW%%%W&%%IWWM by the model as-input-variables;

ior-and modifications made to it.

meastrements;-are-used-to-constrain-and-evaluate-the-modelthe sampling process, the algorithms and methods used to analyse

the results.
2.1 Sites and measurements

We use data from 10 FLUXNET (doi:10.17616/R36K9X) sites characterised as coniferous evergreen forests. Site descriptions
with appropriate references are gathered in Table +—1. The site level half-hourly measurements were quality checked and
gap-filled when needed to produce continuous half-hourly and daily time series. The gap-filled and low quality (based on
FLUXNET data quality flags) measurements were masked and the daily aggregates (usually means) accepted as part of the
calibration process if at least 60% of values between 4:00 and 20:00 for that day were unmasked — the acceptance of the daily
values for the calibration is based on the quality of the “daytime” measurements but all of the values are used to drive the

model.
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Based on the quality and quantity of their respective measurements, the sites were divided into calibration and validation

sites. Essentially, if we have enough data from a site, it is used for
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both calibration and validation purposes{withn

onlyfor-. We require the site to have at least eight years of measurements, where the first five are used for calibration, and

the consecutive three for validation. Otherwise we use the site only for a three year validation. The FLUXNET datasets were
missing both the long- and shortwave radiation for the two Russian sites, Fyodorkovskoye (RU-Fyo) and Zotino (RU-Zot).

These were generated from ERA Interim data. The soil types of all of these sites can mostly be identified as mineral soils with
varying sand, clay and peat contents. Fyodorovskoye and Poker Flat (US-Prr) are natural peatlands and Lettosuo (FI-Let) is a
drained peatland site.

The measurement error in the EC flux data can be separated into systematic and random errors. The main systematic errors
(density fluctuations, high-frequency losses, calibration issues) are taken into account as part of the post-processing of the
data, and the random errors tend to dominate the uncertainty of the instantaneous fluxes. The random error is often assumed
Gaussian but can be more accurately approximated by a symmetric exponential distribution (?). It increases linearly with the
magnitude of the flux, with a standard deviation typically less than 20% of the flux (??). Our treatment of the measurement

(and model) error-errors is explained in section 2-72.9.

Table 1. Descriptions for the sites used in this study sorted by their FLUXNET identifier. The first six sites are used for both calibration and
validation purposes, with the first five years of each site used for calibration. The last three years as well as the last four sites are used for
validation only. The reported elevation is in meters above sea level, LALis the one-sided leaf area index and the average stand age is in years,
along with average annual precipitation (P) in mm and temperature (T) in degrees Celsius.

Site id lat lon elev.  dom.species ~ LAL ~age P T years  reference
CAQbs 5399 10512 629 Piccamarina 38 135 406 08 19992006 2
CA-Qfo  49.69  -74.34 382  Picea mariana 37 112 962 -04 20032010 ?
FLKen 6799 2424 337 Piccaabies 21 100 484 04 20032010 2
FLSod 6736 2664 179 Piussybeswis 17 150 527 04 20012008 2

RUZot 6080 8935 121 Piwssyleswis 15 215 493 33 20022004 2
USPr 6502 14749 210 Piccamariana 07 72 205 20 20112013 2

2.2 The JSBACH modelversion3.10

JSBACH (?) is a process-based ecosystem model and the land surface component of the Earth System model of the Max Planck
Institute for Meteorology (MPI-ESM). We ran JISBACH offline using an-observational-meteorological-data-set-meteorological
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measurements from the flux towers to force the model. Implications of this one-way coupling with the atmosphere include lack
of feedback from the surface energy balance to the atmosphere, i.e. latent and sensible heat fluxes and surface thermal radiation
do not directly affect prescribed air temperature or humidity. Similarly, the feedback of the surface to the vertical transfer
coefficients within the atmospheric surface layer is missing as the wind speed that drives mixing is prescribed. Furthermore,
since we use site level data (each site is represented as a single grid point), the grid resolution does not affect the results?2).

We focus only on the most essential parts of JSBACH relating to our work. A more complete model description with details
on e.g. soil heat transfer, water balance and coupling to the atmosphere can be found in ?, whereas ? provides a more descriptive
synopsis on land-surface interactions, ? supplements both with land cover change processes and ? introduces soil hydrological
mechanisms within a multilayer scheme applying five layers.

In JSBACH the land surface is a-fractional-structure-where-the-tand-divided into grid-cellsare-, which are split into bare soil
Mmmmwded into tiles representlng the most prevalent vegetatlon classes, called
plant functional types (PFTs) withi e teh+4
furthermorefractionally-divided-inte PFTs—In-oursitedevel(2). In our site-level simulations, the model was set to use only one

PFT, coniferous evergreen trees. The seasonal development of leaf area index (LAI) for the trees is regulated by air temperature

and soil moisture with a single limiting value (for all sites) for the maximum of LAI. This maximum value was fixed and the
site-specific fractions of vegetative area were adjusted to reproduce the measured site level LAL

The predictions of phenology are produced by the Logistic Growth Phenology (LoGro-P) model of JISBACH (?). Photo-
synthesis is described by the biochemical photosynthesis model (?). Following ? we set the maximum electron transport rate
(Jmag) at 25 degrees Celsius to 1.9 times the maximum carboxylation rate (Vi 44 ), Which is in line with e.g. ?2. The photo-
synthetic rate is dependent on the used stomatal conductance formulation, introduced in chapter 2:32.3. Radiation absorption
is estimated by a two stream approximation within a three-layer canopy (?). Especially in the-sparse canopies, the radiation
absorption is affected by clumping of the leaves which is here taken into account according to the formulation by ?.

Parameters detailing site-specific soil properties, such as soil porosity and field capacity, were derived from FLUXNET

datasets and the references in Table +--1. We approximated the soil compositions and generated these properties following 2.
2.3 Modifications to the JSBACH model

All parameters of interest, presented in Table 22, were extracted from the JSBACH model code to an external file to facilitate

the simulations. The default paramete

pﬁm&fﬁ%&%mwmw synthesis of literature values. Most of the
parameter ranges (limiting values for the parameters) were adapted from our previous work on a similar topic (?);-but-they

. The parameter grouping was done to

enhance optimisation and the mechanism is explained in chapter 2:62.7. Group I consists of parameters most directly affecting
photosynthesis, group II parameters are intimately involved with soil moisture and group III are the logistic growth phenology
(LoGro-P) model parameters. The equations governed by these parameters are presented in Appendix AA.

Start-
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The start of the growing season in the JSBACH model is defined by a “spring event” ;-in the LoGro phenology model
(appendix A3)~-A3) that induces leaf growth. The phenology model calculates a sum of ambient temperature (heatsum) since
last autumn that is above the cutoff value T,;;, presented in Eq. (A10). It also calculates a variable threshold, defined in (A12),
for the heatsum sum-to reach. The threshold decreases based on the number of days the ambient temperature is below Ty,
whereas the heatsum increases. When the heatsum reaches the threshold, the plant leaves are free to grow.

However, coniferous evergreen trees do not shed all of their leaves for winterand-are-therefore-inreadinessfor-, The existing
foliage enables them to quickly instigate photosynthesis in the following spring. The start of the photosynthetically active
season in the model has been observed to occur too early in the Boreal region by e.g ?. To correct this behaviour i.e. to
restrain the respiration and photosynthesis of conifers, we utilise a delayed effect of temperature for photosynthetic activity,
introduced by ?. To calculate the reduction, we must first define the state of photosynthetic acclimation that ?, p.371 present
as: “an aggregated measure of the state of those physiological processes of the leaves that determine the current photosynthetic
capacity at any moment”.

The state of acclimation (.S) is calculated from air temperature (7") with a delay prescribed by parameter 7 (this is similar
to the calculation of Ts in appendix ?2A14). S is then inserted into sigmoidal relation Eq. 2?-(1) to calculate a factor v, a
formulation that is adapted here from ?. Finally ~ is used to reduce the photosynthetic efficiency in Eq. 22(A1). T}/, denotes

the inflection point where «y reaches half of ¥,,,44, b is the curvature of the function and v = 1 when S > 10.

dS _ T_S . IYWLG,CE 1
d T ST ™

The JSBACH model was also modified to include altogether six different stomatal conductance formulations following ?.
These formulations include the pre-existing Baseline and Bethy versions as well as the Ball-Berry model and three of its
variants. Model information is gathered in Table 3-3 for easy referencing and the detailed formulations are given in appendix

BB. The limits of the slope of the conductance formulation parameter (g;) were set to reflect commonly observed values from

physiological measurements (?).

USO reflect the results presented by ?.

We have also included two additional parameters for the Friend and Kiang (?) stomatal conductance formulation in B3.
These parameters were not originally included in the optimisation, but the resulting cost function (9) values were poor when
compared to the other formulations. At that point, these parameters were included in the optimisation process. This increases
the degrees of freedom for the Friend and Kiang model by two and therefore may give it an advantage when compared to the
other Ball-Berry type formulations, which has to be considered in the interpretation of the results.

All of the stomatal conductance models contain an empirical water stress factor /3, which reduces stomatal conductance as a

function of volumetric soil water content (6).

17 0 Z etsp
0—0p
B = m’ 0pwp <0< atsp 2
0, 0< 0,0,
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In the original JSBACH formulation, the Baseline version, the stomatal conductance (g;) is first resolved for unstressed
canopy and then scaled by 3. The Bethy approach assumes that transpiration is either limited by atmospheric demand or water
supply. In cases when water supply is not the limiting factor, the calculations are similar to the Baseline version. In all of the
empirical Ball-Berry variants, the stomatal conductance can be written as g; = go+c¢fg1. The residual conductance (gg) and the
slope of the function (g;) are both formulation specific parameters as well as factor ¢, that incorporates net photosynthesis and
effects of atmospheric humidity and CO4 concentration. The parameters go and g; are part of our sampling and optimisation

processes (group I in Table 2-2 when applicable).

toptimabModel simulations

The site level measurements, used as model inputs, are air temperature, air pressure, precipitation, humidity, wind speed and
CO- concentration as well as short- and longwave and potential shortwave radiation. Additionally, evapotranspiration (ET) and
gross primary production (GPP), derived from the eddy covariance (EC) measurements, are used to constrain and evaluate the
storage pools) or the model can be restarted from a file describing the state of some previous run. Depending on the area of

interest, a model spin-up may be required to bring the model into a steady state. In our simulations some of the more slowl

changing variables (e.g. soil water content and LAI) need to be equilibrated, so a spin-up is required. This can be achieved b

—measurements multiple times, each time restartin

from the final state of the previous run.

Trrthe Jast step-we-have substituted-to-the same-notation-as-in-2-The calibration period consists of the first five years given
for the calibration sites in Table 1. The spin-up is achieved by looping over these five years, altogether four times (20 year
spin-up) and then saving the state of the model at the end of the run. The actual calibration is started from the beginning of the
calibration period, using the previously saved state variables. To reduce any bias this induces, the first year in the calibration
run is removed from the cost function calculations. The spin-ups for the validation sites in Table 1 are similarly generated.

During the summer 2006, the H
discolouration of needles. These events are difficult for models to capture and hence are of interest to modellers. We have
previously and unsuccesfully attempted to optimise the JSBACH model (?) for this event. Here we focus directly on the
extended dry period (190-260th day of the year in 2006), during which the actual drought is mostly in effect between 210-235th
DOY. We fix some of the parameter values as those uncovered by the more general calibration, presented above. The spin-up

tidld (FI-Hyy) measurement site suffered from a severe drought (?), leading e.g. to visible
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was the same as for the calibration period, but at the end of the spin-up the model was run forward to the start of the year 2006.
Only values between the 190-260th day of the year (DOY) in 2006 were used in constraining the model.

2.5 Sampling process

We describe the modelling setup with the ebservati

observations-equation y = M (0,x) + e, where the aim is to reproduce the observations (yfrom-the-modelstate-z(thatinclades
with our model (M), the driving data }-using-(x) and the current parameter values x(6). The residuals (eare-gathered-by-)
depict how well the model reproduces the observations and they form the basis of the likelihood function #{3{3¢)-(formulated

in section h2.9), that is used to derive the parameter posterior
Fhe-denominator 7 (y -is-calledthe partition—funetion-Using Bayes’ rule on conditional probability we can_ write the
arameter posterior densit 6, M|x)) as a function of the likelihood (£(x|6,M)), parameter prior distributions (7 (6

and the model evidence (e

thus-be-viewed-as-a-constant—Many-Z (x|M)). As usual and from here on, we do not write M in the Bayes formula:

o) = <00 ®

We can now utilise the posterior density as a probability density for the parameters and infer the expectation values:

El6:]= %/&p(olx)do, Zz/p(o\x)do @

Generally, Eq. (4) cannot be analytically solved, hence it is usually estimated numerically. Commonly this is achieved by one
of the many Markov chain Monte Carlo (MCMC) methodssi

]

study we apply the adaptive population importance sampler (APIS), defined by ?. The MCMC methods do not care about the
value of Z and for APIS we introduce the importance sampling density g(@).

1= 5 / 6:r(6)q(6)d8,  where T“’)‘p;?o))()

®)

Above 7 is the reweighing factor that is the driving force in importance sampling. We will next give a summary description of
the sampling process with comparison to a general multichain MCMC approach (since MCMC methods are more commonl
used in these types of situations).

1. The initialisation of a multichain MCMC sampler and APIS are very similar. In our simulations APIS is set up as 40
simultaneous and independent importance samplers. This is similar to an independent 40-chain MCMC sampler. Each
sampler or chain has a random starting location and sampling distribution (we use truncated Gaussian distributions)
that will evolve throughout the process. The starting locations were sampled from a uniform distribution defined by the
parameter limits (given in Table 2).
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2. In an MCMC setup, the model would be run once (for each chain), evaluated and then the draw (parameter values
accepted or rejected accordingly. In APIS, instead of a single element (one run) we use a sample size of 50. This

means that we draw 50 elements with each IS sampler (or “chain”) independently. These draws are then evaluated and

reweighted as presented in Eq. (5).

3. The 50 reweighted draws (for each IS sampler separtely) are used to calculate a new location for the sampling distribution.
This location is automatically accepted (no rejection criteria) and we also adapt the shape of the distribution using the
self-normalising AMIS estimator by ?2.

4. Additionally, all of the draws in APIS are used to calculate “global” estimates of the parameter expected values. This

??) and it is fully iterative — no need for any recalculations as the

rocess utilises the deterministic mixture aj

estimates are directly adjusted (no information is lost either).

MCMC chains track the evolution of single elements, and occasionally adjust the sampling distribution. The sample size in
APIS is larger (it is not a Markov chain method) and the focus is on the evolution of the locations of the sampling distributions,
not on the individually drawn elements. These location parameters are expected to be around all the modes of the target and
the deterministic mixture ensures the stability of the estimation of the (global) parameter expected values. As an importance
sampler, APIS is also a variance reducing method.

Before taking a more detailed look at APIS. we make some further notes about the sampling process. The first element of
the 50 draws (item 2 in the list above) is always fixed as the current mean. This requirement stems from a need to reduce

computational time. Running the model to a steady state (chapter 2.4) for each parameter set is costly. Hence we generate the

model starting state only for the proposal means and use the same state for the other 49 draws. This induces some discrepancies,
but they are mitigated by removing the first year of the calibration simulations (as explained in section 2.4). We also slightl
scale (reduce) the importance weights based on the distance of the corresponding sample to the mean of the proposal. This
scaling is only used in the adaptation of the new location. Additionally, we note that this approach ensures that we run the
proposal means, that are the focus in APIS. with the correct spin-up.

2.6 Adaptive population importance sampler

iwolving complieated multidimensional target probability-density-funetions; sueh-as Bq— This-method- APIS (7) is a Monte
Carlo (MC) method that utilises a population of importance samplers (IS) to jointly estimate the target pdf s#{z}-(p(6|x)) and
the normalising constant Z-(Z(x)) by a deterministic mixture approach (??). Normallydusing-this-proeess-, only the location
parameters of the IS proposals are adapted, but we also adapt the shape parameters using the self-normalising AMIS estimators
by 2. The APIS is able to use-utilise different or a mixture of normalised proposals densities, but we utilise-use truncated

Gaussian proposals with diagonal covariance matrices.
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own proposal distribution ¢;(0).j € {1,..., M}, M = 40. The estimator then calculates importanee-weights{w;)-the importance
weights (w;; = 2%2)) for each sampleand-approximatesthe-integral Bq—as— The location (i;) and shape (C;) parameters
(2).of each proposal are updated using only samples (and weights) drawn from ¢;. The new shape parameters are formed as a
mean of the previous estimate and C;, as calculated below.

Do wij (0; —pi)(0; — )"
> Wi

> wiss
K= ij“’
i Wij

C; = (©6)
This-evaluationis-The simple IS estimators alone are rarely sufficient if the target is even slightly complicated. One classical
way of tackling this problem is to join multiple IS estimators together. The simplest approach is to calculate the weights for

each of these estimators separately and to normalise the result by the combined sum of all weights. The-basie IS-estimator;-and

leaves-the-estimator-However, this leaves the estimators susceptible to “bad” proposals.
The APIS suppresses the bad proposals by utilising the deterministic mixture approach (??) presented in Eq. (7), where each
proposal ¢5-5-c{3—=A4}-q; is evaluated at all the drawn samples and weighed by the amount of samples drawn (F;:N; = 50)
from that proposal. This is equivalent to joining the normalised proposal densities together and evaluating the joint pdf.
T the APIS-ad on— . forF-and—Z-in B
p 01 X
= PlO51)

The parameter expectation values and the normalising constant in Eg. (5) can now be estimated by Monte Carlo integration
using weights calculated in Eq. (7)are-iterative justed-and-th ion h m hep istributi
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2.7 Parameter optimisation

The APIS algorithm is a rather robust method meant for examining the full target probability distribution and e.g. locating

the modes of the target distribution.

iterations)Adaptation in APIS utilises multiple draws simultaneously, which can easily lead to few parameters dominating this
rocess (the marginal density of one or few parameters overshadows the calculations). Since we also did not run the model

spin-up for all drawn samples, we utilise a simple custom stochastic optimiser ;—with-starting-points—set-at-the-medes-of-the
targetto locate the optimal set of parameter values. This optimiser is run after the APIS calibration simulations and it utilises

the same datasets as APIS.

Our optimiser is a simple random sampler amplified by the “velocity” of the last jump (the idea is similar to Hamiltonian or
Hybrid Monte Carlo by ?). We draw a set of samples from a small Gaussian proposal distribution in the vicinity of the current
best estimate and calculate the cost function for the samples. Whenever a better point is found (smaller cost function), we jump
to that (update the mean of the proposal distribution). The “velocity” of the jump (for us merely distance of change in each
parameter) is then added to the new mean (with a maximal limit of one standard deviation in the proposal distribution), but it
is reduced and eventually removed if a better sample is not found.

The covariance matrix of the proposal distribution is recalculated at predefined intervals (for all parameters). Additionally
we utilise a subset sampling procedure, where the samples are first drawn from the full parameter space, in the next step they
are drawn only from group I in Table 2-2 (the rest are kept at their current optimal values), followed by groups II and III and
then back to the full parameter space. When the number of parameters is reduced, we are more likely to find a better set of
parameter values. We have kept the parameters mostly affecting the same processes in the same group, but some dependencies

may not be apparent and hence it is also important to draw samples from the full parameter space.

2.8 SimulatiensSimulation analysis

11



10

15

20

25

30

c y—a § artoratio t SO SP bHp-1S atea;—cartoration

a Markov chain method, we can (naively) interpret the evolution of the

in-2006-were-used-in-eonstraining the-modelresulting 40 chains have random starting positions but they are relatively short
(we present results from the Bethy calibration, where the chains were adjusted 100 times), hence we did not discard any of the
samples. We test the convergence of these chains with the Gelman-Rubin diagnostic tests (?), comparing the variance between
the chains to the variance within each chain, and calculating the potential scale reduction factors (2). We also test the stability.
of the (parameter) global expected value estimate by calculating the difference of the final global expected value and the mean
of the location parameters (at each iteration). We denote this test as ¢ and report the number of the iteration when this difference

is below 5% of the parameters range, given in Table 2.

2.9 Simulatien-analysis

We-In order to visualise the results, we have utilised a Gaussian kernel density estimation (KDE) to produce distributions from
generated-samplesthe APIS simulation location parameters. In practice, KDE places a Gaussian distribution centred at each
sample and the constructed composite distribution is an estimate of the underlying actual distribution. The bandwidth for the
distributions is calculated using the Scott’s rule (?): the data covariance matrix is multiplied by a factor nd;+l4, where n is the
number of data points and d is the number of dimensions.

The effectiveness of each parameter was calculated from the final state of each optimisation process. This was done by first
setting all parameters to their optimised values. Then we (evenly) sampled each parameter separately from their range of accept-
able values and calculated the corresponding cost functions. For each parameter the maximum difference in these cost function
values (and the optimised value) was recorded. The parameters (within each optimisation) were then ordered by these num-

bers (with highest difference meaning highest effectiveness) and separated into three groups with “high™”;~average™or—tow™

effeetiveness—valuehighest (most effective) and lowest (least effective) effectiveness values, and the rest. This effectiveness
relates to how the APIS “sees” the sampling process — the 50 draws are evaluated simultaneously and a very effective parameter
can easily mask the influence of a less effective (the marginal density of one or few parameters dominates the calculations).

We report the slope of the regression line (b) and the coefficient of determination (r?), between the observations (y;) and the
model output (z;). The slope of the regression line is highly indicative of the model bias (difference of the expected values of
the observations and the model). Hence we interpret the bias directly from b (in our results the regression lines pass near origin

so the differences this induces are negligible).

N Zl(%—fz)(yz—@ 21 Zl(xl—yl)Q
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2.9 Cost function

ayesian framework requires a likelihood
function that optimally combines pointwise model and observational errors;-but-unfortunately-this-is-not-pessible—The-. The

JSBACH model error is unknown as is the (pointwise) observation error. We could use a general type of error estimate (such
as that of 20% of the flux value) for the observations, but would have to include a minimal site and instrumentation dependent

precision. In this study, the full error is treated as Gaussian white noise. The-eostfunectionBecause of these limitations, we are

calling and defining our likelihood as a cost function. It is calculated for each site separately using daily values, with the gap-
filledand-, low-quality peintsremoved-(leaving-and winter (between the 315th and the 75th day of the year) values removed
(resulting in N7 and Ngpp points)-and-. The cost function is then averaged over the sites and returned for the algorithm to
produce an estimate that is independent of the characteristics of any single site.
The cost function (9) in our simulations is based on the normalised mean squared error (NMSE) estimates of the daily
ross primary production (GPP) and the daily evapotranspiration (ET). The residual of each variable is divided by the mean of
observations, as has been previously done by e.g. 2222, We make use of this approach since we needed to balance two series
of different magnitudes (ET and GPP). The residuals are additionally divided by the (site specific) number of observations so
that the cost function is not biased towards any specific site. The cost function (without the normalisation) can be interpreted
as a negative log-likelihood function with a (gaussian) error term equal to the observational mean.

NMSEgr NMSEg pp
1 ETmod_ETobs>2 1 (GPPmod_GPPobs)2
C = — + 9
h Ngr ( ET s Necpp Z GPPys ®

We also use a modified version of this cost function, where the rermatised-mean-squared-error-estimates (INMSE)NMSE’s

are weighted by factors based on coefficients of determination (r2) defined in Eq. (8). This latter cost function is only used

during the separate drought period optimisation for Hyytidld. During the drought we are more interested in the correct timing
of the change in GPP and ET fluxes, rather than the size of the actual change. The aim is to correctly reproduce the changes in
the water use efficiency (WUE) of plants, which we interpret here as the pointwise ratio of (ecosystem level) GPP to ET. The
NMSE values ensure that the overall amplitude of the fluxes will remain satisfactory.

ofs = (11 )NMSEpr + (115 INMSEqrr 1
3 Resul i .

13



10

15

20

25

30

3 Results

First we present the performance of the APIS algorithm and the parameters themselves, followed by site and stomatal conduc-
tance model specific site-level-results and lastly an examination of the Hyytidld drought event in 2006. For eenvenience-sake;
and-to-simplify-sentenees;-we-will-simplicity, we equate the name of the stomatal conductance model to that-ef-the ISBACH
model version utilising that conductance formulation.

The evolution of the APIS algorithmic process is presented in Fig. -1 for three parameters from the calibration of the Bethy
model. The parameters-were-chosen-to-chosen parameters highlight different levels of identifiability for the algorithm (with
the given cost function). The first parameter (fc3) is-an-example-of-shows a well identifiable situation, where the algorithm
quickly locates the area of high probability. The second parameter (64,) is also identifiable but the speed of convergence is
diminished. The last example (Cgecay) represents situations when-the-algorithm-is-unable-to-constrain-the-parameter—This

Fhe-iterations with the Bethy and Ball-Berry formulaations.
We also report the results of the eptimisation—proeess—are-—gathered-in—Table-4—Some-of-Gelman-Rubin (?) and ¢ tests
in Table 4. Both of these tests indicate that the algorithm is performing well at 20 iterations — the values of R~ 1, which

means that further simulations are unlikely to improve the variance estimates. However, for some parameters the convergence
of the para : : ar-their-Jimiting val ich-ea ieneies—i ety

in-Fig—-—The-effectivenesstevels-are-highly-situational-(global estimate is slow (as also seen in the supplementary image S1

for e.g. they-depend-on-the samplinglimitssetforeach d d A

14



algorithms-ete)T, ¢, and q). The APIS sampling process did not reveal any multimodal distributions and thus provided suitable
initial conditions for the optimisation.
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oint (0 and the point above which transpiration is unaffected by soil moisture stress Gtspiliheaemal—seﬂrmeisfufeﬂ%e&f
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have been significantly lowered. The LoGro phenology parameters, that affect the timing of the spring and autumn events,

are expected to contribute only little to the cost function. The coniferous evergeen trees do not shed all their leaves for winter
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and therefore the timing of the bud burst is not as critical as for e.g. deciduous trees. Additionally the state of acclimation

parameter 7 also affects the vegetation active period and likely dominates the phenology parameters.

Some of the parameters have converged to their limiting values, which can reflect deficiencies in the model structure or
the preset parameter ranges. Convergence to the boundary can also be a problem in model calibration, but in this experiment
the algorithms were able to cope with the situation as APIS located the area of high probability and the optimiser located the
maxima. The different parameter effectiveness levels reported in Table 5 can be roughly equated to the identifiability situations
in Fig. 1. The effectiveness levels are highly situational (e.g. they depend on the sampling limits in Table 2 given for each
WMMWWMMVWWM ameuﬂ*reﬁmnwm%&lﬁ&feﬁpwm%m%dﬁeﬁwm

these-vartation-better)APIS process. Low effectiveness complements the test results in Table 4, as the tests may indicate good
erformance for a parameter (e.g. for .S, ) that is ineffective in the simulations.

3.2 SitelevelresultsAnnual cycles

We present the average annual cycles for the validation period and for all sites in Fig. 2-2 using the Bethy formulation —We
ion-that is part of the standard modeland-therestlts
afeﬁhghﬂ:f The annual cycles of the Bethy model are more in line with the Ball-Berry variants than those with-of the Baseline

model -

Vefy—mueh—alfke#hefe}evaiw}ue%—ef—meﬂepe see supplements S2 for the yearly cycles of the other models). The parameters
of the regression line-lines (b )-and-the-coefficient-of determination-tand r?) from-att-of-these-tmages-have been-between the

measured and modelled ET and GPP fluxes of all the models are gathered in Table 5-6. These indicators have been calculated

using all corresponding values regardless of gualitythe quality of the data. The sites are in the same order as in Table +-1 with
the six calibration sites first, followed by the four sites used only for validation.
On-afirstglaneethe-

The optimisation has improved the model results in Fig. 2-2 for all of the calibration sites and at least for half of the

validation sites. The improvement in the timing of the springtime increase in GPP is apparent. The GPP-inerease-new-oceurs
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The-correlation coefficients for ET and GPP have improved for every site and the GPP bias has diminished for all calibration

sites — the two validation sites where GPP bias has increased are Poker Flat (US-Prr) and Zotino (RU-Zot). Fhese-tweo-sites

o tha lawa o laye AT valuecand-thecitennderstory a ontributectocionifieantarmounto PP

The resulting parameter values, from the optimisation during the drought conditions in Hyytiild (FI-H in the summer of

2006, are presented in Table 7. Setting the maximum carboxylation rate to a constant value (Ve maz = 52.0) enabled the full
use of the dynamical range of ¢ - the idea was to ensure that Ve 4, does not dominate the optimisation, any value for ¢ is
possible and it is able to influence the outcome. The LoGro phenology parameters and 7 were fixed to their optimised values,
presented in Table 5. as they should not be affected by the drought. Likewise, the values of other parameters (not presented in
Table 7) were set as compromises between the stomatal conductance formulations.

We can now compare the parameter values in Table 7 to those in Table 5. The values of the relative humidity parameter
Onsum. and the residual stomatal conductance go have remained nearly unchanged, but for the rest of the parameter we see
wildly different results. Noticeably the USO optimisation only changes the value of 6, and leaves the rest of the parameters
almost untouched.

The changes these different parametrisations have on the model output are visualised in Fig. 3. The Baseline, Bethy and
USO formulations demonstrate a considerable increase in the agreement in GPP between the model and observations when
compared to the default setting or the previous more general optimisation. The GPP of other formulations has remained roughly.
the same as with the more generally optimised parameter values. The Baseline, Ball-Berry, Leuning, and to a lesser degree the
Friend and Kiang formulations, now suffer from the too low ET values before the actual drought. The Bethy model has a too
strong drawdown of both ET and GPP during the drought, The USO formulation results in the best fits for 2 and b with the

was succesful for the USO model and to a lesser for the Bethy formulation as well — approximately-half-of the- €Ofluxesfor

selected two of the stomatal conductance formulations, Bethy and USO, to examine the changes to the water use efficienc
WUE) of plants during the extended dry period. The highlighted observations in Fig. 4 show a clear path of development for

the drought where the observations imitate the letter §. The colourings follow the S-function values in Fig. 3 between the red

vertical lines. Both observational colourings (same as the model colouring) are similar and depict first a linear decrease in both
ET and GPP, followed by a rapid decline in ET and a delayed decline in GPP, The recovery of plants from the drought can also
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be seen as the colouring starts to turn lighter. The models depict a more linear response of GPP to ET as the drought develops
although with USO we can see a bit more similarities in the pattern of the values.
Lastly, we inspected the ET and GPP cycles (not shown) for the whole validation period with both optimised parameter

sets, all stomatal conductance formulations and all calibration sites. The b and 2 values for ET were better for all stomatal

conductance formulations (except one) using the more generally optimised parameter set. There is some variation in the
indicators for GPP, where approximately a third of the values (mostly r?) are better with the dry period parameter set. These
differences are mostly attributed to increased model bias (decreased b) that is explained by the lower values of g;. Overall, the
more general optimisation provided systematically better or comparable results to the dry period optimisation, The exception is

the USO formulation, which had an approximately 1:1 distribution of best values for both variables in-between the parameter

sefs..

4 Discussion

We will first discuss the validity of our approach and the simulation setup, followed by examinations on the success of the
modifications made to the model and close with some further remarks on the parameter values.

4.1 Validity of the simulations

Before we calibrated the model, we fixed the limiting value for LAI and adjusted the site-specific fractions-of-vegetative-and
bare-sotl-areas-vegetative area fractions to reproduce the measured site level maximum of LAI This-can-affect-the-model

behaviour-espeetaltyforsttes-with-very low(Zotine)-or-high-(Lettoswo-(Fl-Eety)-site teveH=Adn the simulations, we focused
on boreal coniferous forests, where light penetration is deep and the light conditions are homogenous — consequently we could
assume a homogenous leaf distribution. Furthermore, the JSBACH model takes into account leaf clumping and we can assume
the leaf orientation and shape to be similar throughout the study sites. Therefore, we argue that reproducing the site level
maximum of LALis appropriate approach in this study. Together with parameter calibration it has resulted in improved ET and
GPP fluxes as can be verified from the b and 72 values in Fig. 2.

We encountered difficulties in replicating the fluxes for the validation sites with low LAL This can be a consequence of the
area scaling as the adjustment linearly changes the proportions between vegetative area and bare soil. The-second-explanation
is-thatAnother reason is the lack of the site understory in these simulations. For example, approximately half of the CO> fluxes
(and consequently roughly half of the GPP) for Poker Flat are produced by the site understory (?). Additionally, there are also

many parameters describing site-specific soil properties (such as porosity) that were not part of the optimisation and may be
inaccurate. The-latter These effects may also be pronounced due to the changes in parameters affecting soil moisture as well as
the area scaling.

There were no clear differences between sites dominated by pine or spruce. Neither did we notice any particular effect on the
bias, MSE-NMSE or correlation coefficient that could be explained by geographical location, stand age or annual precipitation

or temperature. We optimised the model for individual (calibration) sites as well. Mostly this changed the values of parameters
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(such as Ve mar and gp) affecting the amplitude of the modelled fluxes. These parameters can be viewed to be more site-
specific, a characteristics that is reduced in a multi-site calibration — the possibility of highly site-specific properties (and

parameter values) can also explain the difficulties in reproducing the validation site observations. We are omitting these results

as single-site optimisation can be viewed as overfitting the model and the results do not provide any additional insights.

'The APIS performance tests (Gelman-Rubin
and 9) indicate that the algorithm is performing well at 20 iterations but the convergence of the global estimate for some
parameters is slow. This is mostly a direct result of the normalisation of the cost function that inflates the target distribution and
gives too much weight to the initial locations and draws. Without the normalisation, the algorithm would also converge faster.
Additionally, APIS is meant to examine the full target distribution with only some sequantiality — 20 iterations (or less) should
be sufficient for APIS to locate the modes of the target. In longer APIS simulations, the global estimate would likely benefit
from e.g. discarding the first half of the samples but this would require the estimate to be recalculated at each iteration (from
the drawn samples) as it could not be calculated iteratively.

4.2 Delayed effect of temperature

We modified the JISBACH model by introducing the delayed effect of temperature for photosynthesis to restrain the respiration
and photosynthesis of conifers in spring. The effect of this (delayed increase in GPP) is apparent in the annual GPP cycles of
CA-Qfo, FI-Hyy, FI-Ken, FI-Sod and RU-Zot in Fig. 2. The dela
apparent in the figure. This delay is also reflected in transpiration, and consequently in ET. This correction in the ET values
can lead to an increase in model bias as is the case with Sodankyld (FI-Sod), where the too low autumn values were previously.
compensated by too high springtime values with the default parametrisation. This increase in bias should not be viewed as a
faultin the optimisation as the model was previously mitigating an erroneous behaviour (too low autumn ET) with another (too

is in place for the other sites as well, but the effect is less

tb:+%)? used a linear dependency of photosynthetic efficiency to the state of acclimation, and reported 13.75 days to be the
range of values resulting in a good fit was large (5-10.4 days). ? came to a similar conclusion when they encounter a near-flat
distribution for 7 in the range of 1-12 days. In our simulations 7 exhibits larger optimal values (nearly 15 days), which is most
accounts better for these variations).

4.3 Stomatal conductance models

We examined the model behaviour with six stomatal conductance formulations. The resulting b and 72 values in Table 6 indicate
that the best performance (bolded values) is shared by the Bethy (12) and vartables{(EF-GPP)indicate-better-performaneefor
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model, The Bethy model dominates the 2 values of ET, where as the BB model has the highest “score” for the b values of

GPP and the F&K formulation leads in the 72 of GPP. However, some of the differences in the indicator values are small and

we calibrated two more parameters for the F&K formulation (when compared to the other Ball-Berry models). Likewise, we

could have for example included the factor Dy (that depicts stomatal sensitivity to changes in vapour pressure deficit D) in

the optimisation, which would have likely improved the performance of the Leuning model.

44 Droust o Fivvtiiiki

e-Similarly to the results by ?, based on this

eneral) calibration there is no clear single candidate for the best stomatal conductance formulation.
The model behaviour was also examined during the Hyytidld %ﬁeﬁeepﬁeﬂaﬂlfdfy—peﬂed—él}@he—dfeﬂghkwas—%evef&

between-the-stomatal-conduetaneeformulations-but-these-drought of 2006. Some of the parameter values were kept fixed durin
these simulations, most of the fixed parameters should not %ak&d#fere&&valt&e%dt&mg%h&dﬂ#peﬂeé—\%—ﬂet&hef&%haﬁhe%e
affect the drought

eriod calibration but there are exce tions, such as the maximum carboxylation rate V . It can be argued that i-e-¢.g. both
the parameters Vi 4. and g; should fluetaate-decrease (?) during the drought but this-does-netfitin-the-medel-paradigm-

The best fit to the observations was achieved by the USO formulation with remarkably similar parameter values to the general
optimisation. The USO model was also able to (somewhat) replicate the ““d”” shape of the drought in Fig. 4.
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bound-for-the-The stomatal conductance function (g, = go + ¢ incorporates also the soil water parameters 6;, and

in the form of the -function )-

WWW%WN@NOLMM%MMM
Onswp) are intertwined. During the drought, the decrease in the optimised values of g, during-the-drought-is expected as the
plants close their stomata to minimise the loss of water by transpiration (2?).

The same effect is also achieved by increasing the values of 01 and Oy, as this decreases the values of the 5-function.
The higher values of g; during the more general optimisation are better reflected by ?, whereas the lower values during the
drought are more in accordance with physiological observations by ?. Likewise, ? found higher values for g; (both boreal area

and gymnosperm trees) using the USO model.

The site level estimates of (gg and) g; are sensitive to the stomatal conductance formulation but also e.g. to the general
structure of the underlying model and the value of other parameters, such as maximum carboxylation rate (V¢ ;qz)- ? reported
g1 = 3.78 (control), using a Leuning model similar to ours, where (1+Dg/Dy) is replaced by Ds. ¢2)-2 approximated gP° 5 ~ 5
for Sodankyld while estimating the variation in the values of Vi 1,4, and maximum rate of electron transport J;,4,. We would
suggest that the limiting values 6,,,,, and 8,5, should be optimised or fixed before introducing additional tuning factors e-g—te

such as mesophyll conductance or scaling the 3 in multiple ways in the stomatal conductance fermutation?)—formulations (?)

. Our simulation setup for ¢ corresponds to the configuration 5 (C5) by ?, with variables and fixed value

4.4 Parameter values

Some of the parameters in this study have been calibrated before by e.g. 22. Our approach differs from these as we required the
model to reproduce the site level maximum of LAIL In contrast e.g. ? found the structural limit for (all-sided) LAI to be 4.2,
which is considerably lower than the i i i i i
WM&WWWM&WW
s0 it also scales GPP and e.g. the amount of rain available for plants (as rain is directed to bare soil and vegetative area). This

21



10

15

20

25

30

35

means that the parameter values should not be directly compared without taking the different paradigms into account. However

our optimised V. values are in-between 62.5 reported by ? and 29.3 by ? and are in line with the yearly cycle presented
by 2.

The exponential scaling factor g in Eq. (Al) of the 3- functlonfém)exeeed&ﬂieepﬁfmsedwie—feﬁﬂefﬂiepaf&mefﬂ&afmns

(2), was revealed to

be ineffective in our optimisation as indicated in Table 5. In our simulations, this situation arises as the effective range of the
-function has been reduced by lowering 6,

. The actual soil moisture is rarely below this fraction, so ¢ is constrained with a
very limited number of datapoints. Therefore the values presented for ¢ in Table 5 can be unreliable and even unrealistic. This
situation is remedied in the drought period optimisation but the resulting values for ¢ have a wide range.

The values of soil water parameters are closely grouped in the optimisations except for the values of 6., during the drought.
This can occur due to a larger impact, of the different stomatal conductance formulations to the accumulating soil water content,

than assumed — this can also be seen from the differences in the S-function values in Flg Hédmeﬂal}yweeeiﬂe}beﬁvefﬁfﬂﬂg
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setsvalues of 0, and 0 have been considerably lowered from their default values in both optimisations. This change can be
erceived in at least two different ways. Either the boreal forests are not generally limited by soil moisture stress (except in the

case of extreme drought) or the water retention capabilities of the soil (in the model) have been systematically overestimated.

5 Conclusions

The adaptive population importance sampler (APIS) is a recent method, capable of estimating complicated multidimensional
probability distributions using a population of different proposal densities. The algorithm was able to predueed-produce reason-
ably stable estimates for most parameters quickly. Prior to calibrating the model, we adjusted the site-specific vegetative area
fractions to reproduce the measured site level maximum of LAIL This practical approach was-sueeessfulresulted in improved
ET and GPP fluxes, although we encountered difficulties in replicating EF-and-GPP-fluxes-these for sites with low LAI The
model parameters were optimised simultaneously for all sites without any additional site level tuning. The parameters mestly
affecting the optimisation processes the most were consistent for all stomatal conductance formulations.

The introduction of the S-function, to delay the start of the vegetation active season, has corrected the springtime increase
in GPP for conifers throughout the sites used in this study. The parameters 0;, and 6, that set the range for the soil mois-
ture stress function (3, were both systematically lowered and optimised to nearly identical values for all stomatal conductance
models. This rendered the experimental parameter ¢ nearly ineffective in the more general optimisation. The dry period opti-
misation increased the effective range of the S-function and the importance of ¢ for the Ball-Berry type model. The Baseline
and Bethy versions optimised g to be practically ineffective. Overall, both optimisations strongly indicate that boreal forest
transpiration is not limited by soil moisture stress under normal conditions.

The optimisation improved the predictive skill of the model with all stomatal conductance formulations as was seen during
the validation period. The Bethy, Ball-Berry and Friend and Kiang versions were the most compliant with the observations,
although the differences between these and the other formulations were small. Most of the model versions had problems during
the extended dry period. The unified stomatal optimisation model had the best b and 2 values during the droughtand-utilised
the-full-range-of-the-5-function—Additionally, Additionally, the optimised parameter values of the USO model for the dry

period were the most coherent (of all stomatal conductance formulations) with those of the more general optimisation.

Code and data availability. The data required to calibrate and validate the model is originally part of the FLUXNET2015 dataset that can be

accessed through the FLUXNET database (doi:10.17616/R36K9X). Our modified dataset is available through Zenodo portal (doi:10.5281/zenodo.3240954

The data depicting the simulations (parameter draws, cost function values etc.) has been added as a supplement. The JSBACH model
(branch: cosmos-landveg-tk-topmodel-peat, revision: 7384) can be obtained from the Max Planck Institute for Meteorology, where it is
available for scientific community under the MPI-M Sofware License Agreement (http://www.mpimet.mpg.de/en/science/models/license/).

The modifications to the model, described in this paper, have been uploaded to Github and they can be accessed by contacting the authors
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at jarmo.makela@fmi.fi (after access to the actual model has been approved). For any questions, we encourage you to contact the authors at

jarmo.makela@fmi.fi.

Appendix A: Parametric equations within JSBACH

In this appendix we present the most relevant equations that are governed by the parameters in Table 2--2. The appendix is

divided into sections that coincide with the parameter groups.
Al Photosynthesis

The Farquhar model (?) is based on the observation that the assimilation rate in the chloroplast is limited either by the carboxy-
lation rate (V), induced by the Rubisco enzyme, or the light-limited assimilation rate (Jg). The total rate of carbon fixation
is reduced by the amount of dark respiration (Ry), resulting in net assimilation rate (A,,). The experimental scaling factor
B? (?) is based on soil moisture stress in Eq. (2), that takes effect (8 < 1) when soil moisture is significantly reduced. This
scaling is used by all stomatal conductance formulations. We have also introduced here in equation form the actual reduction

to photosynthesis by + from the delay in the start of the vegetation active season in Eq. (1).
Ay, =B (min(yVe, Jg) — vRa) (A1)

Oxygenation of the Rubisco molecule reduces the carboxylation rate, which is given as:

C;—T,
Ci+ Kc(140;/Ko)

VC = VC,max (AZ)

Here C; and O; are the leaf internal CO- and O concentrations, I, is the photorespiratory CO5 compensation point, K~ and
Ko are Michaelis-Menten constants parametrizing the dependence on CO5 and O, concentrations. Furthermore, leaf internal
CO,, concentration depends on the external (ambient) concentration C,, (in the Baseline and Bethy formulations and unstressed

conditions) by:
Ci= fcsCa (A3)

Likewise, the light-limited assimilation rate can be expressed as a function on electron transport rate (J), which is a function
of radiation intensity (/) in the photosynthetically active band, the maximum electron transport rate (.J,,4,) and the quantum

efficiency for photon capture («):

C;—T, I
J(I) = Ty —er (Ad)
J2 0 212

max

e = J(I)4(Ci Tor,)

A2 Soil water

In JSBACH the soil water budget is based on several reservoirs (e.g. skin, soil, bare soil, rain intercepted by canopy etc.) and

the different formulations are plentiful. We present here only the most crucial of these. Changes in soil water (6, not to be
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confused with volumetric soil water content § = 2=

) due to rainfall (R), evapotranspiration (F71'), snow melt (M), surface

O
runoff (R,) and drainage (D) are calculated with a geographically varying maximum field capacity (6.).
06,
po; = (L=pim) RAET+ M~ Ry~ D )

The interception parameter (p;,¢) also affects the amount of water intercepted by vegetation and bare soil which further
affects evaporation and transpiration. The skin reservoir is limited by wy;, and excess water is transferred to soil water.
Likewise when the soil water content () is greater than parameter 6,,., the excess water is rapidly drained (in addition to the

limited drainage below this threshold), where d, d,,;, and d,,, are constant parameters:

0—04.\"
D= dm,ina + (dmaz - dmzn) <1 ed > ) 0 2 edr (A6)
— Udr

Evaporation from wet surfaces (F,,s) depends on air density (p), specific humidity (g,), saturation specific humidity (gs)
at surface temperature (75) and pressure (ps) and aerodynamic resistance (R,). The aerodynamic resistance depends on heat
transfer coefficient (C},) and horizontal velocity (vp,).

Ga — QS(TS7PS)

Ews:p R y

Ry = Chlop| ™ (A7)

Transpiration from vegetation (7,) is likewise formulated but additionally depends on the stomatal resistance of the canopy

(R.), which is an inverse of the stomatal conductance and as such, depends on which conductance model is used.

da — QS(Ts;ps)

T, = A8
PR TR (A8)
Evaporation from dry bare soil (E) also has an added dependence on surface relative humidity (h) calculated from soil

dryness:

o — hsqs(Ts, ps) . Ga
E,=p———— hs = max |Opyum (1 — cos(m)),min | 1, ————— (A9)
R, ( qs(Ts,ps)

The total evapotranspiration is a weighted average of E,,, T, and E, where the weights are based on fill levels of reservoirs

and the vegetative fraction of the grid cell.
A3 Logistic Growth Phenology (LoGro-P) model

The parameters from the LoGro-P are mainly used to determine the spring and autumn events for JSBACH. To determine the
date of the spring event we first introduce a few additional variables, namely the heatsum S7(d), the number of chill days C(d)
and the critical heatsum S.,;+(d). T'(d) denotes the mean temperature at day d.

d
Sr(d)= > max(T(d') = Tax,0) (A10)
d’'=dy

Heatsum S7(d) cumulates the amount of “heat* above the parameter T,;; after the previous growing season. The actual

starting date dy of the summation need not be known since it is enough to start the summation “reasonably late* after the last
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growth season.
C(d)="Y H(Tuy—T(d)) (A1)

The number of chill days is calculated as the number of days when the mean temperature is below T,;;. Here H () denotes

the Heaviside step function and the summation starts at the day (d,,) of the last autumn event.
Scrit (d) = S’mzn + Srangee_c(d)/Cdewy (AIZ)

The critical heatsum (S,;;;) decreases as the number of chill days C'(d) increases, with an exponential memory loss param-

eter Cgecay- The spring event happens when:
Sr(d) > Serir(d) (A13)

The autumn event requires the definition of one more variable, the (pseudo) soil temperature (T(t)), which at time ¢ is
calculated as an average air temperature (1) with an exponential memory loss (7},,). The autumn event occurs when T falls

below a certain threshold. In the equation [V is the normalization constant and 7 is the length of a time step.

t
Ts(t):% S Tnye TS (A14)

n=—oo

Appendix B: Stomatal conductance formulations

In this appendix we present the stomatal conductance model formulations used in this study. In the original JSBACH formula-
tion, the Baseline model (?), the photosynthetic rate is resolved in two steps. First the stomatal conductance under conditions
with no water stress is assumed to be controlled by photosynthetic activity (?). Here the leaf internal CO, concentration is
assumed to be a constant fraction (C; por = fc3C,) of ambient CO; concentration (Cy,). This allows for an explicit resolution
of the photosynthesis (?). Then the impact of soil water availability is accounted for by a soil moisture-dependent multiplier

() that is identical for each canopy layer (?).

1.6 A pot

s,pot = = s = $,pO Bl
9s,pot Co—Coper 9s = BYs,pot (B1)

After accounting for soil water stress, the net assimilation rate (A,,) and intercellular CO5 concentration are (C}) are recalcu-
lated using g, and integrated over the leaf area index to produce canopy level estimates.

In the Bethy approach (?), the unstressed canopy conductance (G ot) is calculated similarly to the Baseline model, but
potentially further limited by the water supply function of the maximum transpiration rate (Tsuppiy = BLmaz)- Tmaz 1 a fixed

and predefined upper limit for transpiration as in ?.

Tsupply
G. = Gc,pot Tpot ’ Tpot Z Tsupply 2 0 T . ds — 4qa
c — ) pot —

P (B2)
Gc,poty Tpot < Tsupply 1/Ga + 1/Gc,pot
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The potential (unstressed) transpiration rate (1},,¢) is a function of air density (p), saturation specific humidity (gs) at given
temperature and pressure, specific humidity (g, ), aerodynamic conductance (G,) and unstressed canopy conductance (G'¢ pot)-
After this scaling, the net assimilation rate and intercellular CO5 concentration are recalculated as in the Baseline model.

The Ball-Berry variants relate the stomatal conductance (gs) to empirically fitted parameters go (mol m~2s71) and ¢,
(unitless, except for g¥© which has units of v/kPa) that respectively represent the residual stomatal conductance and the
slope of the function. The stomatal conductance is a function of the net assimilation rate (A4,,), the water stress factor () and
the atmospheric CO4 concentration (C,). The original Ball-Berry formulation (?) also depends on relative humidity at leaf
surface (hs). In the Leuning model (?), the CO5 concentration is reduced by the CO5 compensation point (I') as well as scaled
by the vapour pressure deficit (Dy) and a constant (D) depicting the stomatal sensitivity to changes in Dg. The Friend and
Kiang model (?) adds an exponential dependency on the difference of specific (¢) and saturation specific humidity (gs4¢) with

empirically fitted constants a = 2.8 and b = 80. The unified stomatal optimisation model (?) also adds a dependency to the

vapour pressure deficit (Dy).

Anhs Leu An

BB BB BB Leu Leu
_ _ B3
95" =90 +91 B c. 9s 9"+ 9 5(Ca—r)(1+DS/D0) (B3)
A ab(QS_(Ia) gUSO A
F&K F&K F&K n USO USO 1 n
_ | - 1.6(1 Zn
Gs 90 +gl /8 Oa 9s 90 + ( + /Ds )Ca
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Figure 1. Examples of the evolution of the APIS algorithm from the Bethy calibration. The left panel is the kernel density estimate of the

location parameters at the start of the process (black), after 20 iterations (blue) and after 100 iterations (green). The right panel shows the

location parameters (gray), their mean (red) and one standard deviation (dashed) as well as the global estimate (yellow) of the parameter

expected value.
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Table 2. Descriptions of model parameters with default values, range and references to equations in the manuscript or in the appendixes.
Parameters in the same group were calibrated simultaneously.

Parameter  def range  Units  Group

Description. Eq..
Neamae . 625 40,65] L. I

Farquhar model maximum carboxylation rate at 25°C of the A2

enzyme Rubisco (coupled with maximum electron transport rate at

25°C with a factor of 1.9)  [o = pumol(COx)m > s '].
a 0.28 0.26,0.32] - 1

Farquhar model efficiency for photon capture at 25°C. A4
T 100 (3,151 days L

Adjustment period length in acclimation of photosynthesis. 1
s 30 [4.7] < I

Multiplier in momentum and heat stability functions (?). -
fos. 087 107.095] - 1

Ratio of unstressed C3-plant internal/external CO5 concentration. A3
q. 00 [0.1] - 1

Exponential scaling of water stress in reducing photosynthesis. Al
® 0001 [ESSE3] v 1

Residual stomatal conductance __ [V = molm *s_]. B3
g1 Values in Table 3 - 1

Slope of the stomatal conductance function. B3
O 09 1050951 - I

Volumetric soil water content above which fast drainage occurs. A6
Ouon. 05 102081 - I

Fraction depicting relative surface humidity based on soil dryness. A9
Ouun, 035 1015041 - I

Volumetric soil moisture content at permanent wilting point. 2
o 075 1025081 - I

Value of volumetric soil moisture content above which transpiration 2

is unaffected by soil moisture stress (5); and 0.90;s, > Opup.
Pine. 025 (045035 - I

Fraction of precipitation intercepted by the canopy. A5
Sem_ 5.9E-3 1E-40.1] m I

Depth for correction of surface temperature for snow melt.
W, 20E4  [IESSE3] m iy

Maximum water content of the skin reservoir of bare soil. =
Cldecay. 130 [5,25] days_ II

LoGro-P: memory loss parameter for chill days. Al2
Spe. 1000 (3301 °Cdays I

LoGro-P: minimum value of critical heat sum. Al2
Srange 1500 [100300] ~ “Cdays ML

Lo P: maximal range of critical heat sum. Al2

L. 40 [2,10] °C g

T Al v D ~116nFF 11 alfarmafimo formarafiira A1N



Table 3. Stomatal conductance models with default values and range for g; and references to equations in Appendix B as well as related
articles. The x symbol indicates the Ball-Berry model and its variants.

Stomatal conductance model short q1_  range references
Baseline Base - -~ BL 2
Biosphere-Energy-Transport-Hydrology ~ Bethy - ~ Bz 2
Ball-Berry BB 90 4101 B3 2
* Leuning Lew 80 6101 B3 2
 Friend and Kiang F&K 95 (L] B3 2

Table 4. Parameter scale reduction R (at APIS iteration) and stability 0 (with a threshold) estimates from the Bethy simulations.

Voemar o 1. a faso 4. Y. e o
Rar20 L12 099 102 099 10 099 10 13 108
(005 20 21 27 40 o 3 18 14 17
Rat20, 099 10l 099 10 099 099 099 099 099
Ratl00 106 L1310 099 099 L0 099 099 099
§(009 26 3 8 0 12 2 0 1 0
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Table 5. Parameter default and optimised values for the calibration period with corresponding cost function value. The values written in
boldface were the most effective and the italic values the least effective for the given experiment. Also presented are the fixed parameter
values for the drought period optimisation, with opt referring to the use of the corresponding optimised value from this table.

Parameter
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Table 6. Slope of the regression line (b) and the coefficient of determination (1) for the different stomatal conductance formulations durin
the validation period with the optimised parameters. We have written the best values of b and 2 in boldface for each site and italicised the
abbreviations of the separate validation sites.

Evapotranspiration (ET)

b r?
> >
2 £ 5 X o 2 £ 5 X o
. < o 3 %2} < © M 3 122)
Site A A A 3 = 2 A A A a3 =P

N A AT A A AR AR AR

FI-Sod 064 073 074 063 064 056 058 0.64 061 06 062 0.55
RUFyo 098 102 101 098 099 085 07 071 071 071 071 07
CAOjp 08 084 084 075 072 067 064 065 064 065 064 063
bestvalues 0 2 5 0 3 0 O 6 2 0 2 0

Gross primary production (GPP)

b 2

Q o 0] o

CA-Obs 083 077 08 081 081 077 087 09 089 089 091 0.9

CA-Qfo 097 095 098 096 096 09 084 087 085 086 088 0.87

A AT AT AL AR R A AR AR A AR AR

FbKen 09 097 097 093 095 09 093 09 09 093 093 094
USSPy 02 021 021 02 09 019 062 06 06 062 063 062
bestyalues 1 4 4 0 1 0 0 0O 0 0 6 4
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Table 7. Optimised parameter and corresponding cost function values with different stomatal conductance formulations for the extended d

Parameter def  Base  Bethy BB Lew E&K  USO
Jes. 987 07 07 - - - -
Grse. 075 057 046 048 044 045 04l
G, 035 040 038 027 023 028  QI6
9% Table 3 S - 4983 SO0BE3  38E3  40E3
9 Table 3 S - 73 6.0 7.0 LS
cfy 042 044 039 041 041 041
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Figure 2. Validation period average annual cycles of evapotranspiration and gross primary production; observations (black) and the model

using the Bethy stomatal conductance formulation with default (green)sand optimised (blue) parametrisation. Also presented are daily model

values cross plotted against observations with corresponding slope of the regression line (b) and the coefficient of determination ().
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Figure 4. Hyytiidld site water use efficiency for the Bethy and USO formulations. Scatter plotted are the dry period 5-day running averages

of ET and GPP, coloured by the intensity of the drought (5-function). The left column depicts the model with the more generally optimised

arameter values, the middle column with the drought optimisation and the right column presents the corresponding observations, coloured
by the same intensity as in the middle column. The grey points are from the corresponding time during the two previous years.
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