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Abstract. This work focused on a new strategy for productively improving the performance of adjoint models. By using 

several techniques including the push/pop-free method, careful Input/Output (IO) analysis and the use of the conception of 10 

adjoint locality, we reduced the adjoint cost of the Weather Research and Forecasting plus (WRFPLUS) by almost half on 

different numbers of processors especially with a slight decrease in total memory. Several experiments are conducted using 

the four-dimensional variational data assimilation (4DVar) method. The results show that the total time cost of running a 

4DVar application is decreased by approximately 1/3. 

1 Introduction 15 

Currently, adjoint models required in many large-scaled nonlinear optimization applications (Courtier and Talagrand 1987, 

Charpentier and Ghemires. 2000, Vidard et al. 2015, An et al. 2016) have been developed using scores of automatic 

differentiation (AD) tools in an automatic way (Giering 1997, Giering et al., 1998). However, such models are not always 

productive for a specific large application, either in computational cost or in correctness. Although the true computational cost 

of the adjoint model has been said to be no more than five times of that of the underlying functions of two decades ago 20 

(Griewank 1989), this ratio related to the adjoint model generated with AD tools could range from several to scores in practical 

applications (Giering et al. 2005, Heimbach et al. 2005, Cheng et al. 2009b, Hascoet and Pascual 2013, Guerrette and Henze 

2015). Generally, several factors result in such huge computational cost, such as the lack of the knowledge of required variables, 

inflexible adjoining strategies, inefficient push/pop implementations, poor locality of data references, and large number of 

redundant recalculations. 25 

Regarding the raw codes generated with AD tools only, much work remains after checking their correctness. First, there 

are many unnecessary push/pop operations and unnecessary calculations inside them stemming from the lack of necessary IO 

knowledge for AD tools. Second, it is not wise for some adjoint codes such as generated using TAPENADE (Hascoet and 

Pascual 2013) to first calculate each partial derivative item and then accumulate them by multiplying their respective 
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perturbations during local adjoint accumulations. Apparently, this could require more unnecessary recalculations for the same 

intermediate results. Next, we have found that some extra costs of most adjoint implementations are due to the large number 

of push/pop operations. In fact, most of them can be removed or replaced in more productive ways closely related to the 

recognition of the “locality” characteristics of adjoint/reverse accumulations. In addition, each successful adjoint 

implementation of a specific application must have both an acceptable computational cost and acceptable memory 5 

consumption to the users. To some AD applications such as 4DVAR, much more memory consumption must result in poor 

scalability both in computing grids and in different computer environments. 

An adjoint calculation at a current position is in some way independent of the calculations in other places. This is called 

“adjoint locality” in this article. In fact, we can obtain the required data for the current adjoint accumulations in any way 

(Griewank 2000, Giering and Kaminski 2002, Hascoet et al. 2005). For example, if the value of a variable within a subroutine 10 

is required for calculating a partial derivative at current position, we can obtain this value, which is called the basic state value 

in some documents, in different ways such as directly recalculating it from the start of the underlying functions, calculating it 

from intermediate results, or directly restoring it from the stack in which it has been kept in the last run of this subroutine 

where there is often far more than one place at which the stack operations can be inserted. However, all of these operations 

will never be a disadvantage to the proper results of the adjoint model because of such independency between these adjoint 15 

calculations. Apparently, different ways have different costs in run time or memory. Moreover, this conception is necessary 

not only in the calculation of local partial derivatives but also in adjoint calculations within other program objects such as a 

segment of program lines, a loop or switch structure, a subroutine or function, or a module.   

The Weather Research and Forecasting (WRF) model is a numerical weather prediction and atmospheric simulation system 

designed for both research and operational applications (Skamarock et al. 2008) that has thousands of users worldwide. The 20 

adjoint model and the tangent linear model within WRFPLUS are used to productively calculate gradients of a cost function 

in its 4DVar system (WRFDA) and an adjoint integration is required once per 4DVar minimization iteration step (Huang et al. 

2009). For a more realistic configuration, the minimization stops after about 30 to 50 iterations (Vidard et al. 2015). Thus, 

even for a middle-scaled application, the time cost of the adjoint model could be more than half of the time required to run the 

total 4DVar system. The core subroutine of the adjoint model, which is executed scores of times in each Newtonian iteration 25 

step, is simply implemented in a PUSH/POP strategy that results in huge memory requirement in large-scaled applications. 

Moreover, such a strategy is inefficiently used in adjoint implementations. Therefore, it is necessary to improve the adjoint 

model with respect to both computational time and memory. 

The tangent linear model and the adjoint model within WRFPLUS and WRF data assimilation system (WRFDA; Barker 

et al. 2004, 2012) have been coupled to execute the 4DVar system. The updated tangent linear model and the adjoint model of 30 

WRF (Zhang et al. 2013) were mainly established with DFT/ADG (Cheng et al. 2009a, b) and TAPENADE by a slight of 

hand several years ago. Both tools can be used to generate adjoint codes with different adjoint strategies. In this application, 

each adjoint subroutine/function produced with TAPENADE is made using a simple push/pop strategy, which requires less 

computational cost but much more memory consumption. Actually, the computational cost for these push/pop operations will 
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turn out to be comparatively expensive when the local adjoint cost is reduced at a lower degree. However, the adjoint codes 

generated with DFT/ADG are implemented in a least program behavior decomposition method (Cheng et al. 2004) in which a 

subroutine/ function is first split into several small partitions according to their specific program structure. The advantage of 

this implementation is that extra memory space can be shared across these partitions, and the number of dimensions of each 

saving variable is often reduced by one compared with its corresponding required variable. This implementation requires 5 

comparatively less memory consumption but much more computational cost, although there are always productive ways 

available for reducing the latter in practice.  

However, the most difficult optimization may be associated with huge memory consumption stemming from the fact that 

the computational cost of the core adjoint procedure is almost evenly distributed across its calling subroutines, and the 

computational cost of each called subroutine is no more than 10% of the total. This difficulty could lead to a huge memory 10 

requirement if the least adjoint running cost is definitely pursued. Additionally, scores of iterations of the core adjoint 

procedure are required in each calculation of the gradient of the cost function. Assuming that the value of a variable is required 

during the calculation of the core adjoint procedure, the memory required to keep these values will be scores of times that of 

the memory of the variable itself if all its values are kept in advance. Therefore, the greatest challenge of this work is 

determining how to significantly reduce the running cost without requiring extra memory consumption.  15 

Based on the above discussion, we could first modify adjoint codes by carefully analyzing the global/local IO knowledge 

for specific variables and removing unnecessary PUSH/POP operations within WRF version 3.7 as well as unnecessary local 

calculations. Next, we could rearrange some codes by improving their data locality. The conception of adjoint locality and the 

push/pop free method are proposed for better adjoint performance in Sections 2 and 3, respectively. Some test results are 

presented in Section 4, with an emphasis on performance comparison between the underlying and the optimized versions. 20 

Conclusions are given in Section 5. 

2 Adjoint Locality 

   A program object can be a statement, a segment of statements, a loop or switch structure, a subroutine or a function defined 

by its inputs/outputs and its calculation process. Mathematically, a program object can be taken as a vector-valued function	𝐹, 

which is a mapping from its inputs to its outputs. For simplicity, we define ∇𝐹 as its Jacobian matrix; therefore, the product 25 

∇𝐹 ∙ 𝛿𝑋 is just the output of the tangent linear model of this program object, and the product ∇'𝐹 ∙ 𝛿𝑌∗ is just the output of the 

adjoint model. 

A program object 	𝐹 can be split into a series of much smaller program objects 	F+, 	F-,⋯ , 	F/ in some way, assuming 

that ∇'F+, ∇'F-,⋯	, ∇'F/  are their corresponding adjoint implementations. Since the adjoint accumulation is always 

performed in a reverse way, we must face a new problem: how can the basic state value at the current position be obtained if 30 

this value was never calculated or was ruined in last run of the underlying functions? As a typical strategy of the reverse 

accumulations in most adjoint implementations, one can successively push the required data 	T+, 	T-,⋯ , 	T/ into a huge stack 
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L in the last run of the underlying functions and naturally pop them out in the reverse adjoint accumulations one by one. Within 

each adjoint implementation ∇'F1, all local adjoint accumulations are executed after a full sweep of the underlying function 

F1 , in which the push/pop operations are made in the same way as mentioned above. This adjoint implementation of the 

program object is shown in Figure 1.  

We pick up any two local adjoint implementations ∇'F2 and ∇'F1 , assuming that j<k; in other words, ∇'F2 is executed 5 

after ∇'F1. As mentioned above, the basic states 	T2  and 	T1 are required for performing the adjoint implementations ∇'F2 and 

∇'F1 , respectively. Note that the implementation of ∇'F2 is completely independent from that of ∇'F1 in the following aspects:  

a) The calculation of the basic states within the sweep of F2 is independent from that within the sweep of F1, and vice 

versa;   

b) The calculation of local partial derivatives in the implementation of ∇'F2  is independent from that in the 10 

implementation of ∇'F1, and vice versa; 

c) The strategies of adjoint implementation for ∇'F2 and ∇'F1 can be completely different from each other. 

All of these aspects of independent implementation make up the conception “adjoint locality.” In short, “adjoint locality” 

means that the adjoint implementation at the current position is completely independent from those at other places, either in 

the adjoint strategy or in the calculation of basic states. In fact, nothing but the proper calculation of adjoint perturbations is 15 

absolutely indispensable at the current position. Therefore, we can obtain the required data for current adjoint accumulations 

in any possible way, which gives us more chances to find a better adjoint implementation with an acceptable running cost.  

Revisiting Figure 1, each partition F2 should be completely executed within the last sweep of the program object 𝐹 

because each output of F2 could be the input of following partitions 	F23+, 	F23-,⋯ , 	F/, even including the successors of 𝐹. 

However, the implementations of ∇'F2 (1≤j≤s) are independent of each other during the adjoint accumulations of 	𝐹 so that 20 

the individual sweep of F2 (1≤j≤s) is also independent from each other. Therefore, the full sweep of the partition F2 closely 

ahead of the adjoint accumulations is not always indispensable since such a sweep is only required for calculating ∇'F2 in the 

proper way. First, only a small essential part of this sweep could be absolutely required for the calculation of ∇'F2. Second, 

the calculating sequence of this sweep can be completely/partly broken down by obtaining values of the required variables in 

different ways. As a result, this sweep of F2 could be completely/partly removed as well as those inserted push/pop operations. 25 

However, the sweeps of such F2 cannot be saved anyway in those checkpointing algorithms (Griewank and Walther 2000, 

Stumm et al. 2009, Wang et al. 2009) or else the maximum number of checkpoints could not be reached in this way when the 

available memory is limited. Under the restriction of a given memory consumption, in another words, no one can make sure 

which adjoint implementation is of lower computational cost either the maximum number of checkpoints or less in combination 

of this way. Specifically, the adjoint performance can be significantly improved if there is an expensive subroutine that is 30 

called within any partition. 
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To show such advantages, here is an example selected from the variational data assimilation for GPS/MET Rayshooting 

Model (Zou et al. 2000). In this application the considered underlying subroutine RefGr is called for many times within each 

sweep of four subroutines from RP to the considered root subroutine RayFind that is expressed as 

RefGr⊂RP⊂RKS⊂RayEnd⊂RayFind, where “⊂” means that the former subroutine/function is called within a sweep of the 

latter. Within a sweep of a given subroutine/function, the number of times a program object is run is called the number of 5 

“running cycles (Nrc).” A program object may have different Nrc within different subroutines/functions. The Nrc of RefGr could 

be from several to thousands within each sweep of these subroutines. Designed with a 2-level checkpointing structure, the raw 

adjoint codes were generated via DFT/ADG as shown in Figure 2.  

With the similar implementation as shown in Figure 1, the adjoint subroutine Adj_RefGr first contains a full sweep of 

the underlying subroutine RefGr followed by its adjoint accumulations. Note that there is only one running cycle of RefGr 10 

within a sweep of RP such that we can even obtain all required data by simply pushing them into stacks during each sweep of 

RP when running its adjoint subroutine Adj_RP and popping them out during the adjoint calculations within Adj_RefGr, which 

really has a very small cost in memory instead of a full sweep of RefGr as shown in Figure 2. However, the sweep of RP within 

Adj_RP will be completely removed for better adjoint performance including those expensive calling subroutines such as 

xyz2g, RefCIRA and Int3SL within Adj_RefGr. In Figure 3, we therefore only keep a very small part of the required data 15 

directly from the first run of the root subroutine RayFind with the extra memory of O(Nrc∙NV), instead of recalculating these 

expensive subroutines while running Adj_RefGr. 

We simply keep a part of the output data of each calling subroutine within RefGr so as to remove these expensive 

subroutine callings as well as remove some expensive intrinsic function calculations such as exp and sin/cos through a slight 

of modification of the position where the value of the output variable is kept. In Figure 3, detailed implementation of adjoint 20 

optimization of this example is presented.  

In most adjoint implementations, the checkpointing method is naturally used across subroutines/functions such that 

RefGr in this example is executed for many times within each sweep of RP, RKS, RayEnd or RayFind which implies the 

computational cost of this adjoints is of calling structure dependency (Cheng et al. 2004). In this way we have removed such 

dependency and finally obtained the root adjoint subroutine Adj_RayFind with a lower computational cost than its 25 

corresponding tangent linear subroutine Diff_RayFind. Such a technique has also been successfully used in the adjoint 

optimization of WRF 3.7, even in some implementations of tangent linear codes. 

Another beneficial aspect of adjoint locality is that the memory space of either local or intermediate variables, not 

including the adjoint variables therein, can be shared across each partition since their local values will never be used in the 

adjoint calculations that follow. In some cases, this sharing can not only save memory but also improve data locality if both 30 

the calculations of local required variables and the adjoint accumulations are located inside the same innermost loop.  

3 Push/Pop-Free Method 
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Most adjoint models are implemented using the PUSH/POP strategy as shown in Figure 1. Such a simple strategy is also 

used in most AD tools such as TAPENADE and OpenAD (http://mercurial.mcs.anl.gov/ad/OpenAD). However, the push/pop 

operations are expensive in some cases such as when the push operations and the corresponding pop operations are located in 

two different loops. In addition, not all push/pop operations are necessary if the sequence of the underlying calculations can 

be completely/partly broken down. Here we improve them in another way.  5 

Let us start with an example where x is a required variable of length N for the following adjoint calculations at the current 

position. As shown in Figure 1, we can push its value into a huge stack L by inserting an evaluation statement such as 

“L(pointer:pointer+N-1) =x(1:N)” into a sweep of the underlying functions. At the same time, we can pop its value from the 

stack by inserting another evaluation statement such as “x(1:N) =L(pointer:pointer+N-1)” into the corresponding adjoint 

accumulations. A practical program implementation of this example is presented in Figure 4 in which both the push and pop 10 

operations are located in the same subroutine as shown on the left and in two different subroutines as shown on the right. In 

both cases there are four interested calling subroutines used in this example, where CALCULATE_DATA is used for 

calculating the current required values of x only, DATA_USE for performing proper adjoint accumulations with these required 

values, and PUSHREAL8ARRAY for pushing data into a stack and POPREAL8ARRAY for popping data from the stack as 

most TAPENADE codes do. Note that x can be a scalar or multi-dimensional array. What is only required in the current adjoint 15 

accumulations is the value of x that can be obtained from the stack L. The stack L must be a long one-dimensional (1D) data 

structure because of different numbers of dimensions of the pushed variables. Apparently, there is a redundant computational 

cost caused by these factors.  

However, such redundancy can be removed by a modified push/pop strategy. First, we use several or more stacks instead 

of only one, each of which is still a 1D data structure. It has been shown that this type of data structure has the advantages of 20 

smaller access cost and flexible expressions, either in the communications between procedures or in local program calculations. 

Many stacks have many flexible and independent push/pop implementations that help the communication of required data be 

able to perform across different subroutines/functions in proper way. Although the cost of allocating/deallocating many 

dynamical stacks cannot be neglected compared with the costs of these adjoint procedures, we can significantly reduce it by 

allocating/ deallocating them outside of the running cycles of the procedures. 25 

Second, consider the case that both the underlying calculations at the current position and its corresponding adjoints are 

located within the same subroutine or function, in other words, both the push operation and the corresponding pop operation 

are also located in the same procedure. For example, as shown in Figure 1, local push operations are inserted in a sweep of the 

underlying function F1 within each adjoint implementation of ∇'F1, and the corresponding pop operations are then made in 

the same adjoint procedure marked by < F1,∇'F1 >. In such a case, the value of the required variable x is only used locally 30 

for calculating other basic states and adjoint accumulations instead of any other calculation outside of this procedure. Therefore, 

either push operation in the underlying calculations or pop operation in adjoint accumulations can be removed instead of 

directly accessing the required value into/from the corresponding stack as shown on the left in Figure 5. Within the adjoint 

subroutine Adj_A, the required variable x is replaced by a segment of stack keepx(pointer:pointer+N-1) both in 
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CALCULATE_ DATA and DATA_USE. As a result, all push/pop operations can be removed except for some additional 

calculations of stack pointers. As noted at the outset, such push/pop removing can significantly reduce the running cost of the 

adjoint procedure that is already lower enough. 

However, the above modification will meet with difficulties if x is both an input and output parameter within the calling 

subroutine CALCULATE_DATA, which is located in a loop. In this case, one can added the last segment of stack 5 

keepx(pointer-N:pointer-1) that contains the current value of x into its parameter list as input data as well as a few slight of 

changes to this subroutine as required, without any extra cost both in run time and in memory. Specifically, one cannot remove 

any push operation if the IO status of the required variable x is not clear but we can tackle it similarly as the way shown on the 

right by passing the values of x into the segment of stack keepx(pointer: pointer+N-1) after the calling of 

CALCULATE_DATA. 10 

Another case is that the push operation and the corresponding pop operation are located in two different subroutines or 

functions in which the push operation cannot be removed since each of the outputs of current underlying calculations may be 

required in the following calculations. However, we can still remove the pop operation in the same way as shown on the right 

in Figure 5 and therefore reduce the cost of the original push/pop implementations by roughly half. Note that the pushing 

operation PUSHREAL8ARRAY is replaced by a direct evaluation statement from x to keepx with approximately the same 15 

cost both in run time and in memory.  

The above discussions tell us that the push/pop operations are always redundant, whereas a completely push/pop-free 

implementation is not easy in most cases. Without doubt, the development of AD software must be more expensive for this 

method. Aside from removing some push/pop operations whose costs are relatively expensive in some cases, flexible 

programming could be necessary to improve the adjoint performance and code readability. 20 

4 Test Results 

All modification to the code is limited to the core adjoint subroutine solve_em_ad located within WRFPLUS and its calling 

subroutines including a sweep of the underlying subroutines and the corresponding adjoint subroutines. Through careful IO 

analysis, we first removed about 1/5 of the unnecessary push/pop operations and changed some of their places within 

solve_em_ad, and then modified most of the rest using the push/pop-free method. This method is also extensively used in these 25 

calling adjoint subroutines, together with several other techniques based on the adjoint locality such as partly/completely 

changing the computational sequence/position of the underling sweeps, code refinement of innermost loops and removing 

sulfurous calculations. In addition, a few pairs of push/pop operations are added, each of which are inserted across two different 

subroutines.      

To verify the improved performance of this work, two groups of experiments are used to compare the improvement version 30 

and underlying version. We use a tutorial example of practical WRF 4DVar V3.7 application provided by the National Center 

for Atmospheric Research (NCAR). Without any physics processes, there is only adiabatic WRF dynamics within the adjoint 
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model along with simplified surface friction. The WRF 4DVar system is used to calculate the analysis field by assimilating 

rawinsonde(SOUND), PILOT, PROFILER, surface data from SYNOP, METAR, SHIP, BUOY, aircraft data from AIREP, 

satellite retrieved wind (GeoAMV) and GPS precipitable water (GPSPW), and GPS refractivity (GPSREF). First, the WRFDA 

is run on the domain of 96×60 grids with 60-km horizontal resolution and 41 levels. The analysis date is 12 UTC 5 Feb. 2008, 

with an assimilation time window of 6 hours and an integration time step of 360 seconds. Detailed configurations of the test 5 

can be found at http://www2.mmm.ucar.edu/wrf/users/wrfda/Docs/user_guide_ V3.7/ users_guide_chap6.htm. All 

experiments were conducted on a cluster system with 250 nodes, each of which has 20 processors.  

Table 1 shows the wall-clock time for one-time-step integration with WRFDA V3.7. Compared with its underlying version, 

the cost of the core adjoint procedure is reduced by approximately 45-50% on different numbers of processors. As we know, 

the cost for running the adjoint model takes more than half of the time needed to run the total 4DVAR system, which leads to 10 

a significant (approximately 30-35%) reduction in the running of the one-step 4DVAR. At the same time, both aspects of 

improvements are slightly increased with the increase of the number of processors, which shows better parallel scalability of 

the optimized version. This tendency disappears when the number of processors reaches 256 since the memory requirement 

for each process is not large enough compared with the local cache capacity. In addition, no extra memory is needed in 

comparison with the underlying version. However, the peak memory for the underlying version on one processor reaches 15 

roughly 4.6 GB, whereas that for the optimized version decreases to roughly 4.0 GB.  

The reliability of the optimized version has first been checked in terms of the adjoint correctness test in many applications, 

each of which is uniformly different by no more than two last significant digits in double precision. Next, many experiments 

from different applications are conducted using assimilation analysis to verify the smaller difference. Figure 6 shows the 

declines of the cost function and its gradient when running the 4DVar system for both versions and the assimilation converges 20 

after 33 iterations. We can see that each curve of the optimized version perfectly agrees with the underlying one, which reveals 

that the analyses are identical for both versions.  

Next, we increase the resolution of this case to the most often used domain of 270×180 horizontal grids and keep the 41 

levels with the integration time step of 180 seconds. We calculate the ratios of running times between the adjoint model and 

the nonlinear model with two different grids (Table 2). From these results, we can see that the improved performance of the 25 

adjoint model will be little affected by the model resolution when the number of processors is more than 4. Apparently, this 

ratio for both versions is only slightly increased with the increase of the number of processors for the two grids. 

5 Conclusions 

In this study, the conception of “Adjoint Locality” is intended to summarize a class of efficient methods and techniques 

for obtaining required data for adjoint accumulations in any way. Specifically, the completely/partly removed sweep of the 30 

underlying function from adjoint subroutines/functions has the advantage of not only removing the structure dependency of 

the adjoint computational cost but also breaking down the fundamental assumptions of those traditional checkpointing methods. 
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Without much extra memory, an adjoint model of lower computational cost than its corresponding tangent linear model can 

be expected in this way. The modified push/pop-free method is also verified to be productive in reducing the cost of adjoint 

codes especially generated via TAPENADE or OpoenAD. Note that this method is remarkable if the adjoint cost is really 

lower enough, and much different within the same subroutine and across two different subroutines. In combining both 

strategies, the running cost of the core adjoint procedure of WRF V3.7 in different applications is reduced by roughly half 5 

without an extra memory requirement. Across different numbers of processors, the time cost of WRF 4DVar from small- to 

large-scale grids declines by approximately 1/3 without losing any computational precision. Our experimental results also 

show that the improved performance of the adjoint model is never affected by the model resolution.  

As the number of processors increases, the ratio of running time between the adjoint model and the nonlinear model also 

increases, which shows that both the underlying version and the optimized version are of poor parallel performance. Most of 10 

our experiments show that the time cost of parallel communications during runs of the adjoint model is more than 1/3 when 

the number of processors is more than eight and that this percentage rapidly increases as the number of processors increases. 

Actually, the parallel communications before adjoint accumulations can be entirely removed from these adjoint subroutines if 

we push and pop required boundary data between the tangent linear model and the adjoint model. At the same time, much of 

the adjoint calculations can be hidden in the parallel communications. In addition, we can expand the processor partition from 15 

2 to 3 dimensions according to the calculation sequence of most WRF loops such that flexible partition can be selected for 

better parallel performance according to specific grid designs in different applications.      

Code availability 

Presented in the supplemen is the core adjoint subroutine solve_em_ad that has been modified basing on adjoint Locality and 

the push/pop-free method. And the code located in the dyn_em file of WRFPLUSV3.7.   20 
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Figure 1: A typical push/pop strategy for adjoint implementation. 
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Figure 2: An adjoint implementation with DFT/ADG. 

  

!Author of the underlying subroutine: M.E. Gorbu
!nov, revised fortran90 version.
SubroutineAdj_RefGr(Adj_X,X,Adj_Refr,Refr,
&Adj_Grad,Grad,NV)
…..

!Calculations of the required variables through a
!full sweep of the underlying subroutine
Call xyz2g (X, S, NV)
Call LL2JK (S, P, NV)
Call HLimits (P, Zint, Hmin, Hmax, NV)
Call RefCIRA (X, RC, GC, NV)
Call Int3SL(P, Zint, Ref, D2, Refr, RGrad, NV)
…..

!Adjoint accumulations
Do n=NV,1,-1
Refr(n) =dexp(Refr(n))
RGrad(n) =Refr(n)*RGrad(n)
…..

Adj_RGrad(n) =sin2*Adj_Grad(3,n)
Adj_S(2,n)=dtr*cos2*RGrad(n)*Adj_Grad(3,n)
…..

End Do
!Recalculations of local required variables through
a
!small part of the underlying subroutine
Call xyz2g(X,S,NV)
Call LL2JK(S,P,NV)
Call Adj_Int3SL(Adj_P,P,Zint,Ref,D2,Adj_Refr,
& Refr,Adj_RGrad,RGrad,NV)
Call Adj_RefCIRA(Adj_X,X,Adj_RC,RC,
& Adj_GC,GC,NV)
Call Adj_HLimits(Adj_P,P,Zint,Hmin,Adj_Hmax,
& Hmax,NV)
Call Adj_LL2JK(Adj_S,S,Adj_P,P,NV)
Call Adj_xyz2g(Adj_X,X,Adj_S,S,NV)
End SubroutineAdj_RefGr
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Figure 3: The revised adjoint implementation.  

!Revised version by hand. The corresponding push
!operations are located in the first run of RefGr.

SubroutineAdj_RefGr(Adj_X,X,Adj_Refr,Refr,
& Adj_Grad,Grad,NV)
…..

!Remove 3 expensive subroutine callings with push/pop
!operations across two different subroutines
! Call xyz2g (X, S, NV)
CALLXPOPREAL8ARRAY(S,NV)
Call LL2JK (S, P, NV)
Call HLimits (P, Zint, Hmin, Hmax, NV)

! Call RefCIRA (X, RC, GC, NV)
CALLXPOPREAL8ARRAY(RC,MaxVec)
CALLXPOPREAL8ARRAY(GC,MaxVec)
! Call Int3SL(P, Zint, Ref, D2, Refr, RGrad, NV)
CALLXPOPREAL8ARRAY(Refr,NV)
CALLXPOPREAL8ARRAY(RGrad,MaxVec)
…..

!Adjoint accumulations, slightly revised

Do n=NV,1,-1
!Remove expensive intrinsic function calculations
!with above flexible push/pop implementations
! Refr(n) =dexp(Refr(n))
RGrad(n) =Refr(n)*RGrad(n)
…..

Adj_RGrad(n) =sin2*Adj_Grad(3,n)
Adj_S(2,n)=dtr*cos2*RGrad(n)*Adj_Grad(3,n)
…..

End Do

!Local recalculations can be removed that benefits
!from the above push/pop strategy
�Call xyz2g(X,S,NV)
�Call LL2JK(S,P,NV)
Call Adj_Int3SL(Adj_P,P,Zint,Ref,D2,Adj_Refr,
& Refr,Adj_RGrad,RGrad,NV)
…..
Call Adj_xyz2g(Adj_X,X,Adj_S,S,NV)
End SubroutineAdj_RefGr
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Figure 4: A push/pop implementation with AD softwares. 

  

!Both push and pop operations are located
!in the same adjoint subroutine. Here the
!push/pop functions are used as the same
!as the TAPENADE codes do.

SubroutineAdj_A(….)
…..

!calculate the required values of x
CALLCALCULATE_DATA(….,

& x(1:N))
…..
CALL PUSHREAL8ARRAY(x,N)
…...
CALL POPREAL8ARRAY(x,N)
…..

!use the required value of x for local adjoint
!calculations
CALLDATA_USE(…, x(1:N), ….)
…..

End SubroutineAdj_A

!Push and pop operations are located in different
!subroutines. Here the subroutineĀ can be last run
!of the underlying subroutineA, or the tangent
!subroutine of A, or a sweep of A within adjoints.

SubroutineĀ(….)
…..
CALLCALCULATE_DATA(…., x(1:N))
…..
CALL PUSHREAL8ARRAY(x,N)
…...

End SubroutineĀ

SubroutineAdj_A
…..
CALL POPREAL8ARRAY(x,N)
…..
CALLDATA_USE(…, x(1:N), ….)
…..

End SubroutineAdj_A

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-310
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 10 December 2018
c© Author(s) 2018. CC BY 4.0 License.



16 
 

 

 

 

Figure 5:The revised adjoint implementation through the push/pop free method. 
 5 

 

 

SubroutineAdj_A(….)
…..

!keepx is a stack of lengthM*N allocated
!within or outside of subroutineA, where
!M is the number of times for pushing x.
!Here calculate the required values of x that
!is stored in the stack keepx directly.

CALLCALCULATE_DATA(…., keepx(
& pointer:pointer+N-1))
pointer =pointer+N
….

! CALL PUSHREAL8ARRAY(x,N)
…...

! CALL POPREAL8ARRAY(x,N)
…..
pointer =pointer-N
CALLDATA_USE(…, keepx(

& pointer:pointer+N-1), ….)
….

End SubroutineAdj_A

SubroutineĀ(….)
…..
CALLCALCULATE_DATA(….,x(1:N))
…..

! CALL PUSHREAL8ARRAY(x,N)
!push the required value of x into the stack keepx
keepx(pointer:pointer+N-1) =x(1:N)
pointer =pointer+N
…...

End SubroutineĀ

SubroutineAdj_A(….)
…..

! CALL POPREAL8ARRAY(x,N)
pointer =pointer-N
CALLDATA_USE(…, keepx(

& pointer:pointer+N-1), ….)
…..

End SubroutineAdj_A
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Figure 6: The cost function and its gradient for running the underlying version (red line) and the optimized version (black 
dots).   
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Table 1. Running time for one-time-step integration with WRFDA 3.7 on 1-256 processors. Units: second; grids: 96×60×41. 

NP 1 2 4 8 16 32 64 128 256 

Nonlinear Model  0.96 0.502 0.277 0.167 0.112 0.061 0.038 0.026 0.025 

TL Model 1.18 0.61 0.350 0.236 0.188 0.102 0.068 0.048 0.042 

 

Adjoint 

Model 

Underlying 3.20 1.66 0.935 0.680 0.527 0.328 0.217 0.160 0.117 

Optimized 1.78 0.92 0.518 0.367 0.291 0.166 0.108 0.077 0.063 

Improved 44.4% 44.6% 44.6% 46.0% 44.8% 49.4% 50.2% 51.9% 46.2% 

 

4DVar 
System 

Underlying 9292 4822 2734 1952 1523 920 615 449 355 

Optimized 6342 3279 1864 1298 1032 584 390 288 244 

Improved 31.7% 32.0% 31.8% 33.5% 32.2% 36.5% 36.6% 35.9% 31.3% 
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Table 2. Time cost ratios between the adjoint model and the nonlinear model for the underlying version and the 
optimized version. 

Grids NP 1 2 4 8 16 32 64 128 256 

96×60×41 
Underlying 3.33 3.31 3.38 4.07 4.71 5.38 5.71 6.15 4.68 

Optimized  1.85 1.83 1.87 2.20 2.60 2.72 2.84 2.96 2.52 

270×180×41 
Underlying 4.12 4.05 4.10 4.41 4.56 4.74 4.96 5.68 5.13 

Optimized  2.30 2.29 2.31 2.52 2.73 2.74 2.82 2.88 2.75 
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