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The authors and the first referee have done a very good job of summarising the contri-
bution of this paper. I second the very relevant requests of the first referee, and I would
like to additionally raise a few other points.

Perhaps the most important point to touch on here is the potential applicability of DATeS
as a benchmarking tool. The most challenging aspect of developing community-wide
benchmarks might be the abundance of tuning parameters required to get "optimal"
performance. Please discuss this point, and initialise some default cases. For example,
if you have Lorenz 63 with canonical parameters, observations every h time steps,
and a given observational noise and prior, then the "best" you can do with EnKF is
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using X set of tuning parameters. The best you can do with 4DVAR is with Y set of
tuning parameters. And so on... Of course one has to define an error metric, and
optimality of tuning parameters will presumably change, but something like RMSE and
rank histogram of the innovation (or truth in the case of simulated data) is a good
start. As the software is used this can then be updated by the community. When a
new algorithm is proposed it can then be sized up against the community-endorsed
benchmarks. This is of course asking a lot from both the software and the community,
but it is good to aim high. Such benchmarking tool is needed and would be very useful.

Also, if you are aiming for the posterior distribution in a general non-Gaussian case,
for example as a benchmark against which to evaluate other algorithms, or to com-
pute higher moments, multiple modes, or tail probabilities, then the model and tuning
parameters can again be recorded and the results can be challenged (for example, in
case a mode has been missed) as new and improved methodology is introduced for
general posterior inference and as computers getter bigger, stronger, and faster. This
approach can in principle manifest reproducible, evolving, and community-endorsed
gold-standard benchmarks, which can be used in addition to such metrics as RMSE
and rank histograms in vetting existing and new algorithms in various scenarios.

Specific comments:

* p2, line 15: as a gateway for someone new to the field or interested in learning about
the methodology without all the complexities, one could also mention some extremely
simple software, for example the pedagogical applied mathematics reference on data
assimilation Law etal 2015 provides a concise set of codes including examples of many
of the modern data assimilation algorithms distilled to the level that they are single
Matlab scripts of fewer than 50 lines which run in a fraction of a second.

http://tiny.cc/damat

* Sec 2: this presentation is not quite complete. It needs to be considerably cleaned
up and made complete. For example, you do not state how the model enters the
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picture: is it the case that there is a single state $x_kˆa$, for analysis, and $x_{k+1}ˆb
= \mathcal{M}_{k,k+1}(x_kˆa)$ ? You do not define $ˆ{\rm true}$, and it vanishes in
(3). Do you need it?

* p4, line 8: minimum variance estimator: even if the Gaussian background assump-
tion holds, and you have an infinite ensemble, this is not the minimum variance es-
timator, which is the posterior mean. It is the minimum variance estimator among
those which are linear in the observation. This does not include the posterior mean in
case $\mathcal{H}_k$ is nonlinear. Same comment holds a the end of p4, relating to
smoothing.

* p5, line 17: "not generally efficient" -> "not generally considered to be efficient". A
lot of recent work has illustrated the potential applicability of particle filters for high-
dimensional problems, although they have not yet been used operationally. In addition
to the reference suggested by the other referee, see below references by Crisan, Jasra,
van Handel, Poterjoy, Potthast, and van Leeuwen.

* p5, around line 20: it is important to point out here that MCMC is generally applicable
only to static problems, i.e. a single posterior distribution for a single window of ob-
servations, with a known prior/background. Once you step forward to the next window,
you will not in general have a closed form or even a good approximation for the new
prior/background (and it will most likely not be Gaussian). One needs to therefore be
careful when applying MCMC in a recursive/filtering context. I’m not familiar with the
cited papers although I’m sure they deal with this in a sensible way. But it needs to be
mentioned here. And, nonetheless MCMC methods are useful as a benchmarking tool
for a single assimilation window with a known background – see Law and Stuart 2012.

* p7, line 6: "It is common in DA applications to assume a perfect forecast model,
a case where the model is deterministic rather than stochastic." Perhaps you mean
just "It is common in DA applications to assume the model is deterministic rather than
stochastic." ? Here inflation will of course be needed for ensemble methods in order
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to have stability, and in any case the background covariance incorporates some sort of
model error, so I don’t see this as a perfect model scenario.

* Related to the above point, localisation and inflation should be mentioned explicitly,
due to their key roles in the field. Presumably they need to be incorporated within the
analysis algorithm component.

*p8, line 14: state-size square matrices! Surely this is limited to very small problems,
so some discussion of low-rank approximation of these matrices is important, and to
be robust the code should not even try to construct these as full matrices if the state is
high-dimensional.

* p14: define DEnKF
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