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Dear referee,

thank you very much for your detailed review. We shall address the issues you raised
point-by-point below. A ‘latexdiff’ of the revised manuscript is attached as a supplement
to this response.

Please let us know should you have further questions.
On behalf of the authors,

Dion Hafner

C1

1 General comments

The manuscript is introducing a new generation of ocean circulation model
coded in Python. If it is the first Python code for those applications, it would
be intersting to mention it. If not, it would be relevant to introduce other
similar applications.

To our knowledge, Veros is the first serious approach to a pure Python ocean model.
There are several projects that provide a Pythonic front-end to some wrapped Fortran
code, such as CIiMT [1], OOFe [2], or Veros’ parent project, PyOM [3], but none that
go all the way. This may be connected to the fact that there is no obvious "right" way to
parallelize Python / NumPy code. | added a paragraph to the introduction.

Veros is based on a wide range of Python libraries. As this code will be
used, for example, for educational purpose, can the authors detail the code
management plan considering potential near future compatibility issues be-
tween those libraries ?

In an ecosystem as volatile as the scientific Python stack, proper dependency man-
agement is indeed important. So far we have only experienced minor compatibility
issues, which were easily fixed by requiring certain minimum versions of dependencies
in ‘setup.py’. We thus chose not to discuss this in the manuscript. In case dependency
issues should become a major concern in the future, we would probably resort to a
package manager like ‘conda’, and supply an official ‘conda’ recipe for Veros (so peo-
ple could use ‘conda install veros' to get a working copy of all dependencies and the
Veros code).

The Veros code is developed for single-node computation. Can the authors
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discuss the potential near future extent of the code for parallel computing
(several nodes) and then more expensive applications ?

Implementing distributed memory support in Bohrium won’t be a trivial task, but it could
be done (see below). Apart from that, there are other libraries we could leverage for
multi-node support, such as ‘dask.array’ in conjunction with ‘dask.distributed’. How-
ever, distributed simulation in Python is not very mature, and we don’t know yet how
any given solution will perform in practice. We thus don’t feel comfortable to speculate
too much about a possible time frame.

Despite the description of advantages of Python language, it seems that
the code is mainly designed for educationnal purpose. Could the authors
confirm this or detail those advantages in the manuscript ?

Yes and no. Veros is built for getting rapid insights into how the ocean works. This is
of course very useful for students, but there are still many fundamental open questions
regarding ocean mechanics that are to be addressed on a research level, and where
traditional models might be too inflexible. | added a sentence to the introduction.

A last general comment is referring to the experiment. The choice of the
model grid is surprising. It is not self explanatory why the straight meridional
line is used in the Atlantic.

The transition to section 4.1 was indeed a bit harsh. | have added a paragraph on our
motivation.

It seems that coastline modification is manually modified outside Veros
code and, then, it does not show Veros extended functionnality as men-
tionned in section 4 (p. 14 Ah uncomplicated ways to modify the coastline
Az)
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The sentence you quoted was indeed poorly worded. | have added a paragraph. Keep
in mind that we do not modify the input data sets for bathymetry, forcing fields, and intial
conditions. All we supply is a binary mask image, and Veros does the rest (including
interpolating everything to the chosen, flexible, resolution).

2 Specific comments

Page 1 :

line 5 : Please add An global Az before An ocean model Az as using
a coarse resolution (1° x 1°), 15 vertical levels over a global ocean are
needed to reach one millions points.

Agreed.

Page 2 :

lines 5-10 : The authors suggest that there are more possible errors in
Fortran programming. However, this is related to the technical rigour of
the developper/user and of the strict application of good practices and For-
tran norms as it should for developping a Python code. Please consider
rephrasing thoses lines.

| agree that we did not convey our point very well here. It is probably true that an expert
Fortran programmer lets fewer bugs slip into production code than an expert Python
programmer, if only due to the strict type checking provided by the Fortran compiler.
However, there are several things to consider:

- People implementing new features such as a novel parameterization are, in our ex-
perience, often not expert Fortran programmers, but grad students or postdocs more
C4



interested in Physics than software engineering. - While it is in principle possible to
write clear Fortran code with meaningful abstractions that may be just as readable as a
high-level implementation, the reality is often different. Popular ocean models such as
MOM [4] or POP2 [5] feature subroutines that are hundreds to thousands of lines long,
and both models rely on more obscure Fortran features such as ‘COMMON* blocks,
which makes it hard to keep track of variable scopes for inexperienced programmers.
This is not necessarily due to flaws in Fortran’s core design, but we do consider the
established idiomatic style of a community to be tightly bound to the language used.

| have re-worded this section a bit.

Page 4 :
ligne 8 : Why don’t use Python 3.x which is now mature and ready to use ?

The first prototype of Veros was written in Python 2.7 to work around some bugs in
Bohrium at the time. Those issues have since been resolved, and we fully support
both Python 2.7 and Python 3.x. | have removed all Python 2 references from the
manuscript, as it was not really relevant.

Page 6 :

paragraph 2.3 : using good practice, Fortran code could also be elegant and
easily readable... Keep in mind that Fortran means FORmula TRANSslator !
Please consider to be more factual in your remarks

While Fortran might indeed be a good choice to translate formulae, this section specifi-

cally deals with the ecosystem around the numerical core of a simulation project: third-

party library integration, dynamic switching between modules during run time, modern

productivity and QA tools, modularity and object-oriented programming. Since Fortran

90 does not support classes, has very few users outside of academia, and is entirely
C5

static, | think it is safe to say that Python allows for some elegant implementations that
are infeasible or outright impossible in Fortran 90.

Page 7 :

line 11-16 : Would it mean that user should use the appropriate algebra
library depending on the size of the problem ? Numpy, PETSc, CUSP ? Or
Veros chooses automatically the best one like in section 2.3.4 ?

Whether to use NumPY, PETSc, or CUSP depends more on the available hardware
and software architecture than the size of the problem, so it would make sense to pick
the most appropriate one automatically as it is done with the tridiagonal solver. But
since we don’t know the performance characteristics of those libraries yet, we can only
speculate at this point.

line 17 : The authors refer to a following section. Could you consider to give
more details to improve the readability ?

I made this section a bit more descriptive.

lines 29-30 : Indeed, /O management is a main issue in many codes for
now and in the future. Give more details on this output strategy.

Done.

Page 8 :
Line 1-5 : Is there a loss in accuracy with compress and decompress pro-
cesses ?
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Both compression algorithms (‘zlib* and ‘gzip‘) are lossless.

Page 9 :
Line 15 : An certain tolerance Az : Please, could you be more explicit on
this point ?

| have expanded the section.

Page 10 :
Line 28 : Which variables do you consider for those relative errors ?

Thank you for catching this mistake; that information was indeed missing. It was the
long-term average of barotropic stream function and zonally averaged temperature.

Page 11 :

Line 13 : It sounds that a main drawback is that Borhium an only be used
in a single computational node. Have you any idea the schedule for paral-
lelized implementation of Bohrium ?

“Automagical” distributed computing (in the sense that Bohrium automatically dis-
tributes computations between multiple compute nodes) is a hot, ongoing research
problem. The developers of Bohrium have made some advances towards this [6], but
a lot of work is still to be done.

However, it should be fairly straightforward to implement an abstraction to support dis-
tributed architectures at a user level, similar to the explicit style of MPI. In that case, we
would have to take a step back in Veros and re-introduce some explicit parallelization
logic, which is something we want to avoid as much as possible. If we can find a clean,
straightforward way to support multi-node architectures without sacrificing too much
flexibility, this should be achievable after a few months of work.
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Page 12 :
Figure 1.
- Bh CPU and Bh GPU curves can not be distinguished.

Architecture 1 does not include a GPU benchmark, so the Bh GPU curve is not present
in this panel. While Bh CPU and Bh GPU performance are mostly identical on archi-
tecture 2, they differ for large problem sizes, which is the only intended take-away
message of the GPU curve.

- | do not clearly understand what does the An line fit Az for the MPI curve
?

This annotation indicates that all solid lines are line fits (in the sense of 'y = mx + b‘) to
the available data to highlight that the performance characteristics scale as expected.
| updated the figure caption to make this clearer.

3 Technical corrections
You will find most of your comments reflected in the changed manuscript.

line 11 : it seems the character — in reference Jones et al is not necessary.
(Idem page 20 line16)

By using this format, we are following the official recommendations on how to cite SciPy

[7].

C8



4 References

[1] Monteiro, Joy Merwin, and Rodrigo Caballero. "The climate modelling toolkit." Pro-
ceedings of the 15th Python in Science Conference. 2016.

[2] Marta-Almeida, Martinho, et al. "OOFe: a python engine for automating regional and
coastal ocean forecasts." Environmental modelling software 26.5 (2011): 680-682.

[3] Eden, Carsten. "Closing the energy cycle in an ocean model." Ocean Modelling
101 (2016): 30-42.

[4] Pacanowski, Ronald C., K. Dixon, and Anthony Rosati. "The GFDL modular ocean
model users guide." GFDL Ocean Group Tech. Rep 2 (1991): 142.

[5] Smith, Rick, and Peter Gent. "Reference manual for the parallel ocean program
(POP)." Los Alamos unclassified report LA-UR-02-2484 (2002).

[6] Kristensen, Mads Ruben Burgdorff, and Brian Vinter. "Numerical python for scalable
architectures." Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model. ACM, 2010.

[7] https://www.scipy.org/citing.html
Please also note the supplement to this comment:

https://www.geosci-model-dev-discuss.net/gmd-2018-3/gmd-2018-3-AC1-
supplement.pdf

Interactive comment on Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-3,
2018.

C9



10

15

20

Veros v(.1 — a Fast and Versatile Ocean Simulator in Pure Python

Dion Hiifner!, René Lgwe Jacobsen!, Carsten Eden?, Mads R.B. Kristensen', Markus Jochum',
Roman Nuterman', and Brian Vinter!

'Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Institut fiir Meereskunde, Universitiit Hamburg, Hamburg, Germany

Correspondence: Dion Hifner (mail@dionhaefner.de)

Abstract. A general circulation ocean model is translated from Fortran to Python. It is described how its code structure
is optimized to exploit available Python utilities, remove simulation bottlenecks, and comply with modern best practices.
Furthermore, support for Bohrium is added, a framework that provides a just-in-time compiler for array operations, and that
supports parallel execution on both CPU and GPU targets.

For applications containing more than a million grid elements, such as a typical 1° x 1° horizontal resolution global ocean
model, Veros is approximately half as fast as the MPI-parallelized Fortran base code on 24 CPUs, and as fast as the Fortran
reference when running on a high-end GPU. By replacing the original conjugate gradient stream function solver with a solver
from the pyAMG Python package, this particular subroutine outperforms the corresponding Fortran version by up to 1 order
of magnitude.

The study is concluded with a simple application in which the North Atlantic wave response to a Southern Ocean wind per-
turbation is investigated. It is found that even in a realistic setting the phase speeds of boundary waves matched the expectations

based on theory and idealized models.

Copyright statement. TEXT

1 Introduction

Numerical simulations have been used to further our understanding of the ocean circulation for more than 50 years now (e.g.,
Bryan, 2006), and in particular for regimes that are difficult to treat analytically, they have become irreplaceable. However,
numerical representations of the ocean have their own pitfalls, and it is paramount to build trust in the numerical representation
of each and every process that is thought to be relevant for the ocean circulation (e.g., Hsieh et al., 1983). The last 20 years
have seen a massive increase in computing resources available to oceanographers, in contrast to human resources, which appear
to be fixed. Arguably, this lead to a shift from process studies to analysis of climate model output (or from “Little Science”
to “Big Science”, Price de Solla, 1963). This is not necessarily a bad development, it may simply be an indication that the

field has matured. However, there are still basic questions about ocean dynamics that yet remain unanswered (e.g., Marshall
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and Johnson, 2013), and to tackle these questions, the scientific community requires flexible tools that are both approachable,
powerful, and easy to adapt. We therefore decided to build Veros (the versatile ocean simulator).

The ocean interior is mostly adiabatic and has a long memory, easily exceeding 1000 years (e.g., Gebbie and Huybers, 2006).
This requires long integration times for numerical models; experiments can well take several months in real time to complete.
Thus, ocean models are typically written to optimize the use of computing rather than human resources, using the low-level

programming language Fortran.

Fortran’s core language designand-, lack
of abstractioninFertran-often—makes—, and established coding patterns often make it a daunting challenge to, for example,
keep track of indices or global variables. Even for experienced scientists this is more than just a nuisance. As the model
code becomes increasingly complex, it violates a core principle of science: reproducibility—ene-. Especially inexperienced
programmers cannot ascertain beyond all doubt that the impact of a recently implemented physical component is caused by
new physics or, simply, a bug.

High-level programming languages like Python, MATLAB, Scala, or Julia on the other hand are usually designed with the
explicit goal to improve code structure and thus readability. While this in itself cannot eliminate coding mistakes, a more
concise, better structured code makes it easier to spot and avoid bugs altogether. In the case of Python, additional abstraction,
a powerful standard library, and its immense popularity in the scientific community' — which has in turn created a wide range
of learning resources and a large third-party package ecosystem — lower the bar of entry for inexperienced programmers.

In fact, this is one of our main motivations behind developing Veros: In our experience, a substantial amount of the duration
of MSc or PhD projects is devoted to understanding, writing, and debugging legacy Fortran code. This leads to frustration
and anxieties, even on the lecturers’ side. With Veros, we anticipate that students and-researchers-can translate their physical
insights rapidly into numerical experiments, thereby maintaining the high level of enthusiasm with which they entered the

field. At the same time, it allows more seasoned researchers to quickly spin up experiments that dramatically change the ocean

dynamics, which would be impractical or infeasible using traditional ocean models (for one such application see Sect. 4).

The price to pay for these advantages is often a significantly reduced integration speed due to less aggressive compiler

optimizations, additional overhead, and lack of direct memory access. Thus, while there are some modeling projects that

implement a Python front end (such as CliMT (Monteiro and Caballero, 2016), OOFe (Marta-Almeida et al., 2011), or PyOM

Eden, 2016)), all of those projects rely on a Fortran backend for performance reasons. However, in Veros, this-perfermance
impaet-the performance impact of using Python turns out to be much less severe than expected, as all expensive computations

are deferred to a well-performing numerical backend (NumPy or Bohrium, see Sect. 3.2 for performance comparisons), making
Veros the (to our knowledge) first global-scale ocean simulator in pure Python.
The next section describes the challenges overcome during the translation and resulting changes in the code structure. Sect. 3

presents model validation and benchmarks, and Sect. 4 evaluates the properties of coastally trapped waves in Veros.

!There are many attempts to rank programming languages by popularity, and Python is usually placed in the top 10 of such rankings; see e.g., IEEE
Spectrum (2017), Stack Overflow (2017), TIOBE Group (2017), or PYPL (2017).
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2 Implementation

At its numerical core, the present version of Veros (v0.1) is a direct translation of pyOM?2 (v2.1.0), a primitive equation
finite-difference ocean model with a special emphasis on energetic consistency (Eden and Olbers, 2014; Eden, 2016). PyOM?2
consists of a backend written in Fortran 90 and frontends for both Fortran and Python (via f2py, Peterson, 2009). Most of the

core features of pyOM2 are available in Veros, too; they include:

A staggered, three-dimensional numerical grid (Arakawa C-grid, after Arakawa and Lamb (1977)), discretizing the
Primitive Equations in either Cartesian or pseudo-spherical coordinates (e.g., Olbers et al., 2012). This grid is staggered

in all dimensions, placing quantities on so-called T, U, V, W, and ( cells.
— Free-slip boundary conditions for momentum, and no-normal-flow boundary conditions for tracers.

— Several different friction, advection, and diffusion schemes to choose from, such as harmonic / biharmonic lateral fric-
tion, linear / quadratic bottom friction, explicit / implicit vertical mixing, central difference / Superbee flux limiting

advection schemes.

— Either the full 48-term TEOS equation of state (McDougall and Barker, 2011), or various linear and nonlinear model
equations from Vallis (2006).

— Isoneutral mixing of tracers following Griffies (1998).

— Closures for mesoscale eddies (after Gent et al., 1995; Eden and Greatbatch, 2008), turbulence (Gaspar et al., 1990), and
internal wave breaking (IDEMIX, Olbers and Eden, 2013).

— Support for writing output in the widely used NetCDF4 binary format (Rew and Davis, 1990), and writing restart data

to pick up from a previous integration.

Veros, like pyOM2, aims to support a wide range of problem sizes and architectures. It is meant to be usable on anything be-
tween a personal laptop and a computing cluster, which calls for a flexible design, and which makes a dynamical programming
language like Python a great fit for this task. Unlike pyOM2, which explicitly decomposes and distributes the model domain
across multiple processes via MPI (Message Passing Interface, e.g., Gropp et al., 1999), Veros is not parallelized directly.
Instead, all hardware-level optimizations are deferred to a numerical backend; currently either NumPy (Walt et al., 2011), or
Bohrium (Kristensen et al., 2013). While NumPy is commonly used, easy to install, and highly compatible, Bohrium provides
a powerful runtime environment that handles high-performance array operations on parallel architectures.

The following section describes which procedures we used when translating pyOM?2’s Fortran code to a first, naive Python
implementation. Sect.2.2 then outlines the necessary steps to obtain a well-performing and idiomatic, vectorized NumPy
implementation. Sect. 2.3 gives an overview of some additional features that we implemented in Veros, and Sect. 2.4 finally

gives an introduction to the internal workings of Bohrium.
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2.1 From Fortran to naive Python

Array operations implemented in Fortran can be translated to Python / NumPy with relative ease, as long as a couple of pitfalls
are avoided (such as 0-based indexing in Python vs. arbitrary indexing in Fortran). As an example, consider the following

Fortran code from pyOM2:

do j=js_pe, je_pe
do i=is_pe-1,ie_pe
flux_east (i, 3,:) = &
0.25x(u(i, j, :,tau)+u(i+l, j, :,tau)) &
* (utr(i+1l,j, :)+utr (i, 3, :))
enddo
enddo

where is_pe, Js_pe, ie_pe, Jje_pe denote the start and end indices of the current process. Translating this snippet
verbatim to Python2-7, the resulting code looks very similar:
for j in range (js_pe, je_pe):
for 1 in range(is_pe-1,ie_pe):
flux_east[i,3,:] = \
0.25% (uli, j, :,taul+uli+l, j, :,taul) \

*(utr[i+l,j, :]+utr(i, 3,:1)

In fact, we transformed large parts of the Fortran code base into valid Python by replacing all built-in Fortran constructs (such
as if-statements and do-loops) by the corresponding Python syntax. We automated much of the initial translation process

through simple tools like regular expressions to pre-parse the Fortran code base — e.g., the regular expression
do (\w)=((\wl| [\+\=1)+, (\w| [\+\=1)+)

would find all Fortran do loops, while the expression

for \1 in range (\2):

replaces them with the equivalent for loops in Python?. This semi-automatic preprocessing allowed for a first working Python
implementation of the pyOM?2 code base after only a few weeks of coding that could be used as a basis to iterate towards a

more performant (and idiomatic) implementation.
2.2 Vectorization

After obtaining a first working translation of the pyOM2 code, we refactored and optimized all routines for performance and

readability, while ensuring consistency through continuously monitoring results. This mostly involves using vector operations

2E.g. through the GNU command line tool sed, which is readily available on most Linux distributions.
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instead of explicit Fortran-style loops over indices (that typically carry a substantial overhead in high-level programming
languages). Since most of the operations in a finite-difference discretization consist of basic array arithmetic, a large fraction

of the core routines were trivial to vectorize, such as the above example, which becomes:

flux_east[1:-2,2:-2,:]1 =\
0.25«(uf[l:-2,2:-2,:,taul+ul[2:-1,2:-2, :,taul) \
*(utr[l:-2,2:-2,:]+utr[l:-2,2:-2,:1)

Note that we replaced all explicit indices (i,7) by basic slices (index ranges). The first and last two elements of the hor-
izontal dimensions are ghost cells, which makes it possible to shift arrays by up to two cells in each dimension without
introducing additional padding. Since all parallelism is handled in the backend, there is no need to retain the special indices
is_pe, Jjs_pe, ie_pe, 7je_pe, and we replaced them by hard-coded values (2, 2, —2, and —2, respectively).

Apart from those trivially vectorizable loops, there were several cases that required special treatment:

Boolean masks are either cast to floating point arrays and multiplied to the to-be-masked array, or applied using NumPy’s

where function. We decided to avoid “fancy indexing” due to poor parallel performance.

— Operations where e.g., a three-dimensional array is to be multiplied with a two-dimensional array slice-by-slice can be

written concisely thanks to NumPy’s powerful array broadcasting functionalities (e.g., by using newaxi s as an index).

— We vectorized loops representing (cumulative) sums or products using NumPy’s sum (cumsum) and prod (cumprod)

functions, respectively.
— Oftentimes, recursive loops can be reformulated analytically into a form that can be vectorized. A simple example is

al =2zt —af, ey

which arises when calculating the positions z! of the T-grid cells, and that is equivalent to

s = (10" (ah + (- 12at @
i=0

which can easily be expressed through a cumulative sum operation (cumsum).

On top of this, there were two loops in the entire pyOM2 codebase that were only partially vectorizable using NumPy’s
current toolset® (such that an explicit loop over one axis remains). Since they did not have a measurable impact on overall
performance, they were left in this semi-vectorized form — however, it is certainly possible that those loops (or similar future
code) could become a performance bottleneck on certain architectures. In this case, an extension system could be added to
Veros, where such instructions are implemented using a low-level API and compiled upon installing Veros. Conveniently,
Bohrium offers zero-copy interoperability for this use-case via Cython (Behnel et al., 2011) on CPUs, and PyOpenCL and
PyCUDA (Klockner et al., 2012) on GPUs.

30ne that arises when calculating mixing lengths as in Gaspar et al. (1990) that involves updating values dynamically based on the value of the previous
cell, and one inside the overturning diagnostic where a vectorization would require to temporarily store 2/N; Ny N 2 elements in memory (where Ny, N, y, Nz

denote the number of grid elements in x, y, z direction, respectively).
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2.3 Further Modifications

Since there is an active community of researchers developing Python packages, many sophisticated tools are just one import
statement away, and the dynamic nature of Python allows for some elegant implementations that would be infeasible or outright
impossible in Fortran 90. Moving the entire code base to Python thus allowed us to implement a number of modifications that

comply with modern best practices without too much effort, some of which are described in the upcoming sections.
2.3.1 Dynamic Backend Handling

Through a simple function decorator, a pointer to the backend currently used for computations is automatically injected as a
variable np into each numerical routine. This allows for using the same code for every backend, provided their interface is
compatible to NumPy’s. Currently, the only included backends are NumPy and Bohrium, but in principle, one could build their
own NumPy-compatible backend, e.g., by replacing some critical functions with a better performing implementation.

Since Veros is largely agnostic of the backend that is being used for vector operations, Veros code is especially easy to write—
everything-. Everything concerning e.g., the parallelization of array operations is handled by the backend, so developers can

focus on writing clear, readable code.
2.3.2 Generic Stream Function Solvers

The two-dimensional barotropic stream function W of the vertically integrated flow is calculated in every iteration of the solver
to account for effects of the surface pressure. It can be obtained by solving a two-dimensional Poisson equation of the form
h(z,y)
AV = / C(z,y,2) dz 3)
0
with coordinates z,y, z, total water depth h, vorticity ¢, and Laplacian A. The discrete version of this Laplacian in pseudo-

spherical coordinates as solved by pyOM2 and Veros reads (Eden, 2014):

AV

o Wip1;— Wi

by heiy cosQ(y}‘)AwﬁHAas;‘

_ U i— Y1
hy ;cos?(y¥) Azt Axy
cos(ybyr) W41 -V,
cos(yy) hi; 1Ay Ay
cos(yf) W, ; — ;5
cos(y¥) hi';AyiAyy

“4)

with
— the discrete stream function W; ; at the (-cell with indices (3, ),

— latitude 2 and longitude y, each defined at T-cells (z} ;, y; ;) and U/ V-cells (z}';, y;";)



10

15

20

25

— grid spacings of T (Azf ;, Ay} ;) and U/ V cells (Az}';, Ay;*;) in each horizontal direction.

2,37 2,37

By re-ordering all discrete quantities x; ; to a one-dimensional object x;4 n; (with ¢ € [1,N], j € [1,M], and N, M € N)

and writing them as column vectors x, (3) results in the equation
AV =7 )

where Z represents the right-hand side of (3), and A is a banded matrix with nonzero values on five or seven diagonals* that
reduces to the classical discrete Poisson problem for equidistant Cartesian coordinates, but is generally non-symmetric.

In pyOM2, the system (5) is solved through a conjugate gradient solver with Jacobi preconditioner in a matrix-free formu-
lation taken from the Modular Ocean Model (MOM, Pacanowski et al., 1991). Since both the matrix-free formulation and the
fixed preconditioner lead to a quite specific solver routine, our first step was to transform this into a generic problem by in-
corporating all boundary conditions into the actual Poisson matrix, and to use scipy . sparse from the SciPy library (Jones
et al., 2001-) to store the resulting banded matrix. At this stage, any sufficiently powerful sparse linear algebra library can
be used to solve the system. This is especially important for Veros as it is targeting a wide range of architectures — a small,
idealized model running with NumPy does not require a sophisticated algorithm (and can stick with e.g., the readily available
solvers provided by scipy.sparse.linalg); intermediate problem sizes might require a strong, sequential algorithm;
and for large setups, highly parallel solvers from a high-performance library are usually most adequate (such as PETSc (Balay
et al., 1997) on CPUs, or CUSP (Dalton et al., 2014) on GPUs).

In fact, asshown-in-Seet-3:2-substantial speedups could be achieved by using an AMG > (Algebraic Multi-Grid, Vanék et al., 1996

preconditioner provided by the Python package pyAMG (Bell et al., 2013). As shown in the performance comparisons in
Sect. 3.2.2, our AMG-based stream function solver is up to 20 times faster than pyOM?2’s Fortran equivalent. Even though the
AMG algorithms are mathematically highly sophisticated, pyAMG is simple to install (e.g., via the PyPI package manager,
pip), and implementing the preconditioner into Veros required merely a few lines of code, making this process a prime exam-
ple for the huge benefits one can expect from developing in a programming language as popular in the scientific community as
Python. And thanks to the modular structure of the new Poisson solver routines, it will be easy to switch (possibly dynamically)

to even more powerful libraries as it becomes necessary.
2.3.3 Multi-threaded I/O with Compression

In geophysical models, writing model output or restart data to disk often comes with its own challenges. When output is written
frequently, significant amounts of CPU time may be wasted waiting for disk operations to finish. Additionally, data sets tend
to grow massive in terms of file size, usually ranging from Gigabytes to Petabytes. To address this, we took the following

measures in Veros:

4Two additional diagonals are introduced when using cyclic boundary conditions to enforce ¥ NG = \IIO’ J vy € [0, M]

5 - P p
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— AH-Since I/0 operations are usually blocking the current thread from continuing while barely consuming any CPU
resources, all disk output is written in a separate thread ;-enabling-(using Python’s threading module). This enables

computations to continue without waiting for flushes to disk to finish.

— By default, Veros makes use of NetCDF4 and HDF5’s built-in lossless compression abilities. Simply by passing the
desired compression level as a flag to the respective library, the resulting file sizes were reduced by about two thirds,
with little computational overhead. Since the zlib (NetCDF4) and gzip (HDF5) compression is built into the respective
format specification, most standard post-processing tools are able to read and decompress data on the fly, without any

explicit user interaction.
2.3.4 Backend-specific Tridiagonal Matrix Solvers

Many dissipation schemes contain implicit contribution terms, which usually requires the solution of some linear system
Ax = b with a tridiagonal matrix A for every horizontal grid point (e.g., Gaspar et al., 1990; Olbers and Eden, 2013).

In pyOM2, those systems are solved using a naive Thomas algorithm (simplified Gaussian elimination for tridiagonal sys-
tems). This algorithm cannot be fully vectorized with NumPy’s toolkit, and explicit iteration turned out to be a major bottleneck
for simulations. One possible solution was to re-write all tridiagonal systems for each horizontal grid cell into one large, padded
tridiagonal system that could be solved in a single pass. This proved to be feasible for NumPy, since it exposes bindings to
LAPACK’s dgt sv solver (Anderson et al., 1999), but performance was not sufficient when using Bohrium. We therefore made
use of Bohrium’s interoperability functionalities, which allowed us to implement the Thomas algorithm directly in the OpenCL
language for high-performance computing on GPUs via PyOpenCL (Klockner et al., 2012); on CPUs, Bohrium provides a par-
allelized C-implementation of the Thomas algorithm as an “extension method”.

When encountering such a tridiagonal system, Veros automatically chooses the best available algorithm for the current
runtime system (backend and hardware target) without manual user interaction. This way, overall performance increased sub-

stantially, to the levels reported in Sect. 3.2.
2.3.5 Modular Diagnostic Interface

All model diagnostics, such as snapshot output, vertical (overturning) stream functions, energy flux tracking, and temporal
mean output, are implemented as subclasses of a diagnostics base class, and instances of these subclasses are added to a Veros

instance dynamically. This makes it possible to add, remove, and modify diagnostics on the fly:

def set_diagnostics(self):
diag = veros.diagnostics.Average ()
diag.name = "annual-mean"
diag.output_frequency = 360 % 86400

self.diagnostics["annual-mean"] = diag
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This code creates a new averaging diagnostic that outputs annual means, and can be repeated, e.g., for also writing monthly
means.

Besides enforcing a common interface, creating all diagnostics as subclass of a “virtual” base class also has the benefit that
common operations like data output are defined as methods of said base class, providing a complete and easy-to-use toolkit to

implement additional diagnostics.
2.3.6 Metadata Handling

About 2000 of the approximately 11000 SLOC (source lines of code) in pyOM?2 were dedicated to specifying variable metadata
(often multiple times) for each output variable, leaving little flexibility to add additional variables, and risking inconsistencies.
In Veros, all variable metadata is contained in a single, central dictionary; subroutines may then look up metadata from this dic-
tionary on demand (e.g., when allocating arrays, or preparing output for a diagnostic). Additionally, a “cheat sheet” containing
a description of all model variables is compiled automatically and added to the online user manual.

This approach maximizes maintainability through eliminating inconsistencies, and allows users to add custom variables that

are treated no differently from the ones already built-in.
2.3.7 Quality Assurance

To ensure consistency with pyOM?2, we developed a testing suite that runs automatically for each commit to the master branch

of the Veros repository. The testing suite is comprised of both unit tests and system tests:

Unit tests are implemented for each numerical core routine; they call a single routine with random data and make sure that

resttts-all output arrays match between Veros and pyOM2 within a certain teteraneeabsolute tolerance, chosen by the
author of the test (usually 10-% or 1077).

System tests integrate entire model setups for a small number of time steps and compare the results to pyOM?2.

These automated tests allow developers to detect breaking changes early and ensure consistency for all numerical routines
and core features apart from deliberately breaking changes. To achieve strict compliance with pyOM?2 during testing, we
introduced a compatibility mode to Veros that forces all subroutines to comply with their pyOM2 counterpart, even if the
original implementation contains errors that we corrected when porting them to Veros.

Using this compatibility mode, the results of most of Veros’ core routines match those of PyOM2 within a global, absolute
tolerance of 10~8, while in a few cases an accuracy of just 10~7 is achieved (presumably due to a higher sensitivity to round-off
errors of certain products). The longer-running system tests achieve global accuracies between 10~ and 10~ for all model

variables. All results-arrays are normalized to unit scale by dividing by their global maximum before comparing.
2.4 About Bohrium

Since Veros relies heavily on the capabilities of Bohrium for large problems on parallel architectures, this section gives a short

introduction to the ideas behind and implementation of Bohrium.
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Bohrium is a software framework for efficiently mapping array-operations from a range of frontend languages (currently
C, C++, and Python) to various hardware architectures, including multi-core CPUs and GPGPUs (Kristensen et al., 2013).
The components of Bohrium are outlined in Larsen et al. (2016): All array operations called by the frontend programming
languages are passed to the respective bridge, which translates all instructions into Bohrium bytecode. After applying several
bytecode optimizations, it is compiled into numerical kernels which are then executed a the backend. Parallelization is handled
by so-called vector engines, currently using OpenMP (Dagum and Menon, 1998) on CPUs, and either OpenCL (Stone et al.,
2010) or CUDA (Nickolls et al., 2008) on GPUs.

Since Bohrium uses lazy evaluation, successive operations on the same array views can be optimized substantially. On one
hand, operations can be reordered or simplified analytically to reduce total operation counts. On the other hand, a sophisticated
fusion algorithm is applied, which “is a program transformation that combines (fuses) multiple array operations into a kernel
of operations. When it is applicable, the technique can drastically improve cache utilization through temporal data locality and
enables other program transformations, such as streaming and array contraction (Gao et al., 1993)” (Larsen et al., 2016). In

fact, this fusion algorithm alone may increase performance significantly in many applications (Kristensen et al., 2016).

Bohrium’s Python bridge is designed to be a drop-in replacement for NumPy, supplying a multi-array class bohrium.ndarray

that derives from NumPy’s numpy . ndarray. All array meta-data is handled by the original NumPy, and only actual compu-
tations are passed to Bohrium, e.g., when calling one of NumPy’s “ufuncs” (universal functions). This way, most of NumPy’s
functionality is readily available in Bohrium?®, which allows developers to use Bohrium as a high-performance numerical back-
end while writing hardware-agnostic code (and leaving all optimizations to Bohrium). These properties make Bohrium an ideal

fit for Veros.

3 Verification & Performance
3.1 Consistency Check

Since all Veros core routines are direct translations of their pyOM2 counterparts, an obvious consistency check is to compare
the output of both models. On a small scale, this is already done in the Veros testing suite, which ensures consistency for most
numerical routines in isolation, and for a few time steps of the model as a whole (see Seet-23Sect. 2.3.7). However, real-world
simulations often run for anything between thousands and millions of iterations, possibly allowing numerical roundoff or minor
coding errors to accumulate to significant deviations.

In order to check whether this is a concern in our case, we integrated a global model setup with coarse resolution (ap-
prox. 4° x 4°, 90 x 40 x 15 grid elements) for a total of 50 model years (18000 iterations) using Veros with NumPy, Veros

with Bohrium, and pyOM2. Theresulting-outputrevealsno-Neither the long-term average, zonally averaged temperature nor
long-term average barotropic stream function show a physically significant deviation between either of the simulations;—with

SExcept NumPy functions implemented in C, which have to be re-implemented inside Bohrium to be available.

10
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Desktop PC (I)

Cluster Node (II)

CPU Intel® Core™ {7 6700 @ 2 x Intel® Xeon® ES5-2650 v4
3.40 GHz (4 physical / 8 logical @ 2.20 GHz (24 physical / 48
cores) logical cores)

RAM 16 GB DDR4 512GB DDR4

Storage M2 SSD @ 500MBs~! LUSTRE filesystem @
read/write performance 128 MBs~!  read/write per-

formance

GPU — Nvidia Tesla P100 (16GB

HBM2 memory)

Software  GNU compiler toolchain 7.2.0, GNU compiler toolchain 5.4.0,

stack Python 2.7, NumPy 1.13.3, CUDA 9.0, Python 2.7, NumPy

Bohrium 8.9.0 1.13.3, Bohrium 8.9.0

Table 1. Specifications of the two benchmark architectures.

maximun-relative-errors-of-, Maximum relative errors amount to about 10~ (Veros, between NumPy and Bohrium) and 10~¢
(between Veros with NumPy and pyOM2 when using the compatibility mode).

3.2 Benchmarks

As high-performance computing resources are still expensive and slow model execution is detrimental to a researcher’s work-
flow, performance is of course a critical measure for any geophysical model (and usually the biggest counter-argument against
using high-level programming languages in modelling). It is thus essential to try and measure the performance of Veros through
benchmarking, and since we are in the lucky position to have a well-performing reference implementation available, an obvious
test is to compare Veros’ throughput to pyOM?2’s.

To this end, we developed a benchmarking suite that is part of the Veros code repository, so that benchmarks can easily be
executed and verified on various architectures. These benchmarks consist of either complete model runs or single subroutines
that are executed with varying problem sizes for each of the available numerical backends (NumPy, Bohrium, and pyOM?2’s
Fortran library with and without MPI support)®.

The benchmarks were executed on two different architectures: a typical Desktop PC, and a cluster node, marked as ar-
chitecture I and II, respectively (Table 1). Note that, since Bohrium does not yet support distributed memory architectures,
comparisons have to stay confined to a single computational node. Bohrium v0.8.9 was compiled from source with GCC and

BUILD_TYPE=Release flags, and pyOM2 with gfortran using —03 optimization flags and OpenMPI support.

6Since pyOM?2 offers Python bindings through f2py for all of its core routines, it can actually be used as a Veros backend. This way, we can ensure that all

components solve the exact same problem.
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3.2.1 Overall Performance

In order to benchmark the overall performance of Veros against that of pyOM2, an idealized model setup consisting of an
enclosed basin representing the North Atlantic with a zonal channel in the south is integrated for a fixed number of 100
iterations, but with varying problem sizes, for each numerical backend.

The results (Fig. 1) show that:

— For large problems with a number of total elements exceeding 107 (which is about the number of elements in a global
setup with 1° x 1° horizontal resolution), the Bohrium backend is at its peak efficiency and about 2.3 times slower than
parallel pyOM?2, regardless of the number of CPU cores. Running on architecture II’s high-end GPU, Veros’ throughput
is comparable to that of pyOM?2 running on 24 CPUs.

— Veros’ NumPy backend is about 3 times slower than pyOM2 running serially, largely independent of the problem size.
— For small problems containing < 2 x 10* elements, parallelism is inefficient, so NumPy performs relatively well.

— Using Bohrium carries a high overhead, and it only surpasses NumPy in terms of speed for problems larger than about

105 elements.

— Veros is least efficient for intermediate problem sizes of about 10> elements (up to 50 times slower than parallel pyOM2
on 24 CPUs).

We believe that these performance metrics show that Veros is indeed usable as the versatile ocean simulator it is trying to
be. Even students without much HPC experience can use Veros to run small to intermediate-sized, idealized models through
NumPy, and seamlessly switch to Bohrium later on to run realistic, full-size setups while experiencing performance comparable
to traditional ocean models. And given that Bohrium is still undergoing heavy development, we expect that many of the current

limitations will be alleviated in future versions, causing Veros to perform even better than today.
3.2.2 Stream Function Solver

To illustrate the speedups that could be achieved for the stream function solver alone (Sect. 2.3), we conducted similar bench-
marks calling only the corresponding solvers in pyOM2 and Veros using pseudo-spherical coordinates, uniform grid spacings,
cyclic boundary conditions, and a solver tolerance of 10~12, for a total of 100 times with different, random right-hand-side
vectors.

The results show that Veros’ stream function solver easily beats pyOM2’s for most relevant problem sizes (Fig. 2), even
though the underlying BiCGstab solver scipy.sparse.linalg.bicgstab is not parallelized (apart from internal calls
to the multi-threaded OpenBLAS library for matrix-vector products). The credit for this speedup belongs entirely to pyAMG,
as the AMG preconditioner causes much faster convergence of the iterative solver.

When running on an even higher number (possibly hundreds) of CPU cores, pyOM2’s parallel conjugate gradient solver

can be expected to eventually outperform Veros’ serial AMG solver. However, thanks to the new, generalized structure of

12
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Figure 1. In terms of overall performance, Veros using Bohrium (Bh) is slower than pyOM by a factor of about 1.3 to 2.3 for large problems,
depending on the hardware architecture (I and II, cf. Table 1). Eine-Solid lines are line fitssuggest, suggesting a linear scaling with constant

overheads for all components.

the stream function routines (Sect. 2.3), the SciPy BiCGstab solver could easily be switched with a different, parallel library

implementation.

4 Application: Kelvin Wave Propagation

In the current literature we see a gap between theory and very idealized models on one hand, and primitive equation models
with realistic forcing and topography on the other hand. Here, we will apply Veros to an aspect of the Southern Ocean (SO)
hypothesis by Toggweiler and Samuels (1995).

They propose that a strengthening of SO winds leads to a strengthening of the Atlantic Meridional Overturning Circulation
(AMOC). Their main argument is based on geostrophy and mass conservation, and it states that mass pushed north by the

Atlantic Ocean Ekman layer has to be replaced by upwelled water from depths below the Drake Passage sill. This basic idea is
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Figure 2. Thanks to pyAMG’s AMG preconditioner, Veros’ stream function solver is between 2 (24 CPUs, II) and 11 (4 CPUs, I) times

faster than pyOM2’s parallel conjugate gradient solver for large problem sizes.

largely accepted, and much of the discussion in the literature is now quantitative, i.e., how much of the wind-driven Eulerian
transport in the SO is compensated by meso-scale eddy-driven transport of opposite sign (Munday et al., 2013). However,
Jochum and Eden (2015) show that in at least one general circulation model (GCM) the AMOC does not respond to changes in
SO winds. Thus, testing the Southern Ocean hypothesis requires us not only to test if ocean models represent mesoscale eddies
appropriately, but also if the propagation of SO anomalies into the northern hemisphere is simulated realistically.

The main propagation mechanism is planetary waves; changes to SO Ekman divergence and convergence set up buoyancy
anomalies that are radiated as Kelvin and Rossby waves and set up changes to the global abyssal circulation (McDermott,
1996). Because they are so important there is a large literature devoted to the fidelity of planetary waves in ocean models:-. For
example, Hsieh et al. (1983) and Huang et al. (2000) show that even coarse resolution ocean models can support meridionally
propagating waves similar to Kelvin waves, and Marshall and Johnson (2013) quantify how exactly numerical details will affect
wave propagation. We wish to bridge the gap between these idealized studies and GCMs by investigating the dependence

of Kelvin wave phase speed on resolution in Veros. While this is in principle a minor exercise suitable for undergraduate
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students, the presence of internal variability and irregular coastlines makes this a major challenge (Getzlaff et al., 2005). Veros
considerably-

To remove many of these effects, we decided to replace the eastern boundary of the Atlantic by a straight, meridional
line. This enables a direct comparison with theory since one does not have to worry about the flow’s effective pathlength, or
artificial viscosity introduced by the staggered grid representation of curved coastlines. Veros allows even non-expert users
to make profound modifications to the default model setups, and simplifies this problem by providing uneomplicated-ways-to
modify-the-coastline—as-in several ways (the exact process of modifying the coastline is outlined in the upcoming section:):

— All post-processing tools from the scientific Python ecosystem that many users are already familiar with are readil
available in Veros setups. It is thus e.g. possible to use scipy.interpolate’s interpolation routines to interpolate
the initial condition to the model grid simply by importing them instead of having to re-invent the wheel.

— Veros setups (as inherited from PyOM?2) allow the user to modify all internal arrays, giving users the freedom to make

— Veros users do not have to care about an explicit domain decomposition or communication across processors, as all
arallelism is handled by Bohrium. All model variables look and feel like a single array.

Accordingly, we use this setup for 3 month BSc projects.
4.1 Modified Geometry with flexible Resolution

Modifying the geometry of a realistic geophysical model is no trivial task, especially when allowing for a flexible number
of grid elements. Any solution that converts cells from water to land or vice-versa has to infer reasonable values for initial
conditions and external forcing at these cells, since, e.g., atmospheric conditions tend to differ fundamentally between water
and land.

To automate this process, we created a downsampled version of the ETOPO1 global relief model (Amante and Eakins, 2009),
which we exported as a binary mask indicating either water or land. We then manually edited this mask using common image
processing software by removing lakes and inland seas, thickening Central America, and converting the eastern boundary of
the Atlantic to a straight meridional line, running from the southern tip of Africa to the Arctic (Fig. 3).

This binary mask is read by Veros during model setup, and interpolated to the chosen grid (number of grid cells in each
dimension are defined by the user; grid steps are chosen to minimize discretization error according to Vinokur (1983)). The
ocean bathymetry is read from the same downsampled version of ETOPO1, and cells are converted between water and land
according to the interpolated mask.

Since all cells that were converted from land to water lie in the North Atlantic, it is sufficient to modify initial conditions
and atmospheric forcing in this region only. Initial conditions are read from a reference file with 1° x 1° horizontal resolution,
and interpolated bilinearly to the modified grid. The bathymetry in the Atlantic is replaced by a constant depth of 4000m.
Optionally, a different constant depth and/or linear slope for some distance from each coast can be added to model a continental

shelf. All atmospheric forcing is replaced by its zonal mean value in the Atlantic basin.
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Figure 3. Idealized, binary geometry mask for the Kelvin wave study.

—40 =20 0 20
Barotropic Stream Function (Sv)

Figure 4. Long-term average barotropic stream function (BSF) of a 1° x 1° horizontal resolution setup as described in Sect.4.1. 1Sv =

105 m3s™*. Contours are drawn in steps of 4 Sv.

This leaves us with a modified setup that is smooth enough to be stably integrated, and that allows us to track Kelvin waves

in a more isolated environment. As a first sanity check, the resulting ocean circulation looks largely as expected (Fig. 4).
4.2 The Experiment

If coarse resolution ocean models can support Kelvin-wave-like features, the question of phase speed becomes paramount: A
wave that is too slow will be damped away too early and inhibit oceanic teleconnections, which may cause different observed
climate sensitivities in different climate models (Greatbatch and Lu, 2003). Hsieh et al. (1983) discuss in great detail how
choices in the numerical setup modify the phase speed of Kelvin waves: resolution, friction, discretization (Arakawa B or C
grid, Arakawa and Lamb, 1977) and boundary conditions all affect the phase speed. However, Marshall and Johnson (2013)
point out that for an adjustment timescale on the order of years or longer (relevant for Toggweiler and Samuels’ SO hypothesis),
the corresponding waves have the properties of Rossby waves, albeit with a phase speed of ¢ = L4/, where c is the Kelvin
wave phase speed, L, is the Rossby radius of deformation and d5; = (v/ 6)1/ 3 the Munk boundary layer width. Here we test

their analytical result, particularly whether the phase speed really depends only on friction but not resolution.
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The global setup of Veros is used in two configurations: 2° (2DEG) and 1° zonal resolution. Both have 180 meridional
grid cells with a spacing of approximately 0.5° at the equator and 1.5° at the poles. The 1° setup is used with two different
viscosities: 5 x 10*m2s~! (same as 2DEG) and 5 x 103m?s~!, called 1DEG and 1DEGL, respectively. Each of these three
setups is initialized with data from Levitus (1994) and integrated for 60 years (these are our 3 control integrations). After 50
years, one new integration is branched off from each, with the maximum winds over the SO increased by 50% (sine envelope
between 27°S and 69 °S). The velocity fields are sampled as daily means, and by analyzing at 200m depth the differences of
the first 150 days to the first 150 days of year 51 of the control integrations, we arrive at an estimate of the speed with which
the information of the SO wind stress anomaly travels north along the eastern boundary of the Atlantic Ocean.

As a first step we confirm that the anomaly signal is well resolved along the equator. Indeed, for all three setups we find the
same phase speed of 2.7ms ™! (Fig. 5a, only 1DEG is shown), slightly less than the 2.8 ms ™" that is expected from theory and
observations (Chelton and coauthors, 1998). Along the African coast we find a similar speed in IDEGL, but slower in IDEG
and 2DEG (Fig. 5b-d). Using the approximate slope of the propagating signal’s contours as a metric for the average phase
speed between the equator and 40 °N, we arrive at about 2.1 ms~! for IDEGL, and 1.0ms ™! for 2DEG and 1DEG.

The Rossby radius of deformation L4 along the western coast of North Africa changes from approximately 100km at 5°N
to 40km at 30°N (Chelton and coauthors, 1998). The Munk boundary layer width d,; for our two different viscosities are
130km and 60km. The large range of L, along the coast makes it difficult to determine the exact theoretically expected phase
speed, but based on Marshall and Johnson (2013) one can expect that the anomalies generated by a SO wind perturbation travel
slower by a factor of less than 3 in 2DEG and 1DEG, and twice as fast than that in IDEGL. This is exactly what is found here.

This minor initial application demonstrates how Veros can be used to bridge the gap between theory and full ocean GCMs.
Future studies will investigate in more detail the interaction between the anomalies traveling along the coast and high latitude

stratification and topography.

5 Summary & Outlook

By translating pyOM2’s core routines from Fortran 90 to vectorized Python / NumPy code (Sect. 2.1 and Sect. 2.2), and adding
integration with the Bohrium framework (Sect. 2.4), we were able to build a Python ocean model (Veros) that is both consistent
with pyOM2 to a high degree (Sect.3.1), and does not perform significantly worse, even on highly parallel architectures
(Sect. 3.2). Additional modifications (Sect.2.3) include a powerful algebraic multigrid (AMG) Poisson solver, compressed
NetCDF4 output, a modular interface for diagnostics, self-documentation, and automated testing.

A simple experiment investigating planetary wave propagation in the Atlantic showed that boundary waves in GCMs travel
with phase speeds consistent with theoretical expectations.

While creating Veros did require a deep understanding of the workings of NumPy and Bohrium to avoid performance
bottlenecks and to write concise, idiomatic, vectorized code, the presented version of Veros took less than a year to develop by
a single, full-time researcher. Nevertheless, Veros is still at an early stage of development. In future releases, we plan to address

the following issues:
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More abstraction Most of Veros’ core routines are currently direct vectorized translations of pyOM2’s Fortran code, which
manipulate array objects through basic arithmetic and provide little exposition of the underlying numerical concepts. In
order to create a truly approachable experience, it is crucial to deviate from this approach and introduce more abstraction
by grouping common patterns into higher-order operations (like transpositions between grid cell types or the calculation

5 of gradients).

Parallelized stream function solvers A parallel Poisson solver is a missing key ingredient to scale Veros efficiently to even
larger architectures. Solvers could either be provided through Bohrium, or by binding to another third-party library such
as PETSc (Balay et al., 1997), ViennaCL (Rupp et al., 2010), or CUSP (Dalton et al., 2014).

Distributed memory support High-resolution representations of the ocean (such as eddy-permitting or eddy-resolving mod-

10 els) are infeasible to be simulated on a single machine, since the required integration times may well take decades to
compute. In order for Veros to become a true all-purpose tool, it is crucial that work can be distributed across a whole
computing cluster (which could either consist of CPU or GPU nodes). Therefore, providing distributed memory support

either through Bohrium or another numerical backend is a top priority for ongoing development.

However, we think that Veros has proven that it is indeed possible to implement high-performance geophysical models

15 entirely in high-level programming languages.

Code availability. The entire Veros source code is available under a GPL license on GitHub (https://github.com/dionhaefner/veros). All
comparisons and benchmarks presented in this study are based on the Veros v0.1.0 release, which is available under the DOI 10.5281/zen-
0do.1133130. The model configuration used in Sect. 4 is included as a default configuration (“wave propagation”).
The Veros user manual is hosted on ReadTheDocs (https://veros.readthedocs.io). An archived version of the Veros v0.1.0 manual, along
20 with the user manual of PyOM2 describing the numerics behind Veros, is found under the DOI 10.5281/zenodo.1174390.
Recent versions of PyOM?2 are available at https://wiki.cen.uni-hamburg.de/ifm/TO/pyOM?2. A snapshot of the pyOM2 version Veros is

based on, and that is used in this study, can be found in the Veros repository.
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Figure 5. The Kelvin wave phase speed in Veros approximately only depends on viscosity, not resolution, as predicted by Marshall and
along 0° longitude in the Atlantic at 200 m depth. The slopes of the blue dashed lines are used to estimate phase speeds. Note that the signal
coast. Thus, the buoyancy perturbation that eventually arrives in the North Atlantic has to be advected to the South American coast before it

arrives at different times at the African coast due to the location of the maximum wind field perturbation,

can travel north as a fast coastal wave.
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1 General Comments

-Introduction,line 6: ...using the low level programming language fortran ...
| think it should be mentioned that fortran is only one of the programming
languages used in the ocean model community, not THE language. There
are plenty of models that are also written in C or C++.

Re-worded these sentences to be a bit more general.

-Introduction, line 8-10: ...violates a core principle of science: reproducibility

| don’t see how complexity violates reproducibility. lts the job of the
programmer and the development community to do implementation step by
by step and that new implemented features are carefully tested, but this
inherits any kind of programming effort independent of the used language.

Complexity per se indeed does not automatically violate reproducibility. However, we
live in a world where resources are finite, and especially so in academia. A more
complex model code that is poorly abstracted does lead to a decrease in “testability”,
and since people’s time is precious, this particular piece of code will be, on average,
less well tested.

Changed the wording of this sentence (“violate” — “jeopardize”).

-Introduction, line 11-12: ...designed with the explicit goal to improve code
structure and readability ... Any code in any language can be structured
and commented that “anybody” can read and understand it, but only when
the responsible programmer cares about. The difference in python to all
other languages | know is, that the structure of the code (line intents, tabs,
spaces ... ) is a necessary part of the syntax of python, which forces the
programmer to structure its code to a certain extend.
Cc2



Our understanding of structure in a program goes far beyond whitespace. Python (such
as many other high-level languages) actively advocates the usage of modularity, clear
scoping rules, and other modern software engineering best practices. Furthermore,
the community-wide coding standard PEP8[1] demands a consistent style of all Python
projects, lowering the bar of entry for new collaborators.

Please also consider the following quote from our response to the first review comment:

“While it is in principle possible to write clear Fortran code with meaningful abstractions
that may be just as readable as a high-level implementation, the reality is often differ-
ent. Popular ocean models such as MOM [4] or POP2 [5] feature subroutines that are
hundreds to thousands of lines long, and both models rely on more obscure Fortran
features such as coMMON blocks, which makes it hard to keep track of variable scopes
for inexperienced programmers. This is not necessarily due to flaws in Fortran’s core
design, but we do consider the established idiomatic style of a community to be tightly
bound to the language used.”

-Introduction, line 16-17: ... a substantial amount of ... projects is devoted
to understanding, writing, and debugging legacy Fortran code... Under-
standing writing and debugging is part of any kind of model programming
effort, irrespective of the used language, that is a burden one always has to
deal with. | think the big advantage of the high level programming language
python is, that its first unless like MATLAB fully open source, so there are
no nasty licensing issues to address for any package and second that the
running of the code and the visualization of any kind of model variable can
be done theoretically together. This would make it much easier, especially
for beginners, to understand what is going on in the model and speed up
any debugging work-flow considerably. Low level programming languages
only allow limited output to the screen/log-file or need own complicated out-
put routines to write out more complex variables which are visualized with

C3

something afterwards which makes it often time and resources consuming
to find the origin of bugs.

The emphasis of this sentence is not on understanding, writing, and debugging, but on
substantial amount of the duration and legacy Fortran code. The debugging workflow
in a Python environment is very different from that in a Fortran project. Python code
can be pulled apart dynamically, run interactively in a Jupyter notebook, and (as you
correctly note) tightly integrated with visualization tools. On top of this, Python is one of
the most popular programming languages in the world, which means it is much easier
to get help. All of these factors contribute to a significantly more pleasant experience
for everyone who is not a Fortran expert.

On a side note, there is a multitude of stronger reasons why one would choose Python
over MATLAB than it being free software (some of which are outlined in Sect. 2.3). In
my personal opinion, a project like Veros in MATLAB would be pointless, since most of
Python’s advantages don'’t apply.

- 2.1 From Fortran to naive python, line 28: ...arbitrary indexing in Fortran ...
I’'m not sure what the author means here with the term “arbitrary indexing”.
Also indexing in Fortran is anything else than arbitrary.

This refers to the fact that the index range of an array can be chosen by the programmer
in Fortran [1], while Python arrays always start at 0. Slightly reworded this remark to
make that clearer.

- 2.3.3 Multi-threaded I/0O with Compression, line 27: ... ranging from Giga-
bytes to Petabytes... | haven’t met yet any model application where single
output files in the size of Petabyte where written. Did the author meant
Terabyte ?

C4



This sentence refers to “data sets” by which we mean the entire output of, say, a model
run. In long-running high-resolution models, this easily reaches the Petabyte scale
(e.g. the experiment outlined in [2]).

- 2.3.3 Multi-threaded I/O with Compression, line 29-30: Since writing out-
put becomes more and more to a critical bottleneck especially, for large
model configurations, it would be nice if the author could describe a bit
more in detail how writing the output is organized in VEROS especially with
respect to the separated threads. How is pre- vented that the data are over-
written when the model runs further, while one thread is writing out ?, Are
the output data duplicated for writing the output?, Does it affect the RAM
demand of the model? ...

Good point. All data is copied in-memory to the output thread before continuing. This
indeed increases memory consumption temporarily, which is why this feature can be
disabled with a flag. In practice, we have not experienced issues with excessive mem-
ory usage.

Added a sentence to Sect. 2.3.3.

-2.3.5 Modular Diagnostic Interface: How does VEROS structure the out-

put, does it follow the CMIP protocol, one file for one variable or it combine

several variables into a file?
Currently, we loosely follow the CF conventions (http://cfconventions.org/)in
our netCDF output files. So far, most of the output format is inherited from pyOM2, but
we plan to be strictly compliant with CF in the future. For all default diagnostics, we
use one file per diagnostic (e.g., all snapshot variables are written to one file, and all
temporal average variables to another). But we consider this a detail that might change

soon, so we don’t want to get into too much detail in this paper.
C5

-4.1. Modified Geometry with flexible Resolution: The author should men-
tion what he used as forcing to obtain these results

Indeed. Added a sentence to 4.2.

It would be nice if the author could also make some statements about the
memory (RAM) demand between VEROS and pyOM2, when running the
same configuration. Are they the same?, Are there differences in the size
of the model configuration that VEROS can handle compared to pyOM2...

Added a paragraph on memory consumption to Sect. 3.2.

2 Technical Comments

- page1, line15: ...to further advance our ...
Replaced “further” by “advance” for clarity.
- page3, line26 (same pages, line9): 2.1 From Fortran to naive Python
Replaced the somewhat archaic spelling “naive” with the more modern “naive”.
- page9, line24: ...and the implementation of

Re-worded.
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- page16, line21: ...(Chelton and coauthors et al. ,1998)
- page16, line25: ...(Chelton and coauthors et al. ,1998)

Bibliography and reference styles are as supplied by Copernicus, which we have no
control over.

- page19, line 34: ... Last Glacial Meaximum ...
Corrected.
- page 21,line 4: ...PopularitYy...

We follow the official spelling of PYPL here, which is indeed “PopularitY”.

3 Other Changes

Consistent spelling of pyOM2 with lower-case “p”.

4 References

[1] https://www.python.org/dev/peps/pep-0008
[1] https://docs.oracle.com/cd/E19957-01/805-4940/z400091044d0/index.html

[2] Poulsen, Mads B., Markus Jochum, and Roman Nuterman. "Parameterized and
resolved Southern Ocean eddy compensation." Ocean Modelling 124 (2018): 1-15.

Cc7

Please also note the supplement to this comment:
https://www.geosci-model-dev-discuss.net/gmd-2018-3/gmd-2018-3-AC2-
supplement.pdf

Interactive comment on Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-3,
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Abstract. A general circulation ocean model is translated from Fortran to Python. It is described how its code structure
is optimized to exploit available Python utilities, remove simulation bottlenecks, and comply with modern best practices.
Furthermore, support for Bohrium is added, a framework that provides a just-in-time compiler for array operations, and that
supports parallel execution on both CPU and GPU targets.

For applications containing more than a million grid elements, such as a typical 1° x 1° horizontal resolution global ocean
model, Veros is approximately half as fast as the MPI-parallelized Fortran base code on 24 CPUs, and as fast as the Fortran
reference when running on a high-end GPU. By replacing the original conjugate gradient stream function solver with a solver
from the pyAMG Python package, this particular subroutine outperforms the corresponding Fortran version by up to 1 order
of magnitude.

The study is concluded with a simple application in which the North Atlantic wave response to a Southern Ocean wind per-
turbation is investigated. It is found that even in a realistic setting the phase speeds of boundary waves matched the expectations

based on theory and idealized models.

Copyright statement. TEXT

1 Introduction

Numerical simulations have been used to further-advance our understanding of the ocean circulation for more than 50 years
now (e.g., Bryan, 2006), and in particular for regimes that are difficult to treat analytically, they have become irreplaceable.
However, numerical representations of the ocean have their own pitfalls, and it is paramount to build trust in the numerical
representation of each and every process that is thought to be relevant for the ocean circulation (e.g., Hsieh et al., 1983). The
last 20 years have seen a massive increase in computing resources available to oceanographers, in contrast to human resources,
which appear to be fixed. Arguably, this lead to a shift from process studies to analysis of climate model output (or from “Little
Science” to “Big Science”, Price de Solla, 1963). This is not necessarily a bad development, it may simply be an indication that

the field has matured. However, there are still basic questions about ocean dynamics that yet remain unanswered (e.g., Marshall
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and Johnson, 2013), and to tackle these questions, the scientific community requires flexible tools that are both approachable,
powerful, and easy to adapt. We therefore decided to build Veros (the versatile ocean simulator).

The ocean interior is mostly adiabatic and has a long memory, easily exceeding 1000 years (e.g., Gebbie and Huybers, 2006).
This requires long integration times for numerical models; experiments can well take several months in real time to complete.
Thus, ocean models are typically written to optimize the use of computing rather than human resources, using the-low-level
programming tanguage Fortran —Fortran's-core-Janguage languages such as Fortran or C, These languages’ core design, lack
of abstraction, and established coding patterns often make it a daunting challenge to, for example, keep track of indices or
global variables. Even for experienced scientists this is more than just a nuisance. As the model code becomes increasingly
complex, it vielates—jeopardizes a core principle of science: reproducibility. Especially inexperienced programmers cannot
ascertain beyond all doubt that the impact of a recently implemented physical component is caused by new physics or, simply,
a bug.

High-level programming languages like Python, MATLAB, Scala, or Julia on the other hand are usually designed with the
explicit goal to improve code structure and thus readability. While this in itself cannot eliminate coding mistakes, a more
concise, better structured code makes it easier to spot and avoid bugs altogether. In the case of Python, additional abstraction,
a powerful standard library, and its immense popularity in the scientific community' — which has in turn created a wide range
of learning resources and a large third-party package ecosystem — lower the bar of entry for inexperienced programmers.

In fact, this is one of our main motivations behind developing Veros: In our experience, a substantial amount of the duration
of MSc or PhD projects is devoted to understanding, writing, and debugging legacy Fortran code. This leads to frustration and
anxieties, even on the lecturers’ side. With Veros, we anticipate that students can translate their physical insights rapidly into
numerical experiments, thereby maintaining the high level of enthusiasm with which they entered the field. At the same time,
it allows more seasoned researchers to quickly spin up experiments that dramatically change the ocean dynamics, which would
be impractical or infeasible using traditional ocean models (for one such application see Sect. 4).

The price to pay for these advantages is often a significantly reduced integration speed due to less aggressive compiler
optimizations, additional overhead, and lack of direct memory access. Thus, while there are some modeling projects that
implement a Python front end (such as CliMT (Monteiro and Caballero, 2016), OOFe (Marta-Almeida et al., 2011), or PyOM
(Eden, 2016)), all of those projects rely on a Fortran backend for performance reasons. However, in Veros, the performance
impact of using Python turns out to be much less severe than expected, as all expensive computations are deferred to a well-
performing numerical backend (NumPy or Bohrium, see Sect. 3.2 for performance comparisons), making Veros the (to our
knowledge) first global-scale ocean simulator in pure Python.

The next section describes the challenges overcome during the translation and resulting changes in the code structure. Sect. 3

presents model validation and benchmarks, and Sect. 4 evaluates the properties of coastally trapped waves in Veros.

!There are many attempts to rank programming languages by popularity, and Python is usually placed in the top 10 of such rankings; see e.g., IEEE
Spectrum (2017), Stack Overflow (2017), TIOBE Group (2017), or PYPL (2017).
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2 Implementation

At its numerical core, the present version of Veros (v0.1) is a direct translation of pyOM?2 (v2.1.0), a primitive equation
finite-difference ocean model with a special emphasis on energetic consistency (Eden and Olbers, 2014; Eden, 2016). PyOM?2
consists of a backend written in Fortran 90 and frontends for both Fortran and Python (via f2py, Peterson, 2009). Most of the

core features of pyOM2 are available in Veros, too; they include:

A staggered, three-dimensional numerical grid (Arakawa C-grid, after Arakawa and Lamb (1977)), discretizing the
Primitive Equations in either Cartesian or pseudo-spherical coordinates (e.g., Olbers et al., 2012). This grid is staggered

in all dimensions, placing quantities on so-called T, U, V, W, and ( cells.
— Free-slip boundary conditions for momentum, and no-normal-flow boundary conditions for tracers.

— Several different friction, advection, and diffusion schemes to choose from, such as harmonic / biharmonic lateral fric-
tion, linear / quadratic bottom friction, explicit / implicit vertical mixing, central difference / Superbee flux limiting

advection schemes.

— Either the full 48-term TEOS equation of state (McDougall and Barker, 2011), or various linear and nonlinear model
equations from Vallis (2006).

— Isoneutral mixing of tracers following Griffies (1998).

— Closures for mesoscale eddies (after Gent et al., 1995; Eden and Greatbatch, 2008), turbulence (Gaspar et al., 1990), and
internal wave breaking (IDEMIX, Olbers and Eden, 2013).

— Support for writing output in the widely used NetCDF4 binary format (Rew and Davis, 1990), and writing restart data

to pick up from a previous integration.

Veros, like pyOM2, aims to support a wide range of problem sizes and architectures. It is meant to be usable on anything be-
tween a personal laptop and a computing cluster, which calls for a flexible design, and which makes a dynamical programming
language like Python a great fit for this task. Unlike pyOM2, which explicitly decomposes and distributes the model domain
across multiple processes via MPI (Message Passing Interface, e.g., Gropp et al., 1999), Veros is not parallelized directly.
Instead, all hardware-level optimizations are deferred to a numerical backend; currently either NumPy (Walt et al., 2011), or
Bohrium (Kristensen et al., 2013). While NumPy is commonly used, easy to install, and highly compatible, Bohrium provides
a powerful runtime environment that handles high-performance array operations on parallel architectures.

The following section describes which procedures we used when translating pyOM?2’s Fortran code to a first, naive Python
implementation. Sect.2.2 then outlines the necessary steps to obtain a well-performing and idiomatic, vectorized NumPy
implementation. Sect. 2.3 gives an overview of some additional features that we implemented in Veros, and Sect. 2.4 finally

gives an introduction to the internal workings of Bohrium.
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2.1 From Fortran to naive naive Python

Array operations implemented in Fortran can be translated to Python / NumPy with relative ease, as long as a couple of pitfalls
are avoided (such as 0-based indexing in Python vs. arbitrary indexing-index ranges in Fortran). As an example, consider the
following Fortran code from pyOM2:

do j=js_pe, je_pe
do i=is_pe-1,ie_pe
flux_east (i, 3,:) = &
0.25x(u(i, j, :,tau)+u(i+l, j, :,tau)) &
* (utr(i+1l,j, :)+utr (i, 3, :))
enddo
enddo

where is_pe, Js_pe, ie_pe, Jje_pe denote the start and end indices of the current process. Translating this snippet
verbatim to Python, the resulting code looks very similar:
for j in range(js_pe, je_pe):
for i in range(is_pe-1,ie_pe):
flux_east[i,J,:] = \
0.25% (uli, j, :,taul+uli+l, j, :, taul) \

*(utr[i+l,j, :]+utr(i, 3,:1)

In fact, we transformed large parts of the Fortran code base into valid Python by replacing all built-in Fortran constructs (such
as if-statements and do-loops) by the corresponding Python syntax. We automated much of the initial translation process

through simple tools like regular expressions to pre-parse the Fortran code base — e.g., the regular expression
do (\w)=((\wl| [\+\=1)+, (\w| [\+\=-1)+)

would find all Fortran do loops, while the expression

for \1 in range (\2):

replaces them with the equivalent for loops in Python?. This semi-automatic preprocessing allowed for a first working Python
implementation of the pyOM?2 code base after only a few weeks of coding that could be used as a basis to iterate towards a

more performant (and idiomatic) implementation.
2.2 Vectorization

After obtaining a first working translation of the pyOM2 code, we refactored and optimized all routines for performance and

readability, while ensuring consistency through continuously monitoring results. This mostly involves using vector operations

2E.g. through the GNU command line tool sed, which is readily available on most Linux distributions.
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instead of explicit Fortran-style loops over indices (that typically carry a substantial overhead in high-level programming
languages). Since most of the operations in a finite-difference discretization consist of basic array arithmetic, a large fraction

of the core routines were trivial to vectorize, such as the above example, which becomes:

flux_east[1:-2,2:-2,:]1 =\
0.25«(uf[l:-2,2:-2,:,taul+ul[2:-1,2:-2, :,taul) \
*(utr[l:-2,2:-2,:]+utr[l:-2,2:-2,:1)

Note that we replaced all explicit indices (i,7) by basic slices (index ranges). The first and last two elements of the hor-
izontal dimensions are ghost cells, which makes it possible to shift arrays by up to two cells in each dimension without
introducing additional padding. Since all parallelism is handled in the backend, there is no need to retain the special indices
is_pe, Jjs_pe, ie_pe, 7je_pe, and we replaced them by hard-coded values (2, 2, —2, and —2, respectively).

Apart from those trivially vectorizable loops, there were several cases that required special treatment:

Boolean masks are either cast to floating point arrays and multiplied to the to-be-masked array, or applied using NumPy’s

where function. We decided to avoid “fancy indexing” due to poor parallel performance.

— Operations where e.g., a three-dimensional array is to be multiplied with a two-dimensional array slice-by-slice can be

written concisely thanks to NumPy’s powerful array broadcasting functionalities (e.g., by using newaxi s as an index).

— We vectorized loops representing (cumulative) sums or products using NumPy’s sum (cumsum) and prod (cumprod)

functions, respectively.
— Oftentimes, recursive loops can be reformulated analytically into a form that can be vectorized. A simple example is

al =2zt —af, ey

which arises when calculating the positions z! of the T-grid cells, and that is equivalent to

s = (10" (ah + (- 12at @
i=0

which can easily be expressed through a cumulative sum operation (cumsum).

On top of this, there were two loops in the entire pyOM2 codebase that were only partially vectorizable using NumPy’s
current toolset® (such that an explicit loop over one axis remains). Since they did not have a measurable impact on overall
performance, they were left in this semi-vectorized form — however, it is certainly possible that those loops (or similar future
code) could become a performance bottleneck on certain architectures. In this case, an extension system could be added to
Veros, where such instructions are implemented using a low-level API and compiled upon installing Veros. Conveniently,
Bohrium offers zero-copy interoperability for this use-case via Cython (Behnel et al., 2011) on CPUs, and PyOpenCL and
PyCUDA (Klockner et al., 2012) on GPUs.

30ne that arises when calculating mixing lengths as in Gaspar et al. (1990) that involves updating values dynamically based on the value of the previous
cell, and one inside the overturning diagnostic where a vectorization would require to temporarily store 2/N; Ny N 2 elements in memory (where Ny, N, y, Nz

denote the number of grid elements in x, y, z direction, respectively).
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2.3 Further Modifications

Since there is an active community of researchers developing Python packages, many sophisticated tools are just one import
statement away, and the dynamic nature of Python allows for some elegant implementations that would be infeasible or outright
impossible in Fortran 90. Moving the entire code base to Python thus allowed us to implement a number of modifications that

comply with modern best practices without too much effort, some of which are described in the upcoming sections.
2.3.1 Dynamic Backend Handling

Through a simple function decorator, a pointer to the backend currently used for computations is automatically injected as a
variable np into each numerical routine. This allows for using the same code for every backend, provided their interface is
compatible to NumPy’s. Currently, the only included backends are NumPy and Bohrium, but in principle, one could build their
own NumPy-compatible backend, e.g., by replacing some critical functions with a better performing implementation.

Since Veros is largely agnostic of the backend that is being used for vector operations, Veros code is especially easy to
write. Everything concerning e.g., the parallelization of array operations is handled by the backend, so developers can focus on

writing clear, readable code.
2.3.2 Generic Stream Function Solvers

The two-dimensional barotropic stream function W of the vertically integrated flow is calculated in every iteration of the solver
to account for effects of the surface pressure. It can be obtained by solving a two-dimensional Poisson equation of the form
h(z,y)
AV = / ((z,y,2) dz 3)
0
with coordinates z,y, z, total water depth h, vorticity ¢, and Laplacian A. The discrete version of this Laplacian in pseudo-

spherical coordinates as solved by pyOM2 and Veros reads (Eden, 2014):

AV

o Wip1;— Wi

S heiy cosQ(y}‘)AwﬁHAas;‘

_ U i— Y1
hy ;cos?(y¥) Azt Axy
cos(ybyr) W41 -V,
cos(yy) hi; 1Ay Ay
cos(yf) W, ; — ;5
cos(y¥) hi';AyiAyy

“4)

with
— the discrete stream function W; ; at the (-cell with indices (3, ),

— latitude 2 and longitude y, each defined at T-cells (z} ;, y; ;) and U/ V-cells (z}';, y;";)
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— grid spacings of T (Az} ;, Ay} ;) and U/ V cells (Az}';, Ayj';) in each horizontal direction.

2,37 2,37

By re-ordering all discrete quantities x; ; to a one-dimensional object z;1 n; (with i € [1,N], j € [1,M], and N,M € N)

and writing them as column vectors , (3) results in the equation
AY =7 (5)

where Z represents the right-hand side of (3), and A is a banded matrix with nonzero values on five or seven diagonals* that
reduces to the classical discrete Poisson problem for equidistant Cartesian coordinates, but is generally non-symmetric.

In pyOM2, the system (5) is solved through a conjugate gradient solver with Jacobi preconditioner in a matrix-free formu-
lation taken from the Modular Ocean Model (MOM, Pacanowski et al., 1991). Since both the matrix-free formulation and the
fixed preconditioner lead to a quite specific solver routine, our first step was to transform this into a generic problem by in-
corporating all boundary conditions into the actual Poisson matrix, and to use scipy.sparse from the SciPy library (Jones
et al., 2001-) to store the resulting banded matrix. At this stage, any sufficiently powerful sparse linear algebra library can
be used to solve the system. This is especially important for Veros as it is targeting a wide range of architectures — a small,
idealized model running with NumPy does not require a sophisticated algorithm (and can stick with e.g., the readily available
solvers provided by scipy.sparse.linalg); intermediate problem sizes might require a strong, sequential algorithm;
and for large setups, highly parallel solvers from a high-performance library are usually most adequate (such as PETSc (Balay
et al., 1997) on CPUs, or CUSP (Dalton et al., 2014) on GPUs).

In fact, substantial speedups could be achieved by using an AMG (Algebraic Multi-Grid, Vanék et al., 1996) preconditioner
provided by the Python package pyAMG (Bell et al., 2013). As shown in the performance comparisons in Sect. 3.2.2, our AMG-
based stream function solver is up to 20 times faster than pyOM2’s Fortran equivalent. Even though the AMG algorithms are
mathematically highly sophisticated, pyAMG is simple to install (e.g., via the PyPI package manager, pip), and implementing
the preconditioner into Veros required merely a few lines of code, making this process a prime example for the huge benefits
one can expect from developing in a programming language as popular in the scientific community as Python. And thanks to
the modular structure of the new Poisson solver routines, it will be easy to switch (possibly dynamically) to even more powerful

libraries as it becomes necessary.
2.3.3 Multi-threaded I/O with Compression

In geophysical models, writing model output or restart data to disk often comes with its own challenges. When output is written
frequently, significant amounts of CPU time may be wasted waiting for disk operations to finish. Additionally, data sets tend
to grow massive in terms of file size, usually ranging from Gigabytes to Petabytes. To address this, we took the following

measures in Veros:

— Since I/O operations are usually blocking the current thread from continuing while barely consuming any CPU resources,

all disk output is written in a separate thread (using Python’s threading module). This enables computations to

4Two additional diagonals are introduced when using cyclic boundary conditions to enforce ¥ NG = \IIO’ J Vj € [0, M]
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continue without waiting for flushes to disk to finish. To prevent race conditions, all output data is copied in-memory to
the output thread before continuing.

— By default, Veros makes use of NetCDF4 and HDF5’s built-in lossless compression abilities. Simply by passing the
desired compression level as a flag to the respective library, the resulting file sizes were reduced by about two thirds,
with little computational overhead. Since the zlib (NetCDF4) and gzip (HDF5) compression is built into the respective
format specification, most standard post-processing tools are able to read and decompress data on the fly, without any

explicit user interaction.
2.3.4 Backend-specific Tridiagonal Matrix Solvers

Many dissipation schemes contain implicit contribution terms, which usually requires the solution of some linear system
Ax = b with a tridiagonal matrix A for every horizontal grid point (e.g., Gaspar et al., 1990; Olbers and Eden, 2013).

In pyOM2, those systems are solved using a naive Thomas algorithm (simplified Gaussian elimination for tridiagonal sys-
tems). This algorithm cannot be fully vectorized with NumPy’s toolkit, and explicit iteration turned out to be a major bottleneck
for simulations. One possible solution was to re-write all tridiagonal systems for each horizontal grid cell into one large, padded
tridiagonal system that could be solved in a single pass. This proved to be feasible for NumPy, since it exposes bindings to
LAPACK’s dgt sv solver (Anderson et al., 1999), but performance was not sufficient when using Bohrium. We therefore made
use of Bohrium’s interoperability functionalities, which allowed us to implement the Thomas algorithm directly in the OpenCL
language for high-performance computing on GPUs via PyOpenCL (Klockner et al., 2012); on CPUs, Bohrium provides a par-
allelized C-implementation of the Thomas algorithm as an “extension method”.

When encountering such a tridiagonal system, Veros automatically chooses the best available algorithm for the current
runtime system (backend and hardware target) without manual user interaction. This way, overall performance increased sub-

stantially, to the levels reported in Sect. 3.2.
2.3.5 Modular Diagnostic Interface

All model diagnostics, such as snapshot output, vertical (overturning) stream functions, energy flux tracking, and temporal
mean output, are implemented as subclasses of a diagnostics base class, and instances of these subclasses are added to a Veros

instance dynamically. This makes it possible to add, remove, and modify diagnostics on the fly:

def set_diagnostics(self):
diag = veros.diagnostics.Average ()
diag.name = "annual-mean"
diag.output_frequency = 360 * 86400

self.diagnostics["annual-mean"] = diag

This code creates a new averaging diagnostic that outputs annual means, and can be repeated, e.g., for also writing monthly

means.
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Besides enforcing a common interface, creating all diagnostics as subclass of a “virtual” base class also has the benefit that
common operations like data output are defined as methods of said base class, providing a complete and easy-to-use toolkit to

implement additional diagnostics.
2.3.6 Metadata Handling

About 2000 of the approximately 11000 SLOC (source lines of code) in pyOM2 were dedicated to specifying variable metadata
(often multiple times) for each output variable, leaving little flexibility to add additional variables, and risking inconsistencies.
In Veros, all variable metadata is contained in a single, central dictionary; subroutines may then look up metadata from this dic-
tionary on demand (e.g., when allocating arrays, or preparing output for a diagnostic). Additionally, a “cheat sheet” containing
a description of all model variables is compiled automatically and added to the online user manual.

This approach maximizes maintainability through eliminating inconsistencies, and allows users to add custom variables that

are treated no differently from the ones already built-in.
2.3.7 Quality Assurance

To ensure consistency with pyOM2, we developed a testing suite that runs automatically for each commit to the master branch

of the Veros repository. The testing suite is comprised of both unit tests and system tests:

Unit tests are implemented for each numerical core routine; they call a single routine with random data and make sure that
all output arrays match between Veros and pyOM?2 within a certain absolute tolerance, chosen by the author of the test
(usually 108 or 10~7).

System tests integrate entire model setups for a small number of time steps and compare the results to pyOM?2.

These automated tests allow developers to detect breaking changes early and ensure consistency for all numerical routines
and core features apart from deliberately breaking changes. To achieve strict compliance with pyOM?2 during testing, we
introduced a compatibility mode to Veros that forces all subroutines to comply with their pyOM2 counterpart, even if the
original implementation contains errors that we corrected when porting them to Veros.

Using this compatibility mode, the results of most of Veros’ core routines match those of PyOM2-pyOM?2 within a global,
absolute tolerance of 10~%, while in a few cases an accuracy of just 10~7 is achieved (presumably due to a higher sensitivity
to round-off errors of certain products). The longer-running system tests achieve global accuracies between 10~5 and 10~* for

all model variables. All arrays are normalized to unit scale by dividing by their global maximum before comparing.
2.4 About Bohrium

Since Veros relies heavily on the capabilities of Bohrium for large problems on parallel architectures, this section gives a short
introduction to the tdeas-behind-underlying concepts and implementation of Bohrium.
Bohrium is a software framework for efficiently mapping array-operations from a range of frontend languages (currently

C, C++, and Python) to various hardware architectures, including multi-core CPUs and GPGPUs (Kristensen et al., 2013).
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The components of Bohrium are outlined in Larsen et al. (2016): All array operations called by the frontend programming
languages are passed to the respective bridge, which translates all instructions into Bohrium bytecode. After applying several
bytecode optimizations, it is compiled into numerical kernels which are then executed a the backend. Parallelization is handled
by so-called vector engines, currently using OpenMP (Dagum and Menon, 1998) on CPUs, and either OpenCL (Stone et al.,
2010) or CUDA (Nickolls et al., 2008) on GPUs.

Since Bohrium uses lazy evaluation, successive operations on the same array views can be optimized substantially. On one
hand, operations can be reordered or simplified analytically to reduce total operation counts. On the other hand, a sophisticated
fusion algorithm is applied, which “is a program transformation that combines (fuses) multiple array operations into a kernel
of operations. When it is applicable, the technique can drastically improve cache utilization through temporal data locality and
enables other program transformations, such as streaming and array contraction (Gao et al., 1993)” (Larsen et al., 2016). In

fact, this fusion algorithm alone may increase performance significantly in many applications (Kristensen et al., 2016).

Bohrium’s Python bridge is designed to be a drop-in replacement for NumPy, supplying a multi-array class bohrium.ndarray

that derives from NumPy’s numpy . ndarray. All array meta-data is handled by the original NumPy, and only actual compu-
tations are passed to Bohrium, e.g., when calling one of NumPy’s “ufuncs” (universal functions). This way, most of NumPy’s
functionality is readily available in Bohrium?®, which allows developers to use Bohrium as a high-performance numerical back-
end while writing hardware-agnostic code (and leaving all optimizations to Bohrium). These properties make Bohrium an ideal

fit for Veros.

3 Verification & Performance
3.1 Consistency Check

Since all Veros core routines are direct translations of their pyOM2 counterparts, an obvious consistency check is to compare
the output of both models. On a small scale, this is already done in the Veros testing suite, which ensures consistency for
most numerical routines in isolation, and for a few time steps of the model as a whole (see Sect.2.3.7). However, real-world
simulations often run for anything between thousands and millions of iterations, possibly allowing numerical roundoff or minor
coding errors to accumulate to significant deviations.

In order to check whether this is a concern in our case, we integrated a global model setup with coarse resolution (approx.
4° % 4°, 90 x 40 x 15 grid elements) for a total of 50 model years (18000 iterations) using Veros with NumPy, Veros with
Bohrium, and pyOM2. Neither the long-term average, zonally averaged temperature nor long-term average barotropic stream
function show a physically significant deviation between either of the simulations. Maximum relative errors amount to about
10~* (Veros, between NumPy and Bohrium) and 106 (between Veros with NumPy and pyOM2 when using the compatibility

mode).

SExcept NumPy functions implemented in C, which have to be re-implemented inside Bohrium to be available.
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Desktop PC (I)

Cluster Node (II)

CPU Intel® Core™ {7 6700 @ 2 x Intel® Xeon® ES5-2650 v4
3.40 GHz (4 physical / 8 logical @ 2.20 GHz (24 physical / 48
cores) logical cores)

RAM 16 GB DDR4 512GB DDR4

Storage M2 SSD @ 500MBs~! LUSTRE filesystem @

128 MBs~! read/write per-
formance

Nvidia Tesla P100 (16GB
HBM2 memory)

GNU compiler toolchain 5.4.0,
CUDA 9.0, Python 2.7, NumPy
1.13.3, Bohrium 8.9.0

read/write performance

GPU —

Software  GNU compiler toolchain 7.2.0,

stack Python 2.7, NumPy 1.13.3,
Bohrium 8.9.0

Table 1. Specifications of the two benchmark architectures.

3.2 Benchmarks

As high-performance computing resources are still expensive and slow model execution is detrimental to a researcher’s work-
flow, performance is of course a critical measure for any geophysical model (and usually the biggest counter-argument against
using high-level programming languages in modelling). It is thus essential to try and measure the performance of Veros through
benchmarking, and since we are in the lucky position to have a well-performing reference implementation available, an obvious
test is to compare Veros’ throughput to pyOM?2’s.

To this end, we developed a benchmarking suite that is part of the Veros code repository, so that benchmarks can easily be
executed and verified on various architectures. These benchmarks consist of either complete model runs or single subroutines
that are executed with varying problem sizes for each of the available numerical backends (NumPy, Bohrium, and pyOM?2’s

Fortran library with and without MPI support)®.

Since we do not (yet) reach scales where memory consumption, rather than compute power, becomes a limiting factor, we did

not study Veros’ memory demands compared to those of pyOM?2 in detail. However, especially when using Bohrium, memor
demands seem to be similar (within 10% of each other)

as Bohrium’s JIT compiler is often able to eliminate temporary arra

2

allocations. All tested model configurations could thus comfortably run within the same memory bounds for all backends.
The benchmarks were executed on two different architectures: a typical Desktop PC, and a cluster node, marked as ar-

chitecture I and II, respectively (Table 1). Note that, since Bohrium does not yet support distributed memory architectures,
comparisons have to stay confined to a single computational node. Bohrium v0.8.9 was compiled from source with GCC and

BUILD_TYPE=Release flags, and pyOM2 with gfortran using —03 optimization flags and OpenMPI support.

6Since pyOM2 offers Python bindings through f2py for all of its core routines, it can actually be used as a Veros backend. This way, we can ensure that all

components solve the exact same problem.

11



5

10

15

20

25

30

3.2.1 Overall Performance

In order to benchmark the overall performance of Veros against that of pyOM2, an idealized model setup consisting of an
enclosed basin representing the North Atlantic with a zonal channel in the south is integrated for a fixed number of 100
iterations, but with varying problem sizes, for each numerical backend.

The results (Fig. 1) show that:

— For large problems with a number of total elements exceeding 107 (which is about the number of elements in a global
setup with 1° x 1° horizontal resolution), the Bohrium backend is at its peak efficiency and about 2.3 times slower than
parallel pyOM?2, regardless of the number of CPU cores. Running on architecture II’s high-end GPU, Veros’ throughput
is comparable to that of pyOM?2 running on 24 CPUs.

— Veros’ NumPy backend is about 3 times slower than pyOM2 running serially, largely independent of the problem size.
— For small problems containing < 2 x 10* elements, parallelism is inefficient, so NumPy performs relatively well.

— Using Bohrium carries a high overhead, and it only surpasses NumPy in terms of speed for problems larger than about

105 elements.

— Veros is least efficient for intermediate problem sizes of about 10> elements (up to 50 times slower than parallel pyOM2
on 24 CPUs).

We believe that these performance metrics show that Veros is indeed usable as the versatile ocean simulator it is trying to
be. Even students without much HPC experience can use Veros to run small to intermediate-sized, idealized models through
NumPy, and seamlessly switch to Bohrium later on to run realistic, full-size setups while experiencing performance comparable
to traditional ocean models. And given that Bohrium is still undergoing heavy development, we expect that many of the current

limitations will be alleviated in future versions, causing Veros to perform even better than today.
3.2.2 Stream Function Solver

To illustrate the speedups that could be achieved for the stream function solver alone (Sect. 2.3), we conducted similar bench-
marks calling only the corresponding solvers in pyOM2 and Veros using pseudo-spherical coordinates, uniform grid spacings,
cyclic boundary conditions, and a solver tolerance of 10~12, for a total of 100 times with different, random right-hand-side
vectors.

The results show that Veros’ stream function solver easily beats pyOM2’s for most relevant problem sizes (Fig. 2), even
though the underlying BiCGstab solver scipy.sparse.linalg.bicgstab is not parallelized (apart from internal calls
to the multi-threaded OpenBLAS library for matrix-vector products). The credit for this speedup belongs entirely to pyAMG,
as the AMG preconditioner causes much faster convergence of the iterative solver.

When running on an even higher number (possibly hundreds) of CPU cores, pyOM2’s parallel conjugate gradient solver

can be expected to eventually outperform Veros’ serial AMG solver. However, thanks to the new, generalized structure of

12
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Figure 1. In terms of overall performance, Veros using Bohrium (Bh) is slower than pyOM by a factor of about 1.3 to 2.3 for large problems,
depending on the hardware architecture (I and II, cf. Table 1). Solid lines are line fits, suggesting a linear scaling with constant overheads for

all components.

the stream function routines (Sect. 2.3), the SciPy BiCGstab solver could easily be switched with a different, parallel library

implementation.

4 Application: Kelvin Wave Propagation

In the current literature we see a gap between theory and very idealized models on one hand, and primitive equation models
with realistic forcing and topography on the other hand. Here, we will apply Veros to an aspect of the Southern Ocean (SO)
hypothesis by Toggweiler and Samuels (1995).

They propose that a strengthening of SO winds leads to a strengthening of the Atlantic Meridional Overturning Circulation
(AMOC). Their main argument is based on geostrophy and mass conservation, and it states that mass pushed north by the

Atlantic Ocean Ekman layer has to be replaced by upwelled water from depths below the Drake Passage sill. This basic idea is
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Figure 2. Thanks to pyAMG’s AMG preconditioner, Veros’ stream function solver is between 2 (24 CPUs, II) and 11 (4 CPUs, I) times

faster than pyOM2’s parallel conjugate gradient solver for large problem sizes.

largely accepted, and much of the discussion in the literature is now quantitative, i.e., how much of the wind-driven Eulerian
transport in the SO is compensated by meso-scale eddy-driven transport of opposite sign (Munday et al., 2013). However,
Jochum and Eden (2015) show that in at least one general circulation model (GCM) the AMOC does not respond to changes in
SO winds. Thus, testing the Southern Ocean hypothesis requires us not only to test if ocean models represent mesoscale eddies
appropriately, but also if the propagation of SO anomalies into the northern hemisphere is simulated realistically.

The main propagation mechanism is planetary waves; changes to SO Ekman divergence and convergence set up buoyancy
anomalies that are radiated as Kelvin and Rossby waves and set up changes to the global abyssal circulation (McDermott,
1996). Because they are so important there is a large literature devoted to the fidelity of planetary waves in ocean models. For
example, Hsieh et al. (1983) and Huang et al. (2000) show that even coarse resolution ocean models can support meridionally
propagating waves similar to Kelvin waves, and Marshall and Johnson (2013) quantify how exactly numerical details will affect

wave propagation. We wish to bridge the gap between these idealized studies and GCMs by investigating the dependence of

14



10

15

20

25

30

Kelvin wave phase speed on resolution in Veros. While this is in principle a minor exercise suitable for undergraduate students,
the presence of internal variability and irregular coastlines makes this a major challenge (Getzlaff et al., 2005).

To remove many of these effects, we decided to replace the eastern boundary of the Atlantic by a straight, meridional
line. This enables a direct comparison with theory since one does not have to worry about the flow’s effective pathlength, or
artificial viscosity introduced by the staggered grid representation of curved coastlines. Veros allows even non-expert users to
make profound modifications to the default model setups, and simplifies this problem in several ways (the exact process of

modifying the coastline is outlined in the upcoming section):

— All post-processing tools from the scientific Python ecosystem that many users are already familiar with are readily
available in Veros setups. It is thus e.g. possible to use scipy.interpolate’s interpolation routines to interpolate

the initial condition to the model grid simply by importing them instead of having to re-invent the wheel.

— Veros setups (as inherited from PyOM2pyOM?2) allow the user to modify all internal arrays, giving users the freedom to

make invasive changes if necessary.

— Veros users do not have to care about an explicit domain decomposition or communication across processors, as all

parallelism is handled by Bohrium. All model variables look and feel like a single array.

Accordingly, we use this setup for 3 month BSc projects.

4.1 Modified Geometry with flexible Resolution

Modifying the geometry of a realistic geophysical model is no trivial task, especially when allowing for a flexible number
of grid elements. Any solution that converts cells from water to land or vice-versa has to infer reasonable values for initial
conditions and external forcing at these cells, since, e.g., atmospheric conditions tend to differ fundamentally between water
and land.

To automate this process, we created a downsampled version of the ETOPO1 global relief model (Amante and Eakins, 2009),
which we exported as a binary mask indicating either water or land. We then manually edited this mask using common image
processing software by removing lakes and inland seas, thickening Central America, and converting the eastern boundary of
the Atlantic to a straight meridional line, running from the southern tip of Africa to the Arctic (Fig. 3).

This binary mask is read by Veros during model setup, and interpolated to the chosen grid (number of grid cells in each
dimension are defined by the user; grid steps are chosen to minimize discretization error according to Vinokur (1983)). The
ocean bathymetry is read from the same downsampled version of ETOPO1, and cells are converted between water and land
according to the interpolated mask.

Since all cells that were converted from land to water lie in the North Atlantic, it is sufficient to modify initial conditions
and atmospheric forcing in this region only. Initial conditions are read from a reference file with 1° x 1° horizontal resolution,
and interpolated bilinearly to the modified grid. The bathymetry in the Atlantic is replaced by a constant depth of 4000m.
Optionally, a different constant depth and/or linear slope for some distance from each coast can be added to model a continental

shelf. All atmospheric forcing is replaced by its zonal mean value in the Atlantic basin.
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Figure 3. Idealized, binary geometry mask for the Kelvin wave study.

—40 =20 0 20
Barotropic Stream Function (Sv)

Figure 4. Long-term average barotropic stream function (BSF) of a 1° x 1° horizontal resolution setup as described in Sect.4.1. 1Sv =

105 m3s™*. Contours are drawn in steps of 4 Sv.

This leaves us with a modified setup that is smooth enough to be stably integrated, and that allows us to track Kelvin waves

in a more isolated environment. As a first sanity check, the resulting ocean circulation looks largely as expected (Fig. 4).
4.2 The Experiment

If coarse resolution ocean models can support Kelvin-wave-like features, the question of phase speed becomes paramount: A
wave that is too slow will be damped away too early and inhibit oceanic teleconnections, which may cause different observed
climate sensitivities in different climate models (Greatbatch and Lu, 2003). Hsieh et al. (1983) discuss in great detail how
choices in the numerical setup modify the phase speed of Kelvin waves: resolution, friction, discretization (Arakawa B or C
grid, Arakawa and Lamb, 1977) and boundary conditions all affect the phase speed. However, Marshall and Johnson (2013)
point out that for an adjustment timescale on the order of years or longer (relevant for Toggweiler and Samuels’ SO hypothesis),
the corresponding waves have the properties of Rossby waves, albeit with a phase speed of ¢ = L4/, where c is the Kelvin
wave phase speed, L, is the Rossby radius of deformation and d5; = (v/ 6)1/ 3 the Munk boundary layer width. Here we test

their analytical result, particularly whether the phase speed really depends only on friction but not resolution.

16



5

10

15

20

25

30

The global setup of Veros is used in two configurations: 2° (2DEG) and 1° zonal resolution. Both have 180 meridional
grid cells with a spacing of approximately 0.5° at the equator and 1.5° at the poles. The 1° setup is used with two different
viscosities: 5 x 10*m2s~! (same as 2DEG) and 5 x 103m?s~!, called 1DEG and 1DEGL, respectively. Each of these three
setups is initialized with data from Levitus (1994) and integrated for 60 years (these are our 3 control integrations). All setups

After 50 years, one new integration is branched off from each, with the maximum winds over the SO increased by 50%
(sine envelope between 27°S and 69 °S). The velocity fields are sampled as daily means, and by analyzing at 200m depth the
differences of the first 150 days to the first 150 days of year 51 of the control integrations, we arrive at an estimate of the speed
with which the information of the SO wind stress anomaly travels north along the eastern boundary of the Atlantic Ocean.

As a first step we confirm that the anomaly signal is well resolved along the equator. Indeed, for all three setups we find the
same phase speed of 2.7ms~! (Fig. 5a, only 1DEG is shown), slightly less than the 2.8 ms~" that is expected from theory and
observations (Chelton and coauthors, 1998). Along the African coast we find a similar speed in IDEGL, but slower in IDEG
and 2DEG (Fig. 5b-d). Using the approximate slope of the propagating signal’s contours as a metric for the average phase
speed between the equator and 40°N, we arrive at about 2.1ms~! for IDEGL, and 1.0ms ™! for 2DEG and 1DEG.

The Rossby radius of deformation L4 along the western coast of North Africa changes from approximately 100km at 5°N
to 40km at 30°N (Chelton and coauthors, 1998). The Munk boundary layer width 5, for our two different viscosities are
130km and 60km. The large range of L, along the coast makes it difficult to determine the exact theoretically expected phase
speed, but based on Marshall and Johnson (2013) one can expect that the anomalies generated by a SO wind perturbation travel
slower by a factor of less than 3 in 2DEG and 1DEG, and twice as fast than that in IDEGL. This is exactly what is found here.

This minor initial application demonstrates how Veros can be used to bridge the gap between theory and full ocean GCMs.
Future studies will investigate in more detail the interaction between the anomalies traveling along the coast and high latitude

stratification and topography.

5 Summary & Outlook

By translating pyOM2’s core routines from Fortran 90 to vectorized Python / NumPy code (Sect. 2.1 and Sect. 2.2), and adding
integration with the Bohrium framework (Sect. 2.4), we were able to build a Python ocean model (Veros) that is both consistent
with pyOM2 to a high degree (Sect.3.1), and does not perform significantly worse, even on highly parallel architectures
(Sect. 3.2). Additional modifications (Sect.2.3) include a powerful algebraic multigrid (AMG) Poisson solver, compressed
NetCDF4 output, a modular interface for diagnostics, self-documentation, and automated testing.

A simple experiment investigating planetary wave propagation in the Atlantic showed that boundary waves in GCMs travel
with phase speeds consistent with theoretical expectations.

While creating Veros did require a deep understanding of the workings of NumPy and Bohrium to avoid performance

bottlenecks and to write concise, idiomatic, vectorized code, the presented version of Veros took less than a year to develop by
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a single, full-time researcher. Nevertheless, Veros is still at an early stage of development. In future releases, we plan to address

the following issues:

More abstraction Most of Veros’ core routines are currently direct vectorized translations of pyOM?2’s Fortran code, which
manipulate array objects through basic arithmetic and provide little exposition of the underlying numerical concepts. In
order to create a truly approachable experience, it is crucial to deviate from this approach and introduce more abstraction
by grouping common patterns into higher-order operations (like transpositions between grid cell types or the calculation

of gradients).

Parallelized stream function solvers A parallel Poisson solver is a missing key ingredient to scale Veros efficiently to even
larger architectures. Solvers could either be provided through Bohrium, or by binding to another third-party library such
as PETSc (Balay et al., 1997), ViennaCL (Rupp et al., 2010), or CUSP (Dalton et al., 2014).

Distributed memory support High-resolution representations of the ocean (such as eddy-permitting or eddy-resolving mod-
els) are infeasible to be simulated on a single machine, since the required integration times may well take decades to
compute. In order for Veros to become a true all-purpose tool, it is crucial that work can be distributed across a whole
computing cluster (which could either consist of CPU or GPU nodes). Therefore, providing distributed memory support

either through Bohrium or another numerical backend is a top priority for ongoing development.

However, we think that Veros has proven that it is indeed possible to implement high-performance geophysical models

entirely in high-level programming languages.

Code availability. The entire Veros source code is available under a GPL license on GitHub (https://github.com/dionhaefner/veros). All
comparisons and benchmarks presented in this study are based on the Veros v0.1.0 release, which is available under the DOI 10.5281/zen-
0do.1133130. The model configuration used in Sect. 4 is included as a default configuration (“wave propagation”).

The Veros user manual is hosted on ReadTheDocs (https://veros.readthedocs.io). An archived version of the Veros v0.1.0 manual, along
with the user manual of pyOM?2 describing the numerics behind Veros, is found under the DOI 10.5281/zenodo.1174390.

Recent versions of pyOM?2 are available at https://wiki.cen.uni-hamburg.de/ifm/TO/pyOM2. A snapshot of the pyOM2 version Veros is

based on, and that is used in this study, can be found in the Veros repository.
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(b) IDEGL along Prime Meridian

(a) 1DEG in the Pacific
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Figure 5. The Kelvin wave phase speed in Veros approximately only depends on viscosity, not resolution, as predicted by Marshall and
along 0° longitude in the Atlantic at 200 m depth. The slopes of the blue dashed lines are used to estimate phase speeds. Note that the signal
coast. Thus, the buoyancy perturbation that eventually arrives in the North Atlantic has to be advected to the South American coast before it

arrives at different times at the African coast due to the location of the maximum wind field perturbation,

can travel north as a fast coastal wave.



