
Veros v0.1 — a Fast and Versatile Ocean Simulator in Pure Python
Dion Häfner1, René Løwe Jacobsen1, Carsten Eden2, Mads R.B. Kristensen1, Markus Jochum1,
Roman Nuterman1, and Brian Vinter1

1Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
2Institut für Meereskunde, Universität Hamburg, Hamburg, Germany

Correspondence: Dion Häfner (mail@dionhaefner.de)

Abstract. A general circulation ocean model is translated from Fortran to Python. It is described how its code structure

is optimized to exploit available Python utilities, remove simulation bottlenecks, and comply with modern best practices.

Furthermore, support for Bohrium is added, a framework that provides a just-in-time compiler for array operations, and that

supports parallel execution on both CPU and GPU targets.

For applications containing more than a million grid elements, such as a typical 1◦× 1◦ horizontal resolution global ocean5

model, Veros is approximately half as fast as the MPI-parallelized Fortran base code on 24 CPUs, and as fast as the Fortran

reference when running on a high-end GPU. By replacing the original conjugate gradient stream function solver with a solver

from the pyAMG Python package, this particular subroutine outperforms the corresponding Fortran version by up to 1 order

of magnitude.

The study is concluded with a simple application in which the North Atlantic wave response to a Southern Ocean wind per-10

turbation is investigated. It is found that even in a realistic setting the phase speeds of boundary waves matched the expectations

based on theory and idealized models.

Copyright statement. TEXT

1 Introduction

Numerical simulations have been used to further
:::::::
advance our understanding of the ocean circulation for more than 50 years15

now (e.g., Bryan, 2006), and in particular for regimes that are difficult to treat analytically, they have become irreplaceable.

However, numerical representations of the ocean have their own pitfalls, and it is paramount to build trust in the numerical

representation of each and every process that is thought to be relevant for the ocean circulation (e.g., Hsieh et al., 1983). The

last 20 years have seen a massive increase in computing resources available to oceanographers, in contrast to human resources,

which appear to be fixed. Arguably, this lead to a shift from process studies to analysis of climate model output (or from “Little20

Science” to “Big Science”, Price de Solla, 1963). This is not necessarily a bad development, it may simply be an indication that

the field has matured. However, there are still basic questions about ocean dynamics that yet remain unanswered (e.g., Marshall

1

and Johnson, 2013), and to tackle these questions, the scientific community requires flexible tools that are both approachable,

powerful, and easy to adapt. We therefore decided to build Veros (the versatile ocean simulator).

The ocean interior is mostly adiabatic and has a long memory, easily exceeding 1000 years (e.g., Gebbie and Huybers, 2006).

This requires long integration times for numerical models; experiments can well take several months in real time to complete.

Thus, ocean models are typically written to optimize the use of computing rather than human resources, using the low-level5

programming language Fortran . Fortran’ s core language
::::::::
languages

::::
such

::
as

:::::::
Fortran

::
or

::
C.

:::::
These

::::::::::
languages’

::::
core design, lack

of abstraction, and established coding patterns often make it a daunting challenge to, for example, keep track of indices or

global variables. Even for experienced scientists this is more than just a nuisance. As the model code becomes increasingly

complex, it violates
:::::::::
jeopardizes

:
a core principle of science: reproducibility. Especially inexperienced programmers cannot

ascertain beyond all doubt that the impact of a recently implemented physical component is caused by new physics or, simply,10

a bug.

High-level programming languages like Python, MATLAB, Scala, or Julia on the other hand are usually designed with the

explicit goal to improve code structure and thus readability. While this in itself cannot eliminate coding mistakes, a more

concise, better structured code makes it easier to spot and avoid bugs altogether. In the case of Python, additional abstraction,

a powerful standard library, and its immense popularity in the scientific community1 – which has in turn created a wide range15

of learning resources and a large third-party package ecosystem – lower the bar of entry for inexperienced programmers.

In fact, this is one of our main motivations behind developing Veros: In our experience, a substantial amount of the duration

of MSc or PhD projects is devoted to understanding, writing, and debugging legacy Fortran code. This leads to frustration and

anxieties, even on the lecturers’ side. With Veros, we anticipate that students can translate their physical insights rapidly into

numerical experiments, thereby maintaining the high level of enthusiasm with which they entered the field. At the same time,20

it allows more seasoned researchers to quickly spin up experiments that dramatically change the ocean dynamics, which would

be impractical or infeasible using traditional ocean models (for one such application see Sect. 4).

The price to pay for these advantages is often a significantly reduced integration speed due to less aggressive compiler

optimizations, additional overhead, and lack of direct memory access. Thus, while there are some modeling projects that

implement a Python front end (such as CliMT (Monteiro and Caballero, 2016), OOFε (Marta-Almeida et al., 2011), or PyOM25

(Eden, 2016)), all of those projects rely on a Fortran backend for performance reasons. However, in Veros, the performance

impact of using Python turns out to be much less severe than expected, as all expensive computations are deferred to a well-

performing numerical backend (NumPy or Bohrium, see Sect. 3.2 for performance comparisons), making Veros the (to our

knowledge) first global-scale ocean simulator in pure Python.

The next section describes the challenges overcome during the translation and resulting changes in the code structure. Sect. 330

presents model validation and benchmarks, and Sect. 4 evaluates the properties of coastally trapped waves in Veros.

1There are many attempts to rank programming languages by popularity, and Python is usually placed in the top 10 of such rankings; see e.g., IEEE

Spectrum (2017), Stack Overflow (2017), TIOBE Group (2017), or PYPL (2017).

2

2 Implementation

At its numerical core, the present version of Veros (v0.1) is a direct translation of pyOM2 (v2.1.0), a primitive equation

finite-difference ocean model with a special emphasis on energetic consistency (Eden and Olbers, 2014; Eden, 2016). PyOM2

consists of a backend written in Fortran 90 and frontends for both Fortran and Python (via f2py, Peterson, 2009). Most of the

core features of pyOM2 are available in Veros, too; they include:5

– A staggered, three-dimensional numerical grid (Arakawa C-grid, after Arakawa and Lamb (1977)), discretizing the

Primitive Equations in either Cartesian or pseudo-spherical coordinates (e.g., Olbers et al., 2012). This grid is staggered

in all dimensions, placing quantities on so-called T, U, V, W, and ζ cells.

– Free-slip boundary conditions for momentum, and no-normal-flow boundary conditions for tracers.

– Several different friction, advection, and diffusion schemes to choose from, such as harmonic / biharmonic lateral fric-10

tion, linear / quadratic bottom friction, explicit / implicit vertical mixing, central difference / Superbee flux limiting

advection schemes.

– Either the full 48-term TEOS equation of state (McDougall and Barker, 2011), or various linear and nonlinear model

equations from Vallis (2006).

– Isoneutral mixing of tracers following Griffies (1998).15

– Closures for mesoscale eddies (after Gent et al., 1995; Eden and Greatbatch, 2008), turbulence (Gaspar et al., 1990), and

internal wave breaking (IDEMIX, Olbers and Eden, 2013).

– Support for writing output in the widely used NetCDF4 binary format (Rew and Davis, 1990), and writing restart data

to pick up from a previous integration.

Veros, like pyOM2, aims to support a wide range of problem sizes and architectures. It is meant to be usable on anything be-20

tween a personal laptop and a computing cluster, which calls for a flexible design, and which makes a dynamical programming

language like Python a great fit for this task. Unlike pyOM2, which explicitly decomposes and distributes the model domain

across multiple processes via MPI (Message Passing Interface, e.g., Gropp et al., 1999), Veros is not parallelized directly.

Instead, all hardware-level optimizations are deferred to a numerical backend; currently either NumPy (Walt et al., 2011), or

Bohrium (Kristensen et al., 2013). While NumPy is commonly used, easy to install, and highly compatible, Bohrium provides25

a powerful runtime environment that handles high-performance array operations on parallel architectures.

The following section describes which procedures we used when translating pyOM2’s Fortran code to a first, naïve Python

implementation. Sect. 2.2 then outlines the necessary steps to obtain a well-performing and idiomatic, vectorized NumPy

implementation. Sect. 2.3 gives an overview of some additional features that we implemented in Veros, and Sect. 2.4 finally

gives an introduction to the internal workings of Bohrium.30

3

2.1 From Fortran to naïve
:::::
naive Python

Array operations implemented in Fortran can be translated to Python / NumPy with relative ease, as long as a couple of pitfalls

are avoided (such as 0-based indexing in Python vs. arbitrary indexing
:::::
index

::::::
ranges in Fortran). As an example, consider the

following Fortran code from pyOM2:

do j=js_pe,je_pe5

do i=is_pe-1,ie_pe

flux_east(i,j,:) = &

0.25*(u(i,j,:,tau)+u(i+1,j,:,tau)) &

*(utr(i+1,j,:)+utr(i,j,:))

enddo10

enddo

where is_pe, js_pe, ie_pe, je_pe denote the start and end indices of the current process. Translating this snippet

verbatim to Python, the resulting code looks very similar:

for j in range(js_pe,je_pe):

for i in range(is_pe-1,ie_pe):15

flux_east[i,j,:] = \

0.25*(u[i,j,:,tau]+u[i+1,j,:,tau]) \

*(utr[i+1,j,:]+utr[i,j,:])

In fact, we transformed large parts of the Fortran code base into valid Python by replacing all built-in Fortran constructs (such

as if-statements and do-loops) by the corresponding Python syntax. We automated much of the initial translation process20

through simple tools like regular expressions to pre-parse the Fortran code base – e.g., the regular expression

do (\w)=((\w|[\+\-])+,(\w|[\+\-])+)

would find all Fortran do loops, while the expression

for \1 in range(\2):

replaces them with the equivalent for loops in Python2. This semi-automatic preprocessing allowed for a first working Python25

implementation of the pyOM2 code base after only a few weeks of coding that could be used as a basis to iterate towards a

more performant (and idiomatic) implementation.

2.2 Vectorization

After obtaining a first working translation of the pyOM2 code, we refactored and optimized all routines for performance and

readability, while ensuring consistency through continuously monitoring results. This mostly involves using vector operations30

2E.g. through the GNU command line tool sed, which is readily available on most Linux distributions.

4

instead of explicit Fortran-style loops over indices (that typically carry a substantial overhead in high-level programming

languages). Since most of the operations in a finite-difference discretization consist of basic array arithmetic, a large fraction

of the core routines were trivial to vectorize, such as the above example, which becomes:

flux_east[1:-2,2:-2,:] = \

0.25*(u[1:-2,2:-2,:,tau]+u[2:-1,2:-2,:,tau]) \5

*(utr[1:-2,2:-2,:]+utr[1:-2,2:-2,:])

Note that we replaced all explicit indices (i, j) by basic slices (index ranges). The first and last two elements of the hor-

izontal dimensions are ghost cells, which makes it possible to shift arrays by up to two cells in each dimension without

introducing additional padding. Since all parallelism is handled in the backend, there is no need to retain the special indices

is_pe, js_pe, ie_pe, je_pe, and we replaced them by hard-coded values (2, 2, −2, and −2, respectively).10

Apart from those trivially vectorizable loops, there were several cases that required special treatment:

– Boolean masks are either cast to floating point arrays and multiplied to the to-be-masked array, or applied using NumPy’s

where function. We decided to avoid “fancy indexing” due to poor parallel performance.

– Operations where e.g., a three-dimensional array is to be multiplied with a two-dimensional array slice-by-slice can be

written concisely thanks to NumPy’s powerful array broadcasting functionalities (e.g., by using newaxis as an index).15

– We vectorized loops representing (cumulative) sums or products using NumPy’s sum (cumsum) and prod (cumprod)

functions, respectively.

– Oftentimes, recursive loops can be reformulated analytically into a form that can be vectorized. A simple example is

xtn+1 = 2xun−xtn (1)

which arises when calculating the positions xt of the T-grid cells, and that is equivalent to20

xtn+1 = (−1)n
(
xt0 +

n∑
i=0

(−1)i2xui

)
(2)

which can easily be expressed through a cumulative sum operation (cumsum).

On top of this, there were two loops in the entire pyOM2 codebase that were only partially vectorizable using NumPy’s

current toolset3 (such that an explicit loop over one axis remains). Since they did not have a measurable impact on overall

performance, they were left in this semi-vectorized form – however, it is certainly possible that those loops (or similar future25

code) could become a performance bottleneck on certain architectures. In this case, an extension system could be added to

Veros, where such instructions are implemented using a low-level API and compiled upon installing Veros. Conveniently,

Bohrium offers zero-copy interoperability for this use-case via Cython (Behnel et al., 2011) on CPUs, and PyOpenCL and

PyCUDA (Klöckner et al., 2012) on GPUs.
3One that arises when calculating mixing lengths as in Gaspar et al. (1990) that involves updating values dynamically based on the value of the previous

cell, and one inside the overturning diagnostic where a vectorization would require to temporarily store 2NxNyN2
z elements in memory (where Nx,Ny ,Nz

denote the number of grid elements in x,y,z direction, respectively).

5

2.3 Further Modifications

Since there is an active community of researchers developing Python packages, many sophisticated tools are just one import

statement away, and the dynamic nature of Python allows for some elegant implementations that would be infeasible or outright

impossible in Fortran 90. Moving the entire code base to Python thus allowed us to implement a number of modifications that

comply with modern best practices without too much effort, some of which are described in the upcoming sections.5

2.3.1 Dynamic Backend Handling

Through a simple function decorator, a pointer to the backend currently used for computations is automatically injected as a

variable np into each numerical routine. This allows for using the same code for every backend, provided their interface is

compatible to NumPy’s. Currently, the only included backends are NumPy and Bohrium, but in principle, one could build their

own NumPy-compatible backend, e.g., by replacing some critical functions with a better performing implementation.10

Since Veros is largely agnostic of the backend that is being used for vector operations, Veros code is especially easy to

write. Everything concerning e.g., the parallelization of array operations is handled by the backend, so developers can focus on

writing clear, readable code.

2.3.2 Generic Stream Function Solvers

The two-dimensional barotropic stream function Ψ of the vertically integrated flow is calculated in every iteration of the solver15

to account for effects of the surface pressure. It can be obtained by solving a two-dimensional Poisson equation of the form

∆Ψ =

h(x,y)∫
0

ζ(x,y,z) dz (3)

with coordinates x,y,z, total water depth h, vorticity ζ, and Laplacian ∆. The discrete version of this Laplacian in pseudo-

spherical coordinates as solved by pyOM2 and Veros reads (Eden, 2014):

∆Ψi,j =
Ψi+1,j −Ψi,j

hvi+1,j cos2(yuj)∆xti+1∆xui
20

− Ψi,j −Ψi−1,j

hvi,j cos2(yuj)∆xti∆x
u
i

+
cos(ytj+1)

cos(yuj)

Ψi,j+1−Ψi,j

hui,j+1∆ytj+1∆yuj

+
cos(ytj)

cos(yuj)

Ψi,j −Ψi,j−1

hui,j∆y
t
j∆y

u
j

(4)

with

– the discrete stream function Ψi,j at the ζ-cell with indices (i, j),25

– latitude x and longitude y, each defined at T-cells (xti,j , yti,j) and U / V-cells (xui,j , yui,j)

6

– grid spacings of T (∆xti,j , ∆yti,j) and U / V cells (∆xui,j , ∆yui,j) in each horizontal direction.

By re-ordering all discrete quantities xi,j to a one-dimensional object xi+Nj (with i ∈ [1,N], j ∈ [1,M], and N,M ∈ N)

and writing them as column vectors x, (3) results in the equation

AΨ = Z (5)

where Z represents the right-hand side of (3), and A is a banded matrix with nonzero values on five or seven diagonals4 that5

reduces to the classical discrete Poisson problem for equidistant Cartesian coordinates, but is generally non-symmetric.

In pyOM2, the system (5) is solved through a conjugate gradient solver with Jacobi preconditioner in a matrix-free formu-

lation taken from the Modular Ocean Model (MOM, Pacanowski et al., 1991). Since both the matrix-free formulation and the

fixed preconditioner lead to a quite specific solver routine, our first step was to transform this into a generic problem by in-

corporating all boundary conditions into the actual Poisson matrix, and to use scipy.sparse from the SciPy library (Jones10

et al., 2001–) to store the resulting banded matrix. At this stage, any sufficiently powerful sparse linear algebra library can

be used to solve the system. This is especially important for Veros as it is targeting a wide range of architectures – a small,

idealized model running with NumPy does not require a sophisticated algorithm (and can stick with e.g., the readily available

solvers provided by scipy.sparse.linalg); intermediate problem sizes might require a strong, sequential algorithm;

and for large setups, highly parallel solvers from a high-performance library are usually most adequate (such as PETSc (Balay15

et al., 1997) on CPUs, or CUSP (Dalton et al., 2014) on GPUs).

In fact, substantial speedups could be achieved by using an AMG (Algebraic Multi-Grid, Vaněk et al., 1996) preconditioner

provided by the Python package pyAMG (Bell et al., 2013). As shown in the performance comparisons in Sect. 3.2.2, our AMG-

based stream function solver is up to 20 times faster than pyOM2’s Fortran equivalent. Even though the AMG algorithms are

mathematically highly sophisticated, pyAMG is simple to install (e.g., via the PyPI package manager, pip), and implementing20

the preconditioner into Veros required merely a few lines of code, making this process a prime example for the huge benefits

one can expect from developing in a programming language as popular in the scientific community as Python. And thanks to

the modular structure of the new Poisson solver routines, it will be easy to switch (possibly dynamically) to even more powerful

libraries as it becomes necessary.

2.3.3 Multi-threaded I/O with Compression25

In geophysical models, writing model output or restart data to disk often comes with its own challenges. When output is written

frequently, significant amounts of CPU time may be wasted waiting for disk operations to finish. Additionally, data sets tend

to grow massive in terms of file size, usually ranging from Gigabytes to Petabytes. To address this, we took the following

measures in Veros:

– Since I/O operations are usually blocking the current thread from continuing while barely consuming any CPU resources,30

all disk output is written in a separate thread (using Python’s threading module). This enables computations to

4Two additional diagonals are introduced when using cyclic boundary conditions to enforce ΨN,j = Ψ0,j ∀j ∈ [0,M]

7

continue without waiting for flushes to disk to finish.
::
To

::::::
prevent

::::
race

::::::::::
conditions,

::
all

::::::
output

::::
data

:
is
::::::
copied

::::::::::
in-memory

::
to

::
the

::::::
output

::::::
thread

:::::
before

::::::::::
continuing.

– By default, Veros makes use of NetCDF4 and HDF5’s built-in lossless compression abilities. Simply by passing the

desired compression level as a flag to the respective library, the resulting file sizes were reduced by about two thirds,

with little computational overhead. Since the zlib (NetCDF4) and gzip (HDF5) compression is built into the respective5

format specification, most standard post-processing tools are able to read and decompress data on the fly, without any

explicit user interaction.

2.3.4 Backend-specific Tridiagonal Matrix Solvers

Many dissipation schemes contain implicit contribution terms, which usually requires the solution of some linear system

Ax = b with a tridiagonal matrix A for every horizontal grid point (e.g., Gaspar et al., 1990; Olbers and Eden, 2013).10

In pyOM2, those systems are solved using a naïve Thomas algorithm (simplified Gaussian elimination for tridiagonal sys-

tems). This algorithm cannot be fully vectorized with NumPy’s toolkit, and explicit iteration turned out to be a major bottleneck

for simulations. One possible solution was to re-write all tridiagonal systems for each horizontal grid cell into one large, padded

tridiagonal system that could be solved in a single pass. This proved to be feasible for NumPy, since it exposes bindings to

LAPACK’s dgtsv solver (Anderson et al., 1999), but performance was not sufficient when using Bohrium. We therefore made15

use of Bohrium’s interoperability functionalities, which allowed us to implement the Thomas algorithm directly in the OpenCL

language for high-performance computing on GPUs via PyOpenCL (Klöckner et al., 2012); on CPUs, Bohrium provides a par-

allelized C-implementation of the Thomas algorithm as an “extension method”.

When encountering such a tridiagonal system, Veros automatically chooses the best available algorithm for the current

runtime system (backend and hardware target) without manual user interaction. This way, overall performance increased sub-20

stantially, to the levels reported in Sect. 3.2.

2.3.5 Modular Diagnostic Interface

All model diagnostics, such as snapshot output, vertical (overturning) stream functions, energy flux tracking, and temporal

mean output, are implemented as subclasses of a diagnostics base class, and instances of these subclasses are added to a Veros

instance dynamically. This makes it possible to add, remove, and modify diagnostics on the fly:25

def set_diagnostics(self):

diag = veros.diagnostics.Average()

diag.name = "annual-mean"

diag.output_frequency = 360 * 86400

self.diagnostics["annual-mean"] = diag30

This code creates a new averaging diagnostic that outputs annual means, and can be repeated, e.g., for also writing monthly

means.

8

Besides enforcing a common interface, creating all diagnostics as subclass of a “virtual” base class also has the benefit that

common operations like data output are defined as methods of said base class, providing a complete and easy-to-use toolkit to

implement additional diagnostics.

2.3.6 Metadata Handling

About 2000 of the approximately 11000 SLOC (source lines of code) in pyOM2 were dedicated to specifying variable metadata5

(often multiple times) for each output variable, leaving little flexibility to add additional variables, and risking inconsistencies.

In Veros, all variable metadata is contained in a single, central dictionary; subroutines may then look up metadata from this dic-

tionary on demand (e.g., when allocating arrays, or preparing output for a diagnostic). Additionally, a “cheat sheet” containing

a description of all model variables is compiled automatically and added to the online user manual.

This approach maximizes maintainability through eliminating inconsistencies, and allows users to add custom variables that10

are treated no differently from the ones already built-in.

2.3.7 Quality Assurance

To ensure consistency with pyOM2, we developed a testing suite that runs automatically for each commit to the master branch

of the Veros repository. The testing suite is comprised of both unit tests and system tests:

Unit tests are implemented for each numerical core routine; they call a single routine with random data and make sure that15

all output arrays match between Veros and pyOM2 within a certain absolute tolerance, chosen by the author of the test

(usually 10−8 or 10−7).

System tests integrate entire model setups for a small number of time steps and compare the results to pyOM2.

These automated tests allow developers to detect breaking changes early and ensure consistency for all numerical routines

and core features apart from deliberately breaking changes. To achieve strict compliance with pyOM2 during testing, we20

introduced a compatibility mode to Veros that forces all subroutines to comply with their pyOM2 counterpart, even if the

original implementation contains errors that we corrected when porting them to Veros.

Using this compatibility mode, the results of most of Veros’ core routines match those of PyOM2
:::::::
pyOM2 within a global,

absolute tolerance of 10−8, while in a few cases an accuracy of just 10−7 is achieved (presumably due to a higher sensitivity

to round-off errors of certain products). The longer-running system tests achieve global accuracies between 10−6 and 10−4 for25

all model variables. All arrays are normalized to unit scale by dividing by their global maximum before comparing.

2.4 About Bohrium

Since Veros relies heavily on the capabilities of Bohrium for large problems on parallel architectures, this section gives a short

introduction to the ideas behind
::::::::
underlying

::::::::
concepts and implementation of Bohrium.

Bohrium is a software framework for efficiently mapping array-operations from a range of frontend languages (currently30

C, C++, and Python) to various hardware architectures, including multi-core CPUs and GPGPUs (Kristensen et al., 2013).

9

The components of Bohrium are outlined in Larsen et al. (2016): All array operations called by the frontend programming

languages are passed to the respective bridge, which translates all instructions into Bohrium bytecode. After applying several

bytecode optimizations, it is compiled into numerical kernels which are then executed a the backend. Parallelization is handled

by so-called vector engines, currently using OpenMP (Dagum and Menon, 1998) on CPUs, and either OpenCL (Stone et al.,

2010) or CUDA (Nickolls et al., 2008) on GPUs.5

Since Bohrium uses lazy evaluation, successive operations on the same array views can be optimized substantially. On one

hand, operations can be reordered or simplified analytically to reduce total operation counts. On the other hand, a sophisticated

fusion algorithm is applied, which “is a program transformation that combines (fuses) multiple array operations into a kernel

of operations. When it is applicable, the technique can drastically improve cache utilization through temporal data locality and

enables other program transformations, such as streaming and array contraction (Gao et al., 1993)” (Larsen et al., 2016). In10

fact, this fusion algorithm alone may increase performance significantly in many applications (Kristensen et al., 2016).

Bohrium’s Python bridge is designed to be a drop-in replacement for NumPy, supplying a multi-array class bohrium.ndarray

that derives from NumPy’s numpy.ndarray. All array meta-data is handled by the original NumPy, and only actual compu-

tations are passed to Bohrium, e.g., when calling one of NumPy’s “ufuncs” (universal functions). This way, most of NumPy’s

functionality is readily available in Bohrium5, which allows developers to use Bohrium as a high-performance numerical back-15

end while writing hardware-agnostic code (and leaving all optimizations to Bohrium). These properties make Bohrium an ideal

fit for Veros.

3 Verification & Performance

3.1 Consistency Check

Since all Veros core routines are direct translations of their pyOM2 counterparts, an obvious consistency check is to compare20

the output of both models. On a small scale, this is already done in the Veros testing suite, which ensures consistency for

most numerical routines in isolation, and for a few time steps of the model as a whole (see Sect. 2.3.7). However, real-world

simulations often run for anything between thousands and millions of iterations, possibly allowing numerical roundoff or minor

coding errors to accumulate to significant deviations.

In order to check whether this is a concern in our case, we integrated a global model setup with coarse resolution (approx.25

4◦× 4◦, 90× 40× 15 grid elements) for a total of 50 model years (18000 iterations) using Veros with NumPy, Veros with

Bohrium, and pyOM2. Neither the long-term average, zonally averaged temperature nor long-term average barotropic stream

function show a physically significant deviation between either of the simulations. Maximum relative errors amount to about

10−4 (Veros, between NumPy and Bohrium) and 10−6 (between Veros with NumPy and pyOM2 when using the compatibility

mode).30

5Except NumPy functions implemented in C, which have to be re-implemented inside Bohrium to be available.

10

Desktop PC (I) Cluster Node (II)

CPU Intel® Core™ i7 6700 @

3.40GHz (4 physical / 8 logical

cores)

2 × Intel® Xeon® E5-2650 v4

@ 2.20GHz (24 physical / 48

logical cores)

RAM 16GB DDR4 512GB DDR4

Storage M.2 SSD @ 500MBs−1

read/write performance

LUSTRE filesystem @

128MBs−1 read/write per-

formance

GPU — Nvidia Tesla P100 (16GB

HBM2 memory)

Software

stack

GNU compiler toolchain 7.2.0,

Python 2.7, NumPy 1.13.3,

Bohrium 8.9.0

GNU compiler toolchain 5.4.0,

CUDA 9.0, Python 2.7, NumPy

1.13.3, Bohrium 8.9.0

Table 1. Specifications of the two benchmark architectures.

3.2 Benchmarks

As high-performance computing resources are still expensive and slow model execution is detrimental to a researcher’s work-

flow, performance is of course a critical measure for any geophysical model (and usually the biggest counter-argument against

using high-level programming languages in modelling). It is thus essential to try and measure the performance of Veros through

benchmarking, and since we are in the lucky position to have a well-performing reference implementation available, an obvious5

test is to compare Veros’ throughput to pyOM2’s.

To this end, we developed a benchmarking suite that is part of the Veros code repository, so that benchmarks can easily be

executed and verified on various architectures. These benchmarks consist of either complete model runs or single subroutines

that are executed with varying problem sizes for each of the available numerical backends (NumPy, Bohrium, and pyOM2’s

Fortran library with and without MPI support)6.10

::::
Since

:::
we

:::
do

:::
not

::::
(yet)

::::
reach

::::::
scales

:::::
where

:::::::
memory

:::::::::::
consumption,

:::::
rather

::::
than

:::::::
compute

::::::
power,

::::::::
becomes

:
a
:::::::
limiting

:::::
factor,

:::
we

:::
did

:::
not

::::
study

::::::
Veros’

:::::::
memory

::::::::
demands

::::::::
compared

::
to

:::::
those

::
of

:::::::
pyOM2

::
in

:::::
detail.

::::::::
However,

:::::::::
especially

:::::
when

::::
using

:::::::::
Bohrium,

:::::::
memory

:::::::
demands

:::::
seem

::
to

::
be

::::::
similar

:::::::
(within

::::
10%

::
of

::::
each

::::::
other),

::
as

:::::::::
Bohrium’s

:::
JIT

::::::::
compiler

::
is

::::
often

::::
able

::
to
::::::::
eliminate

:::::::::
temporary

:::::
array

:::::::::
allocations.

:::
All

:::::
tested

::::::
model

::::::::::::
configurations

:::::
could

::::
thus

::::::::::
comfortably

:::
run

::::::
within

:::
the

::::
same

:::::::
memory

:::::::
bounds

::
for

:::
all

::::::::
backends.

:

The benchmarks were executed on two different architectures: a typical Desktop PC, and a cluster node, marked as ar-15

chitecture I and II, respectively (Table 1). Note that, since Bohrium does not yet support distributed memory architectures,

comparisons have to stay confined to a single computational node. Bohrium v0.8.9 was compiled from source with GCC and

BUILD_TYPE=Release flags, and pyOM2 with gfortran using -O3 optimization flags and OpenMPI support.

6Since pyOM2 offers Python bindings through f2py for all of its core routines, it can actually be used as a Veros backend. This way, we can ensure that all

components solve the exact same problem.

11

3.2.1 Overall Performance

In order to benchmark the overall performance of Veros against that of pyOM2, an idealized model setup consisting of an

enclosed basin representing the North Atlantic with a zonal channel in the south is integrated for a fixed number of 100

iterations, but with varying problem sizes, for each numerical backend.

The results (Fig. 1) show that:5

– For large problems with a number of total elements exceeding 107 (which is about the number of elements in a global

setup with 1◦× 1◦ horizontal resolution), the Bohrium backend is at its peak efficiency and about 2.3 times slower than

parallel pyOM2, regardless of the number of CPU cores. Running on architecture II’s high-end GPU, Veros’ throughput

is comparable to that of pyOM2 running on 24 CPUs.

– Veros’ NumPy backend is about 3 times slower than pyOM2 running serially, largely independent of the problem size.10

– For small problems containing . 2× 104 elements, parallelism is inefficient, so NumPy performs relatively well.

– Using Bohrium carries a high overhead, and it only surpasses NumPy in terms of speed for problems larger than about

105 elements.

– Veros is least efficient for intermediate problem sizes of about 105 elements (up to 50 times slower than parallel pyOM2

on 24 CPUs).15

We believe that these performance metrics show that Veros is indeed usable as the versatile ocean simulator it is trying to

be. Even students without much HPC experience can use Veros to run small to intermediate-sized, idealized models through

NumPy, and seamlessly switch to Bohrium later on to run realistic, full-size setups while experiencing performance comparable

to traditional ocean models. And given that Bohrium is still undergoing heavy development, we expect that many of the current

limitations will be alleviated in future versions, causing Veros to perform even better than today.20

3.2.2 Stream Function Solver

To illustrate the speedups that could be achieved for the stream function solver alone (Sect. 2.3), we conducted similar bench-

marks calling only the corresponding solvers in pyOM2 and Veros using pseudo-spherical coordinates, uniform grid spacings,

cyclic boundary conditions, and a solver tolerance of 10−12, for a total of 100 times with different, random right-hand-side

vectors.25

The results show that Veros’ stream function solver easily beats pyOM2’s for most relevant problem sizes (Fig. 2), even

though the underlying BiCGstab solver scipy.sparse.linalg.bicgstab is not parallelized (apart from internal calls

to the multi-threaded OpenBLAS library for matrix-vector products). The credit for this speedup belongs entirely to pyAMG,

as the AMG preconditioner causes much faster convergence of the iterative solver.

When running on an even higher number (possibly hundreds) of CPU cores, pyOM2’s parallel conjugate gradient solver30

can be expected to eventually outperform Veros’ serial AMG solver. However, thanks to the new, generalized structure of

12

10−3

10−2

10−1

100

101

102

A
ve

ra
ge

tim
e

pe
ri

te
ra

tio
n

(s
)

12.3
19.5

7.1

65.0I

103 104 105 106 107

Problem size (total # of elements)

10−3

10−2

10−1

100

101

102
A

ve
ra

ge
tim

e
pe

ri
te

ra
tio

n
(s

)

5.1
2.8

28.5

2.2

90.1

line fit

II

Veros
NumPy
Bh GPU

Bh CPU
pyOM2

sequential MPI
pyOM2

sequential MPI

Full Model Benchmark

Figure 1. In terms of overall performance, Veros using Bohrium (Bh) is slower than pyOM by a factor of about 1.3 to 2.3 for large problems,

depending on the hardware architecture (I and II, cf. Table 1). Solid lines are line fits, suggesting a linear scaling with constant overheads for

all components.

the stream function routines (Sect. 2.3), the SciPy BiCGstab solver could easily be switched with a different, parallel library

implementation.

4 Application: Kelvin Wave Propagation

In the current literature we see a gap between theory and very idealized models on one hand, and primitive equation models

with realistic forcing and topography on the other hand. Here, we will apply Veros to an aspect of the Southern Ocean (SO)5

hypothesis by Toggweiler and Samuels (1995).

They propose that a strengthening of SO winds leads to a strengthening of the Atlantic Meridional Overturning Circulation

(AMOC). Their main argument is based on geostrophy and mass conservation, and it states that mass pushed north by the

Atlantic Ocean Ekman layer has to be replaced by upwelled water from depths below the Drake Passage sill. This basic idea is

13

10−3

10−2

10−1

100

101

A
ve

ra
ge

tim
e

pe
ri

te
ra

tio
n

(s
)

0.16

4.88
1.81

I

103 104 105 106 107

Problem size (total # of elements)

10−3

10−2

10−1

100

101
A

ve
ra

ge
tim

e
pe

ri
te

ra
tio

n
(s

)

0.27

6.11

0.54

II

Veros
NumPy

pyOM2
sequential MPI

pyOM2
sequential MPI

Stream Function Solver Benchmark

Figure 2. Thanks to pyAMG’s AMG preconditioner, Veros’ stream function solver is between 2 (24 CPUs, II) and 11 (4 CPUs, I) times

faster than pyOM2’s parallel conjugate gradient solver for large problem sizes.

largely accepted, and much of the discussion in the literature is now quantitative, i.e., how much of the wind-driven Eulerian

transport in the SO is compensated by meso-scale eddy-driven transport of opposite sign (Munday et al., 2013). However,

Jochum and Eden (2015) show that in at least one general circulation model (GCM) the AMOC does not respond to changes in

SO winds. Thus, testing the Southern Ocean hypothesis requires us not only to test if ocean models represent mesoscale eddies

appropriately, but also if the propagation of SO anomalies into the northern hemisphere is simulated realistically.5

The main propagation mechanism is planetary waves; changes to SO Ekman divergence and convergence set up buoyancy

anomalies that are radiated as Kelvin and Rossby waves and set up changes to the global abyssal circulation (McDermott,

1996). Because they are so important there is a large literature devoted to the fidelity of planetary waves in ocean models. For

example, Hsieh et al. (1983) and Huang et al. (2000) show that even coarse resolution ocean models can support meridionally

propagating waves similar to Kelvin waves, and Marshall and Johnson (2013) quantify how exactly numerical details will affect10

wave propagation. We wish to bridge the gap between these idealized studies and GCMs by investigating the dependence of

14

Kelvin wave phase speed on resolution in Veros. While this is in principle a minor exercise suitable for undergraduate students,

the presence of internal variability and irregular coastlines makes this a major challenge (Getzlaff et al., 2005).

To remove many of these effects, we decided to replace the eastern boundary of the Atlantic by a straight, meridional

line. This enables a direct comparison with theory since one does not have to worry about the flow’s effective pathlength, or

artificial viscosity introduced by the staggered grid representation of curved coastlines. Veros allows even non-expert users to5

make profound modifications to the default model setups, and simplifies this problem in several ways (the exact process of

modifying the coastline is outlined in the upcoming section):

– All post-processing tools from the scientific Python ecosystem that many users are already familiar with are readily

available in Veros setups. It is thus e.g. possible to use scipy.interpolate’s interpolation routines to interpolate

the initial condition to the model grid simply by importing them instead of having to re-invent the wheel.10

– Veros setups (as inherited from PyOM2
::::::
pyOM2) allow the user to modify all internal arrays, giving users the freedom to

make invasive changes if necessary.

– Veros users do not have to care about an explicit domain decomposition or communication across processors, as all

parallelism is handled by Bohrium. All model variables look and feel like a single array.

Accordingly, we use this setup for 3 month BSc projects.15

4.1 Modified Geometry with flexible Resolution

Modifying the geometry of a realistic geophysical model is no trivial task, especially when allowing for a flexible number

of grid elements. Any solution that converts cells from water to land or vice-versa has to infer reasonable values for initial

conditions and external forcing at these cells, since, e.g., atmospheric conditions tend to differ fundamentally between water

and land.20

To automate this process, we created a downsampled version of the ETOPO1 global relief model (Amante and Eakins, 2009),

which we exported as a binary mask indicating either water or land. We then manually edited this mask using common image

processing software by removing lakes and inland seas, thickening Central America, and converting the eastern boundary of

the Atlantic to a straight meridional line, running from the southern tip of Africa to the Arctic (Fig. 3).

This binary mask is read by Veros during model setup, and interpolated to the chosen grid (number of grid cells in each25

dimension are defined by the user; grid steps are chosen to minimize discretization error according to Vinokur (1983)). The

ocean bathymetry is read from the same downsampled version of ETOPO1, and cells are converted between water and land

according to the interpolated mask.

Since all cells that were converted from land to water lie in the North Atlantic, it is sufficient to modify initial conditions

and atmospheric forcing in this region only. Initial conditions are read from a reference file with 1◦× 1◦ horizontal resolution,30

and interpolated bilinearly to the modified grid. The bathymetry in the Atlantic is replaced by a constant depth of 4000m.

Optionally, a different constant depth and/or linear slope for some distance from each coast can be added to model a continental

shelf. All atmospheric forcing is replaced by its zonal mean value in the Atlantic basin.

15

Figure 3. Idealized, binary geometry mask for the Kelvin wave study.

−80 −60 −40 −20 0 20 40 60 80

Barotropic Stream Function (Sv)

Figure 4. Long-term average barotropic stream function (BSF) of a 1◦ × 1◦ horizontal resolution setup as described in Sect. 4.1. 1Sv =

106m3s−1. Contours are drawn in steps of 4Sv.

This leaves us with a modified setup that is smooth enough to be stably integrated, and that allows us to track Kelvin waves

in a more isolated environment. As a first sanity check, the resulting ocean circulation looks largely as expected (Fig. 4).

4.2 The Experiment

If coarse resolution ocean models can support Kelvin-wave-like features, the question of phase speed becomes paramount: A

wave that is too slow will be damped away too early and inhibit oceanic teleconnections, which may cause different observed5

climate sensitivities in different climate models (Greatbatch and Lu, 2003). Hsieh et al. (1983) discuss in great detail how

choices in the numerical setup modify the phase speed of Kelvin waves: resolution, friction, discretization (Arakawa B or C

grid, Arakawa and Lamb, 1977) and boundary conditions all affect the phase speed. However, Marshall and Johnson (2013)

point out that for an adjustment timescale on the order of years or longer (relevant for Toggweiler and Samuels’ SO hypothesis),

the corresponding waves have the properties of Rossby waves, albeit with a phase speed of c= Ld/δM , where c is the Kelvin10

wave phase speed, Ld is the Rossby radius of deformation and δM = (ν/β)1/3 the Munk boundary layer width. Here we test

their analytical result, particularly whether the phase speed really depends only on friction but not resolution.

16

The global setup of Veros is used in two configurations: 2◦ (2DEG) and 1◦ zonal resolution. Both have 180 meridional

grid cells with a spacing of approximately 0.5◦ at the equator and 1.5◦ at the poles. The 1◦ setup is used with two different

viscosities: 5× 104 m2s−1 (same as 2DEG) and 5× 103 m2s−1, called 1DEG and 1DEGL, respectively. Each of these three

setups is initialized with data from Levitus (1994) and integrated for 60 years (these are our 3 control integrations).
::
All

::::::
setups

:::
use

::::
daily

::::::::::
atmospheric

:::::::
forcings

:::::
from

::::::::::::::::
Uppala et al. (2005)

:
,
::::::::::
interpolated

::
as

::::::::
described

::
in

::::::::
Sect. 4.1.

:
5

After 50 years, one new integration is branched off from each, with the maximum winds over the SO increased by 50%

(sine envelope between 27◦S and 69◦S). The velocity fields are sampled as daily means, and by analyzing at 200m depth the

differences of the first 150 days to the first 150 days of year 51 of the control integrations, we arrive at an estimate of the speed

with which the information of the SO wind stress anomaly travels north along the eastern boundary of the Atlantic Ocean.

As a first step we confirm that the anomaly signal is well resolved along the equator. Indeed, for all three setups we find the10

same phase speed of 2.7ms−1 (Fig. 5a, only 1DEG is shown), slightly less than the 2.8ms−1 that is expected from theory and

observations (Chelton and coauthors, 1998). Along the African coast we find a similar speed in 1DEGL, but slower in 1DEG

and 2DEG (Fig. 5b-d). Using the approximate slope of the propagating signal’s contours as a metric for the average phase

speed between the equator and 40◦N, we arrive at about 2.1ms−1 for 1DEGL, and 1.0ms−1 for 2DEG and 1DEG.

The Rossby radius of deformation Ld along the western coast of North Africa changes from approximately 100km at 5◦N15

to 40km at 30◦N (Chelton and coauthors, 1998). The Munk boundary layer width δM for our two different viscosities are

130km and 60km. The large range of Ld along the coast makes it difficult to determine the exact theoretically expected phase

speed, but based on Marshall and Johnson (2013) one can expect that the anomalies generated by a SO wind perturbation travel

slower by a factor of less than 3 in 2DEG and 1DEG, and twice as fast than that in 1DEGL. This is exactly what is found here.

This minor initial application demonstrates how Veros can be used to bridge the gap between theory and full ocean GCMs.20

Future studies will investigate in more detail the interaction between the anomalies traveling along the coast and high latitude

stratification and topography.

5 Summary & Outlook

By translating pyOM2’s core routines from Fortran 90 to vectorized Python / NumPy code (Sect. 2.1 and Sect. 2.2), and adding

integration with the Bohrium framework (Sect. 2.4), we were able to build a Python ocean model (Veros) that is both consistent25

with pyOM2 to a high degree (Sect. 3.1), and does not perform significantly worse, even on highly parallel architectures

(Sect. 3.2). Additional modifications (Sect. 2.3) include a powerful algebraic multigrid (AMG) Poisson solver, compressed

NetCDF4 output, a modular interface for diagnostics, self-documentation, and automated testing.

A simple experiment investigating planetary wave propagation in the Atlantic showed that boundary waves in GCMs travel

with phase speeds consistent with theoretical expectations.30

While creating Veros did require a deep understanding of the workings of NumPy and Bohrium to avoid performance

bottlenecks and to write concise, idiomatic, vectorized code, the presented version of Veros took less than a year to develop by

17

a single, full-time researcher. Nevertheless, Veros is still at an early stage of development. In future releases, we plan to address

the following issues:

More abstraction Most of Veros’ core routines are currently direct vectorized translations of pyOM2’s Fortran code, which

manipulate array objects through basic arithmetic and provide little exposition of the underlying numerical concepts. In

order to create a truly approachable experience, it is crucial to deviate from this approach and introduce more abstraction5

by grouping common patterns into higher-order operations (like transpositions between grid cell types or the calculation

of gradients).

Parallelized stream function solvers A parallel Poisson solver is a missing key ingredient to scale Veros efficiently to even

larger architectures. Solvers could either be provided through Bohrium, or by binding to another third-party library such

as PETSc (Balay et al., 1997), ViennaCL (Rupp et al., 2010), or CUSP (Dalton et al., 2014).10

Distributed memory support High-resolution representations of the ocean (such as eddy-permitting or eddy-resolving mod-

els) are infeasible to be simulated on a single machine, since the required integration times may well take decades to

compute. In order for Veros to become a true all-purpose tool, it is crucial that work can be distributed across a whole

computing cluster (which could either consist of CPU or GPU nodes). Therefore, providing distributed memory support

either through Bohrium or another numerical backend is a top priority for ongoing development.15

However, we think that Veros has proven that it is indeed possible to implement high-performance geophysical models

entirely in high-level programming languages.

Code availability. The entire Veros source code is available under a GPL license on GitHub (https://github.com/dionhaefner/veros). All

comparisons and benchmarks presented in this study are based on the Veros v0.1.0 release, which is available under the DOI 10.5281/zen-

odo.1133130. The model configuration used in Sect. 4 is included as a default configuration (“wave propagation”).20

The Veros user manual is hosted on ReadTheDocs (https://veros.readthedocs.io). An archived version of the Veros v0.1.0 manual, along

with the user manual of pyOM2 describing the numerics behind Veros, is found under the DOI 10.5281/zenodo.1174390.

Recent versions of pyOM2 are available at https://wiki.cen.uni-hamburg.de/ifm/TO/pyOM2. A snapshot of the pyOM2 version Veros is

based on, and that is used in this study, can be found in the Veros repository.

Competing interests. The authors declare that they have no conflict of interest.25

Acknowledgements. DH was supported through PREFACE (EU FP7/2007-2013), under grant agreement no. 603521; all others were sup-

ported through the Niels Bohr Institute. Computational resources were provided by DC3, the Danish Center for Climate Computing. We

kindly thank everyone involved in the development of Veros, and the scientific Python community for providing the necessary tools.

18

https://github.com/dionhaefner/veros
https://doi.org/10.5281/zenodo.1133130
https://doi.org/10.5281/zenodo.1133130
https://doi.org/10.5281/zenodo.1133130
https://veros.readthedocs.io
https://doi.org/10.5281/zenodo.1174390
https://wiki.cen.uni-hamburg.de/ifm/TO/pyOM2

References

Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, US Department of Com-

merce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National

Geophysical Data Center, Marine Geology and Geophysics Division Colorado, 2009.

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,5

et al.: LAPACK Users’ guide, SIAM, 1999.

Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods in

computational physics, 17, 173–265, 1977.

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient Management of Parallelism in Object Oriented Numerical Software

Libraries, in: Modern Software Tools in Scientific Computing, edited by Arge, E., Bruaset, A. M., and Langtangen, H. P., pp. 163–202,10

Birkhäuser Press, 1997.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., and Smith, K.: Cython: The Best of Both Worlds, Computing in Science

Engineering, 13, 31 –39, https://doi.org/10.1109/MCSE.2010.118, 2011.

Bell, W. N., Olson, L. N., and Schroder, J.: PyAMG: Algebraic Multigrid Solvers in Python, http://www.pyamg.org, version 2.1, 2013.

Bryan, K.: Modeling Ocean Circulation: 1960–1990, the Weather Bureau, and Princeton, in: Physical oceanography: Developments since15

1950, edited by Jochum, M. and Murtugudde, R., pp. 250–, Springer Science & Business Media, 2006.

Chelton, D. B. and coauthors: Geographical variability of the first baroclinc Rossby radius of deformation., J. Phys. Oceanogr., 28, 433–460,

1998.

Dagum, L. and Menon, R.: OpenMP: an industry standard API for shared-memory programming, IEEE computational science and engineer-

ing, 5, 46–55, 1998.20

Dalton, S., Bell, N., Olson, L., and Garland, M.: Cusp: Generic Parallel Algorithms for Sparse Matrix and Graph Computations, http:

//cusplibrary.github.io/, version 0.5.0, 2014.

Eden, C.: pyOM2.0 Documentation, 2014.

Eden, C.: Closing the energy cycle in an ocean model, Ocean Modelling, 101, 30 – 42,

https://doi.org/http://dx.doi.org/10.1016/j.ocemod.2016.02.005, http://www.sciencedirect.com/science/article/pii/S146350031600024X,25

2016.

Eden, C. and Greatbatch, R. J.: Towards a mesoscale eddy closure, Ocean Modelling, 20, 223–239, 2008.

Eden, C. and Olbers, D.: An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves,

Journal of Physical Oceanography, 44, 2093–2106, 2014.

Gao, G., Olsen, R., Sarkar, V., and Thekkath, R.: Collective loop fusion for array contraction, Languages and Compilers for Parallel Com-30

puting, pp. 281–295, 1993.

Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at

station Papa and Long-Term Upper Ocean Study site, Journal of Geophysical Research: Oceans, 95, 16 179–16 193, 1990.

Gebbie, J. and Huybers, P.: Meridional circulation during the Last Glacial Maximum explored through a combination of South Atlantic

d18O observations and a geostrophic inverse model., Geochem. Geophys. Geosyst., 7, 394–407, 2006.35

Gent, P. R., Willebrand, J., McDougall, T. J., and McWilliams, J. C.: Parameterizing eddy-induced tracer transports in ocean circulation

models, Journal of Physical Oceanography, 25, 463–474, 1995.

19

https://doi.org/10.1109/MCSE.2010.118
http://www.pyamg.org
http://cusplibrary.github.io/
http://cusplibrary.github.io/
http://cusplibrary.github.io/
https://doi.org/http://dx.doi.org/10.1016/j.ocemod.2016.02.005
http://www.sciencedirect.com/science/article/pii/S146350031600024X

Getzlaff, J., Boening, C., Eden, C., and Biastoch, A.: Signal propagation related to the North Atlantic overturning, Geophys. Res. Lett., 32,

L09 602, doi:10.1029/2004GL021 002, 2005.

Greatbatch, R. J. and Lu, J.: Reconciling the Stommel box model with the Stommel-Arons model: A possible role for Southern Hemisphere

wind forcing?, J. Phys. Oceanogr., 31, 1618–1632, 2003.

Griffies, S. M.: The Gent–McWilliams skew flux, Journal of Physical Oceanography, 28, 831–841, 1998.5

Gropp, W., Lusk, E., and Skjellum, A.: Using MPI: portable parallel programming with the message-passing interface, vol. 1, MIT press,

1999.

Hsieh, W. W., Davey, M. K., and Wajsowicz, R. C.: The free Kelvin wave in finite-difference numerical models., J. Phys. Oceanogr., 13,

1383–1397, 1983.

Huang, R. X., Cane, M. A., Naik, N., and Goodman, P.: Global adjustment of the thermocline in the response to deepwater formation.,10

Geophys. Res. Lett., 27, 759–762, 2000.

IEEE Spectrum: The 2017 Top Programming Languages, http://spectrum.ieee.org/computing/software/

the-2017-top-programming-languages, retrieved 2017-07-25, 2017.

Jochum, E. and Eden, C.: The connection between Southern Ocean winds, the Atlantic Meridional Overturning Circulation and Pacific

upwelling., J. Climate, 28, 9250–9256, 2015.15

Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python, http://www.scipy.org/, 2001–.

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih, A.: PyCUDA and PyOpenCL: A scripting-based approach to GPU

run-time code generation, Parallel Computing, 38, 157–174, 2012.

Kristensen, M. R., Lund, S. A., Blum, T., Skovhede, K., and Vinter, B.: Bohrium: unmodified NumPy code on CPU, GPU, and cluster,

Python for High Performance and Scientific Computing (PyHPC 2013), 2013.20

Kristensen, M. R., Lund, S. A., Blum, T., and Avery, J.: Fusion of parallel array operations, in: Parallel Architecture and Compilation

Techniques (PACT), 2016 International Conference on, pp. 71–85, IEEE, 2016.

Larsen, M. O., Skovhede, K., Kristensen, M. R., and Vinter, B.: Current Status and Directions for the Bohrium Runtime System, Compilers

for Parallel Computing, 2016, 2016.

Levitus, S.: Climatological Atlas of the World Ocean, NOAA Prof. Paper 13, 1994.25

Marshall, D. P. and Johnson, H. L.: Propagation of meridional circulation anomalies along western and eastern boundaries., J. Phys.

Oceanogr., 43, 2699–2717, 2013.

Marta-Almeida, M., Ruiz-Villarreal, M., Otero, P., Cobas, M., Peliz, A., Nolasco, R., Cirano, M., and Pereira, J.: OOFε: a python engine for

automating regional and coastal ocean forecasts, Environmental modelling & software, 26, 680–682, 2011.

McDermott, D. A.: The regulation of northern overturning by southern hemisphere winds., J. Phys. Oceanogr., 26, 1234–1254, 1996.30

McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox, SCOR/IAPSO

WG, 127, 1–28, 2011.

Monteiro, J. M. and Caballero, R.: The climate modelling toolkit, in: Proceedings of the 15th Python in Science Conference, pp. 69–74,

2016.

Munday, D., Johnson, H., and Marshall, D.: Eddy Saturation of Equilibrated Circumpolar Curremts., J. Phys. Oceanogr., 43, 507–523, 2013.35

Nickolls, J., Buck, I., Garland, M., and Skadron, K.: Scalable parallel programming with CUDA, Queue, 6, 40–53, 2008.

Olbers, D. and Eden, C.: A global model for the diapycnal diffusivity induced by internal gravity waves, Journal of Physical Oceanography,

43, 1759–1779, 2013.

20

http://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://www.scipy.org/

Olbers, D., Willebrand, J., and Eden, C.: Ocean dynamics, Springer Science & Business Media, 2012.

Pacanowski, R. C., Dixon, K., and Rosati, A.: The GFDL modular ocean model users guide, GFDL Ocean Group Tech. Rep, 2, 142, 1991.

Peterson, P.: F2PY: a tool for connecting Fortran and Python programs, International Journal of Computational Science and Engineering, 4,

296–305, 2009.

Price de Solla, D.: Little science, big science, pp. 119–, New York. Columbia Uni, 1963.5

PYPL: PYPL PopularitY of Programming Language index, http://pypl.github.io, retrieved 2017-07-25, 2017.

Rew, R. and Davis, G.: NetCDF: an interface for scientific data access, IEEE computer graphics and applications, 10, 76–82, 1990.

Rupp, K., Rudolf, F., and Weinbub, J.: ViennaCL — a high level linear algebra library for GPUs and multi-core CPUs, in: Intl. Workshop on

GPUs and Scientific Applications, pp. 51–56, 2010.

Stack Overflow: Stack Overflow Developer Survey, https://insights.stackoverflow.com/survey/2017, retrieved 2017-07-25, 2017.10

Stone, J. E., Gohara, D., and Shi, G.: OpenCL: A parallel programming standard for heterogeneous computing systems, Computing in science

& engineering, 12, 66–73, 2010.

TIOBE Group: TIOBE Programming Community Index, https://www.tiobe.com/tiobe-index, retrieved 2017-07-25, 2017.

Toggweiler, J. and Samuels, B.: Effect of the Drake Passage on the global thermohaline circulation, Deep-Sea Res., 42, 477–500, 1995.

Uppala, S. M., Kållberg, P., Simmons, A., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J., Haseler, J., Hernandez, A., Kelly, G., et al.:15

The ERA-40 re-analysis, Quarterly Journal of the royal meteorological society, 131, 2961–3012, 2005.

Vallis, G. K.: Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation, Cambridge University Press, 2006.

Vaněk, P., Mandel, J., and Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Com-

puting, 56, 179–196, 1996.

Vinokur, M.: On one-dimensional stretching functions for finite-difference calculations, Journal of Computational Physics, 50, 215–234,20

1983.

Walt, S. v. d., Colbert, S. C., and Varoquaux, G.: The NumPy array: a structure for efficient numerical computation, Computing in Science

& Engineering, 13, 22–30, 2011.

21

http://pypl.github.io
https://insights.stackoverflow.com/survey/2017
https://www.tiobe.com/tiobe-index

−0.100 0 0.100

Velocity (cm/s)

140oE 175oE 150oW 115oW 80oW

0

10

20

30

40

50

60

70

80

90

100

T
im

e
(d

ay
s)

(a) 1DEG in the Pacific

-0
.0

50

-0.040

-0
.0

30
-0

.020
-0

.010

-0
.0

05

-0
.0

05

-0
.0

05
0.005

30oS 13oS 0o 13oN 32oN 54oN

50

60

70

80

90

100

110

120

130

140

150

T
im

e
(d

ay
s)

(b) 1DEGL along Prime Meridian

-0.040
-0.030

-0.020

-0.010

-0
.0

10

-0.005

-0.005

-0.005
-0.005

0.005

0.
00

5

0.005

0.005

0.005

0.
01

0

0.
02

0

0.020

0.030

0.
03

0
0.

04
0

30oS 13oS 0o 13oN 32oN 54oN

50

60

70

80

90

100

110

120

130

140

150

T
im

e
(d

ay
s)

(c) 2DEG along Prime Meridian

-0
.0

20

-0.010
-0

.005

-0.005

0.005

0.
00

5

0.
01

0

0.
01

0

0.
02

0

0.
02

00.
03

0
0.

04
0

0.
05

0

30oS 13oS 0o 13oN 32oN 54oN

50

60

70

80

90

100

110

120

130

140

150

T
im

e
(d

ay
s)

(d) 1DEG along Prime Meridian

-0
.0

20

-0
.0

10
-0

.0
0
5

-0.005

0.005

0.
00

5

0.
01

0 0.010

0.
02

0 0.
02

0

0.
03

0
0.

04
0

0.
05

0

Figure 5. The Kelvin wave phase speed in Veros approximately only depends on viscosity, not resolution, as predicted by Marshall and

Johnson (2013). Shown is (a) zonal velocity in 1DEG at the Equator, and (b–d) meridional velocity in 1DEGL, 2DEG, 1DEG, respectively,

along 0◦ longitude in the Atlantic at 200m depth. The slopes of the blue dashed lines are used to estimate phase speeds. Note that the signal

arrives at different times at the African coast due to the location of the maximum wind field perturbation, which is not at the South American

coast. Thus, the buoyancy perturbation that eventually arrives in the North Atlantic has to be advected to the South American coast before it

can travel north as a fast coastal wave.

22

