
Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2018-3-AC2, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interactive comment on “Veros v0.1 – a Fast and
Versatile Ocean Simulator in Pure Python” by Dion
Häfner et al.

Dion Häfner et al.

mail@dionhaefner.de

Received and published: 1 July 2018

Dear referee,

thank you for your thoughtful review and the recommendation to accept our paper. We
address the issues you raised point-by-point below. You will also find a latexdiff of
the revised document as a supplement.

Kind regards,

Dion Häfner
on behalf of the authors

C1

1 General Comments

-Introduction,line 6: ...using the low level programming language fortran ...
I think it should be mentioned that fortran is only one of the programming
languages used in the ocean model community, not THE language. There
are plenty of models that are also written in C or C++.

Re-worded these sentences to be a bit more general.

-Introduction, line 8-10: ...violates a core principle of science: reproducibility
... I don’t see how complexity violates reproducibility. Its the job of the
programmer and the development community to do implementation step by
by step and that new implemented features are carefully tested, but this
inherits any kind of programming effort independent of the used language.

Complexity per se indeed does not automatically violate reproducibility. However, we
live in a world where resources are finite, and especially so in academia. A more
complex model code that is poorly abstracted does lead to a decrease in “testability”,
and since people’s time is precious, this particular piece of code will be, on average,
less well tested.

Changed the wording of this sentence (“violate”→ “jeopardize”).

-Introduction, line 11-12: ...designed with the explicit goal to improve code
structure and readability ... Any code in any language can be structured
and commented that “anybody” can read and understand it, but only when
the responsible programmer cares about. The difference in python to all
other languages I know is, that the structure of the code (line intents, tabs,
spaces ... ) is a necessary part of the syntax of python, which forces the
programmer to structure its code to a certain extend.

C2



Our understanding of structure in a program goes far beyond whitespace. Python (such
as many other high-level languages) actively advocates the usage of modularity, clear
scoping rules, and other modern software engineering best practices. Furthermore,
the community-wide coding standard PEP8[1] demands a consistent style of all Python
projects, lowering the bar of entry for new collaborators.

Please also consider the following quote from our response to the first review comment:

“While it is in principle possible to write clear Fortran code with meaningful abstractions
that may be just as readable as a high-level implementation, the reality is often differ-
ent. Popular ocean models such as MOM [4] or POP2 [5] feature subroutines that are
hundreds to thousands of lines long, and both models rely on more obscure Fortran
features such as COMMON blocks, which makes it hard to keep track of variable scopes
for inexperienced programmers. This is not necessarily due to flaws in Fortran’s core
design, but we do consider the established idiomatic style of a community to be tightly
bound to the language used.”

-Introduction, line 16-17: ... a substantial amount of ... projects is devoted
to understanding, writing, and debugging legacy Fortran code... Under-
standing writing and debugging is part of any kind of model programming
effort, irrespective of the used language, that is a burden one always has to
deal with. I think the big advantage of the high level programming language
python is, that its first unless like MATLAB fully open source, so there are
no nasty licensing issues to address for any package and second that the
running of the code and the visualization of any kind of model variable can
be done theoretically together. This would make it much easier, especially
for beginners, to understand what is going on in the model and speed up
any debugging work-flow considerably. Low level programming languages
only allow limited output to the screen/log-file or need own complicated out-
put routines to write out more complex variables which are visualized with

C3

something afterwards which makes it often time and resources consuming
to find the origin of bugs.

The emphasis of this sentence is not on understanding, writing, and debugging, but on
substantial amount of the duration and legacy Fortran code. The debugging workflow
in a Python environment is very different from that in a Fortran project. Python code
can be pulled apart dynamically, run interactively in a Jupyter notebook, and (as you
correctly note) tightly integrated with visualization tools. On top of this, Python is one of
the most popular programming languages in the world, which means it is much easier
to get help. All of these factors contribute to a significantly more pleasant experience
for everyone who is not a Fortran expert.

On a side note, there is a multitude of stronger reasons why one would choose Python
over MATLAB than it being free software (some of which are outlined in Sect. 2.3). In
my personal opinion, a project like Veros in MATLAB would be pointless, since most of
Python’s advantages don’t apply.

- 2.1 From Fortran to naive python, line 28: ...arbitrary indexing in Fortran ...
I’m not sure what the author means here with the term “arbitrary indexing”.
Also indexing in Fortran is anything else than arbitrary.

This refers to the fact that the index range of an array can be chosen by the programmer
in Fortran [1], while Python arrays always start at 0. Slightly reworded this remark to
make that clearer.

- 2.3.3 Multi-threaded I/O with Compression, line 27: ... ranging from Giga-
bytes to Petabytes... I haven’t met yet any model application where single
output files in the size of Petabyte where written. Did the author meant
Terabyte ?

C4



This sentence refers to “data sets” by which we mean the entire output of, say, a model
run. In long-running high-resolution models, this easily reaches the Petabyte scale
(e.g. the experiment outlined in [2]).

- 2.3.3 Multi-threaded I/O with Compression, line 29-30: Since writing out-
put becomes more and more to a critical bottleneck especially, for large
model configurations, it would be nice if the author could describe a bit
more in detail how writing the output is organized in VEROS especially with
respect to the separated threads. How is pre- vented that the data are over-
written when the model runs further, while one thread is writing out ?, Are
the output data duplicated for writing the output?, Does it affect the RAM
demand of the model? ...

Good point. All data is copied in-memory to the output thread before continuing. This
indeed increases memory consumption temporarily, which is why this feature can be
disabled with a flag. In practice, we have not experienced issues with excessive mem-
ory usage.

Added a sentence to Sect. 2.3.3.

-2.3.5 Modular Diagnostic Interface: How does VEROS structure the out-
put, does it follow the CMIP protocol, one file for one variable or it combine
several variables into a file?

Currently, we loosely follow the CF conventions (http://cfconventions.org/) in
our netCDF output files. So far, most of the output format is inherited from pyOM2, but
we plan to be strictly compliant with CF in the future. For all default diagnostics, we
use one file per diagnostic (e.g., all snapshot variables are written to one file, and all
temporal average variables to another). But we consider this a detail that might change
soon, so we don’t want to get into too much detail in this paper.

C5

-4.1. Modified Geometry with flexible Resolution: The author should men-
tion what he used as forcing to obtain these results

Indeed. Added a sentence to 4.2.

It would be nice if the author could also make some statements about the
memory (RAM) demand between VEROS and pyOM2, when running the
same configuration. Are they the same?, Are there differences in the size
of the model configuration that VEROS can handle compared to pyOM2...

Added a paragraph on memory consumption to Sect. 3.2.

2 Technical Comments

- page1, line15: ...to further advance our ...

Replaced “further” by “advance” for clarity.

- page3, line26 (same page8, line9): 2.1 From Fortran to naïve Python

Replaced the somewhat archaic spelling “naïve” with the more modern “naive”.

- page9, line24: ...and the implementation of

Re-worded.

C6



- page16, line21: ...(Chelton and coauthors et al. ,1998)

- page16, line25: ...(Chelton and coauthors et al. ,1998)

Bibliography and reference styles are as supplied by Copernicus, which we have no
control over.

- page19, line 34: ... Last Glacial Meaximum ...

Corrected.

- page 21,line 4: ...PopularitYy...

We follow the official spelling of PYPL here, which is indeed “PopularitY”.

3 Other Changes

Consistent spelling of pyOM2 with lower-case “p”.

4 References

[1] https://www.python.org/dev/peps/pep-0008

[1] https://docs.oracle.com/cd/E19957-01/805-4940/z400091044d0/index.html

[2] Poulsen, Mads B., Markus Jochum, and Roman Nuterman. "Parameterized and
resolved Southern Ocean eddy compensation." Ocean Modelling 124 (2018): 1-15.

C7

Please also note the supplement to this comment:
https://www.geosci-model-dev-discuss.net/gmd-2018-3/gmd-2018-3-AC2-
supplement.pdf

Interactive comment on Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-3,
2018.

C8


