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Abstract. 

Along with the higher demand of bias-corrected data for climate impact studies, the number of available data sets has largely

increased in the recent years. For instance, the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) constitutes a

framework for consistently projecting the impacts of climate change across affected sectors and spatial scales. These data are

very attractive for any impact application since they offer worldwide bias-corrected data based on Global Climate Models

(GCMs).  Complementary,  the  CORDEX initiative  has  incorporated  experiments  based  on  regionally-downscaled  bias-

corrected data by means of debiasing and quantile mapping (QM) methods. In light of this situation, it is challenging to distil

the most accurate and useful  information for  climate services,  but  at  the same time it  creates  a  perfect  framework for

intercomparison and sensitivity analyses.

In the present study, the trend-preserving ISIMIP method and empirical QM are applied to climate model simulations that

were carried out at different spatial resolutions (CMIP5 GCM and EURO-CORDEX Regional Climate Models (RCMs), at

approximately 150km, 50km and 12km horizontal resolution, respectively) in order to assess the role of downscaling and

bias correction in a multi-variate framework. The analysis is carried out for the wet bulb globe temperature (WBGT), a heat

stress index that is commonly used in the context of working people and labour productivity. WBGT for shaded conditions

depends on air temperature and dew point temperature, which in this work are individually bias-corrected prior to the index

calculation. Our results show that the added value of RCMs with respect to the driving GCM is limited after bias correction.

The two bias correction methods are able to adjust the central part of the WBGT distribution, but some added value of QM is

found in WBGT percentiles and in the intervariable relationships. The evaluation in present climate of such multivariate

indices should be performed with caution since biases in the individual variables might compensate, thus leading to better

performance for the wrong reason. Climate change projections of WBGT reveal a larger increase of summer mean heat

stress for the GCM than for the RCMs, related to the well-known reduced summer warming of the EURO-CORDEX RCMs.

These differences are lowered after QM, since this bias correction method modifies the change signals and brings the results
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for  GCM and RCMs closer  to each other.  We also highlight the need of large ensembles  of  simulations to assess  the

feasibility of the derived projections.

1 Introduction

In  the  last  years  the  amount  of  available  climate  projection  data  has  largely  increased  thanks  to  the  development  of

intercomparison projects (Coupled Model Intercomparison Projects CMIP, Taylor, et al., 2011; Inter-Sectoral Impact Model

Intercomparison Project ISIMIP, Warszawski, et al., 2014) and other initiatives (CORDEX, Giorgi, et al., 2009; Jones, et al.,

2011; CORDEX-Adjust).  Due to this,  there have been many efforts towards the distillation of climate data into usable

climate information (Hewitson, et al.,  2014; Fernández, et al., 2018). This is largely hampered by the large envelope of

uncertainty,  which  grows  in  the  subsequent  steps  in  the  production  of  climate  information,  the  so-called  “uncertainty

cascade” (Wilby & Dessai, 2010). In this work we assess the role of downscaling and bias correction as key elements of the

development of climate information. For this purpose, we intercompare climate change projections of heat stress in Europe

coming from different data sources, at different spatial resolution and corrected with two different bias correction methods in

order to identify the major sources of uncertainty in terms of present and future climate. 

Global Climate Models (GCMs) are able to reproduce the main features of the climate system and are commonly used to

examine changes in climate on a global scale (Taylor, et al., 2011). Despite the recent improvements, systematic biases

remain and the model resolution is still too coarse to adequately describe mesoscale processes (Giorgi & Mearns, 1991).

Regional Climate Models (RCMs) are frequently used to bridge the gap between the GCM and the regional-to-local scales

(Giorgi, 2006; Feser, et al., 2011). They solve the governing equations of the climate system in a limited spatial domain

using initial and boundary conditions from GCMs (reanalysis for the model-evaluation experiments). Despite the increased

horizontal  resolution, RCMs, similar to GCMs, include physical  parameterizations for subgrid processes which occur at

spatial  scales  smaller  than  the  model  grid  spacing  (microphysics,  convection,  radiation,  etc.).  RCMs  add  valuable

information with respect to their driving GCM due to more detailed spatial patterns and the better representation of local

processes,  e.g. high precipitation frequencies (see e.g. Maraun, et al.,  2010; Warrach-Sagi, et al.,  2013). However,  both

GCMs and RCMs are prone to systematic biases and some sort of bias adjustment or correction is typically needed before

they  are  used  in  impact  modelling  (Christensen,  et  al.,  2008;  Hagemann,  et  al.,  2011).  Bias  correction  (BC) methods

typically adjust some features of the model distribution (e.g. the mean or percentiles) towards the observed counterparts,

partly removing systematic errors in the model output. However, the added value of bias-corrected RCM simulations with

respect to the bias-corrected GCM counterparts remains unclear. The same question applies for the difference between bias-

corrected high resolution RCM simulations (at approximately 12km) and the coarser counterparts (at approximately 50km).

For  the  latter,  Casanueva,  et  al.,  2016  showed  that  the  added  value  (in  terms  of  mean,  percentiles  and  precipitation

frequency) is not statistically significant after applying simple (scaling) bias correction methods. 
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Many BC methods with different characteristics have been described in the literature (Maraun, et al., 2010; Piani, et al.,

2010; Gutiérrez, et al., 2018): empirical or parametric methods, variable-specific (e.g. assuming a certain distribution) or

non-specific  methods,  multi-variate  or  univariate  methods,  seamless  or  for  specific  time  horizons  (e.g.  correction  of

ensemble spread in monthly/seasonal forecasts). All of them consist of a training phase (in which the correction function is

calibrated)  and an application phase under different conditions. Note that the correction functions (calibrated in present

climate) are assumed to be invariant on time (stationarity assumption). Moreover, in a climate change context, the way the

correction is applied in future climate might affect the climate change signal. 

A specific bias correction method was developed in the framework of the ISIMIP initiative (Warszawski, et al., 2014). This

project attempted to offer a consistent framework for cross-sectoral, cross-scale modelling of the impacts of climate change

in order to ease the application of climate model data and meet user-specific needs. The ISIMIP method (Hempel, et al.,

2013;  ISIMIP2b,  Frieler,  et  al.,  2017)  was  applied  to  several  GCMs from the  CMIP5 (5th  Phase  of  Coupled  Model

Intercomparison Project; Taylor, et al., 2011). The ready-to-use, bias-corrected data have been used to produce impact model

simulations for different sectors such as agriculture, biomes, forests, fisheries permafrost, etc. as well as to derive climate

impact indices, including heat stress (Kjellstrom, et al., 2018).

Among other BC methods, empirical  quantile mapping stands out as one of the most widely used methods. Despite its

limitations and shortcomings (Maraun, et al., 2017; Lanzante, et al., 2018), it is one of the best performing bias correction

and statistical downscaling methods in evaluation experiments (Gutiérrez, et al., 2018; Hertig, et al., 2018). One reason for

this might be that it is often favored by the evaluation metrics -commonly based on moments of the probability density

function- considered in the intercomparison experiments. Quantile mapping is, by construction, able to correct for intensity-

dependent biases (i.e. biases that change throughout the distribution, Gobiet et al. 2015). As a consequence, it can modify the

raw model climate change signal, which might be debatable (Gobiet, et al., 2015; Casanueva, et al., 2018; Ivanov, et al.,

2018). In contrast, the main objective of the ISIMIP correction is to preserve the trend of the raw data in the calibration

period.

In the present work, we consider CMIP5 and EURO-CORDEX (European branch of CORDEX) simulations, the later at the

two available  spatial  resolutions (approximately  12 km and 50 km),  and  the  ISIMIP correction  and  empirical  quantile

mapping as bias correction methods:

- To assess the added value of a more complex (in terms of the number of parameters calibrated) bias correction method

(empirical quantile mapping) with respect to the ISIMIP correction, 

- To assess the added value of RCMs compared to their driving GCM after bias correction, and

- To assess the impact of downscaling and bias correction in the climate change signal.

The added value is examined by evaluating several statistics under present climate conditions and exploring the feasibility of

climate change projections. All analyses are applied in the context of climate change projections of heat stress in Europe.

Heat stress depends mainly on temperature and humidity (low wind speed and high solar radiation also contribute to heat

stress but are not considered in this work). Whereas the empirical quantile mapping is a univariate bias correction method
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(typically with the same core implementation for all variables when it is applied in a multi-variate context), the ISIMIP

correction includes dependencies between some variables (e.g. mean temperature is needed to correct maximum/minimum

temperatures) in order to preserve the physical consistency among them. Hence, the ability of the methods to reproduce

multi-variate structures is implicitly investigated.

2 Data and Methods

2.1 Heat stress index

Under very hot and humid conditions, the ability of the human body to regulate the core temperature and dissipate heat via

sweat evaporation is reduced, provoking heat stress (Koppe, et al., 2004; Parsons, 2014). Other meteorological variables

such as strong radiation or low wind speed can exacerbate heat stress. Such conditions directly affect human well-being and

can develop into heat-related illnesses such as fatigue, muscle cramps and heat stroke. In the context of working people,

several studies revealed the negative impact of heat stress on workers’ health (Pogačar, et al., 2018) and labour productivity

(Kjellstrom, et al., 2009; Ioannou, et al., 2017). International organizations such as the International Standards Organization

(ISO) and the US National Institute for Occupational  Safety and Health (NIOSH) have developed guidelines to protect

working people against heat stress (ISO, 1989; ISO, 2017; NIOSH, 2016). The recommendations comprise work-rest cycles

and water intake under specific heat conditions. A combination of technical, regulatory and behavioural measures is needed

to adapt workers to increasing temperatures at an individual, sectoral and governmental level (Vivid Economics, 2017). In

the context of global warming, the development and dissemination of heat-health planning and warning systems is now

among the priorities of the World Meteorological Organization (WMO) and the World Health Organization (WHO; WMO,

2015), as well as the International Labour Organization (UNDP/ILO 2016) and the International Organization for Migration

(IOM, 2016). Within this framework, the Horizon 2020 HEAT-SHIELD project (www.heat-shield.eu) aims to address the

effects  of  climate change on European  working population within an inter-sectoral  framework  (Nybo,  et  al.,  2017).  In

particular, one of the specific objectives of the project is to generate climate change projections of heat stress (Casanueva, et

al., 2019). 

There are many indices based on meteorological variables which have been often used to assess occupational heat stress

conditions in the literature (de Freitas & Grigorieva, 2015; Coccolo, et al., 2016). The wet bulb globe temperature (WBGT)

has  been  chosen  in  the  HEAT-SHIELD project  as  primary  heat  stress  index  since  it  can  be  computed  from standard

meteorological variables available in both the observations and climate models and it can be interpreted by occupational

scientists and physicians by means of  the corresponding international  (ISO) and national  (e.g.  NIOSH  2016)  standards

regulations, and adjusted according to the workers’ clothing. 

In this study we focus on the WBGT in the shade (Bernard & Pourmoghani, 1999; Lemke & Kjellstrom, 2012), which

assumes that there are no strong radiation sources (the globe temperature equals the air temperature) and wind speed of 1m/s,

which corresponds to the movement of arms or legs during work. Bearing this in mind, the input variables for the calculation

4

100

105

110

115

120

125

130



of the WBGT in the shade are air temperature and dew point temperature. The latter accounts for the humidity conditions

and can be obtained from daily mean temperature and relative humidity (or specific humidity and air pressure) in models and

observational data sets. In order to account for the highest daily heat stress, we used daily maximum temperature and daily

mean dew point temperature (unlike relative humidity, usually it only slightly varies along the day) to approximate the daily

maximum WBGT. WBGT is calculated through an R package HeatStress (https://github.com/anacv/HeatStress).

2.2 Observational data

The observational reference used to validate the climate models and perform the bias correction is the WFDEI (WATCH

Forcing Data methodology applied to ERA-Interim;  Weedon, et al.,  2014) data set, which is based on the ERA-Interim

reanalysis (Dee, et al., 2011) corrected by the CRU observational data set (or GPCC for precipitation). It is developed on a

50km regular grid and provides 3-hourly and daily values of temperature, precipitation, humidity, wind and radiation, among

others. Its predecessor, WFD was used as observational reference in the ISIMIP 2a experiment (Hempel, et al., 2013) and its

successor (EWEMBI, Frieler, et al., 2017) in the newer ISIMIP2b. Note that the WFDEI data are identical to the EWEMBI

over  land  and  for  the  considered  variables  (daily  maximum and  mean  temperature,  specific  humidity  and  surface  air

pressure).  In  the  present  work  we  use  the  WFDEI  data  set  over  Europe  for  the  period  1981-2010.  Daily  maximum

temperature is obtained as the maximum of the 3-hourly values.

2.3 Global and Regional Climate Model data

The GCM considered in the present analysis is the HadGEM2-ES_r1i1p1 (Collins, et al., 2011; denoted as HadGEM along

the paper) from CMIP5, which is one of the GCMs used in the ISIMIP experiments. Data covering the EURO-CORDEX

domain were extracted considering only land grid boxes (land area fraction larger than 50%). 

We  additionally  use  the  EURO-CORDEX  RCM  simulations  (Jacob,  et  al.,  2014;  Kotlarski,  et  al.,  2014)  driven  by

HadGEM2-ES accessible via the Earth System Grid Federation (ESGF archive, https://esgf.llnl.gov) as of May 2017. These

are the same HadGEM-driven RCM simulations as used by Casanueva, et al., 2019, in a comprehensive study about climate

projections  of  heat  stress  in  Europe.  The  RCM simulations  were  conducted  at  two different  spatial  resolutions  which

correspond to approximately 12 (EUR-11) and 50 km (EUR-44) grid spacing. The final set of regional models consists of

RACMO, CCLM and RCA run by the KNMI (Royal Netherlands Meteorological Institute), CLMcom (Climate Limited-area

Modelling  Community)  and  SMHI  (Swedish  Meteorological  and  Hydrological  Institute),  respectively.  The  historical

simulations cover a common historical period 1981-2005 (the five years 2006-2010 from the scenario simulations are added

in this work to complete the observational period) and future projections cover the period up to 2099. The available RCPs

(Representative Concentration Pathways) vary for each GCM-RCM combination (Table 1). 

We retrieved GCM and GCM-RCM data for daily maximum temperature, as well as daily mean temperature and relative

humidity (or specific humidity and sea level or surface air pressure, depending on the model) that were used to calculate

daily mean dew point temperature. Note that HadGEM as well as the HadGEM-driven RCMs present a 360-day calendar so,
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to harmonize this with the observations, 5 (or 6 in leap year) missing values were included randomly along each year, but

keeping the same position for all variables (to avoid inter-variable modifications), RCPs and models. All analyses were

carried out at the spatial resolution of the observational grid (regular 50x50km). For this reason, all model simulations (GCM

and GCM-RCMs) were conservatively remapped into the WFDEI grid (1st order conservative remapping, as in the ISIMIP

experiments). As a consequence, there will be aspects of the added value of the high-resolution EUR-11 experiments (related

to better-resolved, fine-scale processes;  Prein, et al., 2015) that can be smoothed out, but  they may still be present after

remapping them onto a coarse resolution (Casanueva et al. 2016).

[Table 1]

Table 1: EURO-CORDEX RCMs driven by HadGEM, for the two spatial resolutions (EUR-11 for approximately 12km spatial
resolution and EUR-44 for approximately 50km resolution) and three RCPs (RCP2.6, RCP4.5 and RCP8.5).

2.4 Bias correction methods

2.4.1 ISIMIP bias correction

The ISIMIP bias correction was developed in the framework of the ISIMIP project (Hempel, et al., 2013). It consists of a

correction of the monthly mean biases followed by the correction of the daily variability around the monthly mean. For

temperature the monthly correction is additive, whereas it is multiplicative for precipitation, radiation and wind. The daily

variability correction consists of a parametric quantile mapping adjusting a normal distribution for temperature and a gamma

distribution for precipitation. After ISIMIP (see light dashed green line in Fig.1a), the mean of the historical data is adjusted

towards the observations (black lines) but the variance and shape of the raw distribution is mostly retained. The monthly

means and monthly variability are adjusted using only a constant correction (either an offset or a multiplicative factor) in the

historical and future periods (see green lines in Fig.1a for an example for temperature; light and dark green lines represent

the  historical  and  future  bias-corrected  data  through ISIMIP,  respectively).  Therefore  the  corrections  cancel  out  when

calculating the mean (additive or relative) climate change signal and the long-term trend of the raw simulated variables (red

arrow in Fig.1a) is preserved.

The ISIMIP correction includes dependencies between some variables (e.g. mean temperature and wind speed are needed to

correct maximum/minimum temperatures and eastward/northward wind components, respectively) in order to preserve the

physical  consistency among them. However,  there are not implemented dependencies  between temperature and relative

humidity yet. This BC method correction is implemented for several variables as part of the R package downscaleR (Bedia,

et  al.,  2017),  included  in  the  R  bundle  climate4R (Cofiño,  et  al.,  2018;  Iturbide,  et  al.,  2019).  We correct  dew point

temperature following the same procedure as for daily mean temperature, thus, dependencies with other variables are not

considered. As mentioned before, daily mean temperature is used in the correction of the daily maximum temperature in

6

165

170

175

180

185

190



order to maintain the physical consistency between variables. Although the ISIMIP initiative provides bias-corrected GCM

data, for the sake of consistency we apply the corrections to the raw GCM, as well as RCM data.

2.4.2 Empirical quantile mapping (QM)

In this work we use the implementation from Déqué, 2007; Rajczak, et al., 2016 which consists of the correction of the 99

percentiles of the empirical distribution of the model towards their observational counterparts. The corrections between two

consecutive  percentiles  are  linearly  interpolated  and  constant  extrapolation  is  considered  for  the  values  beyond  the

calibration range, i.e. the correction of the 99th (1st) percentile is applied to values above (below) the calibration range,

(Themeßl, et al., 2012). The correction is calibrated for each day of the year with a 91-day moving window. It is a univariate

BC method and  in  this  work  it  was  applied  independently  to  daily  maximum temperature  and  daily  mean dew point

temperature.  

For a historical simulation (see e.g. light dashed purple lines in Fig.1a) the corrected data largely resemble the distribution of

the observations. During the application of QM to a future climate simulation, the model data are mapped into the percentiles

of the training data and the corresponding correction function is applied (dark purple lines in Fig.1a), thus QM would correct

differently  the  future  and  the  historical  distributions  if  the  relative  frequencies  in  the  future  differ  from  the  training

counterparts (Casanueva, et al., 2018). Therefore, QM is able to correct for intensity-dependent biases and, subsequently,

modifications of the raw model climate change signal may occur. In the example for temperature in Fig.1a, QM narrows the

distribution of the future simulated data, thus leading to a smaller mean change signal than the raw counterpart (see purple

and red arrows).

2.4.3 Application of the bias-correction methods

For both bias correction methods, the corrections are applied independently to each grid box of each GCM/RCM, resolution

(if applicable) and RCP. These corrections are calibrated in the period 1981-2010 and are applied (1) to the same period to

evaluate the performance in present climate and (2) to a future period at the end of the 21st century (2070-2099) to produce

bias-corrected climate projections. Due to the multi-variate nature of the WBGT, we correct  separately daily maximum

temperature  and  daily  mean  dew  point  temperature  prior  to  the  WBGT  calculation  (i.e.  component-wise  approach,

Casanueva, et al., 2018). Although the BC methods are applied to the full time series (monthly mean correction for ISIMIP,

91-day moving window centred on each day of the year for QM), all results shown refer to the summer season (June, July,

August), since it is the time when extreme heat stress conditions occur.

As shown in Figure 1b, the ISIMIP bias correction is applied to the GCM and the RCM to assess the added value of the

RCMs after bias correction. We additionally correct the climate models using quantile mapping to assess the added value of

a more complex (in terms of the number of parameters calibrated) bias correction method.

[Fig.1]
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Figure 1: (a) Illustrative example of the effect of the two bias correction methods on the empirical cumulative distribution function
(left) and the probability density function (right) of either RCM or GCM data. Observations are depicted in black and historical
(HIST) and future (FUT) model  simulations in light  and dark colours,  respectively.  Raw data are depicted in red,  ISIMIP-
corrected data in green (upper panel) and QM-corrected data in purple (lower panel). The magnitude of the mean change signal is
shown with the arrows. This example corresponds to daily maximum temperature as represented by HadGEM for an exemplary
grid box (HIST: 1981-2010, FUT: 2070-2099 for RCP8.5). (b) Conceptual scheme of the present study.

2.5 Evaluation metrics

The performance of the raw and bias corrected data is firstly evaluated by using the mean bias (model minus observations) of

several parameters of the distribution such as the mean and 95th and 99th percentiles of the WBGT.

Pearson  correlation  coefficients  (Pearson  1895)  between  the  daily  series  of  maximum  temperature  and  dew  point

temperature are obtained to show the linear dependency between the two input variables, in the modelled and observed data.

In order to further assess the intervariable relationships, two-dimensional Kernel densities are constructed combining the

distribution of the two input variables. The representation of the two-dimensional densities shows the probability of having

different combinations of daily maximum and dew point temperatures.  Density plots are obtained for the raw and bias-

corrected data and compared to the observations’ counterpart. Perkins et al. 2007 introduced a skill score which determines

the similarity between two probability density functions (PDFs). It is a very useful metric since it allows a comparison across

the entire distribution. It measures the common area between two PDFs by calculating the cumulative minimum value of two

distributions of each binned value (skill scores of 1 mean perfect performance). Here a two-dimensional extension of the

Perkins  skill  score  is  used,  obtained  from two-dimensional  Kernel  densities  instead  of  univariate  PDFs.  Therefore  the

cummulative minimum value is calculated in a two-dimensional field and the score shows the similarity (overlap) between

the modelled joint distribution of daily maximum and dew point temperatures and the observed counterpart.

3 Results

3.1 Evaluation of mean biases of WGBT

The two BC methods (ISIMIP and QM) are applied to the two primary variables of the heat stress index, namely daily

maximum air temperature and daily mean dew point temperature, prior to the WBGT calculation. Under no cross-validation

(i.e. the methods are calibrated and validated in the same period) both BC methods adjust, by construction, the central part of

the distribution (mean for ISIMIP, median for QM, see Fig.1a).  ISIMIP further adjusts the variability around the mean,

whereas QM additionally adjusts the 99 empirical percentiles.  The performance in terms of mean biases of the two BC

methods for individual variables is good and differences related to the parametric (ISIMIP) or empirical (QM) nature of the

method may arise on the tails of the distribution, where QM outperforms ISIMIP (not shown).
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The suitability of the component-wise BC approach of the WBGT prior to its application in a climate change context is

assessed  by  evaluating  the  corrected  WBGT  with  the  observed  counterpart  for  the  period  1981-2010.  Although  the

calibration and validation periods are the same, our approach can be considered independent since the evaluated aspect (i.e.

multivariate consistency and WBGT statistics) is not directly tackled by the BC methods. An additional split-sample cross-

validation (cold vs. warm years, not shown) indicates that WBGT biases are of the same order of magnitude as in the non-

cross-validated analysis. 

Mean biases of summer mean WBGT (Fig.2, upper panel) are evident for the raw GCM and RCMs (blue boxes; note that no

height correction has been applied to the raw data, which might be the main responsible for the skewed distribution of the

raw biases). These are largely reduced after both BC methods, equally well for GCM and RCM data. The evaluation of the

95th and 99th percentiles reveals better performance for ISIMIP or QM depending on the model. QM improves on mean

biases and reduces their variability in higher percentiles for the GCM, RACMO and RCA, whereas a cold bias emerges for

CCLM. There is no evident added value of the RCMs with respect to the GCM after bias correction (see also the spatial

pattern of the differences between bias-corrected GCM and RCMs in Fig.S1). This is in agreement with the findings for

coarser vs. higher resolution of RCM simulations by Casanueva, et al., 2016. 

[Fig.2]

Figure 2: Biases of mean (first row), 95th percentile (second row) and 99th percentile (third row) of summer WBGT for the GCM
and RCMs at EUR-44 and EUR-11. Biases are calculated as model minus observations. Each box represent the biases across all
grid boxes for the raw (blue), ISIMIP-corrected (orange) and QM-corrected (green). Due to the different land-sea masks in the
observations, GCM and RCMs (EUR-44 and EUR-11), all boxplots consider the grid boxes common to all data sets.

The spatial  pattern of  biases  in the 99th percentile  of  the WBGT (WBGTp99)  is  shown in Fig.3.  In  general,  the bias

correction methods alleviate the biases of the raw models over Europe (in particular, large biases due to complex orography),

although there are cases where, in some regions, the biases after bias-correction remain as high or even higher than for the

raw output.  For the GCM, biases of similar magnitude remain after  ISIMIP and QM, with completely different  spatial

structures. For the RCMs RACMO and RCA, slightly better results are found for QM compared to ISIMIP, with biases up to

±1°C. The added value of the two BC methods with respect to the raw simulations is also shown in Fig.S2, being larger in

areas with complex orography and slightly better for QM. The above mentioned cold bias for the CCLM after QM is present

especially in eastern Europe (Fig.3m and S2h). The causes for that are analysed in more detail in the next section.

[Fig.3]

Figure 3: Spatial distribution of the observed 99th percentile of summer WBGT (WBGTp99, panel a) and model biases for the
GCM (b-d) and RCMs-EUR11 (e-m), for the raw (first column), ISIMIP-corrected (second column) and QM-corrected (third
column). The grid boxes over Warsaw and Madrid are marked as reference for subsequent analyses.
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3.2 Evaluation of intervariable relationships

The component-wise correction of the WBGT is able to correct for large biases in some WBGT statistics, but some biases

remain for specific locations and models. We focus on the eastern European region and select the closest grid box to the city

of Warsaw (Poland), where the original positive bias of WBGTp99 (0.7°C) turns into a negative bias (-1.4°C) after QM for

CCLM-011 (Fig.3m). The application of QM to the input variables of WBGT reduces their raw biases to less than ±0.3°C

for all analysed statistics in that grid box. QM corrects for distributional biases of each variable, but the temporal sequence

(i.e. day-to-day variability) of the raw data is not altered and the ranks are preserved. Given that maximum temperature and

dew  point  temperature  are  combined  non-linearly  to  produce  the  daily  sequence  of  WBGT,  deficient  intervariable

relationships may lead to an inaccurate representation of pairs of input variables and, consequently, to biases in the WBGT

distribution. We assess pairs of values of maximum temperature and dew point temperature that produce the highest values

of WBGT (in particular those above the 95th percentile, WBGTp95) for the observations and model (raw and bias-corrected)

data (Fig.4). According to the observations, the 5% of days with the highest heat stress is produced by high maximum

temperatures  (28-36°C) and  high  dew point  temperature  (13-21°C)  and  both input  variables  present  a  negative,  linear

relation (Pearson correlation coefficient of -0.55). Within these ranges, WBGT can reach values of 23-27°C (see circles in

Fig.4). The raw models (squares  in Fig.4a,d) present some biases on the upper tail of the distribution of the two input

variables, which translates in a positive biases of the WBGTp99 in the two models. Raw RACMO (Fig.4a) overestimates

maximum and dew point temperatures but captures rather well the intervariable relationships (r=-0.43), whereas raw CCLM

(Fig.4d)  presents  more  deficiencies  in  representing  the  intervariable  structure (r=-0.82)  and,  in  particular,  shows large

positive biases for maximum temperature and negative biases for dew point temperature. Overall, the remaining biases after

the ISIMIP correction (downward triangles in Fig.4b,e) approximately resemble the original counterparts for RACMO and

improve on the raw data for CCLM, whereas QM (upward triangles in Fig.4c,f) overcorrects the original biases. For CCLM-

QM the highest 5% WBGT values are produced by lower values of both input variables compared to the observed pairs,

especially dew point temperature (down to 5°C) leading to an underestimation of the WBGTp99.  The stronger negative

correlation between the input variables for QM than for the observations might also contribute to the negative biases in

extreme WBGT, since high values of maximum temperature would then be linked to rather low dew point temperatures (or

vice versa), which may imply lower WBGT.  Low dew point temperatures are also found for CCLM-ISIMIP, but they are

combined with positively biased maximum temperatures, thus the biases (too high maximum temperatures -above 38°C- and

too  low dew point  temperatures  -below 12°C-  ,  see  top  left  corner  in  Fig.4e)  compensate  leading  to  a  small  bias  in

WBGTp99. Therefore the evaluation of WBGT statistics should be done with caution since results can be right for the wrong

reason, highlighting the need of multi-variable model evaluations (García-Díez, et al., 2015).

[Fig.4]

Figure 4: Intervariable relationship for the observations and (raw and bias corrected) model data, for RACMO-011 (a-c) and
CCLM-011 (d-f) for the grid box over Warsaw. Each scatter plot represents pairs of values of daily dew point temperature (X-
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axis) and maximum temperature (Y-axis) which produce summer WBGT values above WBGTp95 (Pearson correlation coefficient
between the represented pairs of dew point and maximum temperatures, r, is included in the legend). The three coloured markers
correspond to WBGT values for the observations (circles in all panels), raw RCMs (squares in a,d), RCM-ISIMIP (downward
triangles in b,e) and RCM-QM (upward triangles in c,f). Isolines also represent WBGT values and the thicker line depicts the
observed WBGTp99. 

To investigate  in  more  detail  the  effects  of  the  downscaling  methods  on  the  full  joint  probability  distribution  of  the

maximum temperature and dew point temperature, consider Fig. 5. It shows the 2-dimensional kernel density distribution

together with the marginal histograms for the same grid box (Warsaw) as in Fig. 4. Higher values of the observed joint

probability (Fig.5, top panel) are associated with more likely values of maximum temperature and dew point temperatures,

around the mean of the distribution (approximately 23°C and 10°C, respectively). For the GCM, the distributions of the

WBGT input  variables  are  wider  than the observed  ones,  leading to a  more diffuse and displaced  distribution of  joint

probabilities (Fig.5, second row). In agreement with the previous results, after ISIMIP the joint probabilities are centred, but

neither the shape nor the maximum values are well represented. QM systematically narrows the distributions and slightly

improves the results, which is consistent with the higher values of the Perkins score. The raw RACMO and RCA outputs

tend to represent better the shape of the joint distribution than the GCM, although the maximum probabilities are biased

towards somewhat lower maximum temperatures for RACMO as well as towards lower maximum temperature and higher

dew point temperature for RCA. The ISIMIP correction largely preserves the original structure in the raw data, whereas QM

often narrows the original, skewed distributions towards the observed counterpart. There is, however, an overestimation of

the maximum probabilities after QM. The CCLM raw simulations (EUR-44 and EUR-11) for this grid box present more

deficiencies in representing the intervariable structure, in terms of the magnitudes and location of the joint probabilities. The

ISIMIP correction brings the CCLM maximum closer to the observational counterpart, but the joint probabilities are too

wide. For instance, unlike the observations, there is some probability of high values of WBGT (see isoline denoting observed

WBGTp99) associated to rather low dew point temperatures and high maximum temperatures (as also shown in Fig.4). This

problem is very likely inherited from the raw data, and is slightly improved by QM. The remaining underestimation of

WBGTp99 after QM is also visible from this plot, since the probability above the observed WBGTp99 isoline is negligible.

In  terms  of  the  general  structure,  the  joint  distributions  of  the  RCM-QM data  are  better  than  those  with  the  ISIMIP

correction, although the performance greatly depends on the quality of the raw data.

RACMO (especially EUR-44, not shown) is the best performing model in terms of joint probabilities for this specific grid

box, with slightly improved results after QM. The improvement of QM on the joint probabilities is more noticeable in RCA,

CCLM and the GCM, for which QM is able to correct for important deficiencies in the intervariable dependencies.  An

example for Madrid (Fig.S3) shows that all RCMs perform equally well after QM.

 

[Fig.5]

Figure 5: Two-dimensional Kernel density plots for the grid box over Warsaw. Blue histograms (and X-axis) refer to dew point
temperature and red histograms (and Y-axis)  refer to maximum temperature.  The isolines for the observed WBGTp95 and
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WBGTp99 are also shown as the thick, dashed and solid black lines, respectively. Shadings represent the 2-D density distribution
for the observations (first row), GCM (second row) and RCMs at EUR-11 (third to fifth rows). Very similar results are found for
EUR-44 (not shown). Contour lines represent the observed probabilities, which are overlaid the models probabilities for the sake
of comparison. r depicts the Pearson correlation coefficient between all pairs of daily dew point and maximum temperatures and S
represents the two-dimensional Perkins skill score of distributional similarity (the closer to 1 the better).

An overall  conclusion about  better  performance is  not evident  since results  depend on each  grid box and GCM-RCM

combination, and might be affected by compensations of biases in the individual variables. A summary for the evaluation of

the intervariable relationships across Europe is presented through the Perkins score (Fig.6). Lower scores are apparent in the

raw GCM and RCM data, especially in areas with complex orography and south-eastern Europe. The two BC methods are

able  to  improve  the  representation  of  the  intervariable  relationships  in  the  whole  continent,  just  by  centering  the

distributions. High Perkins scores are found especially along the Atlantic coast. QM improves on ISIMIP in large areas,

although  low  scores  are  found  in  Scandinavia  (0.7-0.8)  for  the  RCMs.  The  spatial  distribution  of  the  scores  agrees

qualitatively with biases in the temporal variability of maximum and dew point temperatures (Figs.S4-S5). This is a first

order indication that the misrepresentation of the temporal variability of the individual variables might be responsible for

most of the deficiencies in the intervariable relationships. Raw model data overestimate the temporal variability especially in

Eastern Europe, leading to Perkins scores lower than 0.6. In other areas, such as Scandinavia, the models underestimate the

temporal  variability of the two input variables,  and thus present  the lowest  scores even after QM. The best results are

obtained for GCM-QM, with large scores also in northern Europe (Fig.6c). 

[Fig.6]

Figure  6:  Spatial  distribution  of  Perkins  skill  scores  calculated  from the  distribution  of  summer  values  of  daily  maximum

temperature and daily mean dew point temperature, for the GCM (a-c) and the RCMs-EUR11 (d-l), for the raw (first column),

ISIMIP-corrected (second column) and QM-corrected (third column).

3.3 Future changes of heat stress

For all  the models considered (GCM, RCMs and BC methods) summer mean WBGT and WBGTp99 are projected to

increase by the end of the 21st century under the RCP8.5 (Fig.7 and S4). For a given RCP, the major source of uncertainty in

the magnitude of this change comes from the choice of GCM or RCM, with a systematically lower change signal in the

RCMs.  The  differences  in  the  climate  change  signal  between  the  GCM and  the  RCMs may  range  between  0.5-1°C,

depending on the RCM and RCP, for the European averaged values. It is related to the reduced summer warming in many

EURO-CORDEX RCMs with respect to their driving GCMs that was noted already in previous works, which pointed to the

different circulation patterns and surface energy fluxes and feedback mechanisms as possible causes for this (Keuler, et al.,

2016; Sørland, et al., 2018). The raw GCM projects changes in summer mean WBGT above 4.5°C over most parts of the
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continent with the highest values in the Alpine area (more than 6°C), whereas RCMs project increases between 3-5°C in

most of the continent (Fig.7; shown are RCMs at 0.11° but similar results are found for 0.44°). The Alps and north of

Scandinavia stand out with larger positive signals. By construction, ISIMIP approximately preserves the climate change

signals of the input variables (Hempel, et al., 2013), whereas QM can potentially modify them (e.g.  Gobiet, et al., 2015;

Ivanov, et al., 2018; see also Sect. 2.4).  Our results show that little changes become apparent for the mean WBGT after

ISIMIP (up to half a degree). The effect of the QM on the WBGT signal is especially noticeable for the case of the GCM, for

which QM reduces the signal by up to 1.5°C and brings it closer to the RCM counterpart. The large, positive signal over the

Alpine area is retained and stands out (although with smaller magnitude) for the RCMs-QM. Similar conclusions can be

drawn for the change of WBGTp99, with a slightly more patchy spatial pattern (Fig.S4).

[Fig.7]

Figure 7: Spatial distribution of changes in summer mean WBGT under RCP8.5 for the GCM (a-c) and RCMs-011 (d-l), for the
raw  (first  column),  ISIMIP-corrected  (second  column)  and  QM-corrected  (third  column).  The  climate  change  signals  are
calculated for the period 2070-2099 with respect to 1981-2010.

The main conclusions hold qualitatively for the other RCPs, with quite consistent signals among RCMs and BC methods

(Fig.8, upper panel). Differences between the GCM and RCMs projected signals are also evident for the input variables

(Fig.8, middle and lower panels). These differences increase with the RCP and are larger for maximum temperature than for

dew point temperature. Whereas the RCMs tend to lower the signal of the GCM for maximum temperature, they increase the

signal for dew point temperature. That is explained by the opposite behaviour of temperature and relative humidity, and the

fact that models showing hotter temperatures tend to simulate lower relative humidity (Fischer & Knutti, 2013). In general,

QM tends to expand the range of the raw RCM climate change signals and slightly lowers the median for the two CCLM

simulations. 

[Fig.8]

Figure 8: Climate change signals for summer mean WBGT (upper panel), daily maximum temperature (Tx, central panel) and
daily mean dew point temperature (Td, lower panel) for the period 2070-2099 with respect to 1981-2010 and RCPs 2.6, 4.5 and 8.5.
Each box represents the changes across all grid boxes in Europe for the raw (blue), ISIMIP-corrected (orange) and QM-corrected
(green) for the GCM and the RCMs (EUR-11 and EUR-44).  Due to the different land-sea masks in the observations, GCM and
RCMs (EUR-44 and EUR-11), all boxplots consider the grid boxes common to all data sets.

The modification of the climate change signal by BC is further analysed for the grid boxes over Warsaw (Fig.9a,b) and

Madrid (Fig.9c,d), considering the change signals in the mean variables (left panels) and in the 99th percentile (right panel).

In Warsaw, QM tends to reduce the signal of the GCM and RCMs towards lower maximum temperatures (Fig.9a). These

changes in the signal  are larger  for the GCM than the RCMs. In this grid box, the effect  of  QM on mean dew point

temperature is negligible. As a consequence, the modification of the signal in mean WBGT is less than 0.5°C for the RCMs
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and 1°C for the GCM. Given that the projected change for mean WBGT is 3.5-5°C for the RCMs (~5.5°C for the GCM), the

impact of the QM can amount to a maximum of 15% (18%) of the raw signal. Modifications in the climate change signal of

the WBGTp99 by QM are smaller than for the mean, along with smaller changes in the signal of the 99th percentile of the

input variables (Fig.9b; note that WBGTp99 is not necessarily linked to the 99th percentile of maximum temperature and

dew point temperature, but to some percentile in the upper tail of the distribution). In this example, however, it is evident

that the preservation of trends by ISIMIP depends on the parameter under consideration, since e.g. the signal in the 99th

percentile of dew point temperature for CCLM-044 is reduced by 1.3°C after the application of ISIMIP (see grey lines in

Fig.9b). Again the modifications of the climate change signal are grid-box-specific, and negligible changes are found after

QM and ISIMIP for the grid box closest to Madrid (Fig.9c,d).

[Fig.9]

Figure 9: Scatter plots showing the effect of BC on the climate change signal for dew point temperature (X-axis),  maximum
temperature (Y-axis) and WBGT (coloured markers) for the grid box over Warsaw (a, b) and Madrid (c, d), RCP8.5 and the
period 2070-2099 with respect to 1981-2010. The left panels show results for the change signal of the mean variables and the right
panels for the 99th percentiles. Each marker depicts results for a different data set (squares for the GCM, upwards triangles for the
RCMs-044 and downwards triangles for RCMs-011). The black arrows point  from the value in the raw data (thicker markers) to
the change in the QM-corrected data, whereas the grey arrows point from the raw to the ISIMIP-corrected data (only discernible
for the change signal of the 99th percentiles). 

4 Summary and Discussion

In the present work we compared global and regional climate model data at different spatial resolutions and bias-corrected

by two bias correction methods (namely the ISIMIP method and empirical quantile mapping, QM) in order to assess the

added  value  of  1)  a  more  complex  BC  method  and  2)  bias-corrected  RCM  simulations  versus  bias-corrected  GCM

simulations, and 3) the role of downscaling and BC on the climate change signal of a multi-variate index. For this purpose

we  used  GCM  data  from  the  CMIP5  HadGEM2-ES  and  the  HadGEM-driven  EURO-CORDEX  simulations,  at

approximately 12 km and 50 km horizontal resolution, respectively. The study was performed for the case of heat stress in

Europe, considering as heat stress index the wet bulb globe temperature (WBGT) in shaded conditions. It depends on air

temperature and dew point temperature, which were separately corrected prior to the index calculation. The performance of

the models and methods in such a multi-variate framework was analysed. The results were examined considering present

climate simulations (reference period 1981-2010) and future climate projections (2070-2099).

Regarding the performance of the two bias correction methods, the evaluation results show that both methods are able to

correct for biases in the multi-variate WBGT as represented by the GCM and RCMs, with smaller biases for ISIMIP or QM

depending on the GCM-RCM model chain. ISIMIP mostly retains the distributional features of the raw data, whereas QM

narrows the two original distributions producing some improvement of the joint  probability distribution with respect  to

ISIMIP. The added value of higher climate model resolution (from GCM to RCM and from EUR-44 to EUR-11) is not

evident in the evaluation of the bias-corrected WBGT statistics,  since the biases of both the GCM and RCMs become
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indistinguishable after bias correction. The joint probabilities are, however, better reproduced by the RCMs after the two bias

corrections, especially due to a more accurate representation of these relationships in the raw data. For those cases (i.e. grid

boxes) for which the raw models do not well represent the intervariable relationships (e.g. CCLM for the grid box closest to

Warsaw)  some biases  in  the  joint  distribution may remain  after  bias  correction.  Large  biases  of  the raw GCM in the

intervariable dependencies might be related to biases in large-scale processes and feedbacks. Further research is needed to

understand the causes for these biases, while the application of BC for those cases in a multi-variate context is then debatable

(Piani, et al., 2010; Ehret, et al., 2012; Muerth, et al., 2013). Other methods and approaches (i.e. perfect prognosis approach,

high resolution regional models) are viable alternatives to bias correction in those cases (Maraun, 2016; Maraun, et al.,

2017).

Regarding climate change projections of WBGT, the largest differences for a given RCP come from the use of GCM versus

RCM data,  with  systematically  lower  signals  for  the  RCMs.  The  GCM-RCM  differences  amount  to  0.5-1°C  for  the

European  averaged  signal  and increase  with the emission scenario,  regardless  of the bias  correction method and RCM

resolution. QM tends to reduce the signal in both GCM and RCMs, bringing the GCM-based and RCM-based results closer

to each other. Some modifications of the raw RCM signal are visible after QM (up to 20% of the raw signal), however the

original signal of the GCM is qualitatively retained by the RCMs-QM, with larger increments in the Alpine ridge and north

Scandinavia. Although the ISIMIP method is by construction a trend-preserving BC method, due to the non-linearities in the

WBGT calculation some modifications of the signal in WBGT statistics may become apparent after the correction. The

modifications of the climate change signals due to bias correction are generally smaller than the model uncertainty (spread

over the GCM and RCMs at two resolutions) by the end of the century. The magnitude of these changes should be also

analysed in the context of natural variability (Räisänen 2001), since the latter can mask or enhance long-term trends. 

Summarizing, there is some added value of QM with respect to ISIMIP in the representation of the intervariable structures,

whereas the present-climate evaluation shows limited added value of bias-corrected RCM versus bias-corrected GCM data.

Future works including convection-permitting simulations could help to assess the robustness of these results. More distinct

results between RCMs and GCM are obtained regarding climate projections, with systematically smaller change signals in

the RCMs. The bias-corrected data qualitatively retain the change signal of the raw counterparts, although QM tends to

decrease the signal of the WBGT and the input variables.

Some limitations and points for discussion remain. The use of a single GCM (even downscaled with several RCMs and bias-

corrected) for the production of climate projections does not sample the full uncertainty range and the use of large ensembles

of simulations is strongly recommended. GCMs typically produce larger estimates for the change signal of temperature than

RCMs due to  different  circulation  patterns  and  surface  energy  fluxes and  feedback  mechanisms (Keuler,  et  al.,  2016;

Sørland, et al., 2018). HadGEM in particular projects an increase of summer mean WBGT of 5°C (European-average, end of

21st century, RCP8.5) and HadGEM-driven RCM simulations of about 4-4.5°C. These results are at the upper limit of the

uncertainty  range when compared  to  a large  ensemble of  GCM-RCM simulations (Casanueva,  et  al.,  2019).  Therefore
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relying only on this GCM could lead to misleading conclusions when combined with other factors in impact assessments.

This example highlights even further the need for ensembles of simulations. 

The differences between the two RCM resolutions were negligible in our study, mainly due to the experimental design (both

resolutions are remapped onto the 50x50km observational grid). The higher resolution RCMs could show some potential

added value if the evaluation would be carried out at their original resolution. However, there is no pan-European, high-

resolution, observational grid neither for air temperature nor for dew point temperature (or relative humidity) to bias-correct

and evaluate these simulations. While high-resolution grids for temperature are available at a national level, the lack of a

gridded product for relative humidity remains a limitation. Furthermore, model evaluation can depend on the reference data

set employed and observations play a fundamental role in bias correction, especially in QM for which the whole distribution

is adjusted. Previous studies have shown that model uncertainty dominates over observational uncertainty for the case of

mean  temperature  (Kotlarski,  et  al.,  2017),  but  dew  point  temperature  (or  relative  humidity)  has  not  been  broadly

investigated so far. In the present work, we do not account for observational uncertainty but acknowledge that the reliability

and spatial representativeness of the reference data set might quantitatively modify the results. Future works including also a

comparison of different observational data products might shed light on the robustness of the current results.

Code availability

The code used for ISIMIP is an open source, R package climate4R (Cofiño, et al., 2018; Iturbide, et al., 2019) available from

a GitHub repository (https://github.com/SantanderMetGroup/downscaleR). The quantile mapping code is also an R package

that can be obtained from the authors upon request.  The heat  stress index is calculated with the R package  HeatStress

(https://github.com/anacv/HeatStress). All the code to performed derived analyses, calculations and plots is also based on R

scripts, which are available upon request.

Data availability

The model simulations (EURO-CORDEX RCMs and HadGEM2-ES) used in this study are accessible via the Earth System

Grid Federation (ESGF archive,  https://esgf.llnl.gov).  The ESGF architecture  consists  of  a  global system of distributed

nodes, which interoperate with other according to a peer-to-peer paradigm, i.e. each node can act as the provider or the

consumer of services; they can join or leave the federation dynamically, without affecting the operations of the other nodes.

The user needs to have an OpenID and can select different search criteria.  To get the RCM data used in this work the

selection is: Project= ‘CORDEX’; Domain= ‘EUR-11’ and ‘EUR-44’; Experiment= ‘historical’, ‘rcp26’, ‘rcp45’, ‘rcp85’;

Time Frequency= ‘day’; Variable= ‘tas’, ‘tasmax’, ‘hurs’ (or ‘huss’ and ‘ps’). The HadGEM2-ES data are also available

through the ESGF System, selecting the search criteria: Project= ‘CMIP5’; Institute= ‘MOHC’; Model= ‘HadGEM2-ES’;

Experiment= ‘historical’, ‘rcp26’, ‘rcp45’, ‘rcp85’; Time Frequency= ‘day’; Ensemble= ‘r1i1p1’; Variable= ‘tas’, ‘tasmax’,

‘huss’, ‘psl’.
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List of tables

EUR-11 EUR-44

RCM RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 Reference

RACMO22E X X X X X X Meijgaard, et al., 2008

RCA4 X X X X X Samuelsson, et al., 2011

CCLM4-8-17 X X X Rockel, et al., 2008
Total # per RCP 1 3 3 2 2 3

Table 1: EURO-CORDEX RCMs driven by HadGEM, for the two spatial resolutions (EUR-11 for approximately 12km spatial
resolution and EUR-44 for approximately 50km resolution) and three RCPs (RCP2.6, RCP4.5 and RCP8.5).
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List of figures

Figure 1: (a) Illustrative example of the effect of the two bias correction methods on the empirical cumulative distribution function
(left) and the probability density function (right) of either RCM or GCM data. Observations are depicted in black and historical
(HIST) and future (FUT) model  simulations in light  and dark colours,  respectively.  Raw data are depicted in red,  ISIMIP-
corrected data in green (upper panel) and QM-corrected data in purple (lower panel). The magnitude of the mean change signal is
shown with the arrows. This example corresponds to daily maximum temperature as represented by HadGEM for an exemplary
grid box (HIST: 1981-2010, FUT: 2070-2099 for RCP8.5). (b) Conceptual scheme of the present study.
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Figure 2: Biases of mean (first row), 95th percentile (second row) and 99th percentile (third row) of summer WBGT for the GCM
and RCMs at EUR-44 and EUR-11. Biases are calculated as model minus observations. Each box represent the biases across all
grid boxes for the raw (blue), ISIMIP-corrected (orange) and QM-corrected (green). Due to the different land-sea masks in the
observations, GCM and RCMs (EUR-44 and EUR-11), all boxplots consider the grid boxes common to all data sets.
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Figure 3: Spatial distribution of the observed 99th percentile of summer WBGT (WBGTp99, panel a) and model biases for the
GCM (b-d) and RCMs-EUR11 (e-m), for the raw (first column), ISIMIP-corrected (second column) and QM-corrected (third
column). The grid boxes over Warsaw and Madrid are marked as reference for subsequent analyses.
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Figure 4: Intervariable relationship for the observations and (raw and bias corrected) model data, for RACMO-011 (a-c) and
CCLM-011 (d-f) for the grid box over Warsaw. Each scatter plot represents pairs of values of daily dew point temperature (X-
axis) and maximum temperature (Y-axis) which produce summer WBGT values above WBGTp95 (Pearson correlation coefficient
between the represented pairs of dew point and maximum temperatures, r, is included in the legend). The three coloured markers
correspond to WBGT values for the observations (circles in all panels), raw RCMs (squares in a,d), RCM-ISIMIP (downward
triangles in b,e) and RCM-QM (upward triangles in c,f). Isolines also represent WBGT values and the thicker line depicts the
observed WBGTp99. 
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Figure 5: Two-dimensional Kernel density plots for the grid box over Warsaw. Blue histograms (and X-axis) refer to dew point
temperature and red histograms (and Y-axis)  refer to maximum temperature.  The isolines for the observed WBGTp95 and
WBGTp99 are also shown as the thick, dashed and solid black lines, respectively. Shadings represent the 2-D density distribution
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for the observations (first row), GCM (second row) and RCMs at EUR-11 (third to fifth rows). Very similar results are found for
EUR-44 (not shown). Contour lines represent the observed probabilities, which are overlaid the models probabilities for the sake
of comparison. r depicts the Pearson correlation coefficient between all pairs of daily dew point and maximum temperatures and S
represents the two-dimensional Perkins skill score of distributional similarity (the closer to 1 the better).
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Figure  6:  Spatial  distribution  of  Perkins  skill  scores  calculated  from the  distribution  of  summer  values  of  daily  maximum

temperature and daily mean dew point temperature, for the GCM (a-c) and the RCMs-EUR11 (d-l), for the raw (first column),

ISIMIP-corrected (second column) and QM-corrected (third column).
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Figure 7: Spatial distribution of changes in summer mean WBGT under RCP8.5 for the GCM (a-c) and RCMs-011 (d-l), for the
raw  (first  column),  ISIMIP-corrected  (second  column)  and  QM-corrected  (third  column).  The  climate  change  signals  are
calculated for the period 2070-2099 with respect to 1981-2010.

32

875

880



Figure 8: Climate change signals for summer mean WBGT (upper panel), daily maximum temperature (Tx, central panel) and
daily mean dew point temperature (Td, lower panel) for the period 2070-2099 with respect to 1981-2010 and RCPs 2.6, 4.5 and 8.5.
Each box represents the changes across all grid boxes in Europe for the raw (blue), ISIMIP-corrected (orange) and QM-corrected
(green) for the GCM and the RCMs (EUR-11 and EUR-44).  Due to the different land-sea masks in the observations, GCM and
RCMs (EUR-44 and EUR-11), all boxplots consider the grid boxes common to all data sets.
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Figure 9: Scatter plots showing the effect of BC on the climate change signal for dew point temperature (X-axis),  maximum
temperature (Y-axis) and WBGT (coloured markers) for the grid box over Warsaw (a, b) and Madrid (c, d), RCP8.5 and the
period 2070-2099 with respect to 1981-2010. The left panels show results for the change signal of the mean variables and the right
panels for the 99th percentiles. Each marker depicts results for a different data set (squares for the GCM, upwards triangles for the
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RCMs-044 and downwards triangles for RCMs-011). The black arrows point  from the value in the raw data (thicker markers) to
the change in the QM-corrected data, whereas the grey arrows point from the raw to the ISIMIP-corrected data (only discernible
for the change signal of the 99th percentiles). 
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