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General assessment

The paper is a through one. There are very few papers on ship weather routing cov-
ering so many aspects of this optimization problem and doing it with so much detail. I
particularly appreciate:

• the time interpolation - I agree that it may bring significant benefits for drastically
changes in the subsequent weather forecasts,

• using bathymetric database with detailed real data,

• detailed results and analysis of time savings attributed to exploitation of waves
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and currents.

My specific comments are few – I provide them below.

–AUTHORS’ RESPONSE:
We thank the Referee for his/her time and comments on our manuscript: They
definitively contributed to improve it. In this document, we report Referee’s text in
italics and our replies as a normal text, distinguishing wherever needed our response
from the manuscripts parts involved by changes. All references to sections, equations,
figures, and tables are relative to the submitted gmd-2018-292 manuscript.

Specific comments

1 -‘We use throughout this manuscript the words "track" or "trajectory" for indicating
a set of waypoints joining two given endpoints or harbours, in relation to departure
on a given date, and the words "route" or "crossing" when there is no reference
to a specific departure date.’ While ‘track’ is perfectly acceptable here, I suggest
replacing ‘trajectory’ with some other word (e.g. path). The word ‘trajectory’ is usually
used in control and robotics with a different meaning: it involves greater accuracy
(manoeuvrability and actuation is- sues), especially for obstacle avoidance or collision
avoidance purposes. A "trajectory" between two harbours does not make sense.

–AUTHORS’ RESPONSE:
Agreed: occurrences of "trajectory" will be replaced by "path".
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–MANUSCRIPT PARTS INVOLVED:
Whole manuscript.

2 - Regarding section 2.3: an alternative approach would be to use varying resolution
of a graph – the nodes can be placed with larger resolution in coastal areas and with
lower resolution at open waters. I suggest commenting on the those two possible
approaches to this problem and explaining why you choose the one with additional
intersection check.

–AUTHORS’ RESPONSE:
In fact, we took into consideration the fact that the VISIR graph grid may deserve a
redesign, e.g. reducing the density of gridpoints in open seas through the use of a
nonuniform mesh. An adaptive refinement mesh (Berger and Colella, 1989) or un-
structured mesh limiting the minimum angle (Shewchuk, 2002) could be another op-
tion. Their advantage would be to reduce the number of open-ocean edges, reducing
RAM allocation and speeding up the computation of the shortest path.

However, we point out that, for the safety of navigation, a check on intersection between
graph arcs and shoreline is in any case needed, no matter the grid resolution or struc-
ture. In fact, even if the mesh is built via a tessellation, intersection with islands and
boundary elements smaller than mesh elements should be checked (Legrand et al.,
2000). For a graph of higher order of connectivity (ν � 1, cf. manuscript’s Sect.2.3)
this is even more challenging. Such a check on shoreline intersection can easily rep-
resent a significant computational cost (De Berg et al., 1997). In order to perform it
effectively, it is crucial to be able to find indexes of graph elements next the shoreline.
On a regular grid this operation can be carried out in O(M) time (M is the number of
shoreline elements), no matter the size of the maritime domain (and we exploited this in
the i) step of the algorithm described in Sect.2.3). Instead, on a random or not regular
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mesh, a O(M · n) time would be required by a linear search (n is here either the num-
ber of nodes or arcs of the graph). To speed up the search on a not regular mesh, a
preliminary node indexing can be computed. With a k-d tree, an additional O(n log(n))
time for tree construction and, on average, O(M · log(n)) for querying would be needed
(Bentley, 1975). This is in excess of the O(M) estimate for corresponding step (cf. i)
in Sect.2.3) in present VISIR graph creation algorithm.

Thus, at this stage we still preferred keeping a regular grid which enabled a relatively
quick and easy graph computation at the cost of a longer path computing time. This is
not critical, given the not operational functioning of VISIR for the present exercise. In
future model versions, also depending on coding options, domain, and type of applica-
tion, we may reconsider this choice.

–MANUSCRIPT PARTS INVOLVED:
Sect.2.3 will be expanded using response above.

3 - Regarding section 2.5.2: ‘Edges which, for a given EOT, violate stability are pruned
before the shortest path algorithm is run. This way, it is ensured that the optimal track
preserves vessel intact stability.’ Based on the above description, I am not sure if this
approach is correct. In presence of coastline, shallows etc. the exact time at which
an edge will be transited cannot be know exactly prior to running the algorithm. Even
for open ocean, avoiding a cyclone may cause a delay resulting in reaching a certain
graph node much later, thus making all prior assumptions inaccurate. Therefore, in
my opinion the edges’ weights should be verified dynamically during the algorithm run
instead of pruning the edges before the run.

–AUTHORS’ RESPONSE:
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In VISIR, there is no prior assumption about the vessel time of sailing at the various
spatial positions of the domain.

Following (Mannarini et al., 2016, Sect.2.2.2 & pseudocode in App.A), all vessel speeds
at any location and direction (i.e. on each of the A edges) and any time (Nt time steps)
are computed ahead of path optimization. RAM space allocation for storage of this
information is discussed in Sect.3.2, Fig.3 and in our answer to Referee’s comment
4a) below. Then, the time-dependent Dijkstra’s algorithm (Mannarini et al., 2016) can
manage all this spatially and temporally dependent information for computing the time-
optimal paths. Its correctness is demonstrated by comparison with the path resulting
from the benchmark solution in a dynamic flow field by Techy (2011) (Sect.3.1.2, Fig.2,
Tab.2). Thus, we can say that if cyclone avoidance causes a delay in reaching a specific
location, vessel speed at that actually delayed time is used by VISIR for evaluating if
sailing through that specific location at that specific time will still be part of the time-
dependent optimal path.

For pruning of edges leading to loss of vessel intact stability, the algorithmic machinery
works pretty much the same, with specific edges being labeled as unsafe at specific
time steps only, cf. (Mannarini et al., 2016, Sect.2.2.2). If a vessel sails at that edge
and time, it would experience stability loss, no matter the previous and subsequent
path. Thus, that edge is pruned for just that time step ahead of path optimization.

–MANUSCRIPT PARTS INVOLVED:
The description provided in Sect.2.5.2 will be expanded making use of the response
above.

4a - While I appreciate the computational complexity analysis based on RAM allocation
data, I would also hope for assessing computational time and space based on the
algorithm itself. I agree that it is a hard task for complex algorithms, but still some
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analysis could be made, at least for the worst case.

–AUTHORS’ RESPONSE:
Some deepenings concerning computational (CPU) time and memory space (RAM) of
VISIR shortest path algorithm are provided in the following:

• CPU time
Fig.3a (red markers) shows that the worst-case estimate of present VISIR imple-
mentation of Dijkstra’s time-dependent algorithm scales nearly linearly with the
number of degrees of freedom (DOF) of the problem. DOF is proportional to the
product of the number A of graph edges and the number Nt of time steps of the
dynamic environmental fields. Nt is roughly constant for a given route, as in Fig.3.
It can be shown that, upon generalizing the graph arc arrangement of (Mannarini
et al., 2016, Fig.1) to any order of connectivity ν of the graph (cf. Sect.2.3), A is
given by

A = 4ν(ν + 1)N (1)

with the number N of graph grid nodes (Mannarini et al., 2018, in review). In
any two-dimensional regular mesh, N scales quadratically with the inverse mesh
resolution, N ∼ (1/∆g)2. For the series of experiments in Fig.3, we varied ν as
1/∆g. When taken together, these two effects result into:

DOF = A ·Nt ∼ ν2N ∼ (1/∆g)4 = O(N2) (2)

Thus, the empirically retrieved linearity of CPU time with DOF corresponds to a
quadratic dependence in N . This is in fact the expected worst-case performance
of a Dijkstra’s algorithm (Bertsekas, 1998). As we stated in Sect 2.4, in presence
of binary heaps, such estimate can be reduced to N logN . This will come up in
future VISIR versions.
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• RAM allocation
In oder to further clarify the memory space requirements of VISIR, with a focus
on its shortest path algorithm, we collected and analyzed additional datasets as
described below. They consist of:

d1) time series of RAM allocation of the VISIR Matlab job1

d2) stopwatch timer readings at specific VISIR processing phases2

The d2) dataset is then temporally offset by matching the end of the d1) dataset.
Finally, resulting d2) data are smoothed by thinning and this results in the plots
displayed in Fig. .e-f below.

For each graph angular resolution (indexed by ν parameter) the timeseries exhibit
different relative importance (both in terms of duration and RAM allocation) of the
various processing phases. However, the d1) and d2) datasets confirm that, for
6 ≤ ν ≤ 9, the peak RAM is allocated during the edge weight computation. Fur-
thermore, the shortest path algorithm is run twice: in its static version (Dijkstra,
1959) for the computation of the geodetic track, in a time-dependent version for
the optimal track (Mannarini et al., 2016). The latter requires in input the edge
delays at Nt time steps, and this justifies the uphill RAM step between these two
phases.

–MANUSCRIPT PARTS INVOLVED:
The information already provided in Sect.3.2 and will be integrated with material above.
In particular:
- Fig.3.a-d and Tab.3 will be updated for using performance data from the latest code
version and for accounting for smoothing of the RAM timeseries;

1Using the shell command: top | grep MATLAB >> RAM-timeseries.txt
2Using the Matlab commands: tic, toc
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- two panels e) and f) will be added to Fig.3 of the manuscript with following caption:
"a) CPU time for the total VISIR job (blue markers) and for just the computation of the
time-dependent shortest path (red markers). Only the cw case is shown. Dashed lines
are fits of the model in Tab.3. b) Peak RAM allocation during the jobs of a) panel,
with a reference line at the total installed RAM. c) Ratio of CPU times of the cw to
the w case and (just for optimal path) for with to without time-interpolation. d) Ratio
of peak RAM allocation of the cw to w type jobs. For panels a,b,d) both cases with
(filled) and without (empty markers) time-interpolation. The DOF (Sect.3.2) of the time-
dependent shortest path problems is displayed on the horizontal axis. e,f) Time series
of RAM memory allocation during VISIR execution for w and cw type jobs, respectively.
Black circles (blue lines) refer to runs without (with) time-interpolation of edge weights.
Vertical dashed lines separate the main phases of the processing. Both panels refer
to the ν = 8 case of a)-d). The processing phase labels are: ew (computation of
edge-averaged fields); ed (edge delays); gdt (geodetic track); opt (optimal track)."

4b - It would also be interesting to compare the computational time with that of a
non-deterministic approach (there are multiple meta-heuristics available, including
Evolutionary Multi-objective Optimization, Ant Colony Optimization etc.).

–AUTHORS’ RESPONSE:
We would like to note first that, being based on Dijkstra’s algorithm, VISIR solution is
not just guaranteed to be exact, but also its performance (for a given route and vessel
departure date) is stable over different runs. This is a difference with evolutionary (EA)
and, generally speaking, with heuristics-based algorithms. For that class of algorithms,
both the quality and the computational cost of the solution may vary over subsequent
runs, as they are driven by random effects. The issue of randomness can be mitigated
by statistical averaging over many simulations. However, a more fundamental issue is
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that, as clearly stated in Eiben et al. (2003), performance of an EA should be assessed
in terms of both efficiency (CPU time) and effectiveness (quality of the solution). Fur-
thermore, even for a specific EA and EA implementation, performance may vary with
tuning. Tuning refers to specifying values for the algorithm parameters, such as the
"mutation rate". Tuning may affect both EA performance and robustness (Eiben et al.,
2003).

Apart from the EA peculiarities, performance comparison of VISIR with other ship rout-
ing systems is also hampered by the fact that:

i) there is usually little or no evidence that those models were preliminarily validated
versus exact solutions;

ii) the input environmental fields are not always available for other published results;

iii) access to the source code for running on identical conditions would be necessary;

iv) the computational platforms employed are either different or not documented;

In a dedicated collaborative effort for evaluation of VISIR vs. a deterministic path plan-
ning model which was previously tested against an analytical benchmark, we were able
to overcome most of these difficulties (Mannarini et al., 2018, in review). We are open
to reply that approach for EA-based ship routing models, e.g., the multi-objective EA
reported in (Szlapczynska, 2015) or the ant-colony algorithm described in Tsou and
Cheng (2013).

–MANUSCRIPT PARTS INVOLVED:
The information already provided in Sect.3.2 and will be integrated with the discussion
above.
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5 - I agree with the authors that the paper would further benefit from a more realistic
modeling of speed loss in waves and wind. I encourage them to include such modelling
in their research.

–AUTHORS’ RESPONSE:
Thanks for the comment. In fact such a more realistic modeling of speed loss in waves
and wind is planned, at least for Ro-Pax vessels, in the frame of the newly started
GUTTA project3.

–MANUSCRIPT PARTS INVOLVED:
Reference to GUTTA project will be added to the Conclusions.

3http://bit.ly/guttaproject
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Table 3. Fit parameters for the data displayed in Fig.3a. The fit model is a · xb + c. For the
optimal path data, c parameter is not fitted.

no T-interp with T-interp
units optimal path total job optimal path total job

a s 9.9 · 10−8 4.7 · 10−10 2.6 · 10−6 1.2 · 10−7

b − 1.07 1.42 1.01 1.18
c s - 52 - 60

rmse s 3.9 15.6 3.3 24.8
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a) b)

c) d)

e) f)

Fig. 3. e,f) Time series of RAM memory allocation during VISIR execution for w and cw type
jobs, respectively. Black circles (blue lines) refer to runs without (with) time-interpolation of
edge weights.
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