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Abstract. How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle

and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus

of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are

an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is

a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and5

provides, e.g., local mass conservation, a flexible grid nesting option and a non-hydrostatic dynamical core formulated on an

icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this

new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics, and

the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is

performed, in order to evaluate the upper-atmosphere extension of ICON.10

1 Introduction

In climate simulations and numerical weather prediction (NWP), there are ongoing efforts to raise the upper model lid, acknowl-

edging possible influences of middle- and upper-atmosphere dynamics on tropospheric weather and climate (e.g., Thompson

et al., 2002; Scaife et al., 2012; Charlton-Perez et al., 2013). The dynamics of the large-scale flow in the middle and upper

atmosphere is determined, for instance, by the interaction with small-scale gravity waves. These waves, predominantly forced15

in the troposphere, can propagate vertically until they become unstable and break. As a result of this a drag is exerted on the

atmospheric background flow. This is an important route of momentum flux from the lower atmosphere to the middle and upper

atmosphere, which shapes the meridional circulation in the latter regions (e.g., Fritts and Alexander, 2003; Kim et al., 2003).

To have a model at hand that allows to study such processes on a wide range of spatial and temporal scales, was one of our

central motivations for the upper-atmosphere extension of the ICON model, which we present in the following.20

The ICOsahedral Non-hydrostatic (ICON) general circulation model (Zängl et al., 2015; Dipankar et al., 2015; Heinze et al.,

2017; Giorgetta et al., 2018; Crueger et al., 2018), a joint development of the Max Planck Institute for Meteorology (MPI-M)
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and the German Weather Service (DWD), is designed as a unified modelling system to allow simulations from the turbulent

scales in large-eddy simulations (LES) up to climatological time scales. Its triangular horizontal grid provides an almost

uniform horizontal resolution, and the non-hydrostatic dynamical core makes it applicable on a wide range of spatial scales. The

discretization of the governing equations makes use of a combination of finite-difference and finite-volume methods, e.g., to

ensure mass conservation which is an important property for climate simulations (e.g., Staniforth and Wood, 2008). In addition5

to a limited-area mode ICON offers a grid-nesting option (one-, or two-way nesting) for local refinement up to potentially

very high horizontal resolutions. With three distinct packages of physics parameterizations ICON meets the different needs

of climate simulations, NWP and LES. To prepare ICON for simulations with model tops in the lower thermosphere, some

extensions of the dynamical core and the physics parameterizations are necessary as presented in this work.

Among the most important approximations which are applied to the dynamical core of ICON in its standard configuration10

are the shallow-atmosphere approximation and traditional approximation (e.g., Phillips, 1966; White and Bromley, 1995;

White et al., 2005; Staniforth and Wood, 2008). These approximations are applied to the mapping of the budget equations on

spherical coordinates relative to the center of the Earth. The shallow-atmosphere approximation is basically associated with the

neglect of terms related to the spherical curvature of the atmosphere as well as variations of the gravitational field by assuming

the field strength to be constant (see Thuburn and White (2013) for a detailed examination of the metrical implications of15

this approximation). The traditional approximation refers to neglecting the contribution of the horizontal component of the

Earth’s angular velocity to the Coriolis acceleration. Following the usual terminology we will call the system of equations

with and without the two approximations the shallow-atmosphere equations and the deep-atmosphere equations, respectively.

Both approximations are generally applied together, in order to satisfy the conservation of the energy, the axial component of

angular momentum, and the potential vorticity (e.g. Phillips (1966); White and Bromley (1995); Staniforth and Wood (2003)).20

However, as Tort and Dubos (2014) have shown, it is possible to extend the shallow-atmosphere equations in such a way that

the full Coriolis acceleration can be retained without violating the conservation principles.

The accuracy of the shallow-atmosphere and traditional approximation can be estimated by comparing the magnitude of

the terms neglected in the shallow-atmosphere equations to the magnitude of the terms that are present in both systems. Such

scale analysis has been used, for instance, by White and Bromley (1995), to show that for diabatically driven flows in the25

tropics and planetary scale flows the neglected terms of the Coriolis acceleration might reach magnitudes up to about 10% of

the magnitude of key terms of the shallow-atmosphere momentum budget. On the other side, normal mode analyses, done by

Thuburn et al. (2002a) for the deep-atmosphere equations, and by Kasahara (2003) with focus on a Boussinesq model fea-

turing the full Coriolis acceleration, show that the differences in the spatial structure and the frequencies of the energetically

most significant modes between the shallow- and the deep-atmosphere equations are relatively small (with differences in the30

frequency magnitude being typically less than about 1%, Thuburn et al. (2002b); Kasahara (2003)). Both, the scale analysis

and the normal-mode analysis are important tools to figure out the differences between the deep and shallow-atmosphere equa-

tions. However, the applicability of the results on long-term integrations might be limited. The systematic errors introduced by

the approximations, albeit small in magnitude, could accumulate over time and lead to significantly different flow patterns of

the model atmosphere. This might be especially important for the large-scale circulations of the middle and upper atmosphere.35
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Furthermore, in view of the ever increasing computational power, some approximations that were meaningful under the restric-

tions of past computer architectures, might nowadays lose their justification. Therefore, we decided to expand the dynamical

core of ICON by a deep-atmosphere option.

Examples for other models that use a deep-atmosphere formulation, or offer the option to do so, are the Met Office’s Unified

Model (UM) (Cullen et al., 1997; White et al., 2005; Staniforth and Wood, 2008), the Non-hydrostatic Icosahedral Atmospheric5

Model (NICAM) (e.g., Tomita and Satoh, 2004), the Ocean Land Atmosphere Model (OLAM) (e.g., Walko and Avissar, 2008),

the MCore model by Ullrich and Jablonowski (2012), and the Finite Volume Model (FVM) of the Integrated Forecasting

System (IFS) developed at the European Centre for Medium-Range Weather Forecasts (ECMWF) (e.g., Smolarkiewicz et al.,

2016). An overview of some of these models can be found in Ullrich et al. (2017).

Apart from the dynamics, the physics parameterizations are the second important model pillar that has to be extended10

for applications including part of the upper atmosphere. The ICON model offers basically three different physics packages:

one which has been largely adopted from the ECHAM-model intended for climate simulations (e.g., Stevens et al., 2013;

Giorgetta et al., 2018; Crueger et al., 2018), another one which is used for NWP (some aspects of which can be found in Zängl

et al., 2015), and a third one for LES (Dipankar et al., 2015). The upper-atmosphere-specific physics parameterizations have

been integrated into the ECHAM and NWP packages, but we will focus on the extended ECHAM physics package in the15

remainder of this work. To avoid confusion in the following, a side note on our terminology may be in order: if we discuss the

physics parameterizations, we typically use the attribute “upper-atmosphere”, to denote that their effects become significant in

and above, say, the upper-mesosphere-lower-thermosphere-region. In contrast the attribute “deep-atmosphere” is used in the

context of the modifications of the dynamical core, since they apply to the entire air column, and no more or less well-defined

vertical significance threshold can be made out for them. If we address both extensions as a whole, we use again the attribute20

“upper-atmosphere”.

While the model lid is raised and the deep-atmospheric dynamics is applied, the model cannot produce physically reasonable

results without the extended physics parameterizations. In fact, our experience shows that when the model lid is raised to

above ∼85 km, the model without the extended physics would suffer from strong numerical instability, which could only be

suppressed by using extremely large and unphysical numerical damping. The reason is related to the characteristics of the25

upper atmosphere, most importantly the rarefied air and the broader spectrum of incoming solar irradiance, which give rise to

some physical phenomena that are negligible in the lower atmosphere and thus not parameterized in the current model, but

become crucial in maintaining the upper atmospheric dynamics and thermodynamics.

One of such physical phenomena is molecular diffusion of momentum and heat, which is of negligible magnitude in the lower

atmosphere compared to turbulent diffusion. In the upper atmosphere, as turbulence dies away and the air molecules are capable30

of travelling a long distance, molecular diffusion becomes dominant. Besides molecules, the upper atmosphere is also abundant

with atoms and radicals produced as a result of photolysis. Chemical heating is the release of heat by recombination reactions

between atoms or radicals, and is of particular importance in the upper atmosphere where photolysis products can travel large

distances before recombining. Moreover, the higher altitude also means that the upper atmosphere would receive and absorb

more solar irradiance in higher frequencies than at lower levels and on the surface. This brings the need of parameterizing35
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the ultraviolet radiation including the Schumann-Runge bands and continuum, and the extreme ultraviolet bands. The solar

radiation also acts to ionize the atmosphere, establishing the ionosphere from about 60 km. The electrically charged ions in

the ionosphere are then aligned with the magnetic field of the Earth, thus creating a drag and a heating source to the neutral

mass flow. Further, the usual assumption of local thermodyamical equilibrium (LTE) does not hold in the upper atmosphere as

a consequence of the low collision frequency between particles, therefore some modification must be made to the longwave5

radiation parameterization. The heating and the eddy diffusion of momentum and heat generated by the breaking of gravity

waves have to be taken into account near the mesopause, too.

In recent decades, several general circulation models (GCMs) haven been extended to the middle and upper atmosphere.

An early development in this direction is the spectral model described by Miyahara et al. (1993). With an upper boundary

at an altitude of about 165 km it extends into the lower thermosphere, and has been used to study thermal tides, for in-10

stance. The influence of gravity wave parameterizations on the circulation in the middle atmosphere has been studied with the

MA/ECHAM4 model, an extension of the hydrostatic spectral ECHAM4 up to the mesopause region (Manzini et al., 1997;

Manzini and McFarlane, 1998). Later versions of MAECHAM provided the basis for the Hamburg Model of the Neutral

and Ionized Atmosphere (HAMMONIA), which extends into the thermosphere and includes a package of upper-atmosphere-

specific physics parameterizations, together with an interactive chemistry module (Schmidt et al., 2006). The upper-atmosphere15

physics package implemented into UA-ICON has been largely adopted from HAMMONIA. A good overview of the physi-

cal processes that are typically parameterized can also be found in the description of an extension of the Canadian Middle

Atmosphere Model (CMAM) from an upper boundary at an altitude of about 95 km to 210 km by Fomichev et al. (2002).

In addition, the authors present an examination of how much these processes contribute to the energy and momentum bud-

gets. Another spectral hydrostatic GCM that includes the upper-mesosphere-lower-thermosphere region is the Kühlungsborn20

Mechanistic general Circulation Model (KMCM, e.g. Becker, 2009). It has been used recently to study secondary gravity wave

generation in the mesosphere as a result of the breaking of gravity waves originating from the troposphere (Becker and Vadas,

2018). In contrast to the afore-mentioned spectral GCMs, WACCM (Whole Atmosphere Community Climate Model; see e.g.

Richter et al. (2008) for its version 3), which is based on the Community Atmosphere and Community Climate Models (CAM

and CCM) of the National Center for Atmospheric Research (NCAR), offers a hydrostatic finite-volume dynamical core. The25

different versions of WACCM generally extend to about 150 km and share many parameterizations of its upper-atmosphere

physics package with CMAM and HAMMONIA. The offspring WACCM-X (Liu et al., 2010) extends the simulations even

deeply into the thermosphere up to about 500 km. Recent developments, such as self-consistent electrodynamics, the transport

of O+ and a modification of the dynamical core to account for the variation of the specific heats and mean molecular weight in

the heterosphere (above ∼100 km, say) led to improved simulations of space weather and space climate (WACCM-X 2.0, Liu30

et al., 2018). As final example we mention the middle atmosphere GCM developed by Watanabe et al. (2008), and later com-

plemented by physics parameterizations that allow for simulations covering the lower thermosphere up to about 150 km (the

Japanese Atmospheric general circulation model for Upper Atmosphere Research (JAGUAR), Watanabe and Miyahara, 2009).

It has been employed, for instance, to study the interaction of resolved gravity waves with thermal tides by global simulations

of a horizontal-triangularly truncated spectral resolution of T213 and a vertical layer spacing of 500 m throughout the middle35
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atmosphere (Watanabe and Miyahara, 2009). In a subsequent study on the dependence of the resolved gravity-wave-borne

vertical flux of zonal momentum on the vertical resolution, the authors were able to conduct simulations with a layer spacing

down to 200 m (Watanabe et al., 2015).

The outline of the paper is as follows: in section 2 we describe the modifications and extensions to the dynamical core and

to the physics parameterizations, followed by a presentation of results from idealized test cases and climate simulations for the5

evaluation of the new implementations in section 3. We close with a conclusion in section 4.

2 Model extension to the upper atmosphere

2.1 Deep-atmosphere dynamics

The dynamical core of the standard configuration of ICON makes use of the shallow-atmosphere approximation, which mainly

consists in simplifying the governing equations measured in a spherical coordinate system in the following way: the radial10

distance of an air parcel to the center of the Earth r is approximated by the radius of the Earth a, and metrical terms which

result from the unit vectors of the coordinate system to be functions of position are neglected. In addition the traditional

approximation is applied, by which the acceleration due to the horizontal component of the angular velocity of the Earth is

neglected (Phillips, 1966; Staniforth and Wood, 2003). For atmospheric models having a model top below, say, the mesopause

region at an altitude of about 70 to 100 km, the shallow-atmosphere approximation is likely a very good approximation (e.g.,15

Ullrich et al., 2014), albeit some adverse impacts might exist, for instance in the tropics where the cosine of latitude is of

order one, questioning the neglect of the non-traditional part of the Coriolis accleration to some extent (White and Bromley,

1995; White et al., 2005). If the model top is raised into the lower thermosphere, the systematic errors introduced by the

shallow-atmosphere approximation might start to outweigh its benefits, especially on a climatological time scale. So we think

the extension of the dynamical core from shallow- to deep-atmosphere dynamics is an important component for UA-ICON.20

2.1.1 Model equations

We restrict our considerations to the dry atmosphere hereafter, to focus on the particular aspects of the deep-atmosphere

dynamics. The budget equations for the momentum, mass and heat are rearranged to the following set of prognostic equations

(White et al., 2005; Zängl et al., 2015)

∂v

∂t
+v ·∇v + 2Ω×v + Ω× (Ω× r) =−cpθ∇π−∇φg + ρ−1F , (1)25

∂ρ

∂t
+∇ · (vρ) = 0, (2)

∂π

∂t
+
R

cv

π

ρθ
∇ · (vρθ) =

R

cvcpρθ
Q, (3)

and the equation of state reads

ρθ =
p00π

cv/R

R
(4)
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where v = vh+wer is the wind vector split in horizontal and radial components, Ω is the angular velocity vector of the

Earth, and r denotes the position relative to the center of the Earth. In addition, π = (p/p00)R/cp denotes the Exner pressure

relative to the reference pressure p00 = 1000hPa, θ = T/π is the potential temperature, φg denotes the gravitational potential,

and cp = 1004.64J K−1 kg−1, cv = 717.6J K−1 kg−1, R= cp− cv are the specific heat capacities at constant pressure and

volume, and the gas constant for dry air, respectively. Finally, F denotes velocity tendencies due to dissipative processes or5

other parameterized processes, and Q denotes Exner pressure tendencies due to diabatic processes.

We have added the centrifugal acceleration Ω×(Ω×r) in Eq. (1), since it is of importance for a test case presented in section

3.1.1. In the standard configuration of ICON, where this term is absent, we have apparent gravity −∇φg+c (true gravity plus

centrifugal acceleration) on the right-hand side of Eq. (1), to which the spherical-geopotential approximation is applied: in

case of Eq. (1) the vertical unit vector of the coordinate system, in which the atmospheric flow is measured, is defined as10

the normal vector of the spherical equipotential surfaces er = ∇φg/|∇φg|. In case of apparent gravity we continue to write

er = ∇φg+c/|∇φg+c|, but the equipotential surfaces are still approximated by spherical surfaces, neglecting the oblateness

caused by the centrifugal acceleration (Gill, 1982; White et al., 2005; Vallis, 2006; Staniforth and Wood, 2008).

The advection term in Eq. (1) is expressed in the so-called 2d-vector-invariant formulation (e.g., Phillips, 1966; Sadourny,

1972; Vallis, 2006)15

v ·∇v = ωh×vh+∇h
|vh|2

2
+w

∂vh
∂r

+v ·∇(wer) , (5)

where ωh = ∇h×vh = ζer is the vertical component of the relative vorticity. During the development of ICON, it turned out

that it is advantageous to separate the Exner pressure into a hydrostatically balanced part and a deviation from it π = π0(r)+π′,

where −cpθ0∇π0−∇φg = 0. Thus the right-hand side of Eq. (1) reads

− cpθ∇π−∇φg =−cpθ∇π′− cpθ′
dπ0
dr

. (6)20

The background temperature profile of the hydrostatically balanced part is defined by (Zängl, 2012)

T0(zg) = Tstr + (Tsl−Tstr)exp

(
− zg
Hscal

)
, (7)

where zg = z/(1 + z/a) denotes the geopotential height, and Tsl = 288.15K as well as Tstr = 213.15K are characteristic

temperature values at sea level (zg = 0) and in the stratosphere, respectively.Hscal = 10000m is a characteristic (geopotential)

temperature scale height. The geopotential height follows as “natural” height measure from the gravitational acceleration (Gill,25

1982; Wood and Staniforth, 2003; Wood et al., 2014; Ullrich et al., 2017)

∇φg ·dr = g
(a
r

)2
dr = g

(
1

1 + z
a

)2

dz = gd

(
z

1 + z
a

)
= gdzg, (8)

with the geopotential φg =−ga2/r+φg,0, where φg,0 denotes some constant, and g = 9.80665m s−2 is the mean gravita-

tional acceleration at sea level (this is actually the magnitude of apparent gravity, but since the contribution of the centrifugal

acceleration is relatively small, we use this value also for the true gravity). The values of zg range from limz→−a zg =−∞ to30
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Figure 1. Schematic illustration of a global horizontal triangular grid as used by ICON (left), and of a grid cell (right). The black dashed lines

illustrate a grid of R2B0-type (twofold root division, zero bisections). C-grid staggering is used for the prognostic variables, i.e. all scalars

like density ρ, potential temperature θ, and Exner pressure π are defined in the cell center (red dot), tangential and normal wind components

vt, and vn on the side faces (corresponding to the three primal edges of a triangle on the horizontal grid), and vertical wind component w on

the bottom and top surfaces of the cell (assuming vt,vn,w > 0 for the cell drawing).

limz→∞ zg = a. The profile (7) allows to integrate the hydrostatic equilibrium analytically. Note, if the centrifugal acceleration

is treated in its explicit form Ω× (Ω× r), it is not taken into account in the hydrostatic equilibrium outlined above.

In ICON the governing equations (1) to (3) are measured in a spherical coordinate system with local unit vectors et(r),

en(r) and er(r) (forming a right-handed system in this order), where et and en are the horizontal unit vectors tangential and

normal to an edge separating two adjacent triangular cells, and er is defined in the center of the bottom and top surfaces of5

a cell (see Fig. 1)1. In order to find expressions for the projection of the momentum equation (1) onto the unit vectors of the

local edge coordinate system and er, we can make use of the projections in the standard geographical coordinate system, with

its horizontal unit vectors in meridional (south-north) and zonal (west-east) directions, eϕ and eλ (e.g., Zdunkowski and Bott,

2003). The Coriolis and centrifugal accelerations are excluded from the following consideration, since their projections onto

the unit vectors of the local coordinate systems of the triangular grid can be determined directly. Each edge is part of a great10

circle of the Earth, which can be regarded as an imaginary equator. Rotating the geographical coordinate system accordingly

and in such a way that et is parallel to e′λ at the considered location (where the prime indicates this coordinate transformation),

we would find en being parallel to e′ϕ (the radial unit vectors of both systems are parallel anyway). The governing equations

for the velocity components v = ueλ+ veϕ+wer (or here v = u′e′λ+ v′e′ϕ+wer ) can be found in many textbooks (e.g.,

1It would be more correct to refer to the horizontal unit vectors as et(rj) and en(rj), since they are defined only at the grid triangle edges j. In contrast

to the zonal and meridional unit vectors of the geographical coordinate system, eλ(r) and eϕ(r), et and en do not converge to a differentiable continuum

for the number of triangles going to infinity, since the jumps in orientation from one edge to another adjacent edge remain, whatever the horizontal grid

resolution. Nevertheless, if computations require spatial derivatives of vectorial quantities, they can be performed in geographical coordinates and the result

can be projected onto the et(rj) and en(rj). So we regard et and en as an “indirectly differentiable” continuum and write et(r) and en(r), in order to

simplify matters.

7



Gill, 1982; Zdunkowski and Bott, 2003; Holton, 2004; Vallis, 2006). Evaluating them at the equator (ϕ(′) = 0) yields almost

immediately the components of the governing equations for v = vtet+vnen+wer in the local edge coordinate systems, if we

identify vt with u′ and vn with v′. The equation for the vertical velocity component w in the local coordinate system defined

in the center of the vertical cell interfaces can be found in a similar way. Together they read

∂vn
∂t

+
{a
r

} ∂Kh

∂n
+ (ζ + fr)vt +w

(
∂vn
∂r

+
vn
r
− ft

)
+Ω2r sin(ϕ)cos(ϕ)eϕ · en =−cpθ

{a
r

} ∂π
∂n

+
Fn

ρ
, (9)5

∂w

∂t
+ vn

({a
r

} ∂w
∂n
−vn
r

+ ft

)
+ vt

({a
r

} ∂w
∂t
−vt
r
− fn

)
+w

∂w

∂r
−Ω2r cos2(ϕ) =−cp

[
(θ0 + θ′)

∂π′

∂r
+ θ′

dπ0
dr

]
+
Fr
ρ
,

(10)

where Kh = (v2t + v2n)/2 is the horizontal mass-specific kinetic energy, and fr = 2Ωsin(ϕ), ft,n = 2Ωcos(ϕ)eϕ · et,n are

the Coriolis parameters. The values of the projections eϕ · et,n are already provided by the standard shallow-atmosphere

configuration of ICON, so they pose no additional problem. Here and in the following we will formulate the deep-atmosphere

equations as a modification of the shallow-atmosphere equations. This simplifies the comparison and corresponds actually to10

the way we have implemented the deep-atmosphere dynamics in ICON. For instance, we made use of the expansion of the

gradient in the local coordinate systems ∇ = et{a/r}∂/∂t+ en{a/r}∂/∂n+ er∂/∂r, if ∇ = et∂/∂t+ en∂/∂n+ ez∂/∂z

is its expansion under shallow-atmosphere approximation (with ∂/∂t and ∂/∂n denoting the horizontal derivatives along

great circle arcs under shallow-atmosphere approximation, i.e., r = a+ z ≈ a, and ez = er, ∂/∂z = ∂/∂r). So the factors {·}
become 1 under the shallow-atmosphere approximation. In addition, the underlined terms in Eqs. (9) and (10) are neglected in15

the shallow-atmosphere equations.

The velocity component vt is reconstructed diagnostically from vn (e.g., through an interpolation by radial basis functions).

The dissipative and diabatic processes summarized in the terms ρ−1F andRQ/(cvcpρθ) in Eqs. (1) and (3) are not modified

for the deep atmosphere. Their modification for spherical coordinates would have introduced numerous additional metric terms

into the governing equations (compare e.g. Baldauf and Brdar, 2016), whose rigorous implementation into the dynamical core20

would cause considerable additional computational costs, which are not affordable for us for the time being.

2.1.2 Numerical implementation

A thorough description of the spatial and temporal discretization of the governing equations used in ICON can be found in

Zängl et al. (2015), and for development stages of ICON in Bonaventura and Ringler (2005); Wan (2009) and Wan et al. (2013).

Here, we will focus only on those elements of the spatial discretization that are affected by the deep-atmosphere modifications.25

First we would like to point to an important simplification, which we have done in our implementation of the deep-

atmosphere dynamics into ICON. Since ICON is used for operational NWP at DWD, a key criterion for new developments

to be integrated into the dynamical core is computational efficiency (of course, this criterion applies to climate models as

well). For this reason priority is given to efficiency over accuracy, where we assume this to be acceptable. Where possible the

deep-atmosphere dynamics are realized by modification factors to the existing terms of the shallow-atmosphere dynamics. In30

addition, topography is not taken into account by the deep-atmosphere modification, which, for instance, means that the dy-
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namics in a cell of the first grid layer above the Himalaya experience the same deep-atmosphere modification as the dynamics

in a cell above the ocean surface. This simplification, albeit the most severe one, has many advantages. First we avoid the com-

plicated calculations of the geometric measures of a cell (e.g., its volume and surface areas) in spherical geometry, if they are

distorted by topography and lose the center of Earth as their center of curvature. Second the above mentioned deep-atmosphere

modification factors depend only on height, which saves a considerable amount of memory and computational cost. Since to-5

pography imprints on the grid layers only up to a certain height in ICON (typically up to 16 km), the errors introduced by this

measure are assumed to be relatively small. For instance, the difference of a typical grid cell volume at mean sea level and at

16 km is of the order of a few permilles in the spherical geometry. Furthermore the mass conserving property of the dynamical

core of ICON is not affected by our simplification.

We start with the modification of the gravitational acceleration (Wood and Staniforth, 2003)10

g→ g
{a
r

}2

, (11)

with the modification factor parenthesized by braces. The formula (11) enters (10) only implicitly via the hydrostatic back-

ground state. For its computation (11) is used only once during model initialization. Next, we consider the gradient in edge

normal and tangential directions

gradt,n(χ) =
∆χ

∆t,n

{a
r

}
, (12)15

where χ stands for the mass-specific horizontal kinetic energy Kh and the Exner pressure π in Eq. (9), and the vertical velocity

w in Eq. (10). ∆χ/∆t,n denotes the gradient as it is computed under shallow-atmosphere approximation. The factor a/r

derives from the modification of the length of horizontal distances l→ l{r/a}. Like all other modification factors, it is pre-

computed during model initialization for the vertical positions, where the gradients have to be evaluated during run time.

Another quantity the computation of which has to be modified for the deep atmosphere is the vertical vorticity component ζ20

on the left-hand side of Eq. (9). ζ is computed at the vertices of the triangular cells and then interpolated to the edge centers,

where vn is defined. This allows to compute the vorticity from the vn using the Stokes theorem

ζ =

(
1

Av

ne∑
i=1

vn,ild,ifo,i

){a
r

}
, (13)

where Av is the area of the hexagonal or pentagonal cells centered at the vertices, which form the dual cells to the primal

triangular cells by connecting the mass points of the triangular cells around a vertex, see Fig. 2 in Wan et al. (2013). In25

addition, ne is the number of the dual edges of length ld around the vertex, crossing the primal edges of the triangular cells

perpendicularly (ne = 6, or 5 for the 12 pentagon points of the grid, respectively). Finally, fo is an orientation factor, which is 1

or −1 according to whether en is parallel or antiparallel to the cyclonic direction of the integration path. Again, the first factor

on the right-hand side of Eq. (13) is the vorticity under shallow-atmosphere approximation, thus the geometric measures Av

and ld are those at r = a. The modification factor a/r results from the quotient ld/Av in spherical geometry, and is identical30

to the modification factor for the horizontal gradient (12). The Eqs. (2) and (3) are written in flux form, which guarantees
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mass conservation up to machine precision, and the conservation of heat as far as advective fluxes are concerned. The deep-

atmosphere modifications of the flux divergences result from the quotient of area and volume A/V for the 5 surfaces of a

triangular cell. The modification of a cell volume itself reads

V =Ac(ztop− zbot)

{
r2bot + rbotrtop + r2top

3a2

}
, (14)

where V =Ac(ztop− zbot) is the cell volume under shallow-atmosphere approximation, with the cell surface area Ac, and5

rbot = a+ zbot, rtop = a+ ztop are the radii of the cell’s bottom surface and top surface, respectively. This modification is

required, for instance, if global integrals of mass and other quantities are computed for diagnostic purposes. Together with the

area modification for the three side faces and the bottom and top surfaces

As = lp (ztop− zbot)

{
rbot + rtop

2a

}
, (15)

Abot,top =Ac

{rbot,top

a

}2

, (16)10

where lp is the length of the primal edges, we find for the flux divergences

div(ξ) =

(
1

Ac

3∑
i=1

ξilp,ifo,i

)3

4

2a

rbot + rtop

[
1−

rbotrtop

(rbot + rtop)
2

]−1

+

ξtop

{
3

[
1 + rbot

rtop
+
(
rbot
rtop

)2]−1}
− ξbot

{
3

[
1 +

rtop

rbot
+
(
rtop

rbot

)2]−1}
ztop− zbot

. (17)

Here, ξi,top,bot denotes the scalar product of the flux density and en, or er at the respective cell face. The first term on the

right-hand side of Eq. (17) sums the fluxes across the side faces, where the orientation factor fo is either 1 or −1 according to15

whether en is parallel or antiparallel to the normal vector of the side faces from the point of view of the cell. The second term

sums the fluxes across the top and bottom surfaces.

The underlined terms in Eqs. (9) and (10) are new implementations in the dynamical core. Their discrete formulation closely

follows the formulation of structurally similar terms of the discrete shallow-atmosphere equations in Zängl et al. (2015).

The discretization employed in ICON necessitates the spatial interpolation of variables between cell center, edge midpoint,20

vertex and the center of the vertical cell interfaces (bottom and top surface, Zängl et al. (2015)), which could be affected

potentially when changing from a shallow- to a deep-atmosphere formulation. In the horizontal, linear, bilinear and area-

weighted interpolations are used primarily. These interpolations are assumed to take place on coordinate surfaces z = const., i.e.

planes in case of the shallow atmosphere (at least practically, but see Thuburn and White (2013) for the geometric implications

of the shallow-atmosphere approximation), and spherical shells in case of the deep atmosphere. This means that no explicit25

deep-atmosphere modification is necessary, because it would be the same for the respective geometric measures (distances,

areas) on a coordinate surface, which cancel each other in the interpolation. For the vertical interpolation between cell centers

and the cell interfaces a linear interpolation is used in case of the shallow atmosphere. We interpret this as an interpolation
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along the coordinate lines λ,ϕ= const. in case of the deep atmosphere, so that we can avoid deep-atmosphere modifications in

this case, too. If we interpret the vertical interpolation, e.g., as a volume-weighted average, a modification would be necessary.

Apart from the afore-mentioned standard interpolations, ICON makes use of an upwind-biased reconstruction of density and

potential temperature from cell centers to the centers of the (horizontal and vertical) interfaces. These reconstructions enter for

instance the divergence of mass and heat flux (Zängl et al., 2015), and make use of a Taylor-expansion up to the first order5

along backward trajectories, which requires to modify the corresponding gradient according to Eq. (12).

For the time integration a two-time-level predictor-corrector scheme is used, which is not directly affected by deep-atmosphere

modifications. However, certain terms on the right-hand side of the governing equations, which are associated with vertical

sound wave propagation, are treated implicitly in the temporal discretization, in order to allow reasonable time steps. This

directly affects the discretized forms of Eqs. (3) and (10), which can be combined to yield a diagnostic, elliptic equation for the10

vertical wind w for each vertical grid cell column of the model atmosphere (Zängl et al., 2015). Thus, some of the coefficients

of this equation have to be complemented by the corresponding deep-atmosphere modification factors.

2.1.3 Model initialization

One motivation to implement the deep-atmosphere dynamics in ICON is to increase the accuracy of simulations with a model

top &100 km. However, initial data are usually only available up to altitudes of about 70 to 80 km. For instance, the model top15

is at 75 km in the operational NWP with ICON at DWD, and the IFS model of the ECMWF, whose operational analysis data

can be used to initialize ICON, has its model top at 0.01 hPa 2. To our knowledge no regular and reliable measurements with

global coverage are available for the (lower) thermosphere, which could be used for some kind of data assimilation. Therefore,

climatological tables appear as a possible second choice. However, the momentary state at a point in the atmosphere generally

deviates more or less strongly from the state given by any climatology. The model thermosphere initialized with climatological20

data will consequently undergo an adjustment process during some spin-up phase. With this uncertainty in mind, we decided to

begin with a very simple approach. The state of the lower and middle atmosphere is initialized by an IFS analysis. In order to

complement this by a state for the upper atmosphere, a mean vertical temperature profile (neglecting horizontal and temporal

variations) obtained from Bates (1959); Hedin (1983); Fleming et al. (1988) is used. It provides the basis to obtain first the

pressure from the hydrostatic balance, followed by a computation of the horizontal wind from the geostrophic balance. The25

technical details can be found in appendix A. Later on, this simple approach could be improved on by using a climatology

generated by UA-ICON itself.

2.2 Upper-atmosphere physics

A new physics package, which parameterizes processes specific to the upper atmosphere has been developed for UA-ICON.

This package, referred to as the UA package, can be called in combination with either the NWP package or the ECHAM30

package. The processes taken into consideration in the UA package are summarized in Table 1.

2See https://www.ecmwf.int/en/forecasts/documentation-and-support (accessed October 2018).
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Table 1. Physical parameterizations implemented in the UA package of UA-ICON shown with references and heights, above which their

computation starts.

Process Reference Start height

above mean sea level (km)

molecular diffusion Huang et al. (1998);

Banks and Kockarts (1973)

75

frictional heating Gill (1982) 85

ion drag and Joule heating Hong and Lindzen (1976) 80

gravity wave turbulent mixing Hines (1997a, b) —

ultraviolet: Schumann-Runge bands and continuum (O2) Strobel (1978) 50

extreme ultraviolet (N2, O, O2) Richards et al. (1994) 90

non-LTE infrared cooling (CO2, NO, O3) Fomichev and Blanchet (1995, 1998);

Ogibalov and Fomichev (2003)

65

19.25

infrared cooling at 5.3 µm (NO) Kockarts (1980) 60

chemical heating climatology from HAMMONIA 70

The processes are categorized into 3 groups, kinetics, radiation and chemical heating, as described below. Most of the param-

eterizations are adopted from the HAMMONIA model, a spectral model based on ECHAM5 (Roeckner et al., 2006), covering

the atmosphere up to the thermosphere (1.7× 10−7 hPa, ∼ 250km). A detailed description of the physics parameterizations

used in HAMMONIA can be found in Schmidt et al. (2006), thus here we keep the description brief, only noting important and

differing treatments. An overall difference is that in UA-ICON all the parameterizations are implemented such that the com-5

putation only starts at a certain altitude above which the forcings are expected to become relevant (see Table 1). This increases

computational efficiency significantly.

2.2.1 Kinetics

Above the mesopause, molecular diffusion, which is negligible at lower altitude, becomes significant. In fact, there the down-

ward transport of heat by molecular diffusion appears as a strong cooling in balance with the strong solar heating. Hence,10

it is of primary importance to parameterize molecular processes in this region of the upper atmosphere. Molecular transport

of heat, momentum and tracers are parameterized in the UA package following Huang et al. (1998) and Banks and Kockarts

(1973), as in HAMMONIA. The computation starts at 75 km. Besides direct transport of heat by molecular diffusion, the mo-

mentum transport also leads to energy deposition in the form of heat, known as frictional heating. In the UA package this is

parameterized following Gill (1982). The computation starts at 85 km.15

In the mesosphere and lower thermosphere, unlike in lower layers, a larger number of air particles are ionized and thus

aligned with the electromagnetic field of the Earth. This produces a force on the neutral mass flow, its tangential and normal
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components known as the ion drag and the Lorenz force, respectively. Joule heating is produced by the ion drag as well. In

UA-ICON, as in HAMMONIA, this effect is parameterized following the simple Hong and Lindzen (1976) approach. The

computation starts at 80 km.

A large portion of gravity wave momentum energy is deposited and transferred to turbulent energy near the mesopause,

where turbulence is otherwise very weak. The turbulent mixing effects induced by gravity waves can be estimated using the5

Hines (1997a, b) parameterization included in the ECHAM package. This option is switched off in standard ICON simulations.

In UA-ICON simulations, however, we enable the calculation and pass the computed turbulent diffusion coefficient to the

turbulent mixing subroutine to account for gravity wave-induced turbulent mixing.

2.2.2 Radiation

In standard ICON, the PSrad radiation package (Pincus and Stevens, 2013) is employed, which is itself an extension to the10

RRTMG model (Mlawer et al., 1997; Iacono et al., 2008). The shortwave component of the radiation package covers wave-

lengths of the solar spectrum longer than 200 nm. This is a sufficient bandwidth only up to about the mesopause, beyond which

radiative heating in the ultraviolet and extreme ultraviolet frequencies become dominant. In the UA package, starting from

50 km, ultraviolet solar forcing for the O2 Schumann-Runge bands (SRB; 175 nm to 205 nm) and continuum (SRC; 125 nm

to 175 nm) is calculated based on the model of Strobel (1978). Efficiency factors multiplied to the SRBC heating rates account15

for the loss of internal energy due to airglow processes and are taken from Mlynczak and Solomon (1993). For the extreme

ultraviolet (EUV; 5 nm to 105 nm) solar forcing, starting above 90 km, a model based on Richards et al. (1994) taken from

HAMMONIA is currently used. Efficiency factors multiplied to the EUV heating rates are based on Roble (1995). Their values

also account for the energy loss due to radiative cooling in the 5.3 µm NO band. Since this process is explicitly calculated in

our model (see below), a factor of 1.33 is multiplied to these efficiency factors (see Richards et al., 1982). Some additional20

adjustments to the PSrad/RRTMG shortwave radiation are necessary in UA-ICON due to the introduction of chemical heating.

More details on this are given in section 2.2.3.

The longwave component of PSrad/RRTMG covers terrestrial wavelengths shorter than 1 mm. This bandwidth is still valid

at thermospheric heights, yet a few important additions have to be made:

1. The usual assumption of local-thermodynamical-equilibrium (LTE) does not hold above the mesopause, thus non-LTE25

effects must be taken into account. As in HAMMONIA, non-LTE infrared cooling by O3 and CO2 is calculated from

the parameterization of Fomichev and Blanchet (1995) with the modifications of Fomichev and Blanchet (1998). The

calculation starts at 65 km, and the calculated values are multiplied by a scaling factor α equaling 0 at 65 km and linearly

growing to 1 at 75 km. Correspondingly, the longwave radiation computed by PSrad/RRTMG is scaled with the factor

1−α, effectively discarding it above 75 km.30

2. As in HAMMONIA, a parameterization of CO2 non-LTE absorption in the near infrared following Ogibalov and

Fomichev (2003) is employed. The computed values are ignored below 19.25 km and fully considered above 24.5 km.

3. NO cooling at 5.3 µm is calculated utilizing the parameterization from Kockarts (1980). The computation starts at 60 km.
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Figure 2. Zonal mean chemical heating rates (K/day) averaged for the month of January from HAMMONIA simulations. Such monthly and

zonal means are prescribed in UA-ICON.

A noteworthy difference between ICON and HAMMONIA is that ICON is a non-hydrostatic model on height levels, whereas

HAMMONIA is hydrostatic on hybrid pressure levels. In HAMMONIA, for the use in the radiation computation, number

densities of radiatively active tracers are calculated based on the mass of air in a given layer which is derived from pressure

differences between the upper and lower surfaces of a layer. This approach is only valid under the assumption of hydrostatic

balance, since otherwise pressure is not guaranteed to decrease strictly monotonically with increasing altitude. Therefore, in5

the UA package the computation of number density for the radiation parameterization is utilizing the mass of air, which is a

globally conserved quantity in ICON.

Moreover, HAMMONIA has the upper boundary of its top pressure level at 0 hPa, effectively covering the whole atmo-

sphere. The height levels of ICON, on the other hand, cover a finite range and unavoidably ignore the atmospheric air mass

above the model lid. The effect of this missing amount of air on radiative fluxes is ignored in UA-ICON.10

2.2.3 Chemical heating

Chemical heating, i.e., the release of heat due to recombination reactions between atoms or radicals produced as a result of

photolysis, becomes important in maintaining the upper atmospheric thermodynamic balance, where the photolysis products

can travel a long distance before recombining. HAMMONIA employs a condensed version of the MOZART3 chemistry model

(Kinnison et al., 2007) to explicitly compute chemical heating online. In our case, however, given the finer target resolution15

(from 160 km down to a few tens of kilometers) and the central goal of studying gravity waves, using a coupled chemistry

model is overly expensive. Therefore, we deploy a simpler strategy of prescribing monthly zonal-mean climatological chemical

heating rates from a 35-year HAMMONIA simulation with constant present-day boundary conditions. As an example, the

chemical heating rates for January are shown in Fig. 2. Technically, below 70 km all heating is calculated in the PSrad/RRTMG

shortwave radiation code and no chemical heating rates are prescribed, whereas above 80 km full chemical heating rates20

are used and the radiative heating provided by the PSrad/RRTMG scheme is reduced by 23%, in order not to count solar
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energy twice. This approximation accounts for the energy used to break the chemical bond of ozone. Additionally, height

dependent efficiency factors from Mlynczak and Solomon (1993) are applied at these altitudes. This approach was also used

in HAMMONIA (Schmidt et al., 2006). Between 70 km and 80 km the two heating sources are linearly merged.3

3 Model evaluation

3.1 Idealized test cases5

To test the deep-atmosphere implementation in the dynamical core, we used two test cases. In the first test case the propaga-

tion of a sound wave is considered, for which an analytical solution (of the linearized equations) is available. It is aimed at

testing especially the accuracy of the spherical geometry in its imprint on the grid cells and the corresponding modification

factors described in section 2.1.2, and at testing the metric terms and the complete Coriolis acceleration in the components

of the momentum equation (9) and (10). The second test case is the Jablonowski-Williamson baroclinic instability test case10

(Jablonowski and Williamson, 2006) in its extension for deep-atmosphere dynamical cores by Ullrich et al. (2014). It reveals

if the height dependence of gravity is properly implemented and maintains the hydrostatic background state of the test case

atmosphere (especially, if gravity enters the momentum equation only implicitly, as in (10)). In addition, the performance of

the entire dynamical core is tested, when it comes to reproducing the development of the baroclinic wave. Both test cases make

use of the small-Earth approach of Wedi and Smolarkiewicz (2009) to pronounce deep-atmosphere effects.15

3.1.1 Sound wave test case

The particular motivation for this first test case is that an analytical solution is available to which the numerical solution can be

compared. We have developed this test case with a method originally proposed by Läuter et al. (2005) for the shallow-water

equations on the sphere. The method was developed further for the shallow- and deep-atmosphere equations e.g., by Staniforth

and White (2008); Baldauf et al. (2014). An atmosphere at rest in the absolute frame is considered. If a non-trivial, analytical20

solution is known for this case, it can be transformed into a rotating frame (e.g., regarded as a rotating Earth slipping through

the air without exchange of tangential momentum). Depending on the solution in the absolute frame being either stationary

or time-dependent, potentially all aspects of a dynamical core can be tested. However, a disadvantage of this method is that

the centrifugal acceleration has to be taken into account explicitly in the dynamical core (see Eq. (1)). Some aspects of this

transformation method are shown in appendix B1, and a thorough mathematical description can be found in the literature cited25

above.

Given a solution in the absolute frame, it appears to be advected with v =−vF =−Ω× (X −A) from the perspective of

the rotating frame (with the center of Earth A and an arbitrary point X not coincident with A). In practice this means that the

3 After finishing the simulations presented in Section 3.2, we discovered that there is a bug in the reduction of heating rates calculated in the PSrad scheme

necessary to account for chemical heating and energy loss due to airglow, which is fully applied at altitudes above 80km. The reduction was about twice as

large as intended, leading to too little solar heating in particular in a region close to 80km. This will be fixed in future model versions.
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Figure 3. Schematic illustration of the initial state of the spherical sound wave (where the blue and red color shading indicates the positive

and negative values of the pressure perturbation associated with the sound wave). The small-Earth (without topography) is depicted in gray,

and the black circles represent the model bottom and top.

solution has merely to be rotated by an angle −Ωt about an axis being parallel to Ω and crossing A. Therefore, we will direct

our attention to the solution to be rotated, in the following.

Baldauf et al. (2014) derived analytical gravity and sound wave solutions for the linearized deep-atmosphere equations. How-

ever, certain terms of the equations had to be omitted in order to allow the solution to be expanded in a system of orthonormal

basis functions. Although these terms were shown to be only of second order, their effects are not controllable in a dynamical5

core, where the omission of most of the corresponding discretized terms is unfeasible without greater effort. Therefore, it would

be desirable to find solutions for the linearized equations with the omitted terms restored, or alternatively with only those omis-

sions retained, which can be realized in a dynamical core without greater effort. The fact that the gravity −g(a/r)2(X−A)/r

imprints a spherical symmetry on the equations with its distinct point A turns out to be a severe obstacle to that aim. So we

decided to switch off gravity (which in model practice means to set the constant parameter g to a very small value > 0, since10

divisions by g are used throughout the model, especially in the physics parameterizations). This greatly simplifies the problem,

but has the consequence that the test case makes no statement about the implementation of gravity. Under these circumstances

the atmosphere, enclosed between the spherical boundaries of the model bottom and top, is isotropic, with the constant pressure

p0 and temperature T0. As long as the sound waves, propagating with the speed of sound cs =
√

(cp/cv)RT0, do not interact

with the boundaries, they are not “aware” of the spherical shape of the atmosphere as a whole. Therefore the challenge for15

the model is to properly simulate the sound wave propagation on the anisotropic spherically curved grid. For this test case we

consider a spherically symmetric acoustic wave, shown schematically in Fig. 3, which consists of an outward propagating part,

only. The derivation is shown in appendix B2, and the solution for the pressure perturbation p′ = (cp/R)(p0/π0)π′ associated
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with the sound wave reads

p′(x,t) = δp

{
x− cst
x

sin

(
π
x− b1− cst
b2− b1

)
sin

(
2πn

x− b1− cst
b2− b1

)

+
b2− b1
x

 sin
(
π (2n− 1) x−b1−cstb2−b1

)
2π (2n− 1)

−
sin
(
π (2n+ 1) x−b1−cstb2−b1

)
2π (2n+ 1)

} [Θ(x− b1− cst)−Θ(x− b2− cst)] , (18)

where δp= (cp/R)(δT/T0)p0 denotes the pressure amplitude of the wave, determined by a temperature amplitude δT in our

implementation, x= |X −B| is the distance from the center of the spherical wave B, x= b1 > 0, and x= b2 > b1 are the5

radial boundaries within which the wave has a non-vanishing amplitude at t= 0 (see Fig. 3), and n is the number of wave

crests (in this work we consider only n= 1). In addition, Θ denotes the Heaviside step function defined as (e.g., Bronstein

et al., 2001)

Θ(ξ) =

0, for ξ < 0

1, for ξ ≥ 0
. (19)

The solution (18) is only valid until the first reflection occurs. Of course, sound waves have been thoroughly investigated in10

the literature and solutions to the sound wave equation are all but new (e.g., Kirchhoff, 1876), but since their propagation in

combination with the method of Läuter et al. (2005) involves potentially all parts of a dynamical core (except for gravity),

we found this test useful, also in view of the relative scarcity of test cases dedicated to deep-atmosphere dynamical cores in

the literature. In order to highlight the effect of the spherical curvature (on the model grid) the radius of Earth can be rescaled

a→ η1a, (η1 < 1). This is the small-Earth approach proposed by Wedi and Smolarkiewicz (2009) (see also Baldauf et al., 2014;15

Ullrich et al., 2014). The model time step is rescaled accordingly in order to account for the correspondingly smaller mesh size

of the horizontal grid. Furthermore it might be advantageous to rescale the angular velocity of the Earth Ω→ η2Ω, in order to

control the velocity v =−vF with which the sound wave is advected. Further details on the implementation can be found in

appendix B2. Apart from that, we followed closely the guidelines given by Baldauf et al. (2014) for the implementation into

UA-ICON.20

We envisaged two concrete test configurations: The first without rotation (η2 = 0), to simulate the sound wave propagation

in the absolute frame, and the second with rotation (η2 > 0), to test if the dynamical core is able to maintain the balance of

the background velocity in the rotating frame dvF /dt+ 2Ω×vF + Ω× [Ω× (X −A)] = 0, so as to advect the sound wave

in a shape-conserving way. Further parameter settings are listed in Table 2. The temperature amplitude of the sound wave

δT was chosen small enough that its non-linear dynamics as computed by the dynamical core is negligibly small (an initial25

amplitude of δT = 0.1K appears large when compared, e.g., to typical values used in Baldauf et al. (2014), but even for larger

amplitudes, ∼1 K, the numerical solution of UA-ICON was in relatively good agreement with the analytical solution of the

linearized equations).

A height-longitude cross section at the equator of the numerical solution from UA-ICON, the analytical solution, as well as

the difference between the two for both configurations are shown in Fig. 4, shortly before the periphery of the sound wave would30
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Table 2. Parameters used for the sound wave test case with UA-ICON. (Where necessary, a comma separates different values for the two

configurations differing in their angular velocity Ω.)

Temperature of atmospheric background state T0 250 K

Pressure of atmospheric background state p0 1000 hPa

Temperature amplitude of sound wave δT 0.1 K

Initial radial boundaries of sound wave (b1;b2) (2000 m; 30000 m)

Location of sound wave center B→ (λ;ϕ;z) (180◦; 0◦; 50000 m)

Number of sound wave crests n 1

Rescale factor for radius of Earth η1 1/66

Rescale factor for angular velocity of Earth η2 0, 9.38

Height of model top Htop 100000 m

Horizontal ICON grid RnBk R2B6 (mean horizontal mesh size: ∆ϕ= 0.355◦)

Constant vertical grid layer thickness ∆z 555.6 m

Time step ∆t η1 · 13.2s

Gravitational acceleration g 10−30 m s−2

impinge on the bottom and top boundaries. The angular velocity of the second configuration was chosen such that the center

of the sound wave, B, would be advected by the zonal background wind u(B) =−uF (B) =−Ωr cos(ϕ)|B =−100m s−1

in the rotating frame. This is close to the value used by Baldauf et al. (2014) in their test scenario (C). We use a time step of

∆t= η1 · 13.2s for both configurations. It should satisfy the CFL criterion in both configurations. The maximum propagation

velocity in the first configuration is |v|max = cs = 317m s−1, whereas in the second configuration it is |v|max = |uF |max+cs =5

134m s−1 + 317m s−1 = 451m s−1.

Shape and amplitude are relatively well captured by the numerical solution in both configurations, with the difference in

amplitude to the analytical solution being about one order of magnitude smaller than the magnitude of the wave’s pressure

perturbation itself. However, in the second configuration, where the sound wave is advected westward while radially propagat-

ing, the magnitude of the error has increased slightly, and the symmetry of the pressure difference with respect to a vertical10

axis crossing the center of the sound wave is lost due to the horizontal advection. The amount by which symmetry is lost is

a measure for the phase error of the horizontal advection implementation (e.g., Skamarock and Klemp, 2008). The pressure

difference in the first configuration not being radially symmetric with respect to the center of the sound wave is probably due

to at least three anisotropies between the vertical and the horizontal: first, the horizontal and vertical mesh sizes ∆x= 597.8m

and ∆z = 555.6m slightly differ. Second, the extension of a grid cell increases with height in the spherical geometry, and third,15

the horizontally explicit-vertically implicit scheme employed in the dynamical core of ICON introduces an anisotropy as well.

We repeated the simulation for different grid resolutions and computed the L2-norm and L∞-norm of the pressure difference

between the numerical and analytical solutions on the entire circum equatorial height-longitude cross section, of which a part

18



Figure 4. Pressure perturbation associated with the spherical sound wave for a height-longitude cross section at the equator, and at time

t= 60s. Upper row: the numerical solution from a simulation with UA-ICON on a R2B6L180-grid is in color (where L denotes the number

of vertical grid layers), isolines depict the analytical solution (solid lines denote positive values, dashed lines negative values, the zero contour

is omitted). The parameters of the sound wave are listed in Table 2. Left: configuration without rotation (Ω = 0). Right: configuration with

rotation (Ω = η2 · 7.29× 10−5 rad s−1 = 6.84× 10−4 rad s−1). Lower row: pressure difference from subtracting the numerical from the

analytical solution for the two respective configurations in the upper row. (Due to the compression of the circular sector into the rectangular

plot, the sound wave appears to have an oval shape.)

is plotted in Fig. 4, and at time t= 60s, according or in analogy to the formula employed by Baldauf and Brdar (2014, p.

1983). All pressure values entering the computation of the two norms are weighted equally, i.e., no weighting with the cell

volume is applied (in which case the two norms would not be with respect to the pressure difference ∆p, but with respect to a

work-like quantity ∝∆pV ). The results and some further information on the employed grids are shown in Fig. 5. In the first

configuration, without rotation, the convergence rate is dominated by a second-order behaviour, although a relatively small5

first-order component seems to be present, especially in case of the L∞-norm. In the second configuration, with rotation, the

convergence rate seems to start with a second-order behaviour for the lower grid resolutions, and changes into a first-order

behaviour for the higher resolutions. This is in agreement with the findings of Baldauf et al. (2014) for their test scenario
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(a) (b)

Figure 5. The L2-norm and L∞-norm of the difference between the numerical solution and the analytical solution of the pressure field

at the height-longitude cross section at the equator, and at time t= 60s. Left: configuration without rotation (Ω = 0). Right: configuration

with rotation (Ω = η2 · 7.29× 10−5 rad s−1 = 6.84× 10−4 rad s−1). The norms are plotted for the grids: R2B5L90 (∆x= η1 · 78.9km,

∆z = 1111.1m, ∆t= η1 ·26.4s), R3B5L136 (∆x= η1 ·52.6km, ∆z = 735.3m, ∆t= η1 ·17.6s), R2B6L180 (∆x= η1 ·39.5km, ∆z =

555.6m, ∆t= η1 · 13.2s), R3B6L277 (∆x= η1 · 26.3km, ∆z = 361.0m, ∆t= η1 · 8.8s), and R2B7L360 (∆x= η1 · 19.7km, ∆z =

277.8m, ∆t= η1 · 6.6s), where L denotes the number of vertical grid layers, ∆x, ∆z and ∆t are the mean horizontal mesh size, the grid

layer thickness, and the time step, respectively. The dashed and solid lines indicate O(∆x) and O(∆x2) behaviour, respectively.

(C) (compare their Fig. 7). The reason for the first-order convergence in the presence of a background wind is still unknown.

Nevertheless, we regard the agreement between the analytical and numerical solutions in both configurations as satisfactory,

as we assume a critical deficiency in the deep-atmosphere modification of the dynamical core to leave a much more distinct

fingerprint in the numerical solution.

3.1.2 Jablonowski-Williamson baroclinic instability test case5

The previous test case focused on one particular emergent structure of the atmosphere. However, if we turn our focus to the

atmospheric features on the synoptic scale, other structures, such as baroclinic waves, are much more important than sound

waves. The Jablonowski-Williamson baroclinic instability test case (Jablonowski and Williamson, 2006) is a standard test

to investigate the performance of atmospheric models in representing a key feature of midlatitude dynamics. It consists of

a baroclinically unstable atmosphere in hydrostatic and geostrophic balance to which a perturbation is added which triggers10

the instability. This test case reveals on the one hand, if the model is able to maintain the hydrostatically and geostrophically

balanced background state during the first days of the wave evolution, when its amplitude is still relatively small, and on the

other hand, how the model performs in reproducing the amplitude growth of the wave and its shape. However, a disadvan-

tage of this test is that no analytical solution for the problem is known, so that the evaluation has to be based on a model
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intercomparison. Ullrich et al. (2014) have extended this test case for deep-atmosphere dynamical cores and introduced some

further improvements to the original formulation. The approach of the small-Earth is employed to highlight the differences

between the shallow- and the deep-atmosphere dynamics. The rescale factors are η1 = 1/20 and η2 = 20, for the earth radius

and angular velocity, respectively. For the test with UA-ICON we used a R3B4-grid which provides a horizontal mesh size of

∆ϕ= 0.95◦. This is close to the value used for the production of the numerical benchmark solution in Ullrich et al. (2014).5

The vertical grid is streched, with layer thicknesses increasing from the model bottom to the model top at 30 km. Following

Ullrich et al. (2014), we use nlev = 30 levels, however, the vertical stretching of the ICON grid differs from their formula (28)

zj =Htop

√
µ
(
nlev−j+1
nlev

)2
+ 1− 1

√
µ+ 1− 1

, (20)

where zj denotes the height of the j-th interface separating the layer j−1 from the layer j. The index j counts from the model

top to the model bottom, with z1 =Htop and znlev+1 = 0. With a value of µ= 15 for the flattening parameter, the lowermost10

and uppermost layers have a thickness of znlev ≈ 82m and Htop− z2 ≈ 1249m, respectively. For ICON the formula reads

zj =Htop

{
2

π
arccos

[(
j− 1

nlev

)σ]}λ
. (21)

A value of 1 is used for the stretching parameter σ, and a value of 3.16 follows for the exponent λ from (21), if we require a

thickness of znlev = 100m for the lowermost layer. This setting results in a thickness of Htop− z2 ≈ 1969m for the uppermost

layer. We assume that the differences between the vertical grids (20) and (21) are negligible, since tests with nlev = 60 and15

nlev = 120 revealed that the numerical solution is largely converged on the vertical grid of ICON for nlev = 30 (not shown).

The results for day 8 and 10 of the simulation with UA-ICON are shown in Fig. 6 (upper row). In order to study the

convergence behavior with regard to the horizontal grid resolution, we doubled the same twice (see Fig. 6, the middle and

lower rows). First of all we can state that UA-ICON is able to maintain the hydrostatic and geostrophic balances of the

background state in the first days of the simulation relatively well. This indicates, for instance, that the vertical variation of the20

gravitational acceleration is adequately implemented. Second the amplitude and shape of the baroclinic wave, as they show

up in the surface pressure in Fig. 6, compare relatively well to the benchmark solution of Ullrich et al. (2014, their Fig. 9),

and also to the solution of Wood et al. (2014, their Figs. 4 and 5). However, some differences can be recognized, especially in

the tail of the baroclinic wave. The convergence tests revealed that the numerical solution is largely converged with regard to

the horizontal resolution in the zonal range from 120E to 240E (120W), say. As mentioned before, the tail of the baroclinic25

wave in the zonal range from about 60E to 120E shows a greater variation between the different horizontal resolutions (Fig.

6). To see if the resolution R3B6 is converged in that regard, we tested the R3B7-grid as well. However, it developed a

numerical instability in the tail region of the baroclinic wave around day 8. The reason for the instability has not yet been

clearly identified, but we assume that the non-traditional part of the Coriolis acceleration (see Eqs. (9) and (10)) may play a role

in its development, as tests, in which this part was switched off, indicate. This might result from the fact that our discretization30

does not satisfy [v · (2Ω×v)]discretized formulation = 0, i.e. it violates momentum and energy conservation. A formulation of the

Coriolis acceleration that satisfies these conservation principles is not possible within the discrete formulation of Eq. (1)
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Figure 6. Surface pressure (in hPa) at days 8 (left) and 10 (right) from UA-ICON simulations of the Jablonowski-Williamson baroclinic

instability test for deep-atmosphere dynamical cores. Results from three different horizontal grid resolutions are shown: R3B4 (∆ϕ= 0.95◦,

∆t= η1 · 96s), R3B5 (∆ϕ= 0.48◦, ∆t= η1 · 48s) and R3B6 (∆ϕ= 0.24◦, ∆t= η1 · 24s), where ∆ϕ denotes the mean horizontal mesh

size and ∆t is the dynamical time step. The vertical resolution is the same for all simulations: 30 levels (L30) up to a model top at 30 km.

The grid is vertically stretched, from a thickness of ∆zmin = 100m for the lowermost level up to ∆zmax = 1969m for the uppermost level.

used in ICON for reasons discussed by Gassmann (2011, 2018). In simulations of the standard Earth, the violation of the

conservation principles is typically so small that it does not pose a problem. In contrast, the small-Earth approach seems to

amplify the violation to such an extent that numerical instabilities may be triggered under certain conditions (e.g., a relatively

high horizontal grid resolution in this case). However, a clear statement about this is difficult, since the stationary analytical

atmospheric background state prescribed for this test case follows from balances that include the non-traditional part of the5

Coriolis acceleration. As a consequence, the model atmosphere undergoes an adjustment process right away from the beginning

of the simulation, if this part is switched off. This makes it difficult to evaluate, if the instabilty is absent in the considered time

period because of the disabled Coriolis acceleration, or because of the atmospheric state being changed by the adjustment

process. Nevertheless, given that the instability is absent in standard Earth simulations and measures against it could at most

treat the symptoms, not the cause (leaving aside an extensive reformulation of the dynamical core that satisfies the afore-10

mentioned conservation principles), we decided to postpone further investigations. Apart from that, the comparison of Fig. (6)
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with the benchmark from Ullrich et al. (2014) makes us confident that our deep-atmosphere implementation is satisfactory for

our purposes.

3.2 Climatological test cases

3.2.1 Simulation setup

For the evaluation of the model climatology, a UA-ICON simulation with the upper-atmosphere physics coupled to the ECHAM5

physics package has been performed. The deep-atmosphere dynamics is also switched on. The model was integrated for 20

years with climatological boundary conditions: sea surface temperature and sea ice concentration are averaged for each calendar

month from the PCMDI AMIP dataset (Taylor et al., 1998) version 1.1.2 over 1979–2014; concentrations of radiatively active

gases, namely O3, CO2, O2, O, NO, CH4, N2O, are averaged in the same manner from a 35-year HAMMONIA simulation

with fixed present-day boundary conditions; concentrations of CFC-11 and CFC-12 are fixed at 214.5 pptv and 371.1 pptv,10

respectively; the 1865 condition of the tropospheric background aerosol from the MAC-v1 dataset (Kinne et al., 2013) is used;

no volcanic or anthropogenic aerosols are used; land-surface parameters for the parameterization of the effects of sub-grid

scale orography and for the embedded version of the JSBACH land-surface model (v4; Giorgetta et al., 2018) are fixed as

described by Giorgetta et al. (2018). The total solar irradiance is held constant at 1361.371 W m−2, and the F10.7 index for the

calculation of EUV heating rates is fixed at 150 sfu (1sfu = 1× 10−22 W m−2 Hz−1).15

The simulation uses the R2B4 grid, which has a horizontal mesh size of about 160 km. In the vertical, the model uses 120

layers for the altitude range from the surface up to 150 km. Rayleigh damping (Klemp et al., 2008; Zängl et al., 2015) is

applied above 120 km with a maximum damping coefficient of 10 s−1 at the top. Such strong damping is necessary to allow for

a reasonable computational time step despite the occasionally very large vertical velocities in the thermosphere. The model was

integrated with a (physical) time step of 4 min and 5 dynamical substeps each physical time step. Radiation parameterizations20

– i.e. the PSrad radiation scheme of ICON, the shortwave radiation in the SRBC and EUV, the non-LTE longwave radiation, the

NO heating – are evaluated once every hour, whereas all other parameterizations are evaluated every time step. For all physics

parameterization we apply the "all-fast" treatment described by Giorgetta et al. (2018). For non-orographic gravity wave drag,

a cutoff maximum vertical wavelength of 12 km is applied, thus prohibiting long gravity waves. Disabling these long gravity

waves is physically sensible, as they are believed to strongly propagate horizontally and be subject to internal reflection before25

reaching the mesopause (Hines, 1997b).

Companion simulations have been performed with two ICON configurations using a standard model lid at 80 km, Rayleigh

damping (maximum damping coefficient 1 s−1) applied above 50 km, and 100 vertical levels exactly following the lower part

of the vertical grid applied in the UA-ICON simulations. In the first configuration (referred to as ICON in the following)

the deep-atmosphere dynamics and the upper-atmosphere physics are disabled. All other numerical and physical settings are30

identical to the UA-ICON run. The second configuration (referred to as ICON(UA)) additionally has the deep-atmosphere

dynamics and upper-atmosphere physics enabled. With the help of these two configurations we can estimate, which of the
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Table 3. Major differences between the climatological test cases denoted UA-ICON, ICON, ICON(UA) and UAphys-ICON. (The abbrevia-

tions “SA” = shallow atmosphere and “DA” = deep atmosphere are used for the row “Dynamics”.)

UA-ICON ICON ICON(UA) UAphys-ICON

Model top (km) 150 80 80 150

Start height of sponge layer (km) 120 50 50 120

Dynamics DA SA DA SA

Upper-atmosphere physics Yes No Yes Yes

differences between ICON and UA-ICON are due to the vertical extension and which are related to the application of extended

physics and dynamics also below 80 km. The most important differences between these test cases are listed in Table 3.

Finally, a third configuration, denoted UAphys-ICON, has been simulated, which differs from the UA-ICON setup only

in the deep-atmosphere modification of the dynamics being switched off (see Table 3). We regard the comparison of UA-

ICON and UAphys-ICON as a possibility to quantify the difference between the shallow-atmosphere and the deep-atmosphere5

dynamics.

When comparing the experiments ICON and ICON(UA), with their model top at 80 km, to UA-ICON, with its model top at

150 km, one has to take into account, that the sponge layer affects the dynamics in ICON and ICON(UA) at an altitude range,

where there is no such impact in the UA-ICON configuration. As demonstrated by Shepherd et al. (1996), the distortion of

the model dynamics by a sponge layer can extend even significantly below this layer by about two density scale heights. We10

have to accept this, since the use of a sponge layer is necessary to alleviate the adverse effects of a rigid model lid, such as

wave reflection. Nevertheless, we assume that the model physics and dynamics of interest dominate to the extent that at least

qualitative conclusions can be drawn from our comparison.

For the evaluation of the simulation results, a 15-year (2002 to 2016) temperature climatology from observations of the

Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on NASA’s Thermosphere Iono-15

sphere Mesosphere Energetics Dynamics (TIMED) satellite is used (v 2.0; Dawkins et al., 2018). A monthly zonal mean zonal

wind climatology is taken from the Upper Atmosphere Research Satellite Reference Atmosphere Project (URAP; Swinbank

and Ortland, 2003).

3.2.2 Comparison of simulated and observed climatologies

Figure 7 shows multi-year zonal mean temperatures for January and July from the UA-ICON and ICON simulations and from20

SABER. The observed temperature patterns are reasonably reproduced in the simulations for large parts of the stratosphere

and mesosphere. UA-ICON simulates the low summer mesopause temperatures and its altitude well. The same is true for the

weaker temperature minimum over the respective winter pole (the altitude range enclosed by the 200 K-isoline near 100 km, at

about 80° North in Fig. 7 top left and top right, and at about 80° South in Fig. 7 bottom left and bottom right). UA-ICON and

ICON both simulate the stratopause and tropopause fairly accurately, although the winter stratosphere is slightly warmer than25
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Figure 7. Climatological zonal-mean temperature for (top) January and (bottom) July averages from the 20-year simulations with (left)

UA-ICON, (middle) ICON and (right) SABER satellite retrievals averaged over the years 2002 to 2016.

suggested by the observations. In addition, the tropical tropopause layer shows an increased thickness in the simulations as

compared to the observations (compare, e.g., the equatorial region with temperatures between 180 K and 200 K at an altitude

of about 15 km between Fig. 7 bottom left and bottom right). This may at least partly be related to the absence of stratospheric

aerosol or to the prescribed climatological ozone.

Zonal mean zonal wind climatologies are presented in Fig. 8. Patterns simulated by UA-ICON and ICON agree qualitatively5

with the observation-based URAP climatology. The sign reversals of zonal wind in both hemispheres near the mesopause are

simulated in UA-ICON, but are in general too strong, i.e. the lower-thermospheric jets are too strong, and peak at too low

altitudes. We are currently investigating, if this can be adjusted by tuning the non-orographic gravity wave parameterization

(without losing too much performance in lower parts of the atmosphere). Concerning stratospheric winds, the winter westerlies

are too weak in ICON and UA-ICON, an issue already mentioned in the ICON evaluation by Crueger et al. (2018). While UA-10
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Figure 8. Climatological zonal-mean zonal wind for (top) January and (bottom) July averages from the 20-year simulations with (left) UA-

ICON, (middle) ICON and (right) the URAP climatology. The URAP data are provided on log pressure levels, which have been transformed

to (geopotential) height levels assuming a scale height of 7 km.

ICON and ICON show very similar biases for the boreal winter jet, the problem is reduced in austral winter. It’s no surprise

that our UA-ICON simulation, performed with the same settings for the sub-grid scale orography (SSO) parameterization as

used by Crueger et al. (2018), shows similar issues. A reduction of the orographic gravity wave sources would reduce this

issue in particular in the Northern hemisphere, but has not been implemented by Crueger et al. (2018) as it would deteriorate

near-surface winds. Retuning of orographic and non-orographic gravity wave parameters is planned for future model versions.5

In order to quantify, how the vertical model extension, the upper-atmosphere physics, and the deep-atmosphere dynamics

affect the state of the model atmosphere on climatological scales, we examine the zonal mean temperature difference, as one

possible measure for this purpose. Fig. 9 shows the differences between UA-ICON and ICON on the one hand, and between

ICON(UA) and ICON on the other hand, again for the months of January and July. The differences below about 60 km are very
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Figure 9. Climatological zonal-mean temperature differences for (top) January and (bottom) July averages from the 20-year simulations

between (left) ICON(UA) (i.e. with extended dynamics and physics, but lid at 80 km) and ICON, and (right) UA-ICON (i.e. with model lid

at 150 km) and ICON. Only differences statistically significant at the 95% level using a t-test are shown.

similar in the left and the right panel, indicating that in this region they are mostly related to the extension of the dynamical

and physical processes and not to the vertical extension. In most areas the process extension leads to higher temperatures with

the strongest signals of up to about 5 K in the summer middle stratosphere and even stronger in the winter lower mesosphere.

Above about 60 km the patterns of the differences are again similar but the magnitude is stronger for the difference between

UA-ICON and ICON, meaning that here also the vertical extension adds a warming in comparison to the standard configuration5

of ICON. At the uppermost level of comparison the temperature differences reach several tens of Kelvin. Despite the sponge

layer gradually increasing in magnitude above 50 km in the two configurations ICON and ICON(UA), the comparsions suggest

that a vertical model extension beyond 80 km as implemented in UA-ICON even influences simulated climatological means

down to at least 60 km.

The difference between UAphys-ICON and UA-ICON (i.e. the difference between shallow-atmosphere and deep-atmosphere10

dynamics) is shown in Fig. 10. The application of the deep-atmosphere dynamics results in significantly lower temperatures

above about 90 km as compared to the shallow-atmosphere dynamics. This difference increases with height up to several tens
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Figure 10. As in Fig. 9, but for the differences between UAphys-ICON (using shallow-atmosphere dynamics) and UA-ICON (using deep-

atmosphere dynamics).

of Kelvin at the model top, and shows only relatively moderate meridonal and temporal variation. A possible explanation for

this observation might read as follows: in UA-ICON, the magnitude of the gravitational acceleration decreases whith height

(see Eq. (11)), whereas it is constant in UAphys-ICON. So at a given height, we would expect a larger air density on average

in UA-ICON than in UAphys-ICON. In addition, the heating rates at a certain altitude that result from the parameterizations

of radiative processes depend on the optical tickness of the air column above (for short-wave radiation), which in turn depends5

more or less directly on the air mass in the column above. That is, if we would use the mean air mass below the model

top in a grid cell column as vertical coordinate, and compare the mean temperatures from UAphys-ICON with UA-ICON

in this coordinate, we would expect significantly smaller differences as compared to the comparison in the geometric height

coordinate. More precisely, we assume that the difference |T̄SA(zm)− T̄DA(zm)| is significantly smaller than the difference

|T̄SA(z)− T̄DA(z)|, where T̄ denotes a global horizontal mass-weighted average of the temperature, and “SA” and “DA” stand10

for the shallow atmosphere and deep atmosphere (i.e. UAphys-ICON and UA-ICON), respectively. We call the coordinate

zm =−H ln[m̄/m̄tot +(1−m̄/m̄tot)exp(−ztop/H)] “mass height”, where m̄tot denotes the global mean total air mass in a grid

cell column and m̄ is the global mean mass between some arbitrary geometric height z and the model top at height ztop (i.e. m̄

is the acutal vertical coordinate, with m̄tot ≥ m̄ > 0). The expression for zm follows from the hydrostatic balance (for shallow-

atmosphere dynamics) assuming the same constant scale height H for UAphys-ICON and UA-ICON. So two mass heights are15

equal, if the corresponding m̄/m̄tot are. This means in turn that a vertical position in UAphys-ICON and a vertical position in

UA-ICON that are coincident in terms of the mass height, are typically not coincident in terms of the geometric height. Now,

to test this hypothesis, we computed T̄ (z) and m̄(z) as a runtime diagnostic in two simulation variants that are identical to

the UA-ICON and UAphys-ICON simulations, except for a few differences that should be irrelevant for the result, but saved

us some computational costs: each simulation variant was initialized with IFS analyses for the 1 November 2013/14/15 and20

integrated for three months, of which the data for January went into our analysis. In addition, we combined the UA physics

with the NWP physics instead of the ECHAM physics, given the relatively short integration period. For the computation of zm,
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Figure 11. Left: global horizontal mean of temperature for January plotted against the geometric height from UA-ICON (“DA” = deep-

atmosphere dynamics, solid black curve) and UAphys-ICON (“SA” = shallow-atmosphere dynamics, dashed black curve). Middle: as in

the left panel, but plotted against the mass height as defined in the text. Right: absolute temperature difference between UAphys-ICON and

UA-ICON computed on equal geometric heights (solid black), and on equal mass heights (dashed black).

we used H = 7.6km as a more or less representative value for the observed range of T̄ . The results are shown in Fig. 11. The

expected difference between the temperature difference on equal geometric heights on the one hand and on equal mass heights

on the other hand can be observed in the (geomtric) altitude range between about 95 km and about 140 km (Fig. 11, right panel).

Below, at least one of our assumptions seems to hold no longer. Possibly, the interplay of the physics is less dominated by the

radiative processes that depend on the optical thickness of the air column above, or the optical thickness itself correlates less5

with the air mass. We attribute the fact that the two temperature differences approach again above about 140 km to the spurious

effects of the rigid model top and the sponge layer. To conclude, a significant part of the temperature difference shown in Fig.

10 might be explained with the afore-mentioned hypothesis. However, more sensitivity simulations and further diagnostics

would be necessary, to specify the contributions from the dynamics and the individual physics parameterizations. We think that

the differences visible in Fig. 10 are significant enough, to provide an argument for the use of the deep-atmosphere dynamics10

in a non-hydrostatic, geometric-height-based general circulation model that extends into the upper atmosphere.

The examination of zonal, climatological means of the temperature and the zonal wind component provides the first part

of a comprehensive evaluation of UA-ICON. It served us as one guideline for the general performance of UA-ICON and the

identification of deficiencies during the main development phase. This development has now reached a stage, which we regard

as mature enough to form the first completed version of UA-ICON. Nevertheless, we are still facing with significant biases in15

certain regions of the middle and upper atmosphere, which are especially apparent in the zonal wind component, as mentioned

earlier. We assume that a retuning of some parameters of the parameterizations of orographically and non-orographically forced

unresolved gravity waves is a promising, although not straightforward route to reduce the biases.

4 Conclusions

An upper-atmosphere extension of the ICOsahedral Non-hydrostatic (ICON) general circulation model has been presented.20

This includes the extension of the dynamical core from a shallow-atmosphere to a deep-atmosphere formulation, in order to
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account for the spherical shape of the atmosphere and the gravitational field as well as to account for the non-traditional part

of the Coriolis acceleration. In addition, the physics parameterizations have been complemented by processes which become

relevant in the rarified air of the upper mesosphere and lower thermosphere. For instance molecular diffusion takes over the

lead role for mixing from turbulence, and various processes are linked to the relatively strong high-frequency solar irradiance

in the upper atmosphere: its absorption is a source of heat; air compounds being ionized by the radiation align with the5

electromagnetic field of the Earth, forming currents that in turn interact with the neutral air flow via ion drag and Joule heating;

atoms and radicals, as the products of photolysis, undergo a recombination reaction that is accompanied by chemical heating.

The new implementations, subsumed under the configuration name UA-ICON, have been validated by means of idealized test

cases in terms of the dynamical core, and by climate simulations the results of which were compared to satellite observations.

Two test cases were performed. The first one follows a method proposed by Läuter et al. (2005), and considers the propagation10

of a spherically symmetric sound wave in an atmosphere at rest in an absolute frame and so in a state of solid-body-rotation

relative to the rotating Earth. This requires accounting for the centrifugal acceleration explicitly in the dynamical core. In

addition gravity is switched off in order to simplify the derivation of an analytical solution, the comparison to which allows to

quantify, e.g., how well the isotropic sound wave propagation is reproduced by the dynamical core on the anisotropic spherically

curved grid, and how well it maintains the solid-body-rotation of the air. The second test case is the Jablonowski-Williamson15

baroclinic instability test case in its formulation for the deep atmosphere by Ullrich et al. (2014). Its focus is on testing the

representation of synoptic-scale flows through the simulation of the life cycle of a baroclinic wave on a hydrostatically and

geostrophically balanced, zonally symmetric background state of the atmosphere. As with the first test case, the small-Earth

approach of Wedi and Smolarkiewicz (2009) is applied, to amplify the effects of the spherical curvature. No analytical solution

is available for the second test case, so it relies on a model intercomparison. In either test case UA-ICON showed satisfying20

performance, and no indication of a severe deficiency of the deep-atmosphere modification of the dynamical core was found.

For the evaluation of the upper-atmosphere physics four AMIP-type simulations, each spanning 20 years, were performed

and compared to temperature and zonal wind climatologies obtained from measurements of the SABER and TIMED satellite

instruments and the URAProject, respectively. The first simulation uses a setup which we regard as typical for our envisaged

first applications of UA-ICON. The model top is located at a height of 150 km, and the newly implemented upper-atmosphere25

physics are enabled in addition to the standard physics of ICON. The deep-atmosphere modifications of the dynamical core are

applied as well. In the second simulation the model top is lowered to 80 km, and the sponge layer is adjusted accordingly. Apart

from that, the settings are identical to those of the first simulation. The third simulation equals the second simulation, but is a

standard ICON simulation with the upper-atmosphere physics and the deep-atmosphere modifications of the dynamics switched

off. Finally, a fourth simulation is identical to the simulation with a model top at 150 km, except for the deep-atmosphere30

modification of the dynamical core being switched off. By comparing the four simulation variants, we try to quantify the

effects of the vertical extension of the model domain into the lower thermosphere and of the upper-atmosphere physics on the

middle and lower atmosphere. In addition, the difference between the deep-atmosphere and the shallow-atmosphere dynamics

is quantified.

30



The temperature climatologies for January and July from the first type of simulation with UA-ICON are generally in good

agreement with the observations. For instance, the atmospheric temperature minimum at the summer mesopause is relatively

well captured. Some biases remain, however: a slightly too warm winter stratosphere and too thick tropical tropopause layer

might be due to the absence of stratospheric aerosol in the simulation, or result from the employed ozone climatology. When

it comes to the climatologies of the zonal wind for January and July, we find again that UA-ICON reproduces the qualitative5

structure of the wind in that part of the atmosphere observed by URAP. One remaining issue is that the westerly jets in the

lower thermosphere are stronger in UA-ICON, roughly by 50%. The comparison of UA-ICON simulations and two different

model configurations with a lower model top at 80 km has shown that the addition of upper atmosphere physics and dynamics

also affects stratospheric temperatures (increasing them by up to 5 K), and that the vertical extension has noticeable effects

at least down to about 60 km. The difference between the shallow-atmosphere and the deep-atmosphere dynamics manifests10

itself in a significant decrease in temperature in the upper-mesosphere-lower-thermosphere region, if the latter is applied.

As an important application for UA-ICON we have in view the investigation of the impact of gravity waves on the global

atmospheric circulation with a special focus on the feedback of the middle and upper atmosphere on the tropospheric weather

and climate. The high scalability of ICON on massively parallel computers will allow us to employ model configurations

with much higher grid resolutions and eventually resolve large parts of the atmospheric gravity wave spectrum instead of15

parameterizing it.

Code and data availability. The ICON-Software is freely available to the scientific community for non-commercial research purposes under

a license of DWD and MPI-M. The license in its current form can be viewed on https://code.mpimet.mpg.de/projects/iconpublic/wiki/How%

20to%20obtain%20the%20model%20code (last access: 14 November 2018). UA-ICON exists in two configurations at the time of writing

this article. One for the upper-atmosphere developments within the development framework of the ICON-Software for climate simulations,20

another one for the upper-atmosphere developments within the NWP development framework of the ICON-Software. If you would like to

obtain UA-ICON, please contact icon@dwd.de. You will be provided an institutional license, which needs to be signed by the representative

of your Research Institute and send back to the DWD. The ICON-Software is controlled by a GIT version control system and upon license

agreement a tar ball of the version of UA-ICON that was used, to produce the results presented in this article is provided to you. The

data shown in section 3 as well as the scripts used for their production, postprocessing and plotting are provided as zipped folder in the25

supplementary material of this article.

Appendix A: Model initialization

We assume the data used to define the initial state of the model atmosphere of UA-ICON to originate from hydrostatic models

(this is true for the IFS-data, as well as for the climatology employed here). The altitude assigned to such a data point is

actually the geopotential height. This is no issue, if the shallow-atmosphere approximation is made and the geopotential height30

coincides with the geometric height employed in the dynamical core of ICON. However, in a deep-atmosphere model the

geometric and geopotential heights differ. Therefore the data initialization of UA-ICON takes place on geopotential heights, to

31
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Figure A1. Vertical climatological temperature profile from Bates (1959); Hedin (1983); Fleming et al. (1988), employed to define the initial

state of the model atmosphere above the geopotential height zg = zg = 70km. zg = zg,top = 146.55km is the geopotential height of the

model top at a geometric height of z = ztop = 150km, and T∞ = 400K is the temperature for z→∞ (this value is considerably lower than

the mean exospheric temperature of about 1035K, but higher values could be challenging for the numerical stability at the beginning of the

simulation).

and from which the geometric heights of the grid levels are transformed using

zg =
z

1 + z
a

, z =
zg

1− zg
a

. (A1)

The geopotential height below which initial data, e.g., from the IFS model, are available, will be denoted zg in the following

(we use a value of zg = 70km). Climatological temperatures are taken from Fleming et al. (1988), who offer tables with

zonally averaged, monthly temperature values, denoted TF, from mean sea level to a geopotential height of 120 km in 5 km5

intervals. For our current, simple approach these data sets are averaged temporally and meridionally, to obtain a single vertical

temperature profile (see Fig. A1). Temperature values within the 5 km intervals are computed by a cubic spline interpolation

(e.g., Bronstein et al., 2001). Above 120 km an analytical temperature profile from Bates (1959) (see also Hedin, 1983) is used,

which is formally identical to Eq. (7)

TB(zg) = T∞+ [T120km−T∞] exp

[
−zg − 120km

HB

]
, (A2)10

where T120km = TF(zg = 120km), and T∞ is approximately the temperature for the limit z→∞. This limit corresponds to a

geopotential height of zg = a, which follows from Eq. (A1) by multiplying the right-hand side of the first equation with 1 =

(1/z)/(1/z) and applying the limit. The value of T∞ could be set, for instance, to the mean exospheric temperature of about

1035 K (in practice we use a value of 400 K, since higher values could challenge the numerical stability in the initial phase of
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the simulation). For a steady transition between TF and TB, the scale height is set toHB = (T∞−T120km)/(dTF/dzg)zg=120km.

In addition, the temperature blending requires extrapolating the temperature data from below zg to above, which is done by a

simple linear extrapolation

TIFS(λ,ϕ,zg) = TIFS(λ,ϕ,zg = zg) + γ(λ,ϕ)(zg − zg) , (A3)

with γ = dTIFS/dzg|zg=zg . To obtain a statically stable stratification, γ is limited by the dry adiabatic lapse rate: γ ≥−Γd =5

−g/cp (e.g., Holton, 2004). The blending reads

T (λ,ϕ,zg) = TIFS(λ,ϕ,zg)α(zg) +Tclim(zg) [1−α(zg)] , (A4)

α(zg) =


1, for zg < zg

1
2

[
1 + cos

(
zg−zg
Hblend

π
)]
, for zg ≤ zg ≤ zg +Hblend

0, for zg +Hblend < zg

. (A5)

where Tclim is TF or TB, respectively, and Hblend is a tunable blending scale height, which allows to control over what distance

the transition between TIFS and Tclim takes place. Currently we use a value of Hblend = 10km to avoid negative absolute10

temperatures which could result from Eq. (A3), although somewhat larger values for Hblend do likely satisfy this as well. The

blending factor α satisfies dα/dzg|zg=zg,zg+Hblend = 0, in order to guarantee a steady transition at zg = zg and zg = zg+Hblend.

Given the temperature field (A4), the other variables above zg are determined by the hydrostatic and geostrophic balances. On

the one hand this provides a relatively simple way for their computation, and on the other hand it helps to reduce the magnitude

of the dynamic tendencies and therefore the strength of the adjustment process during the first time steps of the numerical15

integration. The pressure is computed from a numerical integration of the discretized form of ∂p/∂zg+gp/(RT ) = 0, starting at

zg with p(λ,ϕ,zg = zg) = pIFS(λ,ϕ,zg = zg), where the deep-atmosphere-specific terms, underlined in Eq. (10), are neglected,

to simplify matters. Once temperature and pressure are known, ρ, π and θ can be diagnosed. The horizontal wind is determined

from a blending formally identical to the temperature blending (A4) (using the same α). The IFS part for the blending above

zg is a simple linear extrapolation of the horizontal velocity, formally identical to Eq. (A3). The “climatological” part shall20

satisfy frer ×vh,clim =−β(ϕ)(∇hp)/ρ, where p and ρ are the hydrostatic pressure and density, respectively. Associated

with the thermal wind balance (Zdunkowski and Bott, 2003; Holton, 2004), relatively strong horizontal temperature gradients

between zg and zg +Hblend can cause the magnitude of vh,clim to increase with height and reach values which violate the

CFL stability criterion (Zdunkowski and Bott, 2003; Holton, 2004). To avoid this vh,clim is multiplied by a factor [1 + (zg −
zg)/Hvh ] exp[−(zg − zg)/Hvh ], with a tuneable decay scale height Hvh (we use a value of Hvh = 10km). The value of this25

factor and its vertical derivative is 1 and 0 at zg = zg , respectively, so as not to affect the continuity of the extrapolated wind

at that altitude. Of course this factor causes vh,clim to violate the geostrophic balance to some extent, but it turned out that

this is less severe for the spin-up phase than an initial wind field violating the CFL-criterion locally. In addition, the horizontal
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pressure gradient is multiplied by the factor

β(ϕ) =

1, for ϕtrop < |ϕ|
1
2

[
1− cos

(
|ϕ|
ϕtrop

π
)]
, for |ϕ| ≤ ϕtrop

, (A6)

in order to reduce its magnitude smoothly to zero towards the equator, where the geostrophic balance does not apply. ϕtrop > 0◦

is a tuneable tropical latitude (we use ϕtrop = 10◦). Finally, the vertical wind above zg is computed from a blending, again

formally identical to Eq. (A4), of a linearly extrapolated wIFS and a wclim = 0, in accordance with the hydrostatic balance and5

the boundary condition of a vanishing vertical wind at the model top.

Appendix B: Sound wave test case

B1 Formulation in the rotating frame

Here we consider the transformation of a solution to the deep-atmosphere equations, linearized about an atmosphere at rest in

the absolute frame, to a frame rotating with angular velocity Ω. For the atmosphere at rest in the absolute frame va = vF +v =10

0 holds, where vF = Ω× r, v being the velocity observed in the rotating frame, and r = X −A (with the center of the Earth

A and an arbitrary point X not coincident with A). Therefore, in the rotating frame the motion of the air follows

ρ

[
dv

dt
+ 2Ω×v + Ω× (Ω× r)

]
= 0

⇔ ρ

[
d

dt
(−Ω× r)− 2Ω× (Ω× r) + Ω× (Ω× r)

]
= 0

⇔ − ρΩ×
(

dr

dt
+ Ω× r

)
= 0 (B1)15

⇒ dr

dt
=−Ω× r =−Ω× (1 · r) =−(Ω×1) · r =−W · r. (B2)

where Eqs. (B1) and (B2) are equivalent. In the last step we have introduced the identity tensor 1 and the antisymmetric

Coriolis tensor W = Ω×1 to simplify the following considerations (compare Wilson, 1929; Zdunkowski and Bott, 2003).

The solution to Eq. (B2) is

r(t) = exp(−Wt) · r0, (B3)20

where r0 = r(t= 0). Introducing Ω̂ = Ω/Ω, and Ŵ = W/Ω, with Ω = |Ω| and using

exp(−ΩŴt) = 1− 1

1!
ŴΩt+

1

2!
Ŵ2Ω2t2− 1

3!
Ŵ3Ω3t3± ·· · , (B4)

where Ŵ2 = Ŵ ·Ŵ, for instance, in combination with

Ŵn =

(−1)
(n−1)/2

Ŵ, for odd n

(−1)
n/2

1̂, for even n
, (B5)
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where 1̂ = 1−Ω̂Ω̂ and Ω̂Ω̂ denotes the dyadic product of Ω̂ with itself, the exponential factor in Eq. (B3) can be expanded as

exp(−ΩŴt) = Ω̂Ω̂ + cos(Ωt)1̂− sin(Ωt)Ŵ. (B6)

So Eq. (B3) can be rewritten in a form which is easier to evaluate (compare Wilson, 1929; Bronstein et al., 2001; Zdunkowski

and Bott, 2003)

r(t) = Ω̂Ω̂ · r0 + cos(Ωt)1̂ · r0− sin(Ωt)Ŵ · r0 = cos(Ωt)r0− sin(Ωt)Ω̂× r0 +
{

[1− cos(Ωt)]Ω̂ · r0
}

Ω̂. (B7)5

Next, given, for instance, an analytical solution in the absolute frame, which is spherically symmetric with respect to the point

B, therefore depending only on |x−B|= |(x−A)−(B−A)|= {[(x−A)−(B−A)] · [(x−A)−(B−A)]}1/2, we would

find the solution unaltered in the rotating frame relative to exp(−Wt) · (B−A), since e.g.

[exp(−Wt) · (X −A)] · [exp(−Wt) · (B−A)] = [(X −A) · exp(−Wt)ᵀ] · [exp(−Wt) · (B−A)]

= (X −A) · [exp(Wt) · exp(−Wt)] · (B−A)10

= (X −A) · (B−A) . (B8)

Here, (·)ᵀ denotes the transpose, and we have used the identity exp(−Wt)ᵀ = exp(Wt) which can be derived from Eq. (B6)

and Ω̂Ω̂ᵀ = Ω̂Ω̂, 1ᵀ = 1 and Ŵᵀ =−Ŵ. In addition, exp(Wt) · exp(−Wt) = 1 can be shown to hold, using Eqs. (B6),

(B5), and the definition of Ŵ. The above is not a mathematically rigorous proof for the general case, but we hope it can help to

illustrate the basic idea behind the method. For detailed mathematical examinations we refer the reader to Läuter et al. (2005);15

Staniforth and White (2008). In the following section such a spherically symmetric solution to be rotated is derived.

B2 Derivation of the sound wave solution

Here we derive the analytical solution for the expansion of sound waves for the deep-atmosphere equations (1)-(4) reduced

to the reversible processes (i.e., F = 0 and Q= 0), without gravity (g = 0), linearized about an isothermal atmosphere of

temperature T0 = const., at rest in the absolute frame (i.e., va = vF +v0 = Ω× r +v0 = 0). In particular, the neglection20

of gravity leads to a constant base state for pressure π0 = const. (from Eq. (1)) and density ρ0 = const. (from Eq. (4)), too.

Otherwise, the derivation of an analytic solution even for the linearized equations would be very difficult.

Linearisation of Eqs. (1) to (4) about this base state leads to:

∂v′

∂t
=−cpθ0∇π′, (B9)

∂ρ′

∂t
+ ρ0∇ ·v′ = 0, (B10)25

∂π′

∂t
+
R

cv
π0∇ ·v′ = 0, (B11)

resulting in the sound wave equation

∂2π′

∂t2
− c2s∇2π′ = 0. (B12)
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with the squared speed of sound c2s = (cp/cv)RT0.

Without gravity and disregarding the spherical boundaries of the atmosphere there is no longer a distinct direction (or rather

a distinct point). Therefore, we seek a solution which is spherically symmetric with respect to an arbitrary point B within the

boundaries. Using the expansion of the Laplace-operator in spherical coordinates (e.g., Bronstein et al., 2001), we can write

∂2π′

∂t2
− c2s

(
2

x

∂π′

∂x
+
∂2π′

∂x2

)
= 0, (B13)5

with the radial coordinate x= |X−B| (to avoid any confusion with the distance r from the center of the Earth). This equation

is valid for x > 0. Using the transform

π̃ = xπ′, (B14)

one finds for x · (B13) (Nolting, 2004)

∂2π̃

∂t2
− c2s

∂2π̃

∂x2
= 0. (B15)10

In addition, we can derive from Eq. (B11)

∂π′

∂t
= −R

cv
π0

(
2

x
v′+

∂v′

∂x

) ∣∣∣∣x·
⇒ ∂π̃

∂t
=−R

cv
π0

1

x

∂xṽ

∂x
(B16)

where v′ = v′ex, ex = (X −B)/|X −B|, and ṽ = xv′. Equation (B16) is required for the specification of the initial condi-

tions. Given the 1d wave equation (B15) a general solution is of the form (Nolting, 2004)15

π̃(x,t) = f1(x+ cst) + f2(x− cst), (B17)

where f1 and f2 denote incoming and outgoing waves of arbitrary shape, respectively. Note, that the transform (B14) induces

a boundary condition at x= 0, because finite values of π′ require π̃(x= 0, t) = 0. Therefore, the outgoing wave for later times

is determined by the incoming wave at the origin:

f2(−cst) =−f1(+cst) for t≥ 0.20

Since the wave equation (B15) is of second order in time, initial conditions for π̃(x,t= 0) and for its derivative

∂π̃

∂t

∣∣∣∣
t=0

= cs

(
df1
dx
− df2

dx

)
(B18)

are required. Instead, we require that the incoming wave vanishes (f1 = 0) and prescribe the initial wind field

v′(x) = δv sin

(
π
x− b1
b2− b1

)
sin

(
2πn

x− b1
b2− b1

)
[Θ(x− b1)−Θ(x− b2)] , (B19)
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where δv is a constant wind amplitude, n denotes the number of wave crests, and x= b1 > 0 and x= b2 > b1 are the radii,

between which the sound wave has a non-vanishing amplitude at t= 0. The Heaviside step function is given by (Bronstein

et al., 2001)

Θ(ξ) =

0, for ξ < 0

1, for ξ ≥ 0
. (B20)

The function (B19) was chosen not least because it satisfies v′(x= b1, b2) = 0 and dv′/dx|x=b1,b2 = 0, and guarantees that5

the derived fields π′, θ′, and ρ′ do likewise, so that discontinuities pose no extra challenge to the numerical simulation. For the

implementation of the test case, we preferred to specify the wave amplitude by means of a temperature amplitude δT , instead

of the wind amplitude δv, and use the relation δv = (cv/R)(δT/T0)cs for this purpose. From the initial wind field (B19) we

can calculate the derivative df2(x)/dx by Eqs. (B16) and (B18). Integration of df2/dx yields the Exner pressure perturbation

(compare Bronstein et al., 2001)10

π′(x,t) =
Rπ0δv

cvcs

{
x− cst
x

sin

(
π
x− b1− cst
b2− b1

)
sin

(
2πn

x− b1− cst
b2− b1

)

+
b2− b1
x

 sin
(
π (2n− 1) x−b1−cstb2−b1

)
2π (2n− 1)

−
sin
(
π (2n+ 1) x−b1−cstb2−b1

)
2π (2n+ 1)

 [Θ(x− b1− cst)−Θ(x− b2− cst)] . (B21)

or, alternatively, expressed as pressure perturbation

p′ =
cp
R

p0
π0
π′. (B22)

The initialization of the remaining thermodynamic fields (here, e.g., ρ and θ) can be chosen arbitrarily as long as the lin-15

earized ideal gas law is fulfilled. From Eq. (4) follows

ρ′

ρ0
+
θ′

θ0
=
cv
R

π′

π0
. (B23)

In our implementation we used ρ′(x,t= 0) = cvρ0(B21)/(Rπ0) and determined θ′(x,t= 0) from Eq. (B23).

Of course, the solution outlined above holds only until the wave front, initially at x= b2, impinges on the solid boundaries,

either the model bottom or top, and is reflected. Therefore, the integration time for this test case is limited.20

The above solution is what an observer would see in the absolute frame. To transform it into the rotating frame every point

X (including B) has to be rotated according to the formula

X(t) = A+ exp(−Wt) · [X(t= 0)−A] , (B24)

which follows from Eq. (B3). Alternatively, the formulation (B7) could be used. Equation (B24) is the coordinate-independent

formulation of the rotation. It has to be measured in the coordinate system of choice for the application in practice. As shown25

in Eq. (B8) the shape of the sound wave relative to B(t) is unaffected by the rotation.

Finally, we will give a short outline for the implementation of this test case into a model. First of all, the gravitational

acceleration g has to be set to zero, or at least to a relatively small value. If rotation is switched on (Ω 6= 0), it is essential to
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take into account the centrifugal acceleration Ω× [Ω× (X −A)] explicitly in the dynamical core, as shown in Eq. (B1). If

desired, the radius and angular velocity of the Earth are rescaled, a→ η1a and Ω→ η2Ω, and the topography is set to zero.

If possible, the slip boundary condition should be applied at model bottom and top. All physics parameterizations should be

switched off. After specifying the background state of the atmosphere (at rest in the absolute frame) by T0 and p0, and the

sound wave parameters B, b1, b2, δv or δT , and n, the dynamic fields of the (dry) atmosphere are initialized according to5

v(X) =−η2Ω× (X −A) + v′(x)
(X −B)

x
, (B25)

π(X) = π0 +π′(x), (B26)

θ(X) = θ0 + θ′(x), (B27)

ρ(X) = ρ0 + ρ′(x). (B28)

In order to keep the non-linear dynamics of the sound wave as simulated by the dynamical core negligibly small, the non-10

dimensional wind amplitude δv/cs = (cv/R)(δT/T0) should be small enough. Apart from that, we adhered closely to the

guidelines given by Baldauf et al. (2014) in our implementation of the test case into UA-ICON.
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