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Abstract. Large-eddy simulation (LES) has become a well-established tool in the atmospheric boundary-layer research com-

munity to study turbulence. It allows three-dimensional realizations of the turbulent fields, which large-scale models and most

experimental studies cannot yield. To resolve the largest eddies in the mixed layer, a moderate grid resolution in the range of 10

to 100 m is often sufficient, and these simulations can be run on a computing cluster with few hundred processors, or even on

a workstation for simple configurations. The desired resolution is usually limited by the computational resources. However, to5

compare with tower measurements of turbulence and exchange fluxes in the surface layer a much higher resolution is required.

In spite of the growth in computational power, a high-resolution simulation LES of the surface layer is often not feasible: to

fully resolve the energy containing eddies near the surface a grid spacing of O(1 m) is required. One way to tackle this problem

is to employ a vertical grid nesting technique, where the surface is simulated at the necessary fine grid resolution, and it is

coupled with a standard, coarse, LES that resolves the turbulence in the whole boundary-layer. We modified the LES model10

PALM (Parallelized Large-eddy simulation Model) and implemented a two-way nesting technique, with coupling in both direc-

tions between the coarse and the fine grid. The coupling algorithm has to ensure correct boundary conditions for the fine grid.

Our nesting algorithm is realized by modifying the standard third order Runge-Kutta time stepping to allow communication

of data between the two grids. The two grids are concurrently advanced in time while ensuring that the sum of resolved and

subgrid-scale kinetic energy is conserved. We design a validation test and show that the temporally averaged profiles from the15

fine grid agree well compared to the reference simulation with high-resolution in the entire domain. The overall performance

and scalability of the nesting algorithm is found to be satisfactory. Our nesting results in more than 80 percent savings in

computational power for 5 times higher resolution in each direction in the surface layer.

1 Introduction

Turbulence in the Atmospheric Boundary Layer (ABL) encompasses a wide range of scales from the boundary-layer scale20

down to the viscous dissipation scale. In ABL flows, Reynolds numbers (Re) of 108 are commonly encountered. Explicit
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simulation of the Navier-Stokes equations down to the dissipative scales (DNS: direct numerical simulation) for atmospheric

processes is prohibitively expensive, as the required number of grid points in one direction scales with Re3/4 (Reynolds,

1990). This corresponds to a three-dimensional ABL simulation domain with total number of grid points of order 1017. The

supercomputers of today cannot fit more than 1012 grid points in the memory. To be able to compute turbulence processes in

the atmosphere nevertheless, the concept of large-eddy simulation (LES) has been introduced already a few decades ago, e.g.5

Deardorff (1974), Moeng and Wyngaard (1988) and Schmidt and Schumann (1989), where the presence of a subgrid-scheme

allows that only the most energetic eddies are resolved.

One of the first large-eddy simulations (LES) by Deardorff (1974) used 64000 grid points to simulate a domain of 5 km×
5 km×2 km with a grid resolution of (125,125,50) m. The size of one such grid cell is just sufficient to resolve the dominant

large eddies and there are just enough grid points to represent the ABL. As computing power progressed, higher resolution10

and larger domains became possible. By the time of Schmidt and Schumann (1989) the number of grid cells had raised to

160×160×48, simulating an ABL of 8 km×8 km×2.4 km with a resolution of (50,50,50) m. Khanna and Brasseur (1998)

used 1283 grid points to simulate a domain of 3 km× 3 km× 1 km to study buoyancy and shear induced local structures of

the ABL. Patton et al. (2016) used (2048,2048,1024) grid points with a grid resolution of (2.5,2.5,2) m to study the influence

of atmospheric stability on canopy turbulence. More recently, Kröniger et al. (2018) used 13 · 109 grid points to simulate a15

domain of 30.72 km×15.36 km×2.56 km to study the influence of stability on the surface–atmosphere exchange and the role

of secondary circulations in the energy exchange. The atmospheric boundary-layer community has greatly benefited from the

higher spatial resolution available in these LES to study turbulent processes that cannot be obtained in field measurements.

Still, especially in heterogeneous terrain, near topographic elements, buildings or close to the surface the required higher

resolution is not always attainable due to computational constraints. In spite of the radical increase in the available computing20

power over the last decade, large-eddy simulation of high Reynolds number atmospheric flows with very high-resolution in the

surface-layer remain a challenge. Considering the size of the domain required to reproduce boundary-layer scale structures, it

is computationally demanding to generate a single fixed grid that could resolve all relevant scales satisfactorily. Alternatively,

local grid refinement is possible in the Finite-Volume codes that are not restricted to structured grids. Flores et al. (2013)

developed a solver for the OpenFOAM modelling framework to simulate atmospheric flows over complex geometries using25

an unstructured mesh approach. The potential of adaptive mesh refinement technique where the tree-based Cartesian grid is

refined or coarsened dynamically, based on the flow structures, is demonstrated by van Hooft et al. (2018). In the Finite-

Difference models, a grid nesting technique can be employed to achieve the required resolution. In the nested grid approach,

a parent domain with a coarser resolution simulates the entire domain while a nested grid with a higher resolution extends

only up to the region of interest. Horizontal nesting has been applied to several mesoscale models (Skamarock et al., 2008;30

Debreu et al., 2012). Horizontally nested LES-within-LES or LES embedded within a mesoscale simulation is available in the

Weather Research and Forecast model (Moeng et al., 2007). Comparable grid nesting techniques are also widely employed by

the engineering turbulence research community but often use different terminology. Nesting in codes with cartesian grids are

referred to as local or zonal grid algorithm (Kravchenko et al., 1996; Boersma et al., 1997; Manhart, 2004) and as overset mesh

(Nakahashi et al., 2000; Kato et al., 2003; Wang et al., 2014) in unstructured or moving grid codes.35
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For our purposes, we will focus on vertical nesting, i.e. we consider a Fine Grid nested domain (FG) near the lower boundary

of the domain, and a Coarse Grid parent domain (CG) in the entire of the boundary layer. While the latter’s resolution (< 50m)

is sufficient to study processes in the outer region where the dominant eddies are large and inertial effects dominate, such

coarse resolution is not sufficient where fine-scale turbulence in the surface layer region is concerned. The higher resolution

achieved by the vertical nesting will then allow a more accurate representation of the turbulence in the surface layer region, by5

resolving its dominant eddies. For studies that require very high resolution near the surface (e.g. virtual tower measurements,

wakes behind obstacles, dispersion within street canyons for large cities) a nesting approach is an attractive solution due to the

reduced memory requirement. Challenge of the vertically nested simulation is that the FG upper boundary conditions need to

be correctly prescribed by the CG. Though vertical nesting is less common than the horizontal nesting it has been implemented

in some LES models. A non-parallelized vertical nesting was explored by Sullivan et al. (1996) but the code is not in public10

domain and we could not find any record of further development or application of this code in publications. A LES-within-

LES vertical nesting is implemented by Zhou et al. (2018) in the Advanced Regional Prediction System (ARPS) model. We

would like to point out that the vertical nesting available in Weather Research and Forecast model (Daniels et al., 2016) is not

a conventional vertical nesting because the parent and the child grid still have the same vertical extent, the child grid is only

more refined in the vertical.15

An analysis of different nesting procedures for mesoscale simulation was performed by Clark and Hall (1991), they coined

the terms one-way and two-way interactions. In one-way interaction, only the FG receives information from the CG, and there

is no feedback to the CG. In two-way interaction, the FG top boundary conditions are interpolated from the CG and the CG

values in the overlapping region are updated with the FG resolved fields. The ’update’ process, referred to as ’anterpolation’

by Sullivan et al. (1996), is similar to the restriction operation in Multi-Grid methods. Harris and Durran (2010) used a linear20

1D shallow-water equation to study the influence of the nesting method on the solution and found the two-way interaction to

be superior if the waves are well resolved. They introduce a filtered sponge boundary condition to reduce the amplitude of

the reflected wave at the nested grid boundary. We will make use of the interpolation and anterpolation formulas of Clark and

Farley (1984). Clark and Hall (1991) studied two different approaches for updating the CG values, namely "post-insertion"

and "pressure defect correction". The two approaches were also investigated by Sullivan et al. (1996) in their vertical nesting25

implementation. In the post-insertion technique, once the Poisson equation for pressure is solved in the FG, the resolved fields

are then anterpolated to the CG. In the pressure defect correction approach, the pressure in the CG and FG are matched by

adding a correction term to the CG momentum equations and an anterpolation operation is not required. Though Sullivan et al.

(1996) note the pressure defect correction approach to be more elegant, no significant difference in the results was reported.

In the following sections we describe the technical realization and numerical aspects of the two-way nesting algorithm. In30

the LES model PALM, a validation simulation is set-up and the results of the nested and standalone simulations are compared.

A second simulation is set-up to evaluate the computational performance of the algorithm. The practical considerations and the

limitations of the two-way nesting are then discussed.
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2 Methods

2.1 Description of the standard PALM model

The Parallelized Large-eddy simulation Model (PALM) is developed and maintained at the Leibniz University of Hannover

(Raasch and Schröter, 2001; Maronga et al., 2015). We give a quick summary of the model here and highlight the aspects

which will reappear when discussing our nesting modifications. PALM is a finite difference solver for the non-hydrostatic5

incompressible Navier-Stokes equations in the Boussinesq approximation. PALM solves for six prognostic equations: the three

components of the velocity field (u,v,w), potential temperature (θ), humidity (q) and the sub-grid scale kinetic energy (e).

The sub-grid scale (SGS) turbulence is modelled based on the method proposed by Deardorff (1980). The equations for the

conservation of mass, energy and moisture (Eqs. 1, 2, 3 and 4) are filtered over a grid volume on a Cartesian grid. Adopting

the convention of Maronga et al. (2015), the overbar denoting the filtered variables are omitted. However, the overbar is shown10

for SGS fluxes. The SGS variables are denoted by a double prime. The prognostic equations for the resolved variables are:

∂ui
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=−∂uiuj
∂xj
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+ g
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′′
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)
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The symbols used in the above equations are listed in Table 1. The 1.5 order closure parameterization modified by Moeng and

Wyngaard (1988) and Saiki et al. (2000), assumes a gradient diffusion parameterization (Eqs. 6, 7, 8). The prognostic equation20

for the SGS-TKE reads as

∂e

∂t
=−uj

∂e

∂xj
−
(
u′′i u

′′
j

) ∂ui
∂xk

+
g

θv,0
u′′3θ
′′
v − 2Km

∂e

∂xj
− ε , (5)

with the SGS fluxes modelled as:

u′′i u
′′
j −

2

3
eδij =−Km

(
∂ui
∂xj

+
∂uj
∂xi

)
, (6)

25

u′′i θ
′′ =−Kh

∂θ

∂xi
, (7)
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and

u′′i q
′′
v =−Kh

∂θ

∂xi
. (8)

The eddy diffusivities are proportional to e3/2 under convective conditions (Maronga et al., 2015). For a thorough description

of the governing equations and parameterizations, see Maronga et al. (2015).

Table 1. List of symbols in the governing equations and parameterizations.

Symbol Description

fi Coriolis parameter

ρ0 Density of dry air at the surface

π∗ Modified perturbation pressure

g Gravitational acceleration

θv Virtual potential temperature

Lv Latent heat of vaporization

Cp Heat capacity of dry air at constant pressure

qv Specific humidity

Ψqv Source/sink term of qv

Π Exner function for converting between temperature and potential temperature

Kh SGS eddy diffusivity of heat

Km SGS eddy diffusivity of momentum

5

The prognostic equations are discretized on a staggered Arakawa C-grid, where the scalars are evaluated in the center of the

grid volume and velocities are evaluated at the center of the faces of the grid volume in their respective direction. The advection

terms are evaluated either with fifth-order upwind discretization according to Wicker and Skamarock (2002) or with a 2nd order

scheme according to Piacsek and Williams (1970). The prognostic equations are integrated in time using a third-order Runge-

Kutta (RK3) scheme. The low storage RK3 scheme with three sub-steps proposed by Williamson (1980) guarantees a stable10

numerical solution. The Poison Equation for pressure is solved with Fast-Fourier Transform (FFT) when periodic boundary

conditions are applied in the lateral boundaries. There are three FFT algorithms available in PALM with FFTW being the

optimal method for large scale simulations. Monin-Obukhov Similarity Theory (MOST) is assumed between the surface and

the first grid point. A vertical zero pressure gradient at the surface guarantees the vertical velocity to be zero. Simulations can

be driven by either prescribing the surface temperature or the surface sensible heat flux, similarly for the humidity. At the top15

of the simulation domain the horizontal velocities equal geostrophic wind and the vertical velocity is set to zero. The pressure

can assume either a Dirichlet condition of zero value or a Neumann condition of zero vertical gradient. The scalar values can

have either a fixed value Dirichlet condition or a fixed gradient Neumann condition. The vertical gradient of SGS Turbulent

Kinetic Energy (TKE) is set to zero at both top and bottom boundaries.
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PALM is a parallelized model and the standard way of parallelization is by dividing the three-dimensional domain into

vertical columns, each of which is assigned to one processing element (PE). Each vertical column possesses a number of

ghost points needed for computation of derivatives at the boundary of the sub-domains. Each PE can only access data for a

single sub-domain. All PEs execute the same program on a different set of data. For optimum load balancing between the PE

the decomposed sub-domains should have the same size. In PALM, this condition is always satisfied as only sub-domains of5

the same size are allowed. The data exchange between PEs needed by the Poisson solver and to update the ghost points are

performed via the Message Passing Interface (MPI) communication routines.

2.2 Nested model structure

2.2.1 Fine grid and coarse grid configuration

We are interested in achieving an increased resolution only in the surface-layer, the lowest 10% of the boundary layer, where10

surface exchange processes occur and where eddies generated by surface heterogeneity and friction are smaller than the dom-

inant eddies in the mixed layer. We setup the LES-within-LES case by maintaining the same horizontal extent for the FG and

the CG to have the whole surface better resolved. We allow the vertical extent of the FG to be varied as needed, typically up to

the SL depth. This implementation of vertical grid nesting has two main challenges. The first challenge, that is purely technical

in nature, is to implement routines that handle the communication of data between the CG and the FG. The second and the15

most important challenge is to ensure that the nesting algorithm yields an accurate solution in both grids.

Below we use upper case symbols for fields and variables in the CG, and lower case for the FG. E.g. E and e denote the

subgrid-scale turbulent kinetic energy (a prognostic variable in our LES) of CG and FG respectively. The nesting ratio is defined

as the ratio of the CG spacing to the FG spacing, and nx = ∆X/∆x, corresponding symbols apply for y and z directions. The

nesting ratios nx, ny and nz have to be integer. It is possible to have either odd or even nesting ratio and it can be different in20

each direction. As the domain that is simulated in the FG is completely inside of the CG domain, each FG cell belongs to a

CG cell. The two grids are positioned in such a way that a FG cell belongs to only one CG cell and one CG cell is made up by

a number of FG cells given by the product of the nesting ratios nx×ny ×nz . This means that if the grid nesting ratio is odd,

there will be one FG cell whose center is exactly at the same position as the center of the coarse cell as shown in Fig. 1 (b).

The collection of FG cells that correspond to one CG cell is denoted by C(I,J,K), the collection of FG faces that corresponds25

to e.g. an yz-face of the CG is denoted by Cx(Is,J,K), where it is understood that the Is index is an index on the staggered

grid in the x-direction to denote the position of the face, and similar for the other types of faces. We have used fx = 1/nx to

denote the inverse of the nesting ratio in the x dimension (corresponding symbols for y and z). A schematic diagram of the

overlapping grids is shown in Fig. 1 (a).

2.2.2 Vertical nesting algorithm30

We implement a two-way interaction algorithm, shown in Fig. 2, because in our first trials we found that one-way nesting did

not improve the FG representation satisfactorily and hence was not pursued further. The FG prognostic quantities are initialized
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Figure 1. (a) Schematic of the interpolation and anterpolation between grids. The FG top boundary condition is interpolated from the CG.

The CG prognostic quantities in the overlapping region are anterpolated from the FG. (b) Schematic of Arakawa C grid for two grids with

nesting ration of three. The black arrows and circles are CG velocity and pressure, respectively. The blue and red arrows are horizontal

and vertical velocity, respectively, in the FG. The filled black circle is the FG pressure. The symbols Φ and φ represent CG and FG scalar

quantities. Where I and K are CG indices and nx and nz are the nesting ratio in x and z, respectively.
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Figure 2. A flowchart of the two-way interaction algorithm. The new routines needed for the vertical nesting are highlighted in red and the

standard routines are highlighted in blue. An arrow pointing to the left indicates transfer of data from FG to CG, and vice versa.
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by interpolating the CG values in the overlapping region. Optionally, the initialization of the FG can be delayed until the CG

has reached a fully turbulent state. Both grids are restricted to have identical time steps. PALM finds the largest time step

for each grid such that the CFL condition is individually satisfied and the minimum of the two values is then chosen as the

time integration step for both grids. The right hand side of the prognostic equation except for the pressure is first computed

concurrently in both grids. The values of u,v,w,θ and q are then anterpolated to the CG in the overlapping region. The CG5

solves a Poisson equation for pressure. The new u,v,w,θ and q fields in the CG are interpolated to set the FG Dirichlet top

boundary conditions. The Poisson equation is then solved for pressure in the FG and the vertical velocity in the FG is also

updated by the pressure solver at this stage. Since all the velocity components follow Dirichlet condition at FG top boundary

only Neumann condition is suitable for pressure (Manhart, 2004). PALM permits the use of a Neumann zero-gradient condition

for pressure at both top and bottom boundary. It is advisable to use a Neumann boundary condition at the top and the bottom10

for the CG too. The TKE is then anterpolated maintaining the Germano identity and it is followed by the computation of SGS

eddy diffusivity for heat (kh) and momentum (km) in the CG. This procedure is repeated at every sub-step of the Runge-Kutta

3 time integration and it ensures that the velocity field remains divergence free in both grids.

In the 1.5 order turbulence closure parameterization all the sub-grid fluxes are derived from the turbulent kinetic energy and

the resolved gradients at each time step. Therefore, the sub-grid fluxes do not have to be interpolated from CG to FG at the15

top boundary. Furthermore, in our implementation of the nesting method, we assume that most of the TKE is resolved well

down to the inertial subrange, except for the lowest few grid layers. This allows us to use the zero-gradient Neumann boundary

condition for TKE at the FG top boundary. We employ a simplified sponge layer by limiting the anterpolation of all prognostic

quantities to one CG cell less than the nested height. This segregation of the anterpolation region in the CG and top boundary

condition level of the FG ensures that the flow structures in the CG propogate into the FG without distortion due to numerical20

artifacts.

2.3 Translation between grids

2.3.1 Interpolation

For the boundary conditions at the top of the FG, the fields from the CG are interpolated to the FG, according to Clark and

Farley (1984). We define the top of the FG as the boundary level just above the prognostic level of each quantity. In Eq. 10, Φ25

and φ represent CG and FG quantities, respectively. For the scalar fields, the interpolation is quadratic in all three directions.

For the velocity components, the interpolation is linear in its own dimension, and quadratic in the other two directions. The

same interpolation formulation is also used to initialize all vertical levels of the fine grid domain at the beginning of the nested

simulation. The interpolation is reversible as it satisfies the conservation condition of Kurihara et al. (1979):

< φ >=< Φ> . (9)30
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For clarity, we illustrate the interpolation by focusing on one particular dimension, in this case x, but the same operation holds

for y and z. The interpolation in the x-dimension reads as

φm = ηm−ΦI−1 + ηm0 ΦI + ηm+ ΦI+1, (10)

withm running from 1 to nx, thus producing nx equations for each CG cell I . For the interpolation in y and z there will be two

additional indices, producing nx×ny×nz equations for all the FG cells corresponding to the CG parent cell. For the quadratic5

interpolation a stencil with 3 legs is used, relating the prognostic value of a FG cell to the value of its parent CG and the values

of the immediate CG neighbour on the left and on the right of the parent cell, e.g. ΦI−1 and ΦI+1 for the x direction as shown

in Fig. 1 (b). The stencil coefficients are:

ηm− =
1

2
Hm(Hm− 1) +α,

ηm0 = (1−H2
m)− 2α,

ηm+ =
1

2
Hm(Hm + 1) +α,

(11)

with the weights Hm expressed in function of the inverse nesting ratio,10

Hm =
1

2
((2m− 1)fx− 1) , (12)

and the coefficient α is chosen such that the conservation condition of Kurihara et al. (1979) is satisfied,

α=
1

24

(
f2x − 1

)
. (13)

It can be observed that the sum of the η’s equals 1.

2.3.2 Anterpolation15

The anterpolation of the prognostic quantities are performed by an averaging procedure according to Clark and Hall (1991).

The anterpolation equations for the velocities read as:

UI,J,K =< u >j,k=
∑

j,k∈CIJK

ui∗,j,kfyfz ,

VI,J,K =< v >i,k=
∑

i,k∈CIJK

vi,j∗,kfxfz ,

WI,J,K =<w >i,j=
∑

i,j∈CIJK

wi,j,k∗fxfy .

(14)

For the scalars it is:

ΦI,J,K = [φ]i,j,k =
∑

i,j,k∈CIJK

φi,j,kfxfyfz . (15)20

Here the lower case indices only count over the fine grid cells that belong to that particular coarse grid cell. For each (I,J,K)

tuple of a parent CG cell there exists a set CIJK containing the (i, j,k) tuples of its corresponding children FG cells. To ensure
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that the nested PALM knows at all times which fine grid cells and coarse grid cells correspond, we compute this mapping for

the FG and CG indices before starting the simulation, and we store it in the memory of the parallel processing element. In

the Arakawa C-grid discretization that PALM uses, the scalars are defined as the spatial average over the whole grid cell, and

therefore it is required that the CG scalar is the average of the corresponding FG scalars in (Eq. 15). However, the velocities

are defined at the faces of the cells in the corresponding dimension. Therefore in (Eq. 14) the CG velocity components are5

computed as the average over the FG values at the FG cells that correspond to the face of the CG cell, expressed by i∗, j∗, k∗

respectively.

However, the TKE in the CG differs from the FG value, due to the different resolution of grids. In the FG the SGS motions

are weaker because the turbulence is better resolved. Therefore, TKE is anterpolated such that the sum of resolved kinetic

energy and TKE (SGS kinetic energy) is preserved, by maintaining the Germano identity (Germano et al., 1991):10

E = [e] +
1

2

3∑
n=1

([unun]− [un][un]) . (16)

Here the straight brackets are the spatial average over the coarse grid cell (fxfyfz ×
∑

i,j,k∈CIJK
) and the n index runs over

the three spatial dimensions. In other words, to obtain the CG TKE from the average FG TKE, we add the variance of the FG

velocity components over the FG cells comprising the CG cell. Therefore CG TKE is always larger than FG TKE.

2.4 Parallel Inter-Grid Communication15

MPI is the most widely used large scale parallelization library. The atmosphere-ocean coupling in PALM has been implemented

following MPI-1 standards (Esau, 2014; Maronga et al., 2015). We follow a similar approach for the MPI communications,

and have adopted MPI-1 standards for our nesting implementation. Concurrent execution of the two grids is achieved with the

MPI_COMM_SPLIT procedure. The total available processors are split into two groups, denoted by color 0 or 1 for CG and

FG respectively, see Fig. 3. The data between the processors of the same group are exchanged via the local communicator20

created during the splitting process, whereas the data between the two groups are exchanged via the global communicator

MPI_COMM_WORLD.

Based on the nesting ratio and the processor topology of the FG and the CG group a mapping list is created and stored. Given

the local PE’s 2D processor co-ordinate – the list will identify the PEs in the remote group to/from which data needs to be

sent/received; the actual communication then takes place via the global communicator. There are three types of communication25

in the nesting scheme:

i. Initializing the FG (Send data from coarse grid to fine grid.) This is performed only once.

ii. Boundary condition for the FG top face (Send data from coarse grid to fine grid.).

iii. Anterpolation (Send data from fine grid to coarse grid.).

The exchange of arrays via MPI_SENDRECV routines is computationally expensive. Therefore, the size of the arrays com-30

municated are minimized by performing the anterpolation operation in the FG PE’s and storing the values in a temporary 3D

array that is later sent via the global communicator to the appropriate CG PE. This approach is more efficient than performing

the anterpolation operation on the CG which has less PE’s and needs communication of larger arrays from the FG. Furthermore,
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Figure 3. Schematic of the MPI processor grouping. The data exchange between the two groups are performed via the global communicator.

M and N are the number of processors for CG and FG respectively.

the array data that need to be communicated during the anterpolation operation and for setting the FG boundary condition are

not contiguous in memory. The communication performance is enhanced by creating an MPI derived data type that ensures

that the data is sent contiguously. Within the RK3 sub-steps, when one grid executes the pressure solver, the other grid has

to wait, leading to more computational time at every sub-step. However, the waiting time can be minimized by effective load

balancing, i.e. the number of grid points per PE in the CG should be kept lower than in the FG. The reduction in workload per5

CG PE is achieved with a few additional cores. The reduction in computational time per step in the CG means the waiting time

on the FG PE is also reduced.

3 Results and Discussion

3.1 Simulation setup for the nesting validation test

To evaluate the accuracy of the two-way nesting algorithm we setup a convective boundary layer simulation. Two overlapping10

grids with a nesting ratio of five in the lateral and vertical direction are employed. The simulation parameters are listed in

Table 2. A standalone reference simulation with the same resolution as the coarse grid (SA-C) and another reference with the

same resolution as the fine grid (SA-F) are performed for comparison. The grid configuration and the computational resources

used are listed in Table 3. The simulations were performed in a local computing cluster, each compute node has 64 GB of main

memory and a 2.8 GHz Ivy Bridge processor with 20 cores. The simulation domain has periodic boundary conditions in the15

lateral direction. The Dirichlet boundary condition is applied for velocity at the top and bottom boundaries, the vertical velocity

component is set to zero and the horizontal components are set to geostrophic wind. At the top and bottom boundaries, the
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pressure and humidity are set to zero gradient Neumann condition. The potential temperature is set to a Neumann condition

at the bottom, and the gradient is determined by MOST based on the prescribed surface heat flux and roughness length. The

gradient of the initial profile is maintained at the top boundary. In PALM, ug and vg represents the u- and v-component of the

geostrophic wind at the surface. The u and v initial profiles are set to be constant, equal to the value of the geostrophic wind

component in the domain and the vertical velocity is initialized to zero in the domain. The potential temperature is initialized5

to a constant value of 300 K up to 800 m and above 800 m a lapse rate of 1K(100m)
−1 is prescribed. The humidity profile is

initialized to a constant value of 0.005 kgkg−1. The simulation is driven by prescribing a surface heat flux of 0.1 Kms−1 and

a surface humidity flux of 4 x 10−4 kgkg−1ms−1. The domain is more than four times larger in the horizontal than the initial

boundary layer height.

Table 2. Simulation Parameters for the nesting validation test.

Simulation Parameters Value

Domain Size: 4.0 x 4.0 x 1.65 km3

Fine grid vertical extent: 320 m

Kinematic surface heat flux: Hs = 0.1 Kms−1

Kinematic surface humidity flux: λEs = 4 x 10−4 kgkg−1ms−1

Geostrophic wind: ug = 1 ms−1 , vg = 0 ms−1

Roughness length 0.1 m

Simulated time: 10800 s

Spin-up time: 9000 s

Averaging interval: 1800 s

10

Table 3. Grid configuration of the nested and standalone reference domains.

Case No. of grid points (dx,dy,dz) m CPU cores Core-hours Grid points per core Time steps

Coarse Grid (CG) 200 x 200 x 80 = 3.2 x 106 20, 20, 20 20 376 1.6 x 105 17136

Fine Grid (FG) 1000 x 1000 x 80 = 80 x 106 4, 4, 4 80 1503 1.0 x 106 17136

Total 1879

Standalone Coarse (SA-C) 200 x 200 x 80 = 3.2 x 106 20, 20, 20 20 8 1.6 x 105 3226

Standalone Fine (SA-F) 1000 x 1000 x 400 = 400 x 106 4, 4, 4 400 8234 1.0 x 106 18343
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3.2 Analysis of the simulations

In a two-way nesting it is important that the flow structures are propagated from the FG to CG and vice versa, without any

distortion. In Fig. 4, the contours in the CG region overlapping the FG have similar structures as the FG. The higher resolution

in the FG enables more detailed contours whereas the anterpolated CG contours are smoother. Furthermore, in the CG region

beyond the overlapping region no distortion to the contours are observed indicating that the anterpolation does not introduce5

sharp gradients in the CG.

Figure 4. Instantaneous contours of vertical velocity, (a) CG and (b) FG, at the vertical x-z cross-section at the center of the domain after

10800 s of the simulation. The dashed line in (a) marks the top of the overlapping region. Flow structures in the FG, are similar but more

detailed than the CG, qualitatively indicate the improvement to the surface-layer resolution with the two-way nesting.

Vertical profiles are used for quantitative comparison of the nested and the reference simulations. The turbulent fluctuations

(e.g. θ′′,w′′) are defined as the spatial deviations from the instantaneous horizontal average. The turbulent fluxes (e.g. <

w′′θ′′ >,< u′′u′′ >) are obtained using the spatial covariance and are then horizontally averaged. All the horizontally averaged

profiles (e.g.< θ >,<w′′θ′′ >) are also averaged over time but we omit the conventional overline notation for readability. The10

convective velocity scale (w∗) and temperature scale (θ∗) obtained from SA-F are used to normalize the profiles. The convective

velocity is calculated asw∗ = (g θ−10 Hs zi)
1/3, where g is the gravitational acceleration, θ0 is the surface temperature and zi is

the boundary layer height in the simulation. The convective temperature scale is calculated as θ∗ =Hs w
−1
∗ . In Fig. 5 (a and c),
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the vertical profiles of difference between the potential temperature (< θ >) and its surface value normalized by the convective

temperature scale are plotted. Since the FG profiles are superior to the CG in the overlapping region, the anterpolated CG

values are not plotted. In Fig. 5 (a), there is no visible difference between the standalone and the nested simulations. However,

in the region closer to the surface, plotted in Fig. 5 (c), a better agreement between the SA-F and FG is observed. The potential

temperature variance (< θ′′θ′′ >) normalized by the square of the temperature scale (θ2∗) is shown in Fig. 5 (b and d). Here too5

FG provides better accuracy close to the surface.
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Figure 5. Vertical profile of horizontally averaged potential temperature normalized by surface value (a and c) and variance of potential

temperature normalized by θ2∗ (b and d). The nested grid profiles agree well with the SA-F in the surface layer. The improvement of the

two-way nesting, at the boundary layer height, is seen in the good agreement in the profiles of CG and SA-F in (b).

In the vertical heat flux (<w′′θ′′ >) profiles in Fig. 6, the FG has good agreement with the SA-F in the surface layer for the

resolved, SGS and the total flux profiles. In the CG regions above the nested grid height, a good agreement with the SA-C is

found as well. The improvement due to the two-way nesting is seen in Fig. 6 (d and e), where the effects of low grid resolution

of the SA-C in resolved and SGS fluxes are evident. However, no grid dependent difference in the profile is observed in the10

total flux.
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Figure 6. Vertical profile of horizontally averaged heat flux normalized by the surface heat flux – resolved (a and d), sub-grid (b and e), and

total flux (c and f). The two-way nesting significantly improves the resolved and SGS fluxes in the surface layer.

The resolved variances of u, v and w normalized by the square of the convective velocity (w2
∗) are plotted in Fig. 7. The

FG v and w FG profiles have a better agreement with the SA-F than the u variance. The u and v variances in Fig. 7 (d and

e) lie between SA-C and SA-F indicating that the resolved variances are improved compared to the SA-C but not sufficiently

resolved to match SA-F. At the nesting height the variances deviate more from the SA-F and approach the CG values. Due to

conservation of total kinetic energy across the nest boundary, more CG TKE is contained in the sub-grid scale. Consequently,5

the resolved CG variances could have an undershoot as compared to SA-F, resulting in an undershoot of the FG variances too

at the nesting height. Above the nesting height, the variance of u, v and w in CG are similar to SA-C.
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Figure 7. Vertical profile of horizontally averaged resolved variance of u (a and d), v (b and e), and w (c and f) normalized by w2
∗. The

variance of v and w show better agreement with the standalone reference in the surface layer.

The resolved vertical velocity skewness in Fig. 8 shows good agreement between the FG and SA-F close to the surface.

However, at the nesting height a small kink in the skewness is noticeable. Zhou et al. (2018) observe that the magnitude of

the kink in the higher-order profiles can be minimized by increasing the depth of the sponge layer. Our simplified sponge

layer approach appears to be unable to effectively minimize the kinks at the nesting height. The resolved skewness in CG is

lower than SA-C possibly due to larger SGS TKE in the CG, as seen in Fig. 8 (d). The SGS TKE in Fig. 8 (d) shows exact5

match between FG and SA-F close to the surface and only marginal difference at the nesting height. However, CG values are

considerably different from the SA-C values close to the surface due to the anterpolation maintaining Germano identity for

conservation of kinetic energy across the grids. In the coarse resolution SA-C, near the surface, the SGS turbulence model

appears to insufficiently model the SGS effects. Above the nesting height the CG is similar to SA-C.
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Figure 8. Vertical profile of horizontally averaged resolved vertical velocity skewness (a and c), and SGS turbulent kinetic energy e (b and

d) normalized by w2
∗. The SGS TKE in the CG is higher than SA-C as a result of anterpolation maintaining the Germano identity.

The horizontal spectra of SGS turbulent kinetic energy and vertical velocity are plotted in Fig. 9 at two levels, one within

the nested grid and one above the nested grid height. The FG TKE spectra in Fig. 9 (c) perfectly overlaps the SA-F spectra.

The CG spectra has higher energy than the SA-C, this corresponds to the higher CG TKE values observed in Fig. 8 (c). As the

limit of the grid resolution is reached at high wavenumber, the drop in the CG spectra is marginally shifted compared to SA-C.

This improvement at high wavenumber is due to feedback from the FG. Similarly, the vertical velocity spectra in Fig. 8 (d)5

shows marginal improvement at high wavenumber for the CG with respect to SA-C. While the FG agrees with SA-C at high

wavenumber and at the spectra peak, at low wavenumber FG follows the CG spectra. At the level above the nested grid, the

CG spectra agrees with SA-C for both TKE and the vertical velocity.
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Figure 9. Spectra of SGS turbulent kinetic energy (e) (a and c), and vertical velocity (w) (b and d). At z/zi = 0.47 (a and b) and at z/zi =

0.11 (c and d); kr is the horizontal wavenumber.

3.3 Computational Performance

The computational resources used in the simulations discussed above are listed in Table 3. The resources needed by SA-C

is only 8 core hours. While the nested simulations needed about 1879 core hours, the SA-F needed about 4 times more core

hours than the nested simulation. As the resolution is increased from 20 m in SA-C to 4 m in SA-F, the number of time steps

increased more than 5 times as higher resolution demands smaller time step size. Though the number of time steps in FG is5

similar to SA-F, limiting the nested grid in the vertical direction has reduced the number of CPU cores needed, and higher

resolution in the surface layer is achieved at a reduced computational cost.

Several factors influence the computational performance of an LES code. Some factors depend on the hardware, for e.g.

the number of grid points per PE depends on the memory available per node. On the other hand, the communication time10

for data exchange between the PEs depend on the topology of the domain decomposition. The best performance in terms of
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Table 4. Number of grid points in nested and non-nested FG domain.

Case No. of grid points

Coarse Grid 840 x 840 x 288 = 0.20 x 109

Fine Grid 4200 x 4200 x 360 = 6.35 x 109

Total 6.55 x 109

Non-nested FG 4200 x 4200 x 360 = 6.35 x 109

Table 5. Grid configuration of the nested and non-nested FG domain.

Nested Non-Nested FG

Run Total PE CG PE FG PE Avg. time per step [s] Efficiency [%] Total PE Avg. time per step [s] Efficiency [%]

A 1664 64 1600 44.0 100 1600 14.9 100

B 3744 144 3600 19.9 98 3600 6.7 99

C 7488 288 7200 10.3 95 7200 3.6 92

D 8736 336 8400 9.3 90 8400 3.4 84

E 14976 576 14400 5.6 87 14400 2.3 74

communication time in a standalone run is achieved when the number of sub-domains in the x and y directions are equal. In that

case the number of ghost points at the lateral boundaries are optimally minimized. In a nested simulation, the load per PE, i.e.

the number of grid points per PE, in the two grids varies. As the speed of the model integration depends on the PE load, the load

balancing between fine and coarse grid has an effect on the computational performance of the nested simulation. Keeping these

factors in mind, we designed the nested simulation domains listed in Table 4 for the purpose of assessing the computational5

performance, as the total number of processors is varied. To avoid load balancing bias in the scalability analysis, the ratio

between the number of PEs for CG and FG is kept constant in all the five runs listed in Table 5. Keeping the processor ratio

constant implies that the ratio between the number of grid points per PE in CG and FG is also held constant. Consequently, in

this performance test, the FG has 1.25 times more grid points per PE than the CG in all the processor configurations tested. To

compare the performance of nested model against the non-nested version of PALM under equivalent work load, a grid with the10

same dimensions of the FG is set-up. This non-nested grid also has the same load per PE and same number of cores as the FG.

Such a non-nested set-up is acceptable for comparison since the number of PE in CG is negligible compared to the PE in FG

in our set-up (e.g. 14400 PE in FG and only 576 PE in CG). A pure standalone simulation with FG resolution throughout the

boundary layer was not performed as it would need about 2.5 x 1010 grid points and such a large domain was computationally

not feasible.15

The performance is measured in terms of the time taken to simulate one time step. To increase the accuracy of this perfor-

mance measurement, the simulation is integrated for ten time steps and the average of the time per step is plotted. The results
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presented in Fig. 10 shows close to linear scaling for up to 14976 PE in both nested and standalone runs. The difference in time

per step between the nested and standalone runs can be interpreted as the additional computational time needed by the nesting

algorithm. A jump in the time taken to compute one step is observed when more than 8192 PEs are used. This is a hardware

dependent increase in communication time as the nodes are grouped as ‘islands’ on SuperMUC system at the Leibniz Super-

computing Centre. The communication within the nodes of the same island is faster than the communication across multiple5

islands. The strong scaling efficiency in Table 4 is calculated keeping the run with lowest number of PEs as the reference. As

the number of grid points per PE is reduced from run A to E as shown in Table 5, the nested runs shows slightly better efficiency

than the non-nested runs. The average time per step of the nested grid is 3 times higher than the non-nested set-up for run A

but the factor decreases to about 2.5 for run E. This improvement is possibly due to reduction in waiting time between the FG

and CG as the number of grid points per PE decreases.10
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Figure 10. The nested simulations show close to linear scalability. A Non-Nested domain with same number of grid points as the FG is

plotted to benchmark the scalability of the standard version of PALM on the same machine. The difference between the blue and the red line

is approximately equal to the additional computational time needed by the nesting routines. The simulations were performed on SuperMUC at

the Leibniz Supercomputing Centre. Each node has 32 GB of main memory and two Sandy-Bridge processors with 2.7 GHz, each processor

has 8 cores (Anastopoulos et al., 2013).

3.4 Practical Considerations

In this paragraph we summarize some guidelines for using this nesting approach. In PALM, the user has the choice to se-

lect between Wicker-Skamarock (Wicker and Skamarock, 2002) and Piacsek-Williams (Piacsek and Williams, 1970) for the

advection scheme. Similarly, for solving the Poisson equation for the pressure, the user can choose between the FFT or Multi-

Grid based solver. During the development and the validation of the two-way nesting, only the Wicker-Skamarock advection15

scheme and FFT based pressure solvers were tested. The two-way nesting supports only periodic boundary conditions in the
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horizontal for both CG and FG, and therefore an FFT based pressure solver is an appropriate choice. However, to be able to use

Multi-Grid solvers, for e.g. in non-periodic horizontal boundary conditions, modifications to the two-way nesting algorithm

will be needed. The large scale forcing feature in PALM is found to be compatible with the nesting algorithm without further

modifications. Other features like canopy parameterization, radiation model, land surface models etc. have not been tested.

Our implementation of the vertical nesting allows only integer nesting ratios in all directions. The height of the nested domain5

has a direct influence on the accuracy of the two-way nesting algorithm. Based on our trials (not shown) we recommend that the

FG covers at least 12 grid levels of the CG. For better computational performance we recommend that the number of grid points

per PE in the CG is kept at only 40 to 80 percent of the FG value. The reduced work load of the CG is expected to minimize

the waiting time of the FG during the concurrent time advancement by the quicker CG pressure solver step. However, the

actual improvement in performance will depend on the memory available, processor speed and the inter-node communication10

architecture of the computing cluster and the optimal load balancing can only be found through trials. Furthermore, the choice

of the domain size is often restricted by the topology of the processor decomposition. In a 2D decomposition, the number of

grid points along the x-direction should be an integer multiple of the number of PE along x and similarly for y-direction. This

condition has to be individually satisfied for the CG and the FG.

Though our nesting technique makes resolving the surface layer resolution down to 0.5 m for a moderately large domain15

computationally feasible, care should be taken to ensure the validity of such LES. In PALM, the height of the first grid point

should be at the least twice greater than the local surface-roughness parameter. This technical restriction is common to all

models that employ MOST and ensures the proper evaluation of the logarithm needed in the calculation of u∗. Furthermore,

Basu and Lacser (2017) recently recommended that MOST boundary-conditions should be adapted for very high-resolution

LES where the first grid point is smaller than 2-5 times the height of the roughness elements.20

4 Summary

We presented a two-way grid nesting technique that enables high resolution LES of the surface layer. In our concurrently

parallel algorithm, the two grids with different resolution overlap in the region close to the surface. The grids are coupled,

i.e the interpolation of the boundary conditions and the feedback to the parent grid are performed, at every sub-step of the

Runge-Kutta time integration. The anterpolation of the TKE involves the Germano identity to ensure the conservation of total25

kinetic energy. The exchange of data between the two grids is achieved by MPI communication routines and the communication

is optimized by derived datatypes. Results of the convective boundary layer simulation show that grid nesting improves the

vertical profiles of variance and the fluxes in the surface layer. In particular, the profiles of the vertical temperature flux are

improved. The current vertical nesting only works with periodic boundary conditions and with the same horizontal extent

in both the domains. The nested simulation needs 4 times less computational time than a full high resolution simulation for30

comparable accuracy in the surface layer. The scalability of the algorithm on up to 14976 CPUs is demonstrated.
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5 Code availability

The PALM code is distributed under the GNU General Public License. The code (revision 2712) is available at https://palm.muk.uni-

hannover.de/trac/browser/palm?rev=2712.
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