
Response to Referee Comment 1 (Dr. Lucas Harris) 

 

It is often hard to see artifacts in a snapshot such as Fig. 4. Would a time-averaged spatial plot show 

more artifacts? 

 

We agree that the artifacts will not be clearly visible in a snapshot. However, we included the snapshot 

to qualitatively show that the flow structures can propagate across the grid interface without any 

distortion and also show that smaller structures are better resolved in the FG. In the figure below, we 

show a vertical velocity cross-section time-averaged over 1800 s at the end of the 10800 s simulation. 

There are no visible artifacts. 

 

 

As seen in Fig. 6 there are some artifacts seen in the averaged profiles of the velocity variances, 

especially in the v variance. Why might v have larger shift in the 

variance between the two grids? Would these appear if a time-average of the variance 

were plotted as in Fig.4? 

 

We realized that in the initial runs we had failed to include the compiler flag (-fpmodel strict) necessary 

to make every realization deterministic. As a result, the plots in our initial submission have compiler 

optimization related random effects, that were noticeable in the variance profile. The results of both the 

nested and the standalone simulation were affected. We have now ensured that the simulations are 

deterministic, which improves their comparability. The plots and their description have been updated 

accordingly.  

 

In the updated spatial velocity variance profile, we observe a marginal shift in u. For, clarity, the profiles 



of the variance in the manuscript are based on the spatial variance. We cannot use the same spatial 

variance for visualizing the variability over an XY cross-section of the variance because the local 

information is already averaged out to obtain the spatial variance. However, we used a custom user code 

to output the 30 min averaged temporal variance of u shown below, and we can plot the spatial variability 

of this quantity. The shifts that are observed in the variance profiles are not noticeable in the contour plot. 

Since the custom user code has an influence on the computational performance an additional run with 

identical set-up described in the manuscript was performed to produce this output. 

 

 

 
Temporal variance of u averaged over 30 mins. 

 

 

The issue of reflections of vertically-propagating gravity waves at the top boundary of a 

vertically-nested grid was considered by Clark and Farley (1984, JAS). In this model the 

nested upper boundary condition is relatively simple, which is OK for the Boussinesq 

LES problem presented here in which there are no sound waves and any vertically- 

propagating gravity waves would be very well-resolved. Do the authors expect that at 

coarser resolutions (∼ 1 km) or if compressible equations are used that the form of the 

upper boundary condition used here would still yield acceptable results? 

 

In our implementation of the nesting method, we assume that most of the TKE is resolved well down to 

the inertial subrange, except for the lowest few grid layers. This allows us to use zero-gradient Neumann 

boundary condition for TKE at top of the nested grid. This assumption will not be valid at coarser 

resolutions (~1 km) and therefore such simulations will not be possible with our method. Furthermore, 

an advanced sponge layer should also be implemented. We have updated the TKE boundary condition in 

the manuscript: 

 

“Furthermore, in our implementation of the nesting method, we assume that most of the TKE is 



resolved well down to the inertial subrange, except for the lowest few grid layers. This allows us to use 

zero-gradient Neumann boundary condition for TKE at the FG top boundary.” 

 

 

 

I found it strange that the two grids use the same timestep, which could introduce a 

significant computational burden. Furthermore the communication is done every single 

timestep, which also introduces substantial overhead due to the amount of message 

passing needed for the antepolation. Has any consideration been given to a longer 

communication timestep, or to use a longer timestep on the coarse grid? 

 

Initially we had considered allowing a longer timestep on the coarse grid. However, we did not implement 

the idea due to parallelization restrictions. We have used a simple parallelization approach where the CG 

and FG are each assigned a dedicated group of processors. Allowing for a longer timestep on coarse grid 

also leads to an increased CPU idle time on the CG PE.  Therefore, we restricted both the grids to have 

same timestep. Communicating at every single timestep indeed increases the computational cost. We 

have not considered limiting the anterpolation to every few time integration steps. 

 

Other comments: 

 

- Sec 2.2: Quadratic interpolation is used for scalars. Does this introduce new extrema 

or negative values into the interpolated fields? 

 

We agree that quadratic interpolation could introduce new local extrema. In our tests we found that the 

extrema of the interpolated FG scalars had less than 0.005 % difference compared to the CG scalars at 

the nesting height. However, the horizontal mean of the CG and the FG is equal. We chose the quadratic 

interpolation of Clark and Farley (1984) because in the interpolation formulation, the coefficient alpha 

is chosen such the conservation condition of Kurihara et al. (1979) is satisfied and consequently the 

interpolation is reversible. We have updated the manuscript as: 

 

“The same interpolation formulation is also used to initialize all vertical levels of the fine grid domain at 

the beginning of the nested simulation. The interpolation is reversible as it satisfies the conservation 

condition of Kurihara et al. (1979):” 

 
 

- Table 2: It seems strange that the SA-F run is more than 2000x more expensive than 

SA-C despite having only 125x more grid cells. Is this correct? 

 

The SA-F has more grid cells and consequently needs more cores, the number of grid points per core in 

SA-F is more than 6 times higher than SA-C. Furthermore, the higher resolution in SA-F demands smaller 

time steps than SA-C. The total number of time steps in SA-F is 5 times more than SA-C. Therefore, the 

SA-F run is indeed 1000 times more expensive. 

 

We have updated the grid configuration Table 3 to include the grid points per core and the time steps 

needed in each simulation. 

 

- Sec 3.1: The potential use of a sponge layer is briefly discussed. Do the authors 

plan to look more into this in future work to alleviate some of the artifacts at the upper 



boundary? 

 

Our simplified approach provides reasonable results. Nevertheless, we agree that a thorough 

investigation of a sponge layer certainly needs more attention to effectively alleviate the artifacts at the 

upper boundary. We have not planned a thorough investigation of the sponge layer in the near future. 

However, the main developers of PALM are developing 3D nesting in PALM (similar to our method) 

and we expect that  the artifacts at the boundary will be investigated further. 

 

 

- The lines in Figures 5–7 are difficult to distinguish because they overlap so much. 

Perhaps thicker background lines for the SA simulations overplotted by thinner lines for 

the two grids of the nested grid would work better. 

 

The Figures 5–9 have been updated. As suggested, thicker dashed lines for the standalone simulations 

and thinner lines for the two nested grids improve the visibility of the overlapping lines.  

 

- Sec 3.4: The authors recommend an odd refinement ratio. Why would this be? The 

sort of averaging anterpolation used should be able to handle even refinements as well. 

 

The averaging anterpolation can indeed handle both odd and even refinements. However, if the grid 

nesting ratio is odd, there will be one FG cell of which the center is exactly at the same position as the 

center of the coarse cell as shown in the updated Figure 1 in the manuscript, due to the Arakawa-C grid 

in PALM. Such a nested grid set-up is expected to increase the numerical accuracy of the anterpolation 

operation. 

 

Also it is said that the first five gridpoints in an LES are unreliable; why is this, and in 

which direction? 

 

We meant the first five grid layers in the vertical direction form the surface are not reliable because a lot 

of turbulence is still sub-grid. This is only based on our experience, due to lack of literature to support 

this point we have removed this sentence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Referee Comment 2 

 

Page 11, line 5. You normalized all the profiles using scaling quantity values from SA-F 

only, rather than values from the respective simulations. Are there any surprises or 

interesting features when scaling each profile with data obtained from their respective 

simulations? 

 

The variances of velocity and temperature normalized by the values from the respective simulations are 

shown below. Since the boundary layer height differs only about 30 m, the difference in the surface 

potential temperature is less than 1 K and the surface heat flux is constant between the simulations there 

is no considerable difference in the profiles normalized by SA-F values and the profiles normalized by 

the values from the respective simulations. 

 

 

A general comment for all of the vertical profile figures that is relevant here is to use 

different line styles, in addition to the different colors, to better differentiate profiles that 

are nearly on top of each other. With this strategy, you should be able to plot additional 

data without making the plots unwieldy to decipher. 

 

The Figures 5–9 have been updated. As suggested, different lines styles are now used, marginally thicker 

dashed lines for the standalone simulations and thinner lines for the two nested grids improve the 

visibility of the overlapping lines.  

 

 

 

Page 11, line 9: I think it would be interesting to see the anterpolated values, just to 

see how the algorithm is working behind the scenes. The same comment as above 



regarding plotting these additional data within the same plot applies here. 

 

The variances of velocity and temperature close the surface are shown below. Compared to SA-C and 

SA-F, the CG profile in the anterpolated region is improved close to the surface.  

 

We have added a profile of the sub-grid scale TKE to the manuscript, where the effect of maintaining the 

Germano identity during anterpolation is clearly noticeable. The anterpolated values are also shown in 

the vertical velocity skewness plot.  

 

 
 

 

Page 12, lines 5-10 & Fig. 6. Please explain more thoroughly the discontinuities in all 

profiles between CG and FG near the FG top. Do the plotted profiles utilize the sponge 

layer that you describe, or not? Perhaps you could show the results with and without 

the sponge layer, using different linestyles and colors, as described above. 

 

The plotted profiles use our simplified sponge layer approach, i.e. limiting the anterpolation to one CG 

cell less than the nested height. In our implementation, it is currently not possible to disable the simplified 

sponge layer as the data exchange from FG to CG for anterpolation are by default limited to one CG cell 

less than the nested height. We have expanded the explanation as: 

 



“The v and w FG profiles have a better agreement with the SA-F than the u variance. The u and v variance 

in Fig. 7 (d and e) lie between SA-C and SA-F indicating that the resolved variances are improved 

compared to the SA-C but not sufficiently resolved to match SA-F. At the nesting height the variances 

deviate more from the SA-F and approach the CG values. Due to conservation of total kinetic energy 

across the nest boundary more CG TKE is contained in the sub-grid scale. Consequently, the resolved 

CG variances could have an undershoot as compared to SA-F, resulting in an undershoot of the FG 

variances too at the nesting height. Above the nesting height, the variance of u, v and w in CG are similar 

to SA-C.” 

 

While you show mean profiles of various quantities, it would be nice to also see if 

there is any impact of nesting on the structures resolved within the CG above the FG 

in the nested simulations, relative to the SA-C (or within the nested domain relative to SA-F, although 

this is not as relevant). Perhaps comparing spectra of streamwise 

velocity and/or w at a few heights would provide some useful information on this issue. 

If the nested FG in the surface layer is able to improve the instantaneous structures 

resolved within the CG above, that would be another noteworthy advantage of the 

vertical nesting capability. 

 

We have added new figure to compare the spectra of SGS TKE and vertical velocity at two heights, one 

within the nested grid and one above the nested grid. The w spectra of CG above the nested height 

follows SA-C and improvement due to higher resolution at the surface layer is not noticeable. We 

added the following text to the manuscript: 

 

“The horizontal spectra of SGS turbulent kinetic energy and vertical velocity are plotted in Fig. 9 at two 

levels, one within the nested grid and one above the nested grid height. The FG TKE spectra in Fig. 9 (c) 

perfectly overlaps the SA-F spectra. The CG spectra has higher energy than the SA-C, this corresponds 

to the higher CG TKE values observed in Fig. 8 (c). As the limit of the grid resolution is reached at high 

wavenumber, the drop in the CG spectra is marginally delayed compared to SA-C. This improvement at 

high wavenumber is due to feedback from the FG. Similarly, the vertical velocity spectra in Fig. 8 (d) 

shows marginal improvement at high wavenumber for the CG. While the FG agrees with SA-C at high-

wave number and at the spectra peak, at low wavenumber FG follows the CG spectra. At the level above 

the nested grid, the CG spectra agrees with SA-C for both TKE and the vertical velocity.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Referee Comment 3 

 

I miss a thorough discussion on how the subgrid fluxes are handled at the interface between 

the course grid domain and the fine grid domain. I could imagine that the subgrid fluxes at 

the boundary between CG and FG would need to be interpolated. 

 

The PALM model employs a 1.5 order turbulence closure parameterization. Therefore, at each time step, 

all the sub-grid fluxes are derived from the turbulent kinetic energy and the resolved gradients. Therefore, 

it suffices that the prognostic variables are communicated correctly. In our implementation of the nesting 

method, we assume that most of the TKE is resolved well down to the inertial subrange, except for the 

few lowest grid-layers. This allows us to use zero-gradient Neumann boundary condition for TKE at top 

of the nested grid. 

 

We have added the following sentences to the manuscript: 

“In the 1.5 order turbulence closure parameterization, all the sub-grid fluxes are derived from the 

turbulent kinetic energy and the resolved gradients at each time step. Therefore, the sub-grid fluxes do 

not have to be interpolated from CG to FG at the top boundary. Furthermore, in our implementation of 

the nesting method, we assume that most of the TKE is resolved well down to the inertial subrange, 

except for the lowest few grid layers. This allows us to use zero-gradient Neumann boundary condition 

for TKE at the FG top boundary.” 

 

Or continuity of the 

subgrid fluxes at that interface could be ensured by the subgrid models on either side of the 

interface. However, I so not see how the subgrid flux between CG and FG are handled in a 

conserving way: what leaves the CG should enter the FG and the other way around. 

 

The sub-grid fluxes do not need to be continuous, only the sum of resolved and sub-grid fluxes should 

be. In the FG, there is a larger proportion of resolved flux (due to the smaller grid spacing) and less sub-

grid flux. 

 

However, we agree with the reviewer that for LES that employ higher order closure models (where the 

fluxes are independent variables) the sub-grid fluxes should be communicated as well. 

 

b. The validation of the results of the nested simulation (characteristics of turbulent fields) is 

rather superficial (fluxed and variances, no spectral analysis or higher order moments; also 

little consideration for subgrid contributions). 

We have included spectral analysis and vertical profiles of vertical velocity skewness and SGS TKE to 

expand our analysis. More information is provided in the detailed comments below. 

 

c. The analysis of the timing of the simulations (scaling, overhead, net gain etc.) is limited. 

 

We demonstrate the linear scalability of the nested simulations on more than fourteen thousand CPUs. 

However, in our benchmark runs, we did not profile the time taken by each nesting routine, and therefore 

a detailed analysis of the overhead is not possible. To overcome this limitation in our analysis, we 

executed standalone simulations with the same number of grid points as in the FG domain. The difference 

between the nested and the standalone in the scalability plot provides a rough estimate of the overhead. 

The analysis is expanded with the strong scaling efficiency suggested in the detailed comments. 

 

d. The application of boundary conditions to the nested grid is insufficiently clearly described: 



 

• Is the Dirichlet condition for horizontal wind components and scalars applied to a point just 

above the fine grid domain, of to the highest point just inside the fine grid? 

 

We define 'top of the FG' as the highest point in the FG. This is the boundary point which is excluded 

from the CFD calculations. We added the following sentence in section 2.3.1: 

 

“We define the top of the FG as the boundary level just above the prognostic level of each quantity.” 

 

• The equations given for the interpolation algorithm lack explanation. 

The explanations to interpolation equations is added to the text. More information is provided in the 

detailed comments below. 

 

e. The structure of the introduction could be improved. After the overview of the history of 

LES, I would expect a clear definition of the problem (we need high resolution where it 

matters: close to the surface (and in the entrainment zone), an overview of how people have 

solved this until now, what is that we still not know/can/have?, and how are you going to 

solve it. Also the structure of section 2 could be improved to more clearly separate the 

different aspects of the new model. 

 

We have improved the structure of the introduction and re-structured section 2 as suggested. The changes 

are listed in the relevant detailed comments. 

 

Detailed comments 

1. 2-27: You immediately make the jump to grid-nesting. However, the main point is that you 

need increased resolution. And if you cannot afford to increase the resolution in the entire 

domain, you want to do it locally. One way of doing that is by grid-nesting. But there are 

other ways: if one does not insist to stick to a structured grid, local grid refinement (without 

nesting) is feasible. This grid refinement can even be made dependent on the flow itself (see 

van Hooft et al., 2018). So: grid-nesting is just one of the ways to locally increase 

resolution. 

  

We have re-structured the paragraph to clearly define the problem and then introduce solutions other than 

nesting and then introduce a summary of the nesting literature. We updated the manuscript as: 

 

“Still, especially in heterogeneous terrain, near topographic elements, buildings or close to the surface, 

the required higher resolution is not always attainable due to computational constraints. In spite of the 

radical increase in the available computing power over the last decade, large-eddy simulations of high 

Reynolds number atmospheric flows with very high-resolution in the surface-layer remain a challenge. 

Considering the size of the domain required to reproduce boundary-layer scale structures, it is 

computationally demanding to generate a single fixed grid that could resolve all relevant scales 

satisfactorily. Alternatively, local grid refinement is possible in the Finite-Volume codes that are not 

restricted to structured grids. Flores et al. (2013) developed a solver for the OpenFOAM modelling 

framework to simulate atmospheric flows over complex geometries using an unstructured mesh 

approach. Van Hooft et al. (2018) demonstrated the potential of adaptive mesh refinement technique 

where the tree-based Cartesian grid is refined or coarsened dynamically, based on the 

flow structures.” 

 

2. 3-7 to 16: here you explain why vertical nesting is needed. But you started that argument 



already in line 2-28 to 30. Please restructure your argumentation (either move 3-7 to 16 to 

the point where you introduce vertical nesting (and then talk about horizontal nesting to 

show what we know from that), or first introduce horizontal nesting and then make the step 

to vertical nesting (or ignore horizontal nesting altogether, since vertical nesting is in itself 

not new, just your implementation in PALM is new). 

 

We restructured the text to first introduce horizontal nesting and then focus our discussion on the vertical 

nesting. We would like to retain the discussion on horizontal nesting as our vertical nesting is motivated 

by literature in horizontal nesting. The vertical nesting discussion is restructured as: 

 

“For our purposes, we will focus on vertical nesting, i.e. we consider a Fine Grid nested domain (FG) 

near the lower boundary of the domain, and a Coarse Grid parent domain (CG) in the entire of the 

boundary layer. While the latter's resolution is sufficient to study processes in the outer region where the 

dominant eddies are large and inertial effects dominate, such coarse resolution is not sufficient where 

fine-scale turbulence in the surface layer region is concerned. 

The higher resolution achieved by the vertical nesting will then allow a more accurate representation of 

the turbulence in the surface layer region, by resolving its dominant eddies. For studies that require very 

high resolution near the surface (e.g. virtual tower measurements, wakes behind obstacles, dispersion 

within street canyons for large cities) a nesting approach is an attractive solution due to the reduced 

memory requirement. The challenge of a vertically nested grid is that the FG upper boundary conditions 

need to be correctly prescribed by the CG. Though vertical nesting is less common than horizontal 

nesting, it has been implemented in some LES models. A non-parallelized vertical nesting was explored 

by Sullivan et al. (1996) but this code is not in public domain and we could not find any record of further 

development or application of this code in publications. An LES-within-LES vertical nesting is 

implemented by Zhou et al. (2018) in the Advanced Regional Prediction System (ARPS) model.” 

 

3. 3-17: it seems that Clark and Hall (1991) deals with horizontal nesting. To what extent is it 

still relevant for this paper? 

 

Though Clark and Hall (1991) deals with horizontal nesting, their error analysis of the nesting procedures 

is relevant in understanding the 'post-insertion' and ‘pressure defect correction'. Their work has also 

provided motivation for other vertical nesting development (Sullivan et al. (1996). Updated the 

manuscript as: 

“Clark and Hall (1991) studied two different approaches for updating the CG values, namely "post-

insertion" and "pressure defect correction".  

The two approaches were also investigated by Sullivan et al. (1996) in their vertical nesting 

implementation. 

 

4. 3-23: ‘...superior when the waves ...’: doe you mean ‘when’ or ‘if’? And what happens 

if/when the waves are not well resolved? In what way is this relevant for the present paper 

on the simulation of turbulence? 

 

Harris and Durran (2010) observed that only for moderately well resolved waves, the two-way interaction 

performed better than the one way interaction. Modified the text to introduce the concept of 'sponge 

boundary condition': 

 

“Harris and Durran (2010) used a linear 1D shallow-water equation to study the influence of the 

nesting method on the solution and found the two-way interaction to be superior if the waves are well 

resolved. They introduce a filtered sponge boundary condition to reduce the amplitude of the reflected 



wave at the nested grid boundary.” 

 

5. 3-28: ‘.... both the resolved and SGS fluxes...’: does this also hold for the finite difference 

code used here? In what way would/does it increase coding complexity? 

 

We had written: 

“Sullivan et al. (1996) report that in the case of their Pseudo-Spectral LES, both the resolved and SGS 

fluxes need to be anterpolated to the CG and such a procedure increases coding complexity.” 

Since no explanation for the increase in the coding complexity is found in the literature and also 

because this does not hold for the finite difference code, we have removed this statement. 

6. 4-17: please explain the variables used in the equations. In particular the notation for 

resolved variables and subgrid variables is important. Furthermore, I assume you include the 

tendency equation for potential temperature because the potential temperature plays a role in 

the SGS-TKE equation and in the momentum equation. But then you should also include the 

moisture tendency in order to be able to determine the tendency of the virtual potential 

temperature (which then also should be used in the buoyancy terms). Finally, the heat flux 

that appears in equation (4) is the subgrid heat flux: (1) apparently you denote subgrid 

variations by a single prime and the filtering operation by an overbar and (2) in the model 

the subgrid heat flux is parameterized using a gradient hypothesis (also the next term, the 

transport term, is parameterized). 

 

We have updated the equation adopting the convention followed by Maronga et al. (2015). The moisture 

tendency equation is added and the virtual potential temperature is included in the buoyancy term. We 

now denote the sub-grid heat flux with double prime and have also added the parameterization by 

gradient hypothesis. All the symbols are listed in Table 1. 

 

7. 4-20: ‘guarantees a stable’: how does the choice of the time integration method guarantee a 

stable solution. The magnitude of the time step would still play a role (and it does, as later 

on you invoke the CFL criterion). So why mention stability here? 

 

The combination of Runge-Kutta-2 integration and the 5th order advection scheme is known to be 

conditionally unstable. The default time integration and advection scheme in PALM are RK3 and 5th 

order upwind discretization according to Wicker and Skamarock, respectively.   

 

Modified the sentence as: 

“The low storage RK3 scheme with three sub-steps proposed by Williamson (1980) guarantees a stable 

numerical solution in combination with both the advection schemes”. 

 

8. 4-23: I assume that you refer the vertical zero pressure gradient here. 

Yes, we refer to vertical zero pressure gradient. Updated the text as: 

“A vertical zero pressure gradient at the surface guarantees the vertical velocity to be zero.” 

 

9. 5-9: apart from updating the ghostpoint, there is also global communication needed in the Poisson 

solver. This involves way more communication than the ghostpoint update. 

We agree that the global communications for the Poisson solver need more communication than the ghost 

point update. Updated the sentence as: 



“The data exchange between PEs needed by the Poisson solver and to update the ghost points are 

performed via the Message Passing Interface (MPI) communication routines.” 

 

10. 5-10: regarding the structure of the rest of section 2: I would suggest to restructure this 

section as follows: 

2.2 Model structure 

2.2.1 Grid configuration (now 2.2, up to line 5-29) 

2.2.2 Nesting algorithm 

2.3 Translation between grids (line 5-9 until7-4) 

2.3.1 Anterpolation 

2.3.2 Interpolation 

2.4 Parallel inter grid communication 

(after 2.2.2 it is clear where and why anterpolation and interpolation are needed). 

 

The section 2 is re-structured as suggested. 

 

11. 5-30: only the vertical velocity really has a boundary at the top of the FG. For the other 

velocity components and scalars it is unclear whether the boundary condition (interpolation 

from CG) is applied to a ghost point (just above the FG) or to the first point just below the 

boundary of the FG. 

 

The boundary condition is applied at the boundary level. This level is excluded from the CFD 

computations and only acts as a boundary constraint in the CFD equations for the neighbouring 

prognostic grid cells. We prefer to call it as boundary point instead of ghost point and keep the 

terminology of ghost points for the grid points which are constraints on one parallel processing element 

but CFD point on another processing element. The (vertical) boundary level is a boundary level on all 

processing elements. We added the following sentence in section 2.3.1: 

 

“We define the top of the FG as the boundary level just above the prognostic level of each quantity.” 

 

12. 5-32: what is the ‘logical’ direction? If figure 1 would be upgraded (see below), this 

‘logical’ linear interpolation would probably become clear. 

The logical direction is the dimension corresponding to the velocity component. We replace it by “in its 

own dimension” in the manuscript: 

 

“For the velocity components, the interpolation is linear in its own dimension, and quadratic in the 

other two directions.” 

 

13. Figure 1: the current figure is not very informative. I would suggest to replace it by a figure 

in which you show a few CG cells as well as the FG cells within one or two of them 

(preferably with a grid ratio of 3, not more). Then clearly show how the interpolation of 

vertical velocities, as well as horizontal velocities and scalars works (in order to support the 

interpretation of equations (5) as well as the notion that the velocities are interpolated in a 

‘logical’ direction. The connection to equations (5) could also clarify the meaning of the 

various indices (lowercase and uppercase). 

 

As suggested we have included a schematic of a nested grid with a nesting ratio of 3. However, we would 

also like to retain the original figure as it could be informative to readers not familiar with the nesting 

procedure. The explanation to the equations have also been expanded. 



 

 

Figure 1. (a) Schematic of the interpolation and anterpolation between grids. The FG top boundary 

condition is interpolated from the CG. The CG prognostic quantities in the overlapping region are 

anterpolated from the FG. (b) Schematic of Arakawa C grid for two grids with nesting ration of three. 

The black arrows and circles are CG velocity and pressure, respectively. The blue and red arrows are 

horizontal and vertical velocity, respectively, in the FG. The filled black circle is the FG pressure. The 

symbols Φ and ϕ represent CG and FG scalar quantities. Where I and K are CG indices and nx and nz 

are the nesting ratio in x and z, respectively. 

 

14. Please completely rework the equations and add explanations: 

• Make clear that the first equation is the actual interpolation, and all the other equations just 

define the various parameters occurring therein. 

We have re-numbered the equations to make the distinction. We kept the indices for the anterpolation 

equations, but we changed the indices in the interpolation, to make it less confusing. 

• In which coordinate direction does i vary: only in the x-direction, or also in other directions. 

Or are we actually looking at a 2D or 3D stencil of which only one dimension is shown? 

i varies only in x. Yes, we are only looking at one dimension of the stencil (added in the text). For the 

interpolation, we renamed this index to “m” because it has a different flavour than the index “i” in the 

anterpolation. 

• The capital indices I, J, and K are counting through the entire domain, I assume. But how 

about the lower case indices: do they start counting at 1 (or zero) within each CG cell, or do 

they also count globally? 

We understand that the reviewer is referring to the anterpolation equation. The lower case indices only 

count over the fine grid cells that belong to that particular coarse cell. So for each (I,J,K) tuple it is a 

restricted set of (i,j,k). However, due to the grid conventions in PALM the (i,j,k) have global numbers. 

Due to the setup of the grid indices in PALM, this is also true for the parallelization with MPI. However, 

whether the i,j,k are defined locally or globally is a matter of how the nesting is applied practically, and 

it does not influence the nesting philosophy. 

In the text: “The lower case indices only count over the fine grid cells that belong to that particular coarse 



cell. For each (I,J,K) tuple there exists a restricted set of (i,j,k) indices in the FG. In order that the nested 

PALM knows at all times which fine grid cells and coarse grid cells correspond, we compute a mapping 

for the FG and CG indices before starting the simulation, and we store this mapping in the memory.” 

For the interpolation equation, I is global again but (to make the equation better readable) m is local, 

running from 1 to nx. 

• In the 2 nd -4 th equations you introduce H k . What is the value of the index k. Or does the 

repeated index imply summation? If so, what is the range of values that k can take: 1, 2 and 

3 because of the dimensionality, or 1, 2, ... n x because of the number of FG cells in a CG 

cell? 

 

We admit that the k is confusing here and we have replaced it by m as well (in the original document i 

and k should have been equal). There is no summation convention here (added in the text). We added 

some lines explaining the philosophy behind the interpolation equation. 

15. 6 - equation (6): what is the range of values for i, j and k ? Is there a mapping that gives the 

global i,j,k values for a given I,J,K or, are these local i,j,k values, running as 1, 2, ... n x ? 

 

Yes, there is a mapping. This mapping is essential for the nesting algorithm to match the corresponding 

cells in the fine and coarse grid, and it is computed in advance and stored in the memory. These i,j,k 

values are not global. 

 

Added in the text (see also above): “In order that the nested PALM knows at all times which fine grid 

cells and coarse grid cells correspond, we compute a mapping for the FG and CG indices before starting 

the simulation, and we store this mapping in the memory.” 

16. 7 - equation (7): idem 

Equation for velocity anterpolation has also been updated similar to the equation for scalars. 

 

17. 8-7 and 11: please keep the discussion on the solution of the Poisson equation in one place. 

What is the value of the pressure gradient that is imposed as a Neumann boundary 

condition? If it is zero, reflections could occur, but if you use something non-zero: how do 

you determine the value of this gradient? Is it derived from the CG pressure field? 

 

We have re-arranged the sentences to keep the discussion of Poisson equation in one place. 

 

We use a zero gradient Neumann condition for pressure. We would like to quote the opinion of R1 here: 

“In this model the nested upper boundary condition is relatively simple, which is OK for the Boussinesq 

LES problem presented here in which there are no sound waves and any vertically-propagating gravity 

waves would be very well-resolved.”. In what we refer to as the ‘simplified sponge-layer’, we have also 

split the level of the FG upper BC from the highest level of anterpolation of FG to CG in order to reduce 

oscillations originating from the FG boundary. 

 

18. 8-12 and 13: please clarify how the value of the imposed pressure gradient is determined/chosen. 

We impose zero gradient at the top and bottom of the nested domain. 

 



19. 8-31: ‘... the higher number of PE available in the FG.’: this is stated as if the reader already knows 

that there are more PEs in the FG (although for any grid ratio above 2 it is indeed logical that the 

number of FG PEs is larger than the number of CG PEs). But in addition, itis unclear to me why the 

higher number of FG PEs would be relevant for the FG-to-CG communication. 

 

To perform the anterpolation operation, either the FG data can be sent to the CG and then be anterpolated, 

or alternatively, and more efficiently, the anterpolation operation is performed in the FG and then the 

anterpolated values are sent to the CG. The latter approach benefits from the higher number of FG PE 

and smaller array dimensions of the anterpolated values. 

 

We have modified the sentence as: 

“The exchange of arrays via MPI_SENDRECV routines is computationally expensive. Therefore, the 

size of the arrays communicated are minimized by performing the anterpolation operation in the FG PE’s 

and storing the values in a temporary 3D array that is later sent via the global communicator to the 

appropriate CG PE. This approach is more efficient than performing the anterpolation operation on the 

CG which has less PE's and needs communication of larger arrays from the FG.” 

 

20. 9-2 ‘should be kept lower’: please explain the logic of this statement. I assume that the idea is that 

you want to reduce the total amount of idle CPU time on the FG PEs (N cores x wait time), which can 

be achieved by under-utilization of the (only) M cores running CG (better waste time on a few CG 

cores than on many FG cores). In order to know how this plays out in practice, you should show in 

your results the amount of time spent in the various steps in a RK substep: which fraction (and absolute 

time) of a time step is devoted to which substep in figure 2, and how much of this time is wasted time. 

 

The work load of CG PEs are kept lower than the FG PE to reduce the total amount of idle CPU time on 

the FG PEs. Unfortunately, in the nested simulation the time spent in various steps is not profiled. We 

will not be extending our current parallel implementation as the main developers of PALM will be 

developing the 'PALM Model Coupler', a unified tool to handle the communication between the grids for 

nested simulations, ocean-atmosphere coupling etc. 

 

“Within the RK3 sub-steps, when one grid executes the pressure solver the other grid has to wait leading 

to more computational time at every sub-step. However, the waiting time can be minimized by effective 

load balancing, i.e. the number of grid points per PE in the CG should be kept lower than in the FG. The 

reduction in workload per CG PE is achieved with a few additional cores. The reduction in computational 

time per step in the CG means the idle wait time on the FG PE is also reduced.” 

  

21. 9-12 ‘Dirichlet condition’: to which values are the velocities set: zero for vertical wind and 

geostrophic for horizontal? 

We have updated the text as 

“The Dirichlet boundary condition is applied for velocity at the top and bottom boundaries, the vertical 

velocity component is set to zero and the horizontal components are set to geostrophic wind.” 

 

22. 9-13: what is the imposed temperature gradient at the surface? 

Since we prescribe a constant surface heat flux, we use zero gradient Neumann condition for the potential 

temperature. Updated the text as: 

 

“The potential temperature is set to Neumann condition at the bottom and the gradient is determined by 

MOST based on the prescribed surface heat flux and roughness length. The gradient of the initial profile 

is maintained at the top boundary.” 



 

23. 9-15 and 16: is the wind profile interpolated linearly from zero at the surface to geostrophic 

at the top? Does this out-of-balance initialization lead to an inertial oscillation? 

 

Earlier we had written “The u and v profiles are constructed starting from a zero value at the surface and 

reaches the geostrophic wind value at the top.” 

 

We correct the statement as: 

“The u and v initial profiles are set to be constant value of the geostrophic wind component in the domain 

and the vertical velocity is initialized to zero in the domain. “ 

 

The initial profiles are set to be constant (ug = 1, vg = 0). Whilst it is true that the initialization is out-of-

balance, the amplitude is small with respect to the surface heating in our convective boundary layer. 

Observing the time series of total kinetic energy of the flow (3D domain average) shown in the figure 

below, we can see that the oscillations subside after 1 hour of spin up. Similarly, plotting the time series 

of the absolute maximum vertical velocity, we observe that the maxima is almost constant after 1 hour 

spin up phase. 

 
 

24. Table 1: what is the boundary condition for wind? MOST with an imposed roughness length (what 

is the value) or an imposed stress? 

 

It is MOST with an imposed roughness length. Updated Table 2 to list roughness length value as 0.1 m. 

 

 

25. Table 2: 

• please add the number of time steps needed to complete this simulation (in that way the 

reader can easily determine the time spent per gridpoint per time step. 

 We have added a column for time steps. 

• For the reader it would also helpful to include the number of grid points per PE and the CPU 

time per grid point (but both numbers can be derived from the available data, so the reader 

could do it for themselves). 

            We have added a column for the number of grid per PE, this column indeed readily informs the 

reader that FG and SA-C have same workload per PE. However, we have not included he CPU time per 

grid point. 

 

• the number of cores devoted to CG and FG respectively is not motivated. Whereas later on 



you advise to assign to a CG PE 40-80% of the number of grid points that is assigned to a 

FG PE, here you use a fraction of 16%. 

We used a machine with 20 cores per node and allotted all the cores in one node to the CG. Even though 

it is possible for the CG and FG to share a node, the domain decomposition restrictions often prevent an 

ideal grid configuration. The limitations in domain decomposition are now included in the practical 

considerations section 3.4: 

 

“For better computational performance it is recommended that the number of grid points per PE in the 

CG is kept at only 40 to 80 percent of the FG value. The reduced work load of the CG is expected to 

minimize the waiting time of the FG during the concurrent time advancement by quicker CG pressure 

solver step. However, the actual improvement in performance will depend on the memory available, 

processor speed and the inter-node communication architecture of the computing cluster and the optimal 

load balancing can only be found through trials. Furthermore, the choice of the domain size is often 

restricted by the topology of the processor decomposition. In a 2D decomposition, the number of grid 

points along the x-direction should be an integer multiple of the number of PE along x and similarly for 

y-direction. This condition has to be individually satisfied for the CG and the FG.” 

 

 

• it is unclear to what extent the PE’s are saturated in terms of memory usage: could this 

problem be run on even a smaller number of processors to improve performance? 

We have two simulation set-ups: one simulation is performed on a small cluster to demonstrate 

the quality of the results and  the other simulation is performed on a supercomputer to 

demonstrate the computational performance. However, the first simulation is still relevant in 

understanding the effect of grid resolution on time step and the associated increase in the core-

hours. 

• Please include information on the time (absolute and/or as a fraction) that is used waiting for 

input from CG to FG or the other way around. This would be helpful to determine the 

optimal division of labor between CG PEs and FG PEs (in terms of grid points per node). 

In our benchmark runs, we did not profile the time taken by each nesting routine, and therefore a 

detailed analysis of the overhead is not possible. 

 

26. 10-2: what initial perturbation is applied to get turbulence started? How did you verify that after 

9000 s the flow was in equilibrium? 

 

Random perturbations are imposed to the horizontal velocity field. If the perturbation energy has 

exceeded this energy limit of 0.01 m²/s², no more random perturbations are assigned. 

 

Observing the time series of total kinetic energy of the flow (3D domain average) shown above in 

response to question - 23, we can see that the flow has reached a quasi-stationary state after 1 hour of 

spin up. Similarly, plotting the time series of the absolute maximum vertical velocity, we observe that 

the maxima is almost constant after 1 hour spin up phase. 

 

27. 11-5: part of the ingredients for the scaling variables are in fact imposed boundary conditions (the 

surface heat flux), whereas indeed another part (the surface shear stress) results from the flow (and 

hence need to be derived from one of the simulation results (assuming that a roughness length is 

prescribed). 

 

We have replaced u* with  w* for the normalization of velocity variance as suggested in detailed 

comments - 31. While we acknowledge that the u* and w* result from the flow, it is more common to 



normalize the velocity variance with these scaling variables instead of imposed flow variables like the 

geostrophic wind, because the latter is not a scaling variable in the ABL. 

 

28. 11-6 and 8: surface heat flux in the expression for w*: overbar is missing and this is not a turbulent 

flux (so do not use a covariance flux). 

 

We now represent the surface heat flux with the symbol Hs. 

 

29. 11-8: although it will not change the lines in the graph, normalizing the temperature with the 

surface value is very illogical. Please plot the temperature with some reference value (e.g. the surface 

value) subtracted and normalized with θ*. 

We have updated the figure to plot the temperature with surface value subtracted and normalized with 

θ*. 

 

30. 12-1: what would/could be the mechanism that makes that the higher resolution in the surface layer 

would affect the variance profile well above the FG domain? 

We realized that in the initial runs we had failed to include the compiler flag (-fpmodel strict) necessary 

to make every realization deterministic. As a result the plots in our initial submission have compiler 

optimization related random effects that were noticeable in the variance profile. The results of both the 

nested and the standalone simulation were affected. We have now ensured that the simulations are 

deterministic, which improves their comparability. The plots and their description have been updated 

accordingly. 

 

In the updated plots, the CG profile is not noticeably affected by the higher resolution in the surface 

layer. Therefore, we have removed the statement. 

 

31. 12-3: please use the same scaling variable for all velocity components! If not, the different 

variances (which together constitute the turbulent kinetic energy) cannot be compared. 

Furthermore, the given flow is close to free convection, so using the friction velocity as a scaling 

variable does not make sense. 

The velocity variances are now normalized only by the convective velocity scale. The figures have 

been updated 

 

32. 12-5: you refer to an overshoot in the v variance. The u variance shows an overshoot as well. 

I assume that the profiles shown are based on the resolved variances only. In that case, we should keep 

in mind that in the CG domain a larger proportion of the TKE is contained in the subgrid scales. Could 

this explain the jump? Please include an analysis of the difference in SGS-TKE between the two 

domains at the top of the FG (of course there is the difficulty of separating the SGS TKE into the 

three components, but at least quasi-quantitatively such an analysis could shed light on these 

jumps/overshoots. 

The plots in our initial submission had random errors introduced due to wrong choice of compiler 

optimization flags that was visible in the v-variance. However, there are still minor artifacts 

 

We agree that the jump could be explained by the large SGS TKE component in the CG. We updated 

the text as: 

 

“At the nesting height the variances deviate more from the SA-F and approach the CG values. Due to 

conservation of total kinetic energy across the nest boundary more CG TKE is contained in the sub-grid 

scale. Consequently, the resolved CG variances could have an undershoot as compared to SA-F, 



resulting in an undershoot of the FG variances too at the nesting height. Above the nesting height, the 

variance of u, v and w in CG are similar to SA-C.” 

 

33. 12-7: how would the anterpolation influence the vertical velocity variance in the FG domain. 

Please explain the/a mechanism. Or is it a result of the fact that the upper boundary conditions for 

pressure at the top of the FG is not well-defined? 

 

Zhou et al. (2018) in the vertically nested LES note that the kink in the higher-order profiles can be 

minimized by increasing the depth of the sponge layer. In our two-way nesting we have used a 

simplified sponge layer by limiting the anterpolation to one CG cell less than the nested height. This 

split in the level of the FG upper BC from the highest level of anterpolation of FG to CG reduces 

oscillations originating from the FG boundary. 

 

In the description of the skewness plots we write: 

“However, at the nesting height a small kink in the skewness is noticeable. Zhou et al. (2018) observe 

that the magnitude of the kink in the higher-order profiles can be minimized by increasing the depth of 

the sponge layer. Our simplified sponge layer approach appears to be unable to effectively minimize 

the kinks at the nesting height.” 

 

34. 13 figure 6: the variance profiles give some information on the quality/realism of the simulated 

turbulence. One analysis that is missing (related to the point made above regarding the overshoot) is 

whether the increased resolved TKE is the amount that would be expected based on the increased 

resolution (and hence reduced reliance on the subgrid model). To properly analyse that one would need 

turbulent spectra to see how much kinetic energy is contained in the additionally resolved scales. 

Additionally, spectral analysis (preferably with 2D spectra) would help to show to what extent the extra 

resolved turbulence has the expected turbulent characteristics (increased variance is nice, but does not 

need to be additional turbulence, it could also be increased noise). 

 

We have included a spectral analysis. The plots are described as: 

 

“The horizontal spectra of SGS turbulent kinetic energy and vertical velocity are plotted in Fig. 9 at two 

levels, one within the nested grid and one above the nested grid height. The FG TKE spectra in Fig. 9 (c) 

perfectly overlaps the SA-F spectra. The CG spectra has higher energy than the SA-C, this corresponds 

to the higher CG TKE values observed in Fig. 8 (c). As the limit of the grid resolution is reached at high 

wavenumber, the drop in the CG spectra is marginally shifted compared to SA-C. This improvement at 

high-wavenumber is due to feedback from the FG. Similarly, the vertical velocity spectra in Fig. 8 (d) 

shows marginal improvement at high wavenumber for the CG with respect to SA-C. While the FG agrees 

with SA-C at high-wavenumber and at the spectra peak, at low wavenumber FG follows the CG spectra. 

At the level above the nested grid, the CG spectra agrees with SA-C for both TKE and the vertical 

velocity.”  

 

 

35. 13-1: The heat flux profile is not the prime quantity at all! For a quasi-stationary convective 

boundary layer with imposed surface flux the heat flux profile is the most boring part of the simulation. 

Provided that the entrainment flux is represented well, the flux profile is by definition linear, varying 

between the imposed surface flux (so no surprises there) and the entrainment flux (which, admittedly, 

needs to be represented correctly by the simulation: 

still some freedom there). This linear flux profile is completely independent of the quality and 

resolution of the simulation. The only freedom there is is which part of that flux is carried by the 



resolved scales and which part is carried by the subgrid model. Hence the perfect correspondence 

between all simulations (full FG, full CG, nested CG and nested FG). Hence, please do not use the heat 

flux profile as a measure of the quality of the simulation. 

 

We agree that heat flux profile is not the best measure for the quality of a simulation. However, we would 

like to retain the plots because we are interested in the heat flux for other applications in our working 

group to study the energy balance closure in the surface layer. 

 

36. 14-4: ‘...we increase the resolution further’: do you mean to increase the grid ratio, the size of the 

FG region, or the overall resolution of the CG domain? 

We have replaced the statement with quantitative analysis using the updated time step information in 

Table 3. The manuscript is updated as: 

 

“The computational resources used in the simulations discussed above are listed in Table 3. The resources 

needed by SA-C is only 8 core hours. While the nested simulations needed about 1879 core hours, the 

SA-F needed about 4 times more core hours. As the resolution is increased from 20 m in SA-C to 4 m in 

SA-F the number of time steps increased more than 5 times as higher resolution demands smaller time 

step size.” 

 

 

37. 14-9: ‘in terms of communication time’: do you only look at communication time because that is 

the most restricting, or because you are only interested in that (in this context)? And why should the 

number of domains be equal in x and y direction: please explain the logic of this (and does it also hold 

if the length of the domain is different in x and y direction? 

 

We are interested in the communication time in the context of the domain decomposition because, the 

choice of processor decomposition has an effect on the communication performance. We update the text 

as: 

“The best performance in terms of communication time in a standalone run is achieved when the number 

of sub-domains in the x and y directions are equal. In that case the number of ghost points at the lateral 

boundaries are optimally minimized.” 

 

38. 15-1 to 5: why is the setup of these simulations (in terms of the total number of points and ratio of 

number of grid points between CG cells and FG cells) so different from the original runs? Are the 

performance results still relevant to understand those first runs? If so, why? 

Please give the setup of these runs in a table similar to table 2 (not ‘number of grid points is around...’). 

We have two simulation set-ups: one simulation is performed on a small cluster to demonstrate the quality 

of the results, and another simulation is performed on a supercomputer to demonstrate the computational 

performance. The first simulation is relevant in understanding the effect of the grid resolution on the time 

step and the associated increase in core-hours. The second set of simulations demonstrates the scalability 

on large number of cores. Since both machines have different processor architecture, memory and 

processor per node, the results are not directly comparable. 

 

 In the performance benchmark set-up CG and FG  PE’s are chosen to be a multiple of 16 to confirm 

with the 16 cores per node. To avoid load balancing bias in the scalability analysis, the ratio between the 

number of PEs for CG and FG is kept constant in all the five runs listed in Table 5. Keeping the processor 

ratio constant implies that the ratio between the number of grid points per PE in CG and FG is also held 

constant. Consequently, in this performance test, the FG has 1.25 times more grid points per PE than the 

CG in all the processor configurations tested. 



 

We ave added two tables: “Table 4. Number of grid points in nested and non-nested FG domain.” And 

“Table 5. Grid configuration of the nested and non-nested FG domain.” 
 
 

39. 15- Figure 8: 

• on a log-log scale everything looks nice. Please give a more informative representation. 

E.g. use the strong scaling efficiency, which will vary between 1 and somewhere below 

1 (for your data, using the left-most simulation as a reference, the efficiency goes down to about 90% 

for the right-most. But the question is, what would have been the CPU time for the smallest possible 

number of processors on which this case could have been run (memory-wise). 

 

We computed the strong scaling efficiency as suggested and included the information in Table 5. We have 

only tested on total PE above 1664. However, for the smallest processor configuration, the FG group has 

3.9 million grid points per PE when the usable memory on this machine is only 1.625 GB per PE. 

 

• In addition, find a more informative way to quantify the waiting time overhead. 

 

In our benchmark runs, we did not profile the time taken by each nesting routine, and therefore a detailed 

analysis of the overhead is not possible. To overcome this limitation in our analysis, we executed 

standalone simulations with the same number of grid points as in the FG domain. The difference between 

the nested and the standalone in the scalability plot provides a rough estimate of the overhead.  

 

40. 16-9: ‘large scale forcing .... compatible’: do you refer to the large scale forcing in terms of pressure 

gradient/geostrophic wind? Or another large scale forcing? Why would it, or would it not, be 

compatible. Please clarify. 

 

We refer to the large scale forcing feature in PALM, which is PALM driven by a.o. geostrophic wind 

from a gridpoint of a synoptic model (see Maronga 2015 for more details). We did not expect it to be 

incompatible but in model development it is not guaranteed that two different modules are directly 

compatible, so we made some separate tests of the large scale forcing feature with the nesting. We deem 

this is useful information for PALM users who would like to combine the nesting module with other 

modules in PALM. 

 

41. 16-12: ‘accuracy’: for accuracy in what sense (interpolation errors, truncation errors, turbulence 

statistics, stability, ....) should the grid ratio be not too large? 

 

We expect that too large nesting ratio would affect the accuracy of the turbulence statistics. Since we do 

not have extensive analysis of larger grid ratios we have removed the sentence. 

 

42. 16-14: ‘first five grid points are unreliable’: for which variables does this hold, in which aspect are 

the grid points unreliable (I assume you mean ‘the results at the first five grid points vertically 

displaced from the surface’): turbulence characteristics, mean profiles, noise, ....? Do you have a 

reference for this bold statement? 

 

We meant the first five grid layers in the vertical direction form the surface are unreliable because the 

resolved turbulence is not well developed yet. This is only based on our experience; due to lack of 

literature to support this point we have removed this sentence. 

 



 

43. 16-16: I would like to see a quantitative motivation for this 40-80%. 

Unfortunately we do not have a quantitative analysis to support this statement. However, this is based on 

our trials on two different architectures, one a small computing cluster and the other a supercomputer. 

Since multiple factors like the memory available, processor speed and the communication architecture 

of the high performance machine a generally applicable quantitative analysis is difficult. However, we 

have expanded the practical considerations in section 3.4 to mention these factors: 

 

“For better computational performance it is recommended that the number of grid points per PE in the 

CG is kept at only 40 to 80 percent of the FG value. The reduced work load of the CG is expected to 

minimize the waiting time of the FG during the concurrent time advancement by quicker CG pressure 

solver step. However, the actual improvement in performance will depend on the memory available, 

processor speed and the inter-node communication architecture of the computing cluster and the optimal 

load balancing can only be found through trials.” 

 

Very detailed comments 

 

1. 2-14: ‘possible, by the time’ → ‘possible. By the time’ 

Corrected as: “As computing power progressed, higher resolution and larger domains became possible. 

By the time of Schmidt and Schumann (1989)” 

 

2. 2-18: ‘supercomputers’: also the people before Kröniger et al. used supercomputers. So 

remove ‘with the help of supercomputers’. 

Corrected as: “More recently, Kröniger et al. (2018) used” 

 

3. 2-19: remove ‘speeds’ 

Corrected as: “to study the influence of the wind on” 

 

4. 2-21: ‘higher detail’: ‘higher’ than what/when/who? 

Corrected as: “The atmospheric boundary-layer community has greatly benefited from the higher spatial 

resolution available in these LES to study turbulent processes that cannot be obtained in field 

measurements” 

 

5. 2-28: ‘Nesting has been applied...’: because the previous sentence talks about vertical nesting, the 

reader may think that this sentence gives examples of that. But then at the end it turns out to talk about 

horizontal nesting. Please rephrase. 

The sentences have been re-arranged following detailed comments 2. 

 

6. 3-3/4: ‘techniques are ..... but often uses ...’: ‘uses’ should be ‘use’ (plural) 

Corrected as: “but often use different terminology.” 

 

7. 3-18: ‘... CG, there ...’ → ‘... CG, and there ...’ 

Corrected as: “FG receives information from the CG, and there is no feedback to the CG” 

 

8. 3-24: make explicit that the ‘two different approaches’ only refer to the ‘anterpolation’ mentioned in 

the sentence before. Furthermore, nothing is said –explicitly- about the ‘pressure deficit correction’ 

(“there are two types of cars: blue cars”) 

Only the post-insertion approach involves anterpolation. We have incorrectly spelled ‘pressure defect 

correction’ as deficit. Updated the text to clarify on ‘pressure defect correction’: 



 

"In the post-insertion technique, once the Poisson equation for pressure is solved in the FG, the resolved 

fields are then anterpolated to the CG. In the pressure defect correction approach, the pressure in the CG 

and FG are matched by adding a correction term to the CG momentum equations and an anterpolation 

operation is not required." 

 

9. 4-9: ‘additional equation’: additional to what? The SGS-TKE equation is in the Deardorff method, so 

it is not additional to his work. 

Corrected as: “The sub-grid scale (SGS) turbulence is modelled based on the method proposed by 

Deardorff (1980).” 

 

10. 4-11: ‘The prognostic ...’: move this sentence to below the equations (only after having 

presented the equations you need to talk about their discretisation). 

Corrected as: “The prognostic equations for the resolved quantities are:” 

 

11. 5-17: ‘the grids’ → ‘grids’ (this occurs in multiple places, please check. 

Correct ‘the grids’ to ‘grids’ in all the occurrences. 

 

12. 5-18: please explain here already that uppercase symbols refer to CG and lowercase symbols 

to FG. 

Moved the sentence in front of the first use of the symbol: “Below we use upper case symbols for fields 

and variables in the CG, and lower case for the FG. “  

 

13. 6-1: ‘similar interpolation’: in which way is it similar, and which way is it different? 

Corrected as: “The same interpolation formulation is also used to initialize all vertical levels of the fine 

grid domain at the beginning of the nested simulation.” 

 

14. 6-5: ‘scalars’ → ‘CG scalars’ 

The statement is general to the Arakawa C grid and not specific to the CG. We modified the sentence as: 

“In the Arakawa C-grid discretization that PALM uses, the scalars are defined as the spatial average over 

the whole grid cell” 

 

15. 6-5: ‘The scalars .... corresponding FG scalars (eq. 6)’. How much more are you saying than 

‘An average is an average’. If you want to state more, please make that clear and explicit. 

Modified the sentence as clarified in the comment above: 

“In the Arakawa C-grid discretization that PALM 5 uses, the scalars are defined as the spatial average 

over the whole grid cell, and therefore it is required that the CG scalar is the average of the corresponding 

FG scalars in (Eq. 15).” 

 

16. 7-6: ‘We implement....’. Well, that does not really come as a surprise: you gave that away 

already (see my suggestions for an alternative structure for section 2). 

Restructured as suggested in detailed comment 10. 

 

17. 8-7: ‘... is also updated...’. What else is updated? You mean the pressure? And is the vertical 

velocity updated throughout the FG, or are you only referring to the vertical velocity at the 

CG-FG interface? 

The pressure solver along with the pressure also updates the vertical velocity. The pressure solver is 

updates entire FG domain. Updated the manuscript as: 

 



“The Poisson equation is then solved for pressure in the FG and the vertical velocity in the FG is also 

updated by the pressure solver at this stage.” 

 

18. 8-20: ‘...process. Whereas....’ → ‘...process, whereas....’ 

Corrected as: “The data between the processors of the same group are exchanged via the local 

communicator created during the splitting process, whereas the data between the two groups are 

exchanged via the global communicator exchanged via the global communicator” 

 

19. 8-20: ‘exchange’ → ‘exchanged’ 

Corrected as: “The data between the processors of the same group are exchanged via the local 

communicator” 

 

20. 8-23: ‘local PE’s 2D processor co-ordinate’: in what way is the PE different from the 

processor? → ‘local 2D processor (or PE) coordinate’ 

The terms processor and processing element are often used interchangeable. However, a subtle difference 

exists. While a processor is considered as a hardware unit, a processing element is a MPI task (a Unix 

process) that executes the program on a unique sub-set of data. 

 

21. 9-11: ‘is set to’ → ‘has’ 

Corrected as: “The simulation domain has periodic boundary conditions” 

 

22. 10, Tables 1 and 2: please format the tables properly as tables should be formatted 

(including column headings and a consistent demarcation of rows and columns) 

Table 1: please note that the surface heat flux is not a turbulent flux (there is no vertical 

velocity (variation) at the surface. Furthermore, even if you would like to denote it as a 

turbulent flux, please add an overbar. 

Format of all the tables have been updated. We adopts the symbol Hs for surface heat flux. 

 

23. 11, figure 4: the lower panel is –vertically- not exactly to scale with the area indicated with 

the dashed line in the upper panel. 

We have resized the subplots to scale. 

 

24. 11-2: ‘flux profiles’ → ‘fluxes’ 

Corrected as: “The turbulent fluxes are obtained using the spatial covariance” 

 

25. 11-3: the given expressions are not fluxes, but products of resolved deviations: please 

include an averaging operator to make it a flux. 

We have included an averaging operator. 

 

26. 11-13: ‘at the boundary layer height’ → ‘at the top of the boundary layer’ 

The sentence has been removed as the plot has been updated. 

 

27. 12-1: ‘An one-way’ → ‘A one-way’ 

The sentence has been removed as the plot has been updated. 

 

28. 12-5: ‘variance seen’ → ‘variance can be seen’. 

The sentence has been removed as the plot has been updated. 

 

29. 14-5: ‘Simulations with O(1) ...’: are you referring to that resolution for a full domain, or 



only for the FG part of a nested simulation? In fact, it is unclear where you are heading with 

lines 14-2 to 14-6. 

We have replaced the statement with quantitative analysis using the updated time step information in 

Table 3. As answered in detailed comments 36. 

 

30. 14-13: ‘new nested simulation’: new relative to? I assume that you mean new relative to the 

runs described in tables 1 and 2. These new simulations were made for the performance test 

only? 

The new simulations were made only for testing performance. Updated the text as: 

“Keeping these factors 5 in mind, we designed the nested simulation domains listed in Table 4 for the 

purpose of assessing the computational performance as the total number of processors is varied.” 

 

31. 16-4: ‘Poisson equation’ → ‘the Poisson equation’ 

Corrected as: “Similarly, for solving the Poisson equation for the pressure” 

 

32. 16-7: ‘FFT’ → ‘an FFT’ 

Corrected as: “therefore an FFT based pressure solver is an appropriate choice” 

 

33. 16-28: ‘energy conserving methods’: I have not seen that term earlier in the paper. Where 

was this discussed before? Or are you referring to the anterpolation of SGS TKE? In that 

case, please be a bit more explicit. 

We are referring to the anterpolation of SGS TKE. The text is updated as: 

 

“The grids are coupled, i.e the interpolation of the boundary conditions and the feedback to the parent 

grid are performed, at every sub-step of the Runge-Kutta time integration. The anterpolation of the TKE 

involves the Germano identity to ensure the conservation of total kinetic energy.” 

 

34. ‘... optimized for performance’: how were they optimized, where can I read about that 

optimziation? 

 

We have updated the sentence as: 

 “The exchange of data between the two grids is achieved by MPI communication routines and the 

communication is optimized by derived datatypes.” 
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Abstract. Large-eddy simulation (LES) has become a well-established tool in the atmospheric boundary-layer research com-

munity to study turbulence. It allows three-dimensional realizations of the turbulent fields, which large-scale models and most

experimental studies cannot yield. To resolve the largest eddies in the mixed layer, a moderate grid resolution in the range of

10 to 100 m is often sufficient, and these simulations can be run on a computing cluster with few hundred processors, or even

on a workstation for simple configurations. The desired resolution is usually limited by the computational resources. How-5

ever, to compare with tower measurements of turbulence and exchange fluxes in the surface layer a much higher resolution

is required. In spite of the growth in computational power, a high-resolution simulation LES of the surface layer is often not

feasible: to fully resolve the energy containing eddies near the surface a grid spacing of O(1 m) is required. One way to tackle

this problem is to employ a vertical grid nesting technique, where the surface is simulated at the necessary fine grid resolution,

and it is coupled with a standard, coarse, LES that resolves the turbulence in the whole boundary-layer. We modified the LES10

model PALM (Parallelized Large-eddy simulation Model) and implemented a two-way nesting technique, with coupling in

both directions between the coarse and the fine grid. The coupling algorithm has to ensure correct boundary conditions for

the fine grid. Our nesting algorithm is realized by modifying the standard third order Runge-Kutta time stepping to allow

communication of data between the two grids. The two grids are concurrently advanced in time while ensuring that the sum

of resolved and subgrid-scale kinetic energy is conserved. We design a validation test and show that the temporal
:::::::::
temporally15

averaged profiles from the fine grid agree well compared to the reference simulation with high-resolution in the entire domain.

The overall performance and scalability of the nesting algorithm is found to be satisfactory. Our nesting results in more than

80 percent savings in computational power for 5 times higher resolution in each direction in the surface layer.
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1 Introduction

Turbulence in the Atmospheric Boundary Layer (ABL) encompasses a wide range of scales from the boundary-layer scale

down to the viscous dissipation scale. In ABL flows, Reynolds numbers (Re) of 108 are commonly encountered. Explicit

simulation of the Navier-Stokes equations down to the dissipative scales (DNS: direct numerical simulation) for atmospheric

processes is prohibitively expensive, as the required number of grid points in one direction scales with Re3/4 (Reynolds,5

1990). This corresponds to a three-dimensional ABL simulation domain with total number of grid points of order 1017. The

supercomputers of today cannot fit more than 1012 grid points in the memory. To be able to compute turbulence processes in

the atmosphere nevertheless, the concept of large-eddy simulation (LES) has been introduced already a few decades ago, e.g.

Deardorff (1974); Moeng and Wyngaard (1988); Schmidt and Schumann (1989)
::::::::::::::
Deardorff (1974) ,

::::::::::::::::::::::::::::
Moeng and Wyngaard (1988) and

:::::::::::::::::::::::::
Schmidt and Schumann (1989) , where the presence of a subgrid-scheme allows that only the most energetic eddies are re-10

solved.

One of the first large-eddy simulations (LES) by Deardorff (1974) used 64000 grid points to simulate a domain of 5 km×
5 km×2 km with a grid resolution of (125,125,50) m. The size of one such grid cell is just sufficient to resolve the dominant

large-eddies
::::
large

::::::
eddies and there are just enough grid points to represent the ABL. As computing power progressed, higher

resolution and larger domains became possible, by .
:::
By

:
the time of Schmidt and Schumann (1989) the number of grid cells15

had raised to 160× 160× 48
:
, simulating an ABL of 8 km× 8 km× 2.4 km with a resolution of (50,50,50) m. Khanna and

Brasseur (1998) used 1283 grid points to simulate a domain of 3 km× 3 km× 1 km to study buoyancy and shear induced

local structures of the ABL. Patton et al. (2016) used (2048,2048,1024) grid points with a grid resolution of (2.5,2.5,2) m to

study the influence of atmospheric stability on canopy turbulence. More recently, with the help of supercomputers, Kröniger

et al. (2018) used 13 · 109 grid points to simulate a domain of 30.72 km× 15.36 km× 2.56 km to study the influence of20

wind speeds
:::::::
stability on the surface–atmosphere exchange and the role of secondary circulations in the energy exchange. The

atmospheric boundary-layer community has greatly benefited from the higher detail
::::::
spatial

::::::::
resolution

:
available in these LES

to study turbulent processes that cannot be measured in the field in three-dimensional detail
:::::::
obtained

::
in

::::
field

::::::::::::
measurements.

Still, especially in heterogeneous terrain, near topographic elements, buildings or close to the surface the required higher

resolution is not always attainable
:::
due

::
to

::::::::::::
computational

:::::::::
constraints.

:::
In

::::
spite

::
of

:::
the

::::::
radical

:::::::
increase

::
in

:::
the

::::::::
available

:::::::::
computing25

:::::
power

::::
over

:::
the

:::
last

:::::::
decade,

:::::::::
large-eddy

::::::::
simulation

:::
of

::::
high

::::::::
Reynolds

::::::
number

::::::::::
atmospheric

:::::
flows

::::
with

::::
very

:::::::::::::
high-resolution

::
in

:::
the

::::::::::
surface-layer

::::::
remain

::
a
::::::::
challenge. Considering the size of the domain required to reproduce boundary-layer scale structures, it

is challenging
:::::::::::::
computationally

:::::::::
demanding

:
to generate a single fixed grid that could resolve all the relevant scales satisfacto-

rily. In spite of the radical increase in the available computing power, Large-Eddy Simulation of atmospheric flows with very

high-resolution in the surface-layer continue to be computationally expensive. However,
:::::::::::
Alternatively,

:::::
local

::::
grid

:::::::::
refinement30

:
is
::::::::

possible
::
in

:::
the

::::::::::::
Finite-Volume

::::::
codes

:::
that

:::
are

::::
not

::::::::
restricted

::
to

:::::::::
structured

:::::
grids.

:::::::::::::::::::::::::
Flores et al. (2013) developed

:
a
::::::
solver

:::
for

::
the

:::::::::::
OpenFOAM

:::::::::
modelling

:::::::::
framework

:::
to

:::::::
simulate

::::::::::
atmospheric

:::::
flows

:::::
over

:::::::
complex

::::::::::
geometries

:::::
using

::
an

:::::::::::
unstructured

:::::
mesh

::::::::
approach.

::::
The

:::::::
potential

:::
of

:::::::
adaptive

:::::
mesh

:::::::::
refinement

:::::::::
technique

:::::
where

:::
the

:::::::::
tree-based

:::::::::
Cartesian

:::
grid

::
is
:::::::

refined
::
or

:::::::::
coarsened

::::::::::
dynamically,

:::::
based

:::
on

:::
the

::::
flow

:::::::::
structures,

::
is

:::::::::::
demonstrated

::
by

::::::::::::::::::::
van Hooft et al. (2018) .

::
In

:::
the

:::::::::::::::
Finite-Difference

:::::::
models,

:
a
:
grid

2



nesting technique can be employed to reduce the number of grid points required . To resolve the surface-layer a vertical nesting

technique is needed. Nesting has been applied to several mesoscale models (Skamarock et al., 2008; Debreu et al., 2012) , but,

in contrast to horizontal nesting, vertical nesting is less common
::::::
achieve

:::
the

::::::::
required

::::::::
resolution. In the nested grid approach, a

parent domain with a coarser resolution simulates the entire domain while a nested grid with a higher resolution extends only up

to the region of interest.
:::::::::
Horizontal

::::::
nesting

:::
has

::::
been

::::::
applied

::
to

::::::
several

:::::::::
mesoscale

::::::
models

:::::::::::::::::::::::::::::::::::::
(Skamarock et al., 2008; Debreu et al., 2012) .5

Horizontally nested LES-within-LES or LES embedded within a mesoscale simulation is available in the Weather Research and

Forecast model (Moeng et al., 2007). However, we would like to point out that the vertical nesting in WRF (Daniels et al., 2016) is

not a conventional vertical nesting because the parent and the child grid still have the same vertical extent, the child grid is

only more refined in the vertical. A non-parallelized vertical nesting was explored by (Sullivan et al., 1996) but the code is

not in public domain and we could not find any record of further development or application of this code in publications. An10

LES-within-LES vertical nesting is implemented by Zhou et al. (2018) in the Advanced Regional Prediction System (ARPS)

model. Comparable grid nesting techniques are also widely employed by the engineering turbulence research community but

often uses
:::
use different terminology. Nesting in codes with cartesian grids are referred

::
to

:
as local or zonal grid

::::::::
algorithm

(Kravchenko et al., 1996; Boersma et al., 1997; Manhart, 2004) and as overset mesh (Nakahashi et al., 2000; Kato et al., 2003;

Wang et al., 2014) in unstructured or moving grid codes.15

For our purposes, we will focus on vertical nesting, i.e. we consider a finer grid
::::
Fine

::::
Grid

:::::
nested

:::::::
domain

::::
(FG) near the lower

boundary of the domain, and a coarser grid in the remainder
:::::
Coarse

:::::
Grid

:::::
parent

:::::::
domain

:::::
(CG)

::
in

:::
the

:::::
entire

:
of the boundary

layer. While the latter’s resolution (< 50m) is sufficient to study processes in the outer region where the dominant eddies are

large and inertial effects dominate, such coarse resolution is not sufficient when
:::::
where

:
fine-scale turbulence in the surface layer

region is concerned. The higher resolution achieved by the vertical nesting there will then allow a more accurate representation20

of the turbulence in the surface layer region
:
, by resolving its dominant eddies. For studies that require very high resolution near

the surface (e.g.
:::::
virtual

:
tower measurements, wakes behind obstacles, dispersion within street canyons for large cities) a nesting

approach is an attractive solution due to the reduced memory requirement. An increased resolution only in the surface-layer

can be achieved by a LES-within-LES set-up by maintaining the same horizontal extent for the Fine Grid nested domain

(FG) and the Coarse Grid parent domain (CG). The challenge of a vertically nested grid
::::::::
Challenge

:::
of

:::
the

::::::::
vertically

::::::
nested25

::::::::
simulation

:
is that the FG upper boundary conditions need to be correctly prescribed by the CG.

:::::::
Though

::::::
vertical

::::::
nesting

::
is
::::
less

:::::::
common

::::
than

:::
the

:::::::::
horizontal

::::::
nesting

::
it
:::
has

:::::
been

:::::::::::
implemented

::
in

:::::
some

::::
LES

:::::::
models.

::
A
::::::::::::::
non-parallelized

:::::::
vertical

::::::
nesting

::::
was

:::::::
explored

::
by

:::::::::::::::::::::
Sullivan et al. (1996) but

:::
the

::::
code

::
is

:::
not

::
in

:::::
public

:::::::
domain

:::
and

:::
we

:::::
could

:::
not

:::
find

:::
any

::::::
record

::
of

::::::
further

:::::::::::
development

::
or

:::::::::
application

:::
of

:::
this

:::::
code

::
in

:::::::::::
publications.

::
A

::::::::::::::
LES-within-LES

:::::::
vertical

::::::
nesting

:::
is

:::::::::::
implemented

::
by

::::::::::::::::::
Zhou et al. (2018) in

:::
the

::::::::
Advanced

::::::::
Regional

::::::::
Prediction

:::::::
System

:::::::
(ARPS)

:::::
model.

::::
We

:::::
would

:::
like

::
to
:::::
point

:::
out

:::
that

:::
the

:::::::
vertical

::::::
nesting

::::::::
available

::
in

:::::::
Weather30

:::::::
Research

::::
and

:::::::
Forecast

::::::
model

:::::::::::::::::::
(Daniels et al., 2016) is

:::
not

:
a
:::::::::::
conventional

::::::
vertical

:::::::
nesting

:::::::
because

:::
the

:::::
parent

:::
and

:::
the

:::::
child

::::
grid

:::
still

::::
have

:::
the

:::::
same

::::::
vertical

::::::
extent,

:::
the

:::::
child

:::
grid

::
is

::::
only

:::::
more

::::::
refined

::
in

:::
the

:::::::
vertical.

An analysis of different nesting procedures for mesoscale simulation was performed by Clark and Hall (1991), they coined

the terms one-way and two-way interactions. In one-way interaction, only the FG receives information from the CG,
:::
and

there is no feedback to the CG. In two-way interaction, the FG top boundary conditions are interpolated from the CG and35
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the CG values in the overlapping region are updated with the FG resolved fields. The ’update’ process, referred to as ’an-

terpolation’ by Sullivan et al. (1996),
:
is similar to the restriction operation in Multi-Grid methods. Harris and Durran (2010)

used a linear 1D shallow-water equation to study the influence of the nesting method on the solution and found the two-way

interaction to be superior when
:
if the waves are well resolved.

::::
They

::::::::
introduce

:
a
::::::
filtered

:::::::
sponge

::::::::
boundary

::::::::
condition

::
to

::::::
reduce

::
the

:::::::::
amplitude

::
of

:::
the

::::::::
reflected

::::
wave

::
at
::::

the
:::::
nested

::::
grid

::::::::
boundary.

:
We will make use of the interpolation and anterpolation for-5

mulas of Clark and Farley (1984). Clark and Hall (1991) studied two different approaches for updating the CG valuesnamely,

:
,
::::::
namely "Post-insertion

:::::::::::
post-insertion" and "Pressure Deficit Correction

::::::
pressure

::::::
defect

::::::::
correction".

:::
The

::::
two

:::::::::
approaches

:::::
were

:::
also

::::::::::
investigated

:::
by

::::::::::::::::::::
Sullivan et al. (1996) in

::::
their

:::::::
vertical

::::::
nesting

::::::::::::::
implementation.

:
In the post-insertion technique, once the

Poisson equation for pressure is solved in the FG, the resolved fields are then anterpolated to the CG. Though, they note

the latter
::
In

:::
the

:::::::
pressure

::::::
defect

:::::::::
correction

:::::::::
approach,

:::
the

:::::::
pressure

:::
in

:::
the

:::
CG

::::
and

:::
FG

::::
are

:::::::
matched

:::
by

::::::
adding

::
a
:::::::::
correction10

::::
term

::
to

:::
the

:::
CG

::::::::::
momentum

:::::::::
equations

:::
and

:::
an

:::::::::::
anterpolation

::::::::
operation

::
is
:::
not

::::::::
required.

:::::::
Though

::::::::::::::::::::::
Sullivan et al. (1996) note

:::
the

:::::::
pressure

:::::
defect

:::::::::
correction approach to be more elegant, no significant difference in the results was reported. Moreover, only

the post-insertion technique permits different temporal resolution in the FG and CG. Sullivan et al. (1996) report that in the

case of their Pseudo-Spectral LES, both the resolved and SGS fluxes need to be anterpolated to the CG and such a procedure

increases coding complexity.15

In the following sections we describe the technical realization and numerical aspects of the two-way nesting algorithm. In

the LES model PALM, a validation simulation is set-up and the results of the nested and standalone simulations are compared.

A second simulation is set-up to evaluate the computational performance of the algorithm. The practical considerations and the

limitations of the two-way nesting are then discussed.

2 Methods20

2.1 Description of the standard PALM Model
:::::
model

The Parallelized Large-eddy simulation Model (PALM) is developed and maintained at the Leibniz University of Hannover

(Raasch and Schröter, 2001; Maronga et al., 2015). We give a quick summary of the model here and highlight the aspects which

will reappear when discussing our nesting modifications. For a thorough description of the model, see Maronga et al. (2015) .

PALM is a Finite Difference
::::
finite

:::::::::
difference

:
solver for the non-hydrostatic incompressible Navier-Stokes equations in the25

Boussinesq approximation(Eqs. 1, 2, and 3). PALM solves for six prognostic equations: the three components of the velocity

field (u,v,w), potential temperature (θ), humidity (q) and the sub-grid scale kinetic energy (e). The sub-grid scale (SGS)

turbulence is
:::::::
modelled

:
based on the method proposed by Deardorff (1980)with an additional equation for the turbulent kinetic

energy .
::::

The
::::::::
equations

:::
for

:::
the

:::::::::::
conservation

::
of

:::::
mass,

::::::
energy

::::
and

:::::::
moisture

:::::
(Eqs.

::
1,

::
2,
::
3
:::
and

:::
4)

:::
are

::::::
filtered

::::
over

:
a
::::
grid

:::::::
volume

::
on

:
a
::::::::
Cartesian

:::::
grid.

::::::::
Adopting

:::
the

:::::::::
convention

::
of

:::::::::::::::::::
Maronga et al. (2015) ,

:::
the

::::::
overbar

::::::::
denoting

:::
the

::::::
filtered

::::::::
variables

:::
are

:::::::
omitted.30

::::::::
However,

:::
the

::::::
overbar

::
is
::::::
shown

:::
for

::::
SGS

::::::
fluxes.

::::
The

::::
SGS

::::::::
variables

:::
are

:::::::
denoted

::
by

::
a
::::::
double

::::::
prime.

:::
The

:::::::::
prognostic

:::::::::
equations

4



::
for

:::
the

::::::::
resolved

:::::::
variables

::::
are:

∂ui
∂t

=−∂uiuj
∂xj

− εijkfjuk + εi3kf3ukg,j −
1

ρ0

∂π∗

∂xi
+ g

θv−〈θv〉
θv

δi3−
∂

∂xj

(
u′′i u

′′
j −

2

3
eδij

)
, (1)

∂uj
∂xj

= 0, (2)

5

∂θ

∂t
=−∂uj θ

∂xj
− ∂

∂xk

(
u′′j θ
′′
)
− LV

cpΠ
Ψqv , (3)

∂qv
∂t

=−∂uj qv
∂xj

− ∂

∂xk

(
u′′j q
′′
v

)
+ Ψqv . (4)

:::
The

:::::::
symbols

::::
used

::
in
:::
the

::::::
above

::::::::
equations

:::
are

:::::
listed

::
in

:::::
Table

:
1. The 1.5 order closure parameterization modified by Moeng and

Wyngaard (1988) and Saiki et al. (2000), assumes a gradient diffusion parameterization (Eq. 5
::::
Eqs.

::
6,

::
7,

::
8). The prognostic10

:::::::
equation

:::
for

:::
the

::::::::
SGS-TKE

:::::
reads

::
as

:

∂e

∂t
=−uj

∂e

∂xj
−
(
u′′i u

′′
j

) ∂ui
∂xk

+
g

θv,0
u′′3θ
′′
v − 2Km

∂e

∂xj
− ε , (5)

::::
with

::
the

:::::
SGS

:::::
fluxes

::::::::
modelled

:::
as:

u′′i u
′′
j −

2

3
eδij =−Km

(
∂ui
∂xj

+
∂uj
∂xi

)
, (6)

15

u′′i θ
′′ =−Kh

∂θ

∂xi
, (7)

:::
and

u′′i q
′′
v =−Kh

∂θ

∂xi
. (8)

:::
The

::::
eddy

::::::::::
diffusivities

:::
are

:::::::::::
proportional

::
to

::::
e3/2

:::::
under

:::::::::
convective

:::::::::
conditions

:::::::::::::::::::
(Maronga et al., 2015) .

:::
For

::
a

:::::::
thorough

::::::::::
description

::
of

:::
the

::::::::
governing

::::::::
equations

::::
and

:::::::::::::::
parameterizations,

:::
see

:::::::::::::::::::
Maronga et al. (2015) .20

:::
The

:::::::::
prognostic

:
equations are discretized on a staggered Arakawa C-grid, where the scalars are evaluated in the center of the

grid volume and velocities are evaluated at the center of the faces of the grid volume in their respective direction.

The advection terms are evaluated either with fifth-order upwind discretization according to Wicker and Skamarock (2002)

or with a 2nd order scheme according to Piacsek and Williams (1970). The prognostic equations are integrated in time using25
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Table 1.
:::
List

::
of

:::::::
symbols

::
in

::
the

::::::::
governing

:::::::
equations

:::
and

::::::::::::::
parameterizations.

::::::
Symbol

:::::::::
Description

::
fi ::::::

Coriolis
::::::::
parameter

::
ρ0 ::::::

Density
::
of

:::
dry

::
air

::
at

::
the

::::::
surface

::
π∗

: :::::::
Modified

:::::::::
perturbation

::::::
pressure

:
g
: ::::::::::

Gravitational
:::::::::
acceleration

::
θv :::::

Virtual
:::::::
potential

:::::::::
temperature

::
Lv: :::::

Latent
:::
heat

::
of

::::::::::
vaporization

::
Cp: ::::

Heat
::::::
capacity

::
of

:::
dry

::
air

::
at

::::::
constant

:::::::
pressure

::
qv ::::::

Specific
:::::::
humidity

:::
Ψqv :::::::::

Source/sink
:::
term

::
of
:::
qv

::
Π

::::
Exner

:::::::
function

::
for

:::::::::
converting

::::::
between

:::::::::
temperature

:::
and

:::::::
potential

:::::::::
temperature

:::
Kh ::::

SGS
:::
eddy

::::::::
diffusivity

::
of

::::
heat

:::
Km: ::::

SGS
:::
eddy

::::::::
diffusivity

::
of

:::::::::
momentum

a third-order Runge-Kutta (RK3) scheme. The low storage RK3 scheme with three sub-steps proposed by Williamson (1980)

guarantees a stable numerical solution. The Poison Equation for pressure is solved with Fast-Fourier Transform (FFT) when

periodic boundary conditions are applied in the lateral boundaries. There are three FFT algorithms available in PALM with

FFTW being the optimal method for large scale simulations. Monin-Obukhov Similarity Theory (MOST) is assumed between

the surface and the first grid point. A
::::::
vertical

:
zero pressure gradient at the surface guarantees

::
the

:
vertical velocity to be zero.5

Simulations can be driven by either prescribing the surface temperature or the surface
::::::
sensible

:
heat flux, similarly for the

humidity. At the top of the simulation domain the horizontal velocities equal geostrophic wind and the vertical velocity is set

to zero. The pressure can assume either a Dirichlet condition of zero value or a Neumann condition of zero vertical gradient.

The scalar values have
:::
can

::::
have

:::::
either

::
a

::::
fixed

:::::
value

::::::::
Dirichlet

::::::::
condition

::
or

:
a fixed gradient

::::::::
Neumann

::::::::
condition. The vertical

gradient of SGS Turbulent Kinetic Energy (TKE) is set to zero at both top and bottom boundaries.10

PALM is a parallelized model and the standard way of parallelization is by dividing the three-dimensional domain into

vertical columns, each of which is assigned to one processing element (PE). Each vertical column possesses a number of ghost

points needed for computation of derivatives at the boundary of the sub-domains. Each PE can only access data for a single

sub-domain. All PEs execute the same program on a different set of data. For optimum load balancing between the PE the

decomposed sub-domains should have the same size. In PALM, this condition is always satisfied as only sub-domains of the15

same size are allowed. After every time-integration step, the
:::
The

:
data exchange between PEs , needed

:::::
needed

:::
by

:::
the

:::::::
Poisson

:::::
solver

:::
and

:
to update the ghost points , is

::
are

:
performed via the Message Passing Interface (MPI) communication routines.
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2.2 Fine grid and coarse grid configuration
::::::
Nested

:::::
model

:::::::::
structure

2.2.1
::::
Fine

::::
grid

::::
and

:::::
coarse

:::::
grid

::::::::::::
configuration

We are interested in achieving an increased resolution only in the surface-layer, the lowest 10% of the boundary layer, where

surface exchange processes occur and where eddies generated by surface heterogeneity and friction are smaller than the dom-

inant eddies in the mixed layer. We setup the LES-within-LES case by maintaining the same horizontal extent for the FG and5

the CG to have the whole surface better resolved. We allow the vertical extent of the FG to be varied as needed, typically up to

the SL depth. This implementation of vertical grid nesting has two main challenges. The first challenge, that is purely technical

in nature, is to implement routines that handle the communication of data between the CG and the FG. The second and the

most important challenge is to ensure that the nesting algorithm yields an accurate solution in both the grids.

:::::
Below

:::
we

:::
use

::::::
upper

::::
case

:::::::
symbols

:::
for

:::::
fields

:::
and

::::::::
variables

::
in

:::
the

::::
CG,

::::
and

:::::
lower

::::
case

:::
for

:::
the

::::
FG.

:::
E.g.

:::
E

:::
and

::
e

::::::
denote

:::
the10

:::::::::::
subgrid-scale

:::::::
turbulent

::::::
kinetic

::::::
energy

::
(a

:::::::::
prognostic

::::::
variable

::
in
:::
our

:::::
LES)

::
of

:::
CG

::::
and

:::
FG

::::::::::
respectively. The nesting ratio is defined

as the ratio of the CG spacing to the FG spacing,
:::
and

:
nx = ∆X/∆x, corresponding symbols apply for y and z directions. The

nesting ratios nx, ny and nz have to be integer. It is possible to have either odd or even nesting ratio and it can be different in

each direction. As the domain that is simulated in the FG is completely inside of the CG domain, each FG cell belongs to a

CG cell. The two grids are positioned in such a way that a FG cell belongs to only one CG cell and one CG cell is made up by15

a number of FG cells given by the product of the nesting ratios nx×ny ×nz . This means that if the grid nesting ratio is odd,

there will be one FG cell whose center is exactly at the same position as the center of the coarse cell
::
as

::::::
shown

::
in

:::
Fig.

::
1
:::
(b). The

collection of FG cells that correspond to one CG cell is denoted by C(I,J,K), the collection of FG faces that corresponds to

e.g. an yz-face of the CG
:
is

:::::::
denoted

::
by

:
Cx(Is,J,K), where it is understood that the Is index is an index on the staggered grid

in the x-direction to denote the position of the face, and similar for the other types of faces. Below we use upper case symbols20

for fields and variables in the CG, and lower case for the FG. E.g. E and e denote the subgrid-scale turbulent kinetic energy (a

prognostic variable in our LES) of CG and FG respectively. We have used fx = 1/nx to denote the inverse of the nesting ratio

in the x dimension (corresponding symbols for y and z). A schematic diagram of the overlapping grids are
::
is shown in Fig. 1 .

:::
(a).

For the boundary conditions at the top of the FG, the fields from the CG are interpolated to the FG, according to Clark and Farley (1984) .25

In Eq. ??, Φ and φ represent CG and FG quantities, respectively. For the scalar fields, the interpolation is quadratic in all three

directions. For the velocity components, the interpolation is linear in the logical direction of that component, and quadratic in

the other two directions. A similar interpolation is carried out for the initialization of the fine grid. The quadratic interpolation

equation reads as

The anterpolation of the prognostic quantities are performed by an averaging procedure according to Clark and Hall (1991) .30

The scalars are defined as the spatial average over the whole grid cell, therefore it is required that the CG scalar is the average

of the corresponding FG scalars (Eq. 15). However, the CG velocity components are the average of only the FG value at the

corresponding faces (Eq. 14). The anterpolation equations read as

7



Figure 1.
::

(a) Schematic of the interpolation and anterpolation between the grids. The FG top boundary condition is interpolated from the

CG. The CG prognostic quantities in the overlapping region are anterpolated from the FG.
:::
(b)

::::::::
Schematic

::
of

:::::::
Arakawa

:
C
::::
grid

::
for

::::
two

::::
grids

:::
with

::::::
nesting

:::::
ration

:
of
:::::

three.
:::
The

:::::
black

:::::
arrows

:::
and

:::::
circles

:::
are

:::
CG

::::::
velocity

:::
and

:::::::
pressure,

:::::::::
respectively.

::::
The

:::
blue

:::
and

:::
red

:::::
arrows

:::
are

::::::::
horizontal

:::
and

:::::
vertical

:::::::
velocity,

:::::::::
respectively,

::
in
:::
the

:::
FG.

:::
The

:::::
filled

::::
black

::::
circle

::
is
:::
the

:::
FG

::::::
pressure.

::::::
Where

:
I
:::
and

::
K

::
are

:::
CG

::::::
indices

:::
and

::
nx

:::
and

::
nz

:::
are

:::
the

:::::
nesting

::::
ratio

::
in

:
x
:::
and

::
z,

:::::::::
respectively.

However, the TKE in the CG differs from the FG value. Due to the different resolution of the grids, in the FG the SGS

motions are weaker. Therefore, TKE is anterpolated such that the Germano identity is maintained (Germano et al., 1991) :

2.3 Summary of the Nesting Algorithm

2.2.1
:::::::
Vertical

::::::
nesting

:::::::::
algorithm

We implement a two-way interaction algorithm, shown in Fig. 2, because in our first trials we found that one-way nesting5

did not improve the FG representation satisfactorily and hence was not pursued further. The FG prognostic quantities are

initialized by interpolating the CG values in the overlapping region. Optionally, the initialization of the FG can be delayed until

the CG has reached a fully turbulent state. Both the grids are restricted to have identical time steps. PALM finds the largest

time step for each grid such that the CFL condition is individually satisfied and the minimum of the two values is then chosen

as the time integration step for both the grids. The right hand side of the prognostic equation except for the pressure is first10

computed concurrently in both the grids. The values of u,v,w,θ and q are then anterpolated to the CG in the overlapping

region. The CG solves a Poisson equation for pressure. The new u,v,w,θ and q fields in the CG are interpolated to set the

FG Dirichlet top boundary conditions. The Poisson equation is then solved for pressure in the FG and the vertical velocity

::
in

:::
the

:::
FG

:
is also updated by the pressure solver at this stage.

:::::
Since

::
all

:::
the

::::::::
velocity

::::::::::
components

::::::
follow

:::::::
Dirichlet

:::::::::
condition

:
at
::::

FG
:::
top

::::::::
boundary

::::
only

::::::::
Neumann

::::::::
condition

::
is
:::::::
suitable

:::
for

:::::::
pressure

:::::::::::::::
(Manhart, 2004) .

::::::
PALM

::::::
permits

:::
the

::::
use

::
of

:
a
:::::::::
Neumann15

:::::::::::
zero-gradient

::::::::
condition

:::
for

:::::::
pressure

::
at

::::
both

::::
top

:::
and

::::::
bottom

:::::::::
boundary.

::
It

::
is

::::::::
advisable

::
to

:::
use

::
a
::::::::
Neumann

:::::::::
boundary

::::::::
condition

:
at
:::

the
::::

top
:::
and

:::
the

::::::
bottom

:::
for

:::
the

::::
CG

:::
too.

:
The TKE is then anterpolated maintaining the Germano identity and it is followed

by the computation of SGS eddy diffusivity for heat (kh) and momentum (km) in the CG. This procedure is repeated at every

8
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Figure 2. A flowchart of the two-way interaction algorithm. The new routines needed for the vertical nesting are highlighted in red and the

standard routines are highlighted in blue. An arrow pointing to the left indicates transfer of data from FG to CG, and vice versa.

sub-step of the Runge-Kutta 3 time integration and it ensures that the velocity field remains divergence free in both the grids.

Since all the velocity components follow Dirichlet condition at FG top
::::
grids.

:

::
In

:::
the

:::
1.5

::::
order

:::::::::
turbulence

::::::
closure

::::::::::::::
parameterization

:::
all

:::
the

:::::::
sub-grid

:::::
fluxes

:::
are

:::::::
derived

::::
from

:::
the

::::::::
turbulent

:::::
kinetic

::::::
energy

::::
and

::
the

::::::::
resolved

::::::::
gradients

::
at

::::
each

::::
time

:::::
step.

:::::::::
Therefore,

:::
the

:::::::
sub-grid

:::::
fluxes

:::
do

:::
not

::::
have

:::
to

::
be

::::::::::
interpolated

:::::
from

:::
CG

::
to
::::

FG
::
at

:::
the

:::
top

::::::::
boundary.

:::::::::::
Furthermore,

::
in
::::

our
:::::::::::::
implementation

::
of

:::
the

:::::::
nesting

:::::::
method,

:::
we

::::::
assume

::::
that

::::
most

:::
of

:::
the

::::
TKE

::
is
::::::::
resolved

::::
well5

::::
down

::
to
:::
the

::::::
inertial

:::::::::
subrange,

:::::
except

:::
for

:::
the

::::::
lowest

:::
few

::::
grid

:::::
layers.

::::
This

::::::
allows

::
us

::
to

:::
use

:::
the

:::::::::::
zero-gradient

:::::::::
Neumann

::::::::
boundary

::::::::
condition

::
for

:::::
TKE

::
at

:::
the

:::
FG

:::
top

:
boundaryonly Neumann condition is suitable for Pressure (Manhart, 2004) . PALM permits

the use of Neumann condition for pressure at both top and bottom boundary. It is advisable to use Neumann boundary condition

at top
:
.
:::
We

::::::
employ

::
a

::::::::
simplified

::::::
sponge

:::::
layer

::
by

:::::::
limiting

:::
the

:::::::::::
anterpolation

::
of

:::
all

:::::::::
prognostic

::::::::
quantities

::
to

::::
one

:::
CG

:::
cell

::::
less

::::
than

::
the

::::::
nested

::::::
height.

::::
This

::::::::::
segregation

::
of

:::
the

:::::::::::
anterpolation

::::::
region

::
in

:::
the

::::
CG

:::
and

:::
top

::::::::
boundary

::::::::
condition

:::::
level

::
of

:::
the

:::
FG

:::::::
ensures10

:::
that

:::
the

::::
flow

::::::::
structures

::
in

:::
the

::::
CG

::::::::
propogate

::::
into

:::
the

:::
FG

::::::
without

::::::::
distortion

::::
due

::
to

::::::::
numerical

::::::::
artifacts.

2.3
:::::::::
Translation

::::::::
between

:::::
grids

2.3.1
:::::::::::
Interpolation
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:::
For

:::
the

::::::::
boundary

::::::::
conditions

::
at

:::
the

:::
top

::
of

:::
the

:::
FG,

:::
the

:::::
fields

::::
from

:::
the

:::
CG

:::
are

::::::::::
interpolated

::
to

::
the

::::
FG,

::::::::
according

::
to

:::::::::::::::::::::
Clark and Farley (1984) .

:::
We

:::::
define

:::
the

:::
top

::
of

:::
the

:::
FG

::
as

:::
the

::::::::
boundary

::::
level

::::
just

:::::
above

:::
the

:::::::::
prognostic

::::
level

::
of

::::
each

::::::::
quantity.

::
In

:::
Eq.

:::
10,

::
Φ

:::
and

::
φ

::::::::
represent

:::
CG

:::
and

:::
FG

:::::::::
quantities,

:::::::::::
respectively.

:::
For

:::
the

:::::
scalar

::::::
fields,

:::
the

::::::::::
interpolation

::
is
::::::::
quadratic

::
in
:::
all

:::::
three

:::::::::
directions.

::::
For

:::
the

:::::::
velocity

::::::::::
components,

:::
the

:::::::::::
interpolation

::
is

:::::
linear

::
in

::
its

::::
own

:::::::::
dimension,

::::
and

::::::::
quadratic

::
in

:::
the

::::
other

::::
two

:::::::::
directions.

:::
The

:::::
same

:::::::::::
interpolation

:::::::::
formulation

::
is
::::
also

::::
used

:::
to

:::::::
initialize

:::
all

::::::
vertical

::::::
levels

::
of

:::
the

:::
fine

::::
grid

:::::::
domain

::
at

:::
the

::::::::
beginning

:::
of

:::
the

:::::
nested

::::::::::
simulation.

::::
The5

::::::::::
interpolation

::
is

::::::::
reversible

:::
as

:
it
:::::::
satisfies

:::
the

:::::::::::
conservation

::::::::
condition

::
of

:::::::::::::::::::
Kurihara et al. (1979) :

< φ >=< Φ> . (9)

:::
For

::::::
clarity,

:::
we

:::::::
illustrate

:::
the

:::::::::::
interpolation

::
by

::::::::
focusing

::
on

:::
one

:::::::::
particular

:::::::::
dimension,

::
in

:::
this

::::
case

::
x,

:::
but

:::
the

:::::
same

::::::::
operation

:::::
holds

::
for

::
y and bottom for the CG too

:
z.

::::
The

::::::::::
interpolation

::
in
:::
the

:::::::::::
x-dimension

:::::
reads

::
as

φm = ηm−ΦI−1 + ηm0 ΦI + ηm+ ΦI+1, (10)10

::::
with

::
m

:::::::
running

::::
from

::
1

::
to

:::
nx,

::::
thus

:::::::::
producing

:::
nx ::::::::

equations
:::
for

::::
each

:::
CG

::::
cell

::
I .

:::
For

:::
the

:::::::::::
interpolation

::
in

::
y
:::
and

::
z
:::::
there

:::
will

:::
be

:::
two

:::::::::
additional

::::::
indices,

:::::::::
producing

::::::::::::
nx×ny ×nz::::::::

equations
:::
for

:::
all

:::
the

:::
FG

:::::
cells

::::::::::::
corresponding

::
to

:::
the

:::
CG

::::::
parent

::::
cell.

::::
For

:::
the

:::::::
quadratic

:::::::::::
interpolation

::
a

:::::
stencil

::::
with

::
3
::::
legs

:
is
:::::
used,

:::::::
relating

:::
the

::::::::
prognostic

:::::
value

::
of

::
a
:::
FG

:::
cell

::
to

:::
the

:::::
value

::
of

:::
its

:::::
parent

:::
CG

::::
and

::
the

::::::
values

::
of

:::
the

:::::::::
immediate

:::
CG

:::::::::
neighbour

::
on

:::
the

:::
left

::::
and

::
on

:::
the

::::
right

::
of

:::
the

::::::
parent

::::
cell,

:::
e.g.

:::::
ΦI−1 :::

and
:::::
ΦI+1:::

for
:::
the

:
x
::::::::
direction

::
as

:::::
shown

::
in
::::
Fig.

::
1

:::
(b).

::::
The

:::::
stencil

::::::::::
coefficients

:::
are:

:
15

ηm− =
1

2
Hm(Hm− 1) +α,

ηm0 = (1−H2
m)− 2α,

ηm+ =
1

2
Hm(Hm + 1) +α,

(11)

::::
with

::
the

:::::::
weights

::::
Hm::::::::

expressed
::
in

:::::::
function

:::
of

:::
the

::::::
inverse

::::::
nesting

:::::
ratio,

Hm =
1

2
((2m− 1)fx− 1) , (12)

:::
and

:::
the

:::::::::
coefficient

::
α

:
is
::::::
chosen

:::::
such

:::
that

:::
the

:::::::::::
conservation

::::::::
condition

::
of

::::::::::::::::::::
Kurihara et al. (1979) is

:::::::
satisfied,

:

α=
1

24

(
f2x − 1

)
. (13)20

:
It
:::
can

:::
be

::::::::
observed

:::
that

:::
the

::::
sum

::
of

:::
the

:::
η’s

:::::
equals

::
1.
:

2.3.2
::::::::::::
Anterpolation

10



:::
The

:::::::::::
anterpolation

:::
of

:::
the

:::::::::
prognostic

::::::::
quantities

:::
are

:::::::::
performed

::
by

:::
an

::::::::
averaging

:::::::::
procedure

::::::::
according

:::
to

:::::::::::::::::::
Clark and Hall (1991) .

:::
The

:::::::::::
anterpolation

::::::::
equations

:::
for

:::
the

::::::::
velocities

::::
read

:::
as:

UI,J,K =< u >j,k=
∑

j,k∈CIJK

ui∗,j,kfyfz ,

VI,J,K =< v >i,k=
∑

i,k∈CIJK

vi,j∗,kfxfz ,

WI,J,K =<w >i,j=
∑

i,j∈CIJK

wi,j,k∗fxfy .

(14)

:::
For

:::
the

::::::
scalars

:
it
:::
is:

ΦI,J,K = [φ]i,j,k =
∑

i,j,k∈CIJK

φi,j,kfxfyfz . (15)5

::::
Here

:::
the

:::::
lower

::::
case

::::::
indices

::::
only

:::::
count

::::
over

:::
the

:::
fine

::::
grid

::::
cells

::::
that

::::::
belong

::
to

:::
that

::::::::
particular

::::::
coarse

::::
grid

::::
cell.

:::
For

::::
each

::::::::
(I,J,K)

::::
tuple

::
of

:
a
::::::
parent

:::
CG

::::
cell

::::
there

:::::
exists

:
a
:::
set

:::::
CIJK:::::::::

containing
:::
the

::::::
(i, j,k)

:::::
tuples

:::
of

::
its

::::::::::::
corresponding

:::::::
children

:::
FG

:::::
cells.

::
To

::::::
ensure

:::
that

:::
the

::::::
nested

::::::
PALM

:::::
knows

::
at
:::
all

:::::
times

:::::
which

::::
fine

:::
grid

:::::
cells

:::
and

::::::
coarse

:::
grid

:::::
cells

::::::::::
correspond,

::
we

::::::::
compute

:::
this

::::::::
mapping

:::
for

::
the

::::
FG

:::
and

::::
CG

::::::
indices

::::::
before

::::::
starting

:::
the

::::::::::
simulation,

::::
and

:::
we

::::
store

::
it
::
in

:::
the

::::::::
memory

::
of

:::
the

:::::::
parallel

:::::::::
processing

:::::::
element.

:::
In

::
the

::::::::
Arakawa

::::::
C-grid

:::::::::::
discretization

::::
that

::::::
PALM

::::
uses,

:::
the

::::::
scalars

:::
are

:::::::
defined

::
as

:::
the

:::::
spatial

:::::::
average

::::
over

:::
the

::::::
whole

:::
grid

::::
cell,

::::
and10

:::::::
therefore

::
it
::
is

:::::::
required

::::
that

:::
the

:::
CG

:::::
scalar

::
is
:::
the

:::::::
average

::
of

:::
the

::::::::::::
corresponding

:::
FG

::::::
scalars

:::
in

::::
(Eq.

:::
15).

::::::::
However,

::::
the

::::::::
velocities

::
are

:::::::
defined

::
at

:::
the

:::::
faces

::
of

:::
the

:::::
cells

::
in

:::
the

::::::::::::
corresponding

::::::::::
dimension.

::::::::
Therefore

::
in

::::
(Eq.

::::
14)

:::
the

:::
CG

:::::::
velocity

:::::::::::
components

:::
are

::::::::
computed

::
as

:::
the

:::::::
average

::::
over

:::
the

:::
FG

:::::
values

::
at
:::
the

:::
FG

:::::
cells

:::
that

::::::::::
correspond

::
to

:::
the

:::
face

:::
of

:::
the

:::
CG

::::
cell,

::::::::
expressed

:::
by

::
i∗,

:::
j∗,

:::
k∗

::::::::::
respectively.

::::::::
However,

:::
the

::::
TKE

::
in

:::
the

:::
CG

::::::
differs

::::
from

:::
the

:::
FG

::::::
value,

:::
due

::
to

:::
the

::::::::
different

::::::::
resolution

::
of

:::::
grids.

:::
In

:::
the

:::
FG

:::
the

::::
SGS

:::::::
motions15

::
are

:::::::
weaker

:::::::
because

:::
the

:::::::::
turbulence

::
is
:::::
better

::::::::
resolved.

:::::::::
Therefore,

:::::
TKE

::
is

:::::::::::
anterpolated

::::
such

::::
that

:::
the

::::
sum

::
of

::::::::
resolved

::::::
kinetic

:::::
energy

::::
and

::::
TKE

:::::
(SGS

::::::
kinetic

:::::::
energy)

:
is
:::::::::
preserved,

:::
by

::::::::::
maintaining

:::
the

::::::::
Germano

::::::
identity

::::::::::::::::::::
(Germano et al., 1991) :

E = [e] +
1

2

3∑
n=1

([unun]− [un][un]) . (16)

::::
Here

:::
the

::::::
straight

::::::::
brackets

:::
are

:::
the

::::::
spatial

::::::
average

::::
over

:::
the

::::::
coarse

::::
grid

:::
cell

::::::::::::::::::::
(fxfyfz ×

∑
i,j,k∈CIJK

)
::::
and

:::
the

::
n

:::::
index

::::
runs

::::
over

::
the

:::::
three

::::::
spatial

::::::::::
dimensions.

::
In

:::::
other

::::::
words,

::
to

:::::
obtain

:::
the

:::
CG

:::::
TKE

::::
from

:::
the

:::::::
average

:::
FG

:::::
TKE,

:::
we

:::
add

:::
the

:::::::
variance

:::
of

:::
the

:::
FG20

::::::
velocity

:::::::::::
components

::::
over

:::
the

:::
FG

::::
cells

:::::::::
comprising

:::
the

:::
CG

::::
cell.

:::::::::
Therefore

:::
CG

::::
TKE

::
is
::::::
always

:::::
larger

::::
than

:::
FG

:::::
TKE.

2.4 Parallel Inter-Grid Communication

MPI is the most widely used large scale parallelization library. The atmosphere-ocean coupling in PALM has been implemented

following MPI-1 standards (Esau, 2014; Maronga et al., 2015). We follow a similar approach for the MPI communications,

and have adopted MPI-1 standards for our nesting implementation. Concurrent execution of the two grids is achieved with25

the MPI_COMM_SPLIT procedure. The total available processors are split into two groups, denoted by color 0 or 1 for CG
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and FG respectively, see Fig. 3. The data between the processors of the same group are exchanged via the local communicator

created during the splitting process. Whereas, ,
:::::::
whereas the data between the two groups are exchange

:::::::::
exchanged via the global

communicator MPI_COMM_WORLD.

Figure 3. Schematic of the MPI processor grouping. The data exchange between the two groups are performed via the global communicator.

M and N are the number of processors for CG and FG respectively.

Based on the nesting ratio and the processor topology of the FG and the CG group a mapping list is created and stored. Given

the local PE’s 2D processor co-ordinate – the list will identify the PEs in the remote group to/from which data needs to be5

sent/received; the actual communication then takes place via the global communicator. There are three types of communication

in the nesting scheme:

i. Initializing the FG (Send data from coarse grid to fine grid.) This is performed only once.

ii. Boundary condition for the FG top face (Send data from coarse grid to fine grid.).

iii. Anterpolation (Send data from fine grid to coarse grid.).10

The exchange of arrays via MPI_SENDRECV routines is computationally expensive. Therefore, the size of the arrays

communicated are minimized by performing the anterpolation operation in the FG PE’s and storing the values in a temporary

3D array that is later sent via the global communicator to the appropriate CG PE. This approach also takes advantage of the

higher number of PEavailable in
:
is

:::::
more

:::::::
efficient

::::
than

:::::::::
performing

:::
the

:::::::::::
anterpolation

::::::::
operation

:::
on

:::
the

:::
CG

::::::
which

:::
has

::::
less

::::
PE’s

:::
and

:::::
needs

:::::::::::::
communication

:::
of

:::::
larger

::::::
arrays

::::
from

:
the FG. Furthermore, the array data that need to be communicated during15

the anterpolation operation and for setting the FG boundary condition are not contiguous in memory. The communication

performance is enhanced by creating an MPI derived data type that ensures that the data is sent contiguously. Within the RK3

sub-steps, when one grid executes the pressure solver,
:
the other grid has to wait

:
, leading to more computational time at every

sub-step. However, the delay
::::::
waiting

::::
time can be minimized by effective load balancing, i.e. the number of grid points per PE

12



in the CG should be kept lower than in the FG. This
::::
The reduction in workload per PE can be achieved with just

:::
CG

:::
PE

::
is

:::::::
achieved

::::
with

:
a few additional cores.

::::
The

::::::::
reduction

::
in

::::::::::::
computational

::::
time

:::
per

::::
step

::
in

:::
the

::::
CG

:::::
means

:::
the

:::::::
waiting

::::
time

:::
on

:::
the

:::
FG

::
PE

::
is
::::
also

:::::::
reduced.

3 Results and Discussion

3.1 Simulation set-up
:::::
setup for the nesting validation test5

To evaluate the accuracy of the two-way nesting algorithm we set-up
::::
setup

:
a convective boundary layer simulation. Two

overlapping grids with a nesting ratio of five in the lateral and vertical direction are employed. The simulation parameters are

listed in Table 2. A standalone reference simulation with the same resolution as the coarse grid (SA-C) and another reference

with the same resolution as the fine grid (SA-F) are performed for comparison. The grid configuration and the computational

resources used are listed in Table 3. The simulations were performed in a local computing cluster, each compute node has 6410

GB of main memory and a 2.8 GHz Ivy Bridge processor with 20 cores. The simulation domain is set to
:::
has periodic boundary

conditions in the lateral direction. At
:::
The

:::::::
Dirichlet

::::::::
boundary

::::::::
condition

::
is

::::::
applied

:::
for

:::::::
velocity

::
at the top and bottom boundaries,

the velocity
::::::
vertical

:::::::
velocity

:::::::::
component

::
is

:::
set

::
to

::::
zero

:::
and

:::
the

:::::::::
horizontal components are set to Dirichlet condition

::::::::::
geostrophic

:::::
wind.

:::
At

:::
the

:::
top

:::
and

:::::::
bottom

:::::::::
boundaries, the pressure and humidity are set to

::::
zero

:::::::
gradient Neumann condition. The potential

temperature is set to
:
a
:
Neumann condition at the bottom

:
, and the gradient

:
is
::::::::::

determined
:::
by

::::::
MOST

:::::
based

:::
on

:::
the

:::::::::
prescribed15

::::::
surface

::::
heat

:::
flux

::::
and

::::::::
roughness

::::::
length.

::::
The

:::::::
gradient

:
of the initial profile is maintained at the top boundary. In PALM, ug and

vg represents the u- and v-component of the geostrophic wind at the surface. The u and v profiles are constructed starting from

a zero value at the surface and reaches
:::::
initial

::::::
profiles

:::
are

:::
set

::
to

::
be

::::::::
constant,

:::::
equal

::
to

:::
the

:::::
value

::
of the geostrophic wind value at

the top. The
:::::::::
component

::
in

:::
the

::::::
domain

::::
and

:::
the vertical velocity is initialized to zero in the domain. The potential temperature is

initialized to a constant value of 300 K up to 800 m and above 800 m a lapse rate of 1 K 100 m−1
::::::::::::
1K(100m)

−1 is prescribed.20

The humidity profile is initialized to a constant value of 0.005 kg kg−1
:::::::
kgkg−1. The simulation is driven by prescribing a

surface heat flux of 0.1 Kms−1
:::::::
Kms−1 and a surface humidity flux of 4 x 10−4 kgkg−1ms−1

::::::::::::
kgkg−1ms−1.

:::
The

:::::::
domain

::
is

::::
more

::::
than

::::
four

:::::
times

:::::
larger

::
in

:::
the

::::::::
horizontal

::::
than

:::
the

::::::
initial

::::::::
boundary

::::
layer

::::::
height.

25

3.2 Analysis of the simulations

In a two-way nesting it is important that the flow structures are propagated from the FG to CG and vice versa, without any

distortion. In Fig. 4, the contours in the CG region overlapping the FG have similar structures as the FG. The higher resolution

in the FG enables more detailed contours whereas the anterpolated CG contours are smoother. Furthermore, in the CG region

beyond the overlapping region no distortion to the contours are observed indicating that the anterpolation does not introduce30

sharp gradients in the CG.
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Table 2. Simulation Parameters for the nesting validation test.

::::::::
Simulation

:::::::::
Parameters

::::
Value

:

Domain Size: 4.0 x 4.0 x 1.65 km3

Fine grid vertical extent: 320 m

Kinematic surface heat flux: w′θ′0 ::
Hs:

= 0.1 Kms−1
::::::
Kms−1

:

Kinematic surface humidity flux: w′q′0 :::
λEs:

= 4 x 10−4 kgkg−1ms−1
::::::::::
kgkg−1ms−1

:

Geostrophic wind: ug = 1 ms−1
:::::
ms−1 , vg = 0 ms−1

::::
ms−1

:

::::::::
Roughness

:::::
length

: ::
0.1

::
m
:

Simulated time: 10800 s

Spin-up time: 9000 s

Averaging interval: 1800 s

Table 3. Grid configuration of the nested and standalone reference domains.

::::
Case No. of Grid Points

::
grid

:::::
points

:
(dx,dy,dz) m cpu

::::
CPU cores core-hours

::::::::
Core-hours

: :::
Grid

:::::
points

:::
per

::::
core

::::
Time

::::
steps

Coarse Grid (CG) 200 x 200 x 80 = 3.2 x 106 20, 20, 20 20 290
::
376

: ::
1.6

::
x

:::
105

:::::
17136

Fine Grid (FG) 1000 x 1000 x 80 = 80 x 106 4, 4, 4 80 1160
:::
1503

: ::
1.0

::
x

:::
106

:::::
17136

Total 1450
:::
1879

:

Standalone Coarse (SA-C) 200 x 200 x 80 = 3.2 x 106 20, 20, 20 20 5 8
: ::

1.6
::
x

:::
105

::::
3226

Standalone Fine (SA-F) 1000 x 1000 x 400 = 400 x 106 4, 4, 4 400 10345
:::
8234

: ::
1.0

::
x

:::
106

:::::
18343

Figure 4. Instantaneous contours of vertical velocity, (a) CG and (b) FG, at the vertical x-z cross-section at the center of the domain after

9000
:::::
10800 s of the simulation. The dashed line in (a) marks the top of the overlapping region. Flow structures in the FG, are similar but

more detailed than the CG, qualitatively indicate the improvement to the surface-layer resolution with the two-way nesting.
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The vertical
:::::::
Vertical profiles are used for quantitative comparison of the nested and the reference simulations. The turbu-

lent fluctuations (e.g. θ′′,w′′) are defined as the spatial deviations from the instantaneous horizontal average. The turbulent

flux profiles
:::::
fluxes (e.g. w′′θ′′, u′′u′′

:::::::::
<w′′θ′′ >,

:::::::::
< u′′u′′ >) are obtained using the spatial covariance and are then hori-

zontally averaged. All the horizontally averaged profiles (e.g. < θ >, <w′′θ′′ >) are also averaged over time but we omit

the conventional overline notation for simplicity. The friction velocity (u∗), :::::::::
readability.

:::
The

:
convective velocity scale (w∗)5

and temperature scale (θ∗) obtained from SA-F are used to normalize the profiles. The convective velocity is calculated as

w∗ = (g θ−10 w′θ′0 zi)
1/3

::::::::::::::::::
w∗ = (g θ−10 Hs zi)

1/3, where g is the gravitational acceleration, θ0 is the surface temperature and

zi is the boundary layer height in the simulation. The convective temperature scale is calculated as θ∗ = w′θ′0 w
−1
∗ . The

:::::::::::
θ∗ =Hs w

−1
∗ .

:::
In

:::
Fig.

::
5
::
(a

:::
and

:::
c),

:::
the

:
vertical profiles of

::::::::
difference

:::::::
between

:::
the

:
potential temperature (< θ >)

:::
and

::
its

:::::::
surface

::::
value

:
normalized by the surface value are shown in Fig. 5 (a and c)

::::::::
convective

:::::::::::
temperature

::::
scale

:::
are

:::::::
plotted. Since the FG10

profiles are superior to the CG in the over-lapping
::::::::::
overlapping region, the anterpolated CG values are not plotted. In Fig. 5 (a),

there is no visible difference between the standalone and the nested simulations. However, in the region closer to the surface,

plotted in Fig. 5 (c), a better agreement between the SA-F and FG is observed. The potential temperature variance (< θ′′θ′′ >)

normalized by the square of the temperature scale (θ2∗) are
::
is shown in Fig. 5 (b and d). Here too FG provides better accuracy

close to the surface. It is important to note15
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Figure 5.
:::::
Vertical

::::::
profile

::
of

:::::::::
horizontally

:::::::
averaged

:::::::
potential

:::::::::
temperature

:::::::::
normalized

::
by

::::::
surface

:::::
value

::
(a

:::
and

::
c)

:::
and

:::::::
variance

::
of

:::::::
potential

:::::::::
temperature

::::::::
normalized

:::
by

::
θ2∗::

(b
:::
and

:::
d).

:::
The

:::::
nested

::::
grid

::::::
profiles

::::
agree

::::
well

::::
with

:::
the

::::
SA-F

::
in

:::
the

::::::
surface

::::
layer.

::::
The

::::::::::
improvement

::
of

:::
the

::::::
two-way

::::::
nesting,

::
at
:::
the

:::::::
boundary

::::
layer

:::::
height,

::
is
::::
seen

::
in

::
the

::::
good

::::::::
agreement

::
in

:::
the

::::::
profiles

::
of

:::
CG

:::
and

::::
SA-F

::
in

:::
(b).

::
In

:::
the

::::::
vertical

::::
heat

::::
flux

::::::::::
(<w′′θ′′ >)

:::::::
profiles in Fig. 5 (b), at the boundary layer height well above the overlapping region,

::
6, the two-way nesting improves the CG as compared to the

::
FG

::::
has

::::
good

:::::::::
agreement

::::
with

::::
the

::::
SA-F

:::
in

:::
the

::::::
surface

:::::
layer

:::
for

::
the

::::::::
resolved,

::::
SGS

::::
and

:::
the

::::
total

:::
flux

:::::::
profiles.

:::
In

:::
the

:::
CG

::::::
regions

::::::
above

::
the

::::::
nested

::::
grid

::::::
height,

:
a
:::::
good

:::::::::
agreement

::::
with

:::
the SA-C

profile.An one-way nested simulation will not benefit from the higher surface
:
is

:::::
found

:::
as

::::
well.

::::
The

:::::::::::
improvement

::::
due

::
to

:::
the

:::::::
two-way

::::::
nesting

::
is
::::
seen

:::
in

:::
Fig.

::
6
::
(d

::::
and

::
e),

::::::
where

:::
the

::::::
effects

::
of

:::
low

::::
grid

:
resolution of the FG as there is no feedback to the5

CG.

:::::
SA-C

::
in

:::::::
resolved

:::
and

:::::
SGS

:::::
fluxes

:::
are

:::::::
evident.

::::::::
However,

:::
no

:::
grid

:::::::::
dependent

:::::::::
difference

::
in

:::
the

::::::
profile

::
is

:::::::
observed

:::
in

:::
the

::::
total

::::
flux.
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Figure 6. Vertical profile of horizontally averaged potential temperature
:::
heat

:::
flux

:
normalized by

:::
the surface value

:::
heat

:::
flux

:
–
:::::::
resolved (a and

c
:
d)and variance of potential temperature normalized by θ2∗ ,

:::::::
sub-grid (b and d

::
e),

:::
and

::::
total

:::
flux

::
(c

:::
and

:
f). The nested grid profiles agree well

with the SA-F in the surface layer. The improvement of the two-way nesting , at the boundary layer height, is seen in the good agreement in

:::::::::
significantly

:::::::
improves the profiles of CG

::::::
resolved and SA-F

:::
SGS

:::::
fluxes in (b)

::
the

::::::
surface

::::
layer.

The variance
::::::
resolved

::::::::
variances

:
of u, v andw velocity components are plotted in Fig. 7. The u and v variance are normalized

by the square of the friction velocity (u2∗) and the w variance is normalized by the square of the convective velocity (w2
∗) . The

u
::
are

::::::
plotted

:::
in

:::
Fig.

::
7.
::::

The
:::
FG

::
v
:
and w FG profiles have a better agreement with the SA-F than the v variance. A marginal

overshoot of the
:
u
::::::::
variance.

:::
The

::
u
:::
and

:
v variance seen

::::::::
variances in Fig. 7 (e). We can notice the remainder of a small kink in the

vertical velocity variance
:
d

:::
and

::
e)
:::
lie

:::::::
between

:::::
SA-C

::::
and

:::::
SA-F

::::::::
indicating

::::
that

:::
the

:::::::
resolved

::::::::
variances

:::
are

::::::::
improved

:::::::::
compared5

::
to

:::
the

:::::
SA-C

:::
but

:::
not

:::::::::
sufficiently

::::::::
resolved

::
to

:::::
match

:::::
SA-F.

:::
At

:::
the

::::::
nesting

::::::
height

:::
the

::::::::
variances

::::::
deviate

:::::
more

::::
from

:::
the

:::::
SA-F

::::
and

:::::::
approach

:::
the

::::
CG

::::::
values.

::::
Due

::
to

:::::::::::
conservation

::
of

::::
total

::::::
kinetic

::::::
energy

::::::
across

:::
the

:::
nest

:::::::::
boundary,

:::::
more

:::
CG

::::
TKE

::
is
:::::::::
contained

::
in

::
the

::::::::
sub-grid

:::::
scale.

::::::::::::
Consequently,

:::
the

:::::::
resolved

::::
CG

::::::::
variances

:::::
could

::::
have

:::
an

:::::::::
undershoot

::
as

:::::::::
compared

::
to

:::::
SA-F,

::::::::
resulting

::
in

:::
an

:::::::::
undershoot

::
of

:::
the

:::
FG

::::::::
variances

:::
too at the nesting height. This is a side effect of the anterpolation and

::::::
Above

:::
the

::::::
nesting

::::::
height,

::
the

::::::::
variance

::
of

::
u,

::
v

:::
and

::
w

::
in

:::
CG

:::
are

::::::
similar

::
to

::::::
SA-C.10
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Figure 7.
:::::
Vertical

:::::
profile

:::
of

:::::::::
horizontally

:::::::
averaged

:::::::
resolved

::::::
variance

::
of

::
u
::
(a

:::
and

:::
d),

:
v
::
(b

:::
and

:::
e),

:::
and

::
w

::
(c

:::
and

::
f)
:::::::::
normalized

::
by

:::
w2
∗.::::

The

::::::
variance

::
of

:
v
:::
and

::
w
::::
show

:::::
better

::::::::
agreement

::::
with

::
the

::::::::
standalone

::::::::
reference

:
in
:::
the

::::::
surface

::::
layer.

:::
The

::::::::
resolved

::::::
vertical

:::::::
velocity

::::::::
skewness

:::
in

:::
Fig.

::
8
::::::
shows

::::
good

:::::::::
agreement

::::::::
between

:::
the

:::
FG

::::
and

:::::
SA-F

::::
close

:::
to

:::
the

:::::::
surface.

::::::::
However,

::
at

:::
the

::::::
nesting

:::::
height

::
a

:::::
small

::::
kink

::
in

:::
the

::::::::
skewness

:
is
::::::::::
noticeable.

:::::::::::::::::::::
Zhou et al. (2018) observe

::::
that the magnitude of the

kink
::
in

:::
the

::::::::::
higher-order

:::::::
profiles can be minimized by using a sponge layer, see Sullivan et al. (1996) . In our two-way nesting

we have used a
::::::::
increasing

:::
the

:::::
depth

::
of

:::
the

::::::
sponge

:::::
layer.

::::
Our

:
simplified sponge layer by limiting the anterpolation to one CG

cell less than the nested height, this segregation of the anterpolation region in the CG and top boundary condition level of the5

FG provides reasonable reduction of kinks in the profile.

:::::::
approach

:::::::
appears

::
to
:::

be
::::::
unable

::
to
::::::::::

effectively
::::::::
minimize

:::
the

:::::
kinks

::
at
::::

the
::::::
nesting

::::::
height.

::::
The

::::::::
resolved

::::::::
skewness

::
in

::::
CG

::
is

:::::
lower

::::
than

:::::
SA-C

:::::::
possibly

::::
due

::
to

:::::
larger

::::
SGS

:::::
TKE

::
in

:::
the

::::
CG,

::
as

::::
seen

::
in
::::

Fig.
::
8
:::
(d).

::::
The

::::
SGS

:::::
TKE

::
in

::::
Fig.

:
8
:::

(d)
::::::
shows

:::::
exact

:::::
match

:::::::
between

:::
FG

::::
and

:::::
SA-F

::::
close

::
to

:::
the

:::::::
surface

:::
and

::::
only

::::::::
marginal

::::::::
difference

::
at
:::
the

:::::::
nesting

::::::
height.

::::::::
However,

:::
CG

::::::
values

:::
are

::::::::::
considerably

::::::::
different

::::
from

:::
the

::::::
SA-C

:::::
values

:::::
close

::
to

:::
the

:::::::
surface

:::
due

::
to
::::

the
:::::::::::
anterpolation

::::::::::
maintaining

::::::::
Germano

:::::::
identity

:::
for10

::::::::::
conservation

:::
of

::::::
kinetic

::::::
energy

:::::
across

::::
the

:::::
grids.

::
In

:::
the

::::::
coarse

:::::::::
resolution

:::::
SA-C,

::::
near

::::
the

:::::::
surface,

:::
the

::::
SGS

:::::::::
turbulence

::::::
model

::::::
appears

::
to

:::::::::::
insufficiently

::::::
model

:::
the

::::
SGS

::::::
effects.

::::::
Above

:::
the

::::::
nesting

::::::
height

::
the

::::
CG

::
is

::::::
similar

::
to

:::::
SA-C.

:
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Figure 8. Vertical profile of horizontally averaged variance of u
::::::
resolved

::::::
vertical

::::::
velocity

::::::::
skewness (a and d), v (b and e

:
c), and w

::::
SGS

::::::
turbulent

::::::
kinetic

::::::
energy

:
e
:
(c

:
b and f

:
d) . The horizontal velocity components are normalized by u2

∗ and the vertical velocity variance is

normalized by w2
∗. The variance of u and w show better agreement with the standalone reference

:::
SGS

::::
TKE

:
in the surface layer

::
CG

::
is

:::::
higher

:::
than

:::::
SA-C

::
as

:
a
::::
result

::
of

::::::::::
anterpolation

:::::::::
maintaining

:::
the

:::::::
Germano

::::::
identity.

The vertical heat flux profile is the prime quantity of interest in analysing surface layer simulations. In the<w′′θ′′ > profiles

::::::::
horizontal

::::::
spectra

:::
of

::::
SGS

::::::::
turbulent

::::::
kinetic

::::::
energy

:::
and

:::::::
vertical

:::::::
velocity

:::
are

::::::
plotted

:
in Fig. 6, the FG have perfect agreement

with the SA-F in the surface layer for the resolved, SGS and the total flux profiles.In the CG regions above the nested grid

height, too a good agreement with the SA-C is found. The improvement due to
:
9
::
at

:::
two

::::::
levels,

:::
one

::::::
within

:::
the

::::::
nested

:::
grid

::::
and

:::
one

:::::
above

:::
the

::::::
nested

::::
grid

::::::
height.

:::
The

::::
FG

::::
TKE

::::::
spectra

::
in
::::

Fig.
::
9

:::
(c)

:::::::
perfectly

::::::::
overlaps

:::
the

::::
SA-F

:::::::
spectra.

::::
The

:::
CG

::::::
spectra

::::
has5

:::::
higher

::::::
energy

::::
than

:::
the

::::::
SA-C,

:::
this

:::::::::::
corresponds

::
to

:::
the

::::::
higher

:::
CG

:::::
TKE

:::::
values

::::::::
observed

::
in
::::

Fig.
::
8
:::
(c).

:::
As

:::
the

:::::
limit

::
of

:::
the

::::
grid

::::::::
resolution

::
is

:::::::
reached

::
at

::::
high

:::::::::::
wavenumber, the two-way nesting is seen

::::
drop

::
in

:::
the

:::
CG

::::::
spectra

::
is
:::::::::
marginally

::::::
shifted

:::::::::
compared

::
to

:::::
SA-C.

::::
This

::::::::::::
improvement

::
at

::::
high

:::::::::::
wavenumber

::
is

:::
due

:::
to

::::::::
feedback

::::
from

:::
the

::::
FG.

::::::::
Similarly,

:::
the

:::::::
vertical

:::::::
velocity

:::::::
spectra in

Fig. 6 (dand e) , where the effects of low grid resolution of the
:
8
:::
(d)

::::::
shows

:::::::
marginal

::::::::::::
improvement

::
at

::::
high

:::::::::::
wavenumber

:::
for

::
the

::::
CG

::::
with

::::::
respect

:::
to SA-Cin resolved and SGS fluxes are evident. However, no griddependent difference in the profile is10

observed in the total flux
:
.
:::::
While

:::
the

:::
FG

::::::
agrees

::::
with

:::::
SA-C

:::
at

::::
high

:::::::::::
wavenumber

:::
and

::
at

:::
the

::::::
spectra

:::::
peak,

::
at
::::
low

:::::::::::
wavenumber
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:::
FG

::::::
follows

:::
the

:::
CG

:::::::
spectra.

::
At

:::
the

:::::
level

:::::
above

:::
the

:::::
nested

:::::
grid,

:::
the

:::
CG

::::::
spectra

::::::
agrees

::::
with

:::::
SA-C

::
for

:::::
both

::::
TKE

:::
and

:::
the

:::::::
vertical

::::::
velocity.
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Figure 9. Vertical profile
:::::
Spectra

:
of horizontally averaged heat flux normalized by the surface heat flux – resolved

:::
SGS

:::::::
turbulent

::::::
kinetic

:::::
energy

::
(e)

:
(a and d

:
c), sub-grid

::
and

::::::
vertical

:::::::
velocity

:::
(w) (b and e

:
d),

:
.
::
At

::::
z/zi::

=
:::
0.47

::
(a
:
and total flux

:
b)
:::
and

::
at
::::
z/zi::

=
:::
0.11

:
(c and f

:
d). The

two-way nesting significantly improves the resolved and SGS fluxes in
:
;
::
kr::

is the surface layer
:::::::
horizontal

::::::::::
wavenumber.

3.3 Computational Performance

The computational resources used in the simulations discussed above are listed in Table 3. The resources needed by SA-C is

only 5
:
8 core hours. While the nested simulations needed about 1450

::::
1879 core hours, the SA-F needed 7

:::::
about

:
4
:
times more5

core hours . If we increase the resolution further, the time step ∆t will get smaller and consequently increase the total number

of steps
:::
than

:::
the

::::::
nested

:::::::::
simulation.

:::
As

:::
the

:::::::::
resolution

:
is
::::::::
increased

:::::
from

:::::
20 m

::
in

:::::
SA-C to be integrated. Simulations with O(1)

m resolution become prohibitively expensive to achieve. The two-way nesting algorithm reduces the memory requirement

and
::::
4 m

::
in

:::::
SA-F,

:::
the

:::::::
number

::
of

::::
time

:::::
steps

::::::::
increased

::::
more

::::
than

::
5
:::::
times

::
as

::::::
higher

::::::::
resolution

::::::::
demands

:::::::
smaller

::::
time

::::
step

::::
size.

::::::
Though

:::
the

:::::::
number

::
of

:::::
time

::::
steps

::
in

::::
FG

:
is
:::::::

similar
::
to

:::::
SA-F,

:::::::
limiting

:::
the

::::::
nested

::::
grid

::
in

:::
the

:::::::
vertical

:::::::
direction

::::
has

:::::::
reduced the10
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number of core hours neededby providing higher resolution only
::::
CPU

:::::
cores

::::::
needed,

::::
and

:::::
higher

:::::::::
resolution in the surface layer

.
:
is
::::::::
achieved

::
at

:
a
:::::::
reduced

::::::::::::
computational

::::
cost.

:

Table 4.
::::::
Number

::
of
::::
grid

:::::
points

:
in
:::::
nested

:::
and

:::::::::
non-nested

:::
FG

::::::
domain.

::::
Case

:::
No.

::
of

:::
grid

:::::
points

:

:::::
Coarse

::::
Grid

:::
840

:
x
:::
840

::
x

:::
288

:
=
::::
0.20

:
x
:::
109

:

:::
Fine

::::
Grid

: ::::
4200

:
x
::::
4200

::
x

:::
360

:
=
::::
6.35

:
x
:::
109

:

::::
Total

:::
6.55

:
x
:::
109

:

::::::::
Non-nested

:::
FG

: ::::
4200

:
x
::::
4200

::
x

:::
360

:
=
::::
6.35

:
x
:::
109

:

Table 5.
::::
Grid

::::::::::
configuration

::
of

::
the

:::::
nested

::::
and

::::::::
non-nested

:::
FG

::::::
domain.

Nested Non-Nested FG

:::
Run

: ::::
Total

::
PE

: :::
CG

::
PE

: :::
FG

::
PE

: ::::
Avg.

:::
time

:::
per

:::
step

:
[
:
s]

::::::::
Efficiency [%]

::::
Total

::
PE

: ::::
Avg.

:::
time

:::
per

:::
step

:
[
:
s]

::::::::
Efficiency [%]

:
A
: :::

1664
: ::

64
: ::::

1600
: :::

44.0
: ::

100
: :::

1600
: :::

14.9
: :::

100

:
B
: :::

3744
: ::

144
: ::::

3600
: :::

19.9
: ::

98
: :::

3600
: ::

6.7
: ::

99

:
C
: :::

7488
: ::

288
: ::::

7200
: :::

10.3
: ::

95
: :::

7200
: ::

3.6
: ::

92

:
D
: :::

8736
: ::

336
: ::::

8400
: ::

9.3
: ::

90
: :::

8400
: ::

3.4
: ::

84

:
E
: ::::

14976
: ::

576
: ::::

14400
: ::

5.6
: ::

87
: ::::

14400
: ::

2.3
: ::

74

Several factors influence the computational performance of an LES code. Some factors depend on the hardware, for e.g.

::
the

:
number of grid points per PE depends on the memory available per node. On the other hand, the communication time5

for data exchange between the PEs depend on the topology of the domain decomposition. The best performance in terms of

communication time in a standalone run is achieved when the number of sub-domains in the x and y directions are equal. In

:::
that

::::
case

:::
the

::::::
number

:::
of

::::
ghost

::::::
points

::
at

:::
the

:::::
lateral

:::::::::
boundaries

:::
are

::::::::
optimally

::::::::::
minimized.

::
In

:
a nested simulation, the load per PE,

i.e. the number of grid points per PE, in the two grids vary
:::::
varies. As the speed of the model integration depends on the PE

load, the load balancing between fine and coarse grid has an effect on the computational performance of the nested simulation.10

Keeping these factors in mind, we designed a new nested simulation domain to measure
::
the

::::::
nested

:::::::::
simulation

:::::::
domains

:::::
listed

::
in

::::
Table

::
4
:::
for

:::
the

::::::
purpose

::
of

::::::::
assessing

:
the computational performance,

:
as the total number of processors is varied. The number of

grid points in the CG is around 2 x 108 and in the FG it is around 6.3 x 109. The
::
To

:::::
avoid

::::
load

::::::::
balancing

::::
bias

::
in

:::
the

:::::::::
scalability

:::::::
analysis,

:::
the ratio between the number of PEs for CG and FG is kept constant to avoid load balancing bias in the scaling

:
in

:::
all

::
the

::::
five

::::
runs

:::::
listed

::
in

::::
Table

::
5. Keeping the processor ratio constant implies that the ratio between the number of grid points per15

PE in CG and FG are
:
is also held constant. Consequently, in this performance test, the FG has 1.25 times more grid points per
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PE than the CG in all the processor configurations tested. To compare the performance of nested model against the non-nested

version of PALM under equivalent work load, a grid with the same dimensions of the FG is set-up. This non-nested grid also

has the same load per PE and same number of cores as the FG. Such a non-nested set-up is acceptable for comparison since

the number of PE in CG is negligible compared to the PE in FG in our set-up (e.g. 14400 PE in FG and only 576 PE in CG).

A pure standalone simulation with FG resolution throughout the boundary layer was not performed as it would need about 255

x 109
::
2.5

::
x
::::
1010

:
grid points and such a large domain was computationally not feasible.

The performance is measured in terms of the time taken to simulate one time step. To increase the accuracy of this perfor-

mance measurement, the simulation is integrated for ten time steps and the average of the time per step is plotted. The results

presented in Fig. 10 shows close to linear scaling for up to 14976 PE in both nested and standalone runs. The difference in

time per step between the nested and standalone runs can be interpreted as the additional computational time needed by the10

nesting algorithm. A jump in the time taken to compute one step is observed when more than 8192 PEs are used. This is

a hardware dependent increase in communication time as the nodes are grouped as ’‘islands’ on SuperMUC
:::::
system

:::
at

:::
the

::::::
Leibniz

::::::::::::::
Supercomputing

::::::
Centre. The communication within the nodes of the same island is faster than the communication

across multiple islands.
:::
The

::::::
strong

::::::
scaling

::::::::
efficiency

::
in

:::::
Table

:
4
::
is
:::::::::
calculated

:::::::
keeping

:::
the

:::
run

::::
with

:::::
lowest

:::::::
number

::
of

::::
PEs

::
as

:::
the

::::::::
reference.

:::
As

:::
the

::::::
number

::
of

::::
grid

::::::
points

:::
per

::
PE

::
is
:::::::
reduced

:::::
from

:::
run

::
A

::
to

:
E
:::
as

:::::
shown

::
in

:::::
Table

::
5,

:::
the

::::::
nested

::::
runs

:::::
shows

:::::::
slightly15

:::::
better

::::::::
efficiency

::::
than

:::
the

:::::::::
non-nested

:::::
runs.

::::
The

::::::
average

::::
time

::::
per

:::
step

:::
of

:::
the

:::::
nested

::::
grid

::
is

::
3

:::::
times

:::::
higher

::::
than

:::
the

::::::::::
non-nested

:::::
set-up

:::
for

:::
run

::
A

:::
but

:::
the

:::::
factor

::::::::
decreases

::
to

:::::
about

:::
2.5

:::
for

:::
run

::
E.

::::
This

::::::::::::
improvement

:
is
::::::::
possibly

:::
due

::
to

::::::::
reduction

::
in

:::::::
waiting

::::
time

:::::::
between

:::
the

:::
FG

:::
and

:::
CG

::
as
:::
the

:::::::
number

::
of

::::
grid

:::::
points

:::
per

:::
PE

:::::::::
decreases.
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Figure 10. The nested simulations show close to linear scalability. A Non-Nested domain with same number of grid points as the FG is

plotted to benchmark the scalability of the standard version of PALM on the same machine. The difference between the blue and the red line

is approximately equal to the additional computational time needed by the nesting routines. The simulations were performed on SuperMUC

at the Leibniz Supercomputing Center
::::
Centre. Each node has 32 GB of main memory and two Sandy-Bridge processors with 2.7 GHz, each

processor has 8 cores (Anastopoulos et al., 2013).
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3.4 Practical Considerations

In this paragraph we summarize some guidelines for using this nesting approach. In PALM, the user has the choice to se-

lect between Wicker-Skamarock (Wicker and Skamarock, 2002) and Piacsek-Williams (Piacsek and Williams, 1970) for
:::
the

advection scheme. Similarly, for solving
::
the

:
Poisson equation for the pressure, the user can choose between the FFT or Multi-

Grid based solver. During the development and the validation of the two-way nesting, only the Wicker-Skamarock advection5

scheme and FFT based pressure solvers were tested. The two-way nesting supports only periodic boundary conditions in the

horizontal for both CG and FG, and therefore
::
an

:
FFT based pressure solver is an appropriate choice. However, to be able to use

Multi-Grid solvers, for e.g. in non-periodic horizontal boundary conditions, modifications to the two-way nesting algorithm

will be needed. The large scale forcing feature in PALM is found to be compatible with the nesting algorithm without further

modifications. Other features like canopy parameterization, radiation model, land surface models etc. have not been tested.10

Our implementation of the vertical nesting allows only integer nesting ration
:::::
ratios in all directions. We recommend odd

nesting ratio, in the range of 3 and 9, as the accuracy of the simulations decrease with the increase in nesting ratio. The height

of the nested domain has a direct influence on the accuracy of the two-way nesting algorithm. Based on our trials (not shown)

we recommend that the overlapping FG covers at least 12 grid levels of the CG. In an LES, the first five grid points are

unreliable and this condition extends also to the FG. For better computational performance it is recommended
:::
we

::::::::::
recommend15

that the number of grid points per PE in the CG is kept at only 40 to 80 percent of the FG value. The reduced work load of the

CG minimizes
:
is
::::::::
expected

::
to

::::::::
minimize

:
the waiting time of the FG during the concurrent time advancement by

::
the quicker CG

pressure solver step.
:::::::
However,

:::
the

::::::
actual

:::::::::::
improvement

::
in

:::::::::::
performance

:::
will

:::::::
depend

::
on

:::
the

:::::::
memory

::::::::
available,

:::::::::
processor

:::::
speed

:::
and

:::
the

:::::::::
inter-node

:::::::::::::
communication

::::::::::
architecture

:::
of

:::
the

:::::::::
computing

::::::
cluster

::::
and

:::
the

::::::
optimal

:::::
load

::::::::
balancing

::::
can

::::
only

::
be

::::::
found

::::::
through

:::::
trials.

:::::::::::
Furthermore,

:::
the

::::::
choice

::
of

:::
the

::::::
domain

::::
size

:
is
:::::
often

::::::::
restricted

::
by

:::
the

::::::::
topology

::
of

:::
the

::::::::
processor

:::::::::::::
decomposition.

::
In20

:
a
:::
2D

:::::::::::::
decomposition,

:::
the

::::::
number

::
of
::::

grid
::::::
points

:::::
along

:::
the

:::::::::
x-direction

::::::
should

::
be

:::
an

::::::
integer

:::::::
multiple

::
of

:::
the

:::::::
number

::
of

:::
PE

:::::
along

:
x
:::
and

::::::::
similarly

:::
for

::::::::::
y-direction.

::::
This

::::::::
condition

:::
has

::
to

::
be

::::::::::
individually

::::::::
satisfied

::
for

:::
the

::::
CG

:::
and

:::
the

:::
FG.

:

Though our nesting technique computationally makes feasible
:::::
makes

::::::::
resolving

:::
the

:
surface layer resolution down to 0.5 m

for a moderately large domain
:::::::::::::
computationally

::::::::
feasible, care should be taken to ensure

::
the

:
validity of such LES. In PALM,

the height of the first grid point should be at the least twice greater than the local surface-roughness parameter. This technical25

restriction is common to all models that employ MOST and ensures
:::
the

:
proper evaluation of the logarithm needed in the

calculation of u∗. Furthermore, Basu and Lacser (2017) recently recommended that MOST boundary-conditions should be

adapted for very high-resolution LES where the first grid point is smaller than 2-5 times the height of the roughness elements.

4 Summary

We presented a two-way grid nesting technique that enables high resolution LES of the surface layer. In our concurrently par-30

allel algorithm, the two grids with different resolution overlap in the region close to the surface. The grids are coupledat every

sub-step of the Runge-Kutta time integration.The ,
:::
i.e

:::
the interpolation of the boundary conditions and the feedback to the par-

ent grid are performedby energyconserving methods,
::
at
:::::
every

:::::::
sub-step

:::
of

:::
the

::::::::::
Runge-Kutta

::::
time

::::::::::
integration.

::::
The

:::::::::::
anterpolation
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::
of

:::
the

::::
TKE

:::::::
involves

::::
the

::::::::
Germano

::::::
identity

:::
to

:::::
ensure

:::
the

:::::::::::
conservation

:::
of

::::
total

::::::
kinetic

::::::
energy. The exchange of data between

the two grids is achieved by MPI communication routines and the function calls are optimized for performance
:::::::::::::
communication

:
is
:::::::::
optimized

:::
by

::::::
derived

::::::::
datatypes. Results of the convective boundary layer simulation show that grid nesting improves the

vertical profiles of variance and the fluxes in the surface layer. In particular, the profiles of the vertical temperature flux are

improved. Due to the two-way nesting, there is also an improvement in the coarse grid in the profile of potential temperature5

variance. The current vertical nesting only works with periodic boundary conditions and
:::
with

:
the same horizontal extent in

both the domains. The nested simulation needs 7
:
4 times less computational time than a full high resolution simulation for

comparable accuracy in the surface layer. The scalability of the algorithm on up to 14976 CPUs is demonstrated.

5 Code availability

The PALM code is distributed under the GNU General Public License. The code (revision 2712) is available at https://palm.muk.uni-10

hannover.de/trac/browser/palm?rev=2712.
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