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Abstract. Graphs are commonly gridded by triangulation; i.e., the generation of a set of triangles for the points of the graph.
This technique can also be used in a coupler to improve the commonality of data interpolation between different horizontal
model grids. This paper proposes a new parallel triangulation algorithm, PatCC1 (Parallel triangulation algorithm with
Commonality and parallel Consistency, version 1), for spherical and planar grids. Experimental evaluation results
demonstrate the efficient parallelization of PatCC1 using a hybrid of MPI and OpenMP. They also show PatCC1 to have
greater commonality than existing parallel triangulation algorithms (i.e., it is capable of handling more types of model grids)
and that it guarantees parallel consistency (i.e., it achieves exactly the same triangulation result under different parallel
settings).

1 Introduction

A coupler is a fundamental component or library used in models for Earth system modeling. It handles coupling
between component models or even between the internal processes or packages of a component model. A coupler’s
fundamental functions are data transfer (between different component models, processes, or packages) and data interpolation
(between different model grids) (Valcke et al., 2012) that can refer to horizontal remapping, vertical remapping, grid
staggering and vector interpolation for various types of coupling fields, etc. Most existing couplers have the capability of
horizontal remapping of coupling fields between different horizontal grids, especially spherical grids. As the horizontal grids
of models generally remain unchanged throughout the time integration of a simulation, the data interpolation function of a
coupler is generally divided into two stages: the first calculates the remapping weights for a source horizontal grid to a target

horizontal grid, and the second uses the same remapping weights to calculate the remapping results at each instance of data
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interpolation. Most existing couplers can read-in offline remapping weights generated by other software tools such as SCRIP
(Jones, 1999), ESMF (Hill et al., 2004), and YAC (Hanke et al., 2016), while some couplers such as OASIS (Redler et al.,
2010; Valcke, 2013; Craig et al., 2017) and C-Coupler (Liu et al., 2014; Liu et al., 2018) also have the ability of generating
online remapping weights. Online remapping weights generation can obviously improve the friendliness of couplers, because
users will no longer be forced to manually generate offline remapping weights after changing model grids or resolutions.

Commonality can be viewed as a fundamental feature of a coupler. For example, most existing couplers such as OASIS,
CPL (Craig et al., 2005; Craig et al., 2012), MCT (Larson et al., 2005), and C-Coupler have been used in a range of coupled
models. In the past, the longitude—latitude grid (i.e., a regular grid) was most widely used. However, the rapid development
of Earth system modeling has seen various types of new horizontal grids appear, such as the reduced Gaussian grid, tripolar
grid, displaced pole grid, cubed-sphere grid, icosahedral grid, Yin-Yang grid, and adaptive mesh, some of which are
unstructured. The continuous emergence of new types of horizontal grids introduces a significant challenge to the
commonality of couplers, especially the commonality of data interpolation between any two horizontal grids. There are in
general two options to address this challenge: either the new types of horizontal grids are incrementally supported via
incremental upgrades of the code of a coupler or remapping software as required, or a common representation is designed
and developed for various types of horizontal grids, and then the remapping weights are calculated based on the common
grid representation, thus allowing the code of a coupler or remapping software to remain almost unchanged throughout the
development of model grids. As the first option will result in the code of a coupler or remapping software become
increasingly complicated, the second option is preferred, provided a common grid representation can be found.

A common grid representation can be achieved by first viewing a grid as a set of independent grid points (only the
coordinate values of each point are concerned, while the relationships among grid points—e.g., that one grid point is the
neighbor of another—are neglected) and next using one specific gridding method to build relationships among the grid
points. Triangulation is a widely used gridding method that generates a set of triangles for independent points in a graph.
Therefore, its use can potentially improve the commonality of data interpolation. In fact, triangulation has already been used
by couplers, such as C-Coupler.

Existing triangulation algorithms do not have high time complexity. For example, Delaunay triangulation (Su et al.,
1997), which is a widely used triangulation algorithm, has a time complexity of O(NlogN) for N points. However, the
overhead of triangulation cannot always be neglected, especially as model grids gain increasing numbers of points as the
model resolution increases. Modern high-performance computers equipped with increasing numbers of computing nodes
containing increasing numbers of processor cores can dramatically accelerate various applications, including triangulation,
that can be efficiently parallelized. MPI (Message Passing Interfaces) is a widely used parallel programming library that can
explore the parallelism of processor cores either in the same computing node or among different nodes, while OpenMP is a
widely used parallel programming directive that can explore the parallelism of processor cores in the same computing node.
For higher parallel efficiency, many applications (including models for Earth system modeling) have benefited from the

hybrid use of both MPI and OpenMP, where MPI generally directs the parallelism among computing nodes and OpenMP
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controls that of processor cores within the same computing node. Some existing couplers, such as MCT, OASIS3-MCT_3.0
(Craig et al., 2017), and C-Coupler2 (Liu et al., 2018), work as libraries and generally share the parallel setting used by a
component model. When a component model utilizes a hybrid of both MPI and OpenMP for parallelization, a parallel
triangulation algorithm that has been integrated in a coupler will waste the parallelism of processor cores exploited by
OpenMP if the triangulation algorithm only utilizes MPI for parallelization.

Existing couplers such as MCT, CPL6/CPL7, OASIS3-MCT_3.0, and C-Coupler2 can achieve parallel consistency,
which means achieving exactly the same results under different parallel settings. Parallel consistency is important for
debugging parallel implementations. Without it, distinguishing reasonable errors and faults introduced by parallelization is
very difficult. However, the parallelization of triangulation algorithms may damage their consistency. To develop efficient
parallel triangulation algorithms, the entire grid domain is generally decomposed into a set of sub-grid domains, the
triangulation on each sub-grid domain is conducted independently, and the overall result of triangulation is obtained through
merging or stitching the triangles from all sub-grid domains. If the merging or stitching does not force parallel consistency, a
parallel triangulation algorithm may obtain different triangles under different parallel settings. As a result, a coupler may not
be able to guarantee parallel consistency after implementing such a parallel triangulation algorithm.

Therefore, for a triangulation algorithm to be potentially useful in a coupler, it will need to show consistently all three
of the following features: commonality (capable of handling almost every type of model grid), parallel efficiency (efficient
parallelization with a hybrid of MPI and OpenMP), and parallel consistency. There are several parallel triangulation
algorithms that can handle spherical grids (most model grids are spherical grids): e.g., the algorithm proposed by Larrea et al.
(2011) (called the Larrea algorithm hereafter), the algorithm proposed by Jacobsen et al. (2013) (called the Jacobsen
algorithm hereafter), and an improved algorithm based on the Jacobsen algorithm (Prill et al., 2016) (called the Prill
algorithm hereafter). However, none of them simultaneously achieves the three required features (Section 2). With the aim of
achieving these three features, we designed and developed in this work a new parallel triangulation algorithm named PatCC1
(Parallel triangulation algorithm with Commonality and parallel Consistency, version 1) for spherical and planar grids.
Evaluations using various types and resolutions of model grids and different parallel settings reveal that PatCC1 can handle
various types of model grids, achieve good parallel efficiency, and guarantee parallel consistency.

The remainder of this paper is organized as follows. We briefly introduce related works in Section 2, introduce the
overall design of PatCC1 in Section 3, describe the implementation of PatCC1 in Section 4, evaluate PatCC1 in Section 5,

and briefly summarize this paper and discuss future work in Section 6.

2 Related works

This section further introduces the Larrea, Jacobsen, and Prill algorithms in detail.
The Larrea algorithm aims to triangulate global grids. It first uses a 1-D decomposition approach to decompose a global

grid into non-overlapping sub-grid domains of stripes (the boundaries of each sub-grid domain are longitudes), and next
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assigns each sub-grid domain to an MPI process (OpenMP is not used in the parallelization) for local triangulation. To obtain
the overall result of triangulation, it collects the local triangles generated by each MPI process and stitches them together
using an incremental triangulation algorithm (Guibas et al., 1985), but without guaranteeing parallel consistency. Therefore,
the Larrea algorithm has limitations on commonality, parallel efficiency, and parallel consistency.

The Jacobsen algorithm can triangulate spherical and planar grids. It first decomposes the whole grid domain into
partially overlapping circular sub-grid domains, and next instructs each MPI process (OpenMP is not used in the
parallelization) to conduct 2-D planar triangulation for a circular sub-grid domain, where the points on a spherical grid are
projected onto a plane before the triangulation. To obtain the overall result, it first collects together the local triangles
generated by each MPI process, and next scans each triangle, where a triangle is pruned from the overall result if the same
triangle already exists. As this algorithm does not check or guarantee parallel consistency, it introduces a risk of overlapping
triangles in the overall result. Although it is aimed for use with spherical grids and planar grids, the evaluation in Section 5.2
shows that it is still unable to handle some types of model grids well such as longitude—latitude grids and grids with concave
boundaries.

As an upgraded version of the Jacobsen algorithm, the Prill algorithm achieves the following two improvements, but
without improving the commonality or the parallel consistency. First, OpenMP is further used in parallelization, which
means that parallelization uses a hybrid of MPI and OpenMP. Second, the centers of circular sub-grid domains are
determined adaptively, while the circle centers in the Jacobsen algorithm must be specified by the user. The Prill algorithm

uses 3-D spherical triangulation implementation rather than 2-D planar triangulation implementation.

3 Overall design of PatCC1

The first step of a parallel triangulation algorithm is to decompose the whole grid domain into sub-grid domains.
Generally, three questions should be considered in designing a decomposition approach. The first is whether there should be
overlapping regions among the sub-grid domains. The Larrea algorithm does not have overlapping regions among the sub-
grid domains, so that triangles across the boundaries of sub-grid domains are not obtained through the local triangulation for
each sub-grid domain, but are calculated during the last step that obtains the overall triangulation result. We do not prefer
such an implementation, as it requires the development of a program that can efficiently calculate in parallel the triangles
across boundaries. The second consideration is the choice of the general shape of sub-grid domains. We prefer rectangles
rather than the stripes used in the Larrea algorithm and the circles used in the Jacobsen and the Prill algorithms, because the
1-D decomposition corresponding to a petaloid shape will limit the parallelism of a parallel triangulation algorithm, and a
circle-based decomposition is disadvantageous in terms of extra overhead. For example, Fig. 1(a) shows a triangle that
should be obtained from the correct triangulation of the whole grid domain that is rectangular, and a decomposition of the
whole grid domain into four circles. Although these circles are partially overlapping, none of them fully covers the unique

triangle in Fig. 1(a). To achieve proper triangulation, these circles should be enlarged accordingly, as in Fig. 1(b), where
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each circle fully covers the triangle. Figure 1(c) shows a decomposition into four rectangles, each of which also fully covers
the triangle. As larger regions of overlap generally mean increased overhead for parallelization, the comparison between Fig.
1(b) and (c) indicates that a circle-based decomposition will introduce higher extra costs than rectangle-based decomposition.
The third question is whether it is reasonable to force uniform areas among the sub-grid domains. We prefer to support non-
uniform areas, because the time-complexity as well as the overhead of triangulation is generally determined by the number
of grid points, while different sub-grid domains with uniform area may have significantly different numbers of points. In
summary, PatCC1 should conduct grid domain decomposition using partially overlapping rectangles of non-uniform area.

The next step after decomposing the whole grid is to triangulate each sub-grid domain separately. Generally, an existing
sequential algorithm can be used for this step. Although a spherical grid is on a surface in 3-D space, we prefer 2-D
triangulation algorithms rather than 3-D spherical triangulation algorithms, because the latter generally have relatively
complicated implementations and introduce higher computational cost than the former. Experience learned from the
Jacobsen algorithm shows that 2-D triangulation can be used after projecting the points in a spherical sub-grid domain onto a
plane. However, projection will introduce a challenge to the commonality of parallel triangulation. When there are multiple
points corresponding to the same location, projection will implicitly “merge” them into one point, which means only one
point is kept while the other grid points are implicitly pruned. Multiple points can correspond to the same location but have
different coordinate values that stand for different grid cells. For example, in a global longitude—latitude grid, there are a set
of grid points locating at each pole, each of which corresponds to a different grid cell. As PatCC1 is unable to guarantee that
all points at a pole consistently correspond to the same value of each field throughout any model integration, no polar point
can be pruned by PatCC1. To overcome this challenge, a step of pre-processing model grids was designed and integrated in
the main flowchart of PatCC1.

The next step after local triangulation is to merge the local triangles from all the sub-grid domains together, where the
parallel consistency corresponding to each overlapping region is checked. When an overlapping region fails to pass the
check (which indicates that the corresponding sub-grid domains are not large enough), the corresponding OpenMP threads or
MPI processes will enlarge the corresponding sub-grid domains, and then incrementally retriangulate them.

A parallel program generally has limited parallel scalability, which means that lower parallel speedup may be obtained
when more processor cores are used. To make the parallel speedup achieved by PatCC1 as high as possible, a computing
resource manager was designed and developed. It first determines the maximum number of processor cores according to the
number of points in the grid, and next picks out a set of processor cores that will be used for conducting parallel triangulation.
Moreover, it manages the affiliation of each processor core; i.e., which MPI process a processor core belongs to and which
OpenMP thread a processor core corresponds to.

Figure 2 shows the main flowchart of PatCC1, which consists of the following main steps:

1) Pre-process the whole grid;
2) Initiate the computing resource manager;

3) Decompose the given model grid into sub-grid domains;
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4) Conduct local triangulation for each sub-grid domain;

5) Check the parallel consistency: if the parallel consistency is not achieved, go back to the fourth main step to repeat local
triangulation incrementally for the corresponding sub-grid domains after enlarging them;

6) When an overall result of triangulation is required, merge all triangles produced by local triangulations together, after

removing repeated triangles.

4 Implementation of PatCC1

This section introduces the implementation of PatCC1. In addition to describing each main step in the main flowchart in
Fig. 2, we introduce parallelization with the hybrid of MPI and OpenMP.

4.1 Pre-processing of the whole grid
Regarding a spherical grid, PatCC1 takes the longitude and latitude values of each grid point as input, and pre-processes

the spherical grid as follows.

1) The latitude value of each grid point must be between —90<and 90<(or the corresponding radian values). When the
spherical grid is cyclic in the longitude direction, each negative longitude value of grid points will be transformed into
the corresponding value between 0<and 360 °(or the corresponding radian value). When the spherical grid is acyclic in
the longitude direction and the left-most point has a larger longitude value than the right-most point, a transformation
will make the longitude values of points monotonically increase from the left side to the right side of the grid. For
example, given an acyclic grid with longitude values from 300 °to 40< the longitude values between 300 <and 360 “will
be transformed to values between —60°and 0<

2) If multiple grid points are at the north/south pole and have different longitude values, their latitude value will be
changed to a new value that is also the largest/smallest latitude value among all grid points, but is slightly smaller/larger
than +90-90< (or the corresponding radian values), so that these points will not be the same point after projection.
Moreover, a pseudo point at the north/south pole is added to the spherical grid. For example, given a longitude—latitude
grid with a resolution of 1°having 360 grid points at the north and south poles, the latitude values of these points can be
transformed to +89.5°and —89.5< respectively.

Given a regional (not global) spherical grid or a planar grid that is essentially a concave grid (e.g., the grid in Fig. 3(a)
that has concave boundaries), as the Delaunay triangulation algorithm cannot handle a concave grid, false triangles will be
obtained after triangulation (e.g., the red triangles in Fig. 3(b)). When designing PatCC1, we found that it is difficult to
design a strategy to remove these false triangles. To address this challenge, a set of pseudo grid points on a bounding box of
the regional grid is added, which can avoid the generation of false triangles (e.g., the result of triangulation in Fig. 3(c)).
After removing the pseudo edges containing pseudo grid points, the result of triangulation can embody the profile of the

concave boundaries (e.g., the result in Fig. 3(d)).
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4.2 Computing resource manager

When using a hybrid of MP1 and OpenMP for parallelization, a unique processor core (called a computing resource unit
hereafter) is generally associated with a unique thread that belongs to an MPI process. Therefore, the pair <MPI process ID,
ID of the thread in the MPI process> can be used to identify each computing resource unit. The computing resource manager
records all computing resource units in an array, where the threads or MPI processes within the same computing node of a
high-performance computer correspond to continuous elements in the array. To facilitate the search of computing resource
units, the array index is used as the 1D of each computing resource unit.

To achieve uniform implementation of parallelization with an MPI and OpenMP hybrid, the computing resource
manager provides functionalities of communication between different computing resource units. If two computing resource
units are two threads belonging to the same MPI process, the communication between them will be achieved through their
shared memory space; otherwise, the communication will be achieved by MPI calls.

As the use of more computing resource units does not necessarily mean faster triangulation, when many computing
resource units are available for an insufficiently large number of points in the whole grid, PatCC1 will select a part of the
computing resource units for triangulation with the aim of near-optimal parallel performance. To achieve this, the computing
resource manager first determines the maximum number of computing resource units according to the number of points in
the whole grid and a threshold of the minimum number of points in each sub-grid domain (which can be specified by the
user). When the maximum number is smaller than the number of available computing resource units, the computing resource
manager will select the same ratio of computing resource units from each computing node. For example, for 1000 available
computing resource units, where each computing node includes 20 computing resource units, when the maximum number is

500, 500 computing resource units will be selected, with each computing node contributing 10 computing resource units.

4.3 Grid decomposition

The grid decomposition of PatCC1 includes two stages. The first is simultaneously to decompose the whole grid into a
set of seamless and non-overlapping sub-grid domains (called kernel sub-grid domains hereafter), assign each kernel sub-
grid domain to a computing resource unit, and build a tree for searching kernel sub-grid domains. The second stage produces
expanded sub-grid domains through properly enlarging each kernel sub-grid domain, so that at least two expanded sub-grid
domains will cover a common boundary between kernel sub-grid domains, and thus parallel consistency can be checked after
the triangulation of the expanded sub-grid domains is finished. In the following context, the first and second stages are called
kernel decomposition and domain expansion, respectively.

A primary goal of grid decomposition is to achieve balanced triangulation times among sub-grid domains. Although it
is difficult or even impossible to achieve absolutely balanced times, we can design a simple heuristic according to the
number of points in a sub-grid domain, because the time complexity of triangulation depends on the number of points. The
grid decomposition therefore will try to achieve a similar number of points among kernel/expanded sub-grid domains. To

facilitate the triangulation for a polar region, the sub-grid domain covering the pole will be circular, while the remaining grid
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domain that does not cover any pole will be decomposed into a set of rectangles (given a spherical grid, rectangles are
defined in longitude—latitude space), as mentioned in Section 3. To avoid narrow rectangles, the grid decomposition should
try to achieve a reasonable ratio (e.g., as close to 1 as possible) of the lengths of the edges of each rectangular sub-grid
domain. To avoid the additional work of handling cyclic boundary conditions in triangulation, a cyclic grid domain will be
decomposed into a set of (at least two) acyclic rectangular sub-grid domains. Therefore, a global grid will be decomposed
into at least four sub-grid domains, even when there are fewer than four computing resource units.

Figure 4 shows the pseudocode of the grid decomposition, where the procedure decompse_whole_grid corresponds to
kernel decomposition. This procedure takes the whole grid after pre-processing (pseudo points have been added) and the
active computing resource units that have been selected by the computing resource manager as inputs. The free
computational capacity of each computing resource unit will be initialized to the number of grid points per computing
resource unit (shortened to average point number hereafter), and will be decreased accordingly when a kernel sub-grid
domain is assigned to a computing resource unit. A computing resource unit without free computation capacity will no
longer be considered in grid decomposition. The procedure decompse_whole_grid first generates at most two circular kernel
sub-grid domains with centers at the two poles according to the average point number, whenever the model grid covers either
or both poles. Each circular kernel sub-grid domain is assigned to a computing resource unit, and will be inserted into the
search tree of kernel sub-grid domains.

The procedure decompse_whole_grid next calls the procedure decompse_subgrid, which recursively decomposes a
given rectangular grid domain for a given set of computing resource units with successive IDs (called a computing resource
set). A cyclic grid domain will be divided into two acyclic sub-grid domains with the same area even when the given
computing resource set contains only one computing resource unit. If there is only one computing resource unit, the given
rectangular sub-grid domain will be assigned to it. Otherwise, the given computing resource set will be divided into two non-
overlapping subsets with balanced total free computational capacity, and two non-overlapping rectangular sub-grid domains
will be generated accordingly (their point numbers will be balanced according to the total free computational capacity of the
two computing resource subsets) through cutting the given rectangular grid domain at the long edge. For example, given a
rectangular grid domain with 6000 points and a set of five computing resource units (#1-#5) with the same free
computational capacity, the two computing resource subsets will include three (#1-#3) and two (#4 and #5) computing
resource units, and thus the two rectangular sub-grid domains will contain about 3600 and 2400 points, respectively. Next,
the MPI processes that have common computing resource units with the first/second computing resource subset will
recursively decompose the first/second rectangular sub-grid domain, recursively. At each recursion, the newly generated
sub-grid domains will be inserted into the domain search tree, as the children of the given grid domain.

The procedure expand_sub_grid_domain in Fig. 4 corresponds to the domain expansion stage. It is responsible for the
expansion of a given kernel sub-grid domain that has been assigned to the current computing resource unit (a computing
resource unit will call this procedure several times when multiple kernel sub-grid domains have been assigned to it). It first

estimates a halo region for expansion based on an expansion rate (the ratio between the numbers of points after and before

8



260

265

270

275

280

285

290

expansion) that can be specified by the user, and then searches the kernel sub-grid domains overlapping with the halo region
from the domain search tree. (The search tree will be adaptively updated through a procedure (not shown) similar to the
procedure decompose_subgrid when it does not include a kernel sub-grid domain that overlaps with the halo region.) At the
same time as generating an expanded sub-grid domain, all neighboring kernel sub-grid domains of the given kernel sub-grid
domain will be recorded.

The above design and implementation can be viewed as a procedure of constructing a specific k-d tree (Bentley, 1975)
in longitude-latitude space for grid decomposition. They achieve balanced grid decomposition (balanced numbers of grid
points) among the active computing resource units in most cases, and achieve a low time complexity of O(N) for an MPI
process, because the overall domain search tree is almost a binary tree and an MPI process is generally only concerned with

a limited number of top-down paths in the tree.

4.4 Local triangulation

As introduced in Section 3, we prefer to use a 2-D algorithm in local triangulation. Such an algorithm can directly
handle the triangulation of planar grids, while it is necessary to project each sub domain of a spherical grid onto a plane
before conducting 2-D triangulation. Similar to the Jacobsen algorithm, the local triangulation of PatCC1 also utilizes
stereographic projection, as the Delaunay triangulations on a spherical surface and on its stereographic projection surface are
equivalent (Saalfeld, 1999). Our implementation, for a spherical grid, first sets the projection point to the point antipodal to
the center of each spherical sub-grid domain, generates the stereographic projection, and then applies the planar Delaunay
triangulation process to the projected points.

For the triangulation process, we developed a divide-and-conquer-based recursive implementation, which in general
achieves a time complexity of O(NlogN). A recursion of the triangulation implementation is to triangulate the points within a
triangular domain. It first finds a point that is near to the center of the triangular domain, and next divides the triangular
domain into two or three smaller triangular domains. Legalization of triangles will be conducted when an illegal triangle is
generated (in the Delaunay triangulation, a triangle is illegal if another point is within the circumcircle of the triangle). To
avoid frequent memory allocation/deallocation operations that will greatly increase overhead, especially for parallel
programs, an optimization of the memory pool is implemented, which efficiently manages the memory usage during
triangulation.

There will be multiple legal solutions of Delaunay triangulation in cases having more than three points at the same
circle, a situation that is unavoidable or even normal for model grids. When a circle that contains more than three points is in
the overlapping region between two expanded sub-grid domains after grid decomposition, local triangulation of the two
expanded sub-grid domains may produce different results corresponding to the overlapping region, which means that the
triangulation of the whole grid will fail to achieve parallel consistency. A policy was therefore designed and used in the local
triangulation to guarantee parallel consistency: given that the four points of two neighboring triangles (that share two points)

are at the same circle, triangulation is legal only when the unique leftmost point or the lower left point (if there are two
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leftmost points) are not shared by the two triangles (original coordinate values before projection will be used for determining
the unique leftmost point or the lower left point). Figure 5 shows an example demonstrating this policy. The triangulation in
Fig. 5(a) is illegal, because P1 is the unique leftmost point but is shared by the two triangles. Fig. 5(b) shows the
corresponding legal triangulation. In Fig. 5(c), both P1 and P2 are leftmost points, while P2 is the lower left point. As P2 is
shared by the two triangles, the triangulation in Fig. 5(c) is illegal. Fig. 5(d) shows the corresponding legal triangulation.

As a sub-grid domain at a polar region is circular and covers the corresponding pole, significant load imbalance could
be introduced after decomposing a latitude-longitude grid. For example, given a global latitude-longitude grid with 720*360
points and 1000 active computing resource units, the number of grid points per computing resource unit is about 259, while a
polar sub-grid domain must contain at least one latitude circle with 720 points. To address this problem, we developed a fast
triangulation procedure (its time complexity is O(N)) specific for latitude-longitude grid domains, which will be used when a

polar sub-grid domain has been confirmed as a latitude-longitude grid domain.

4.5 Checking parallel consistency

PatCC1 will examine the parallel consistency of triangulation based on the overlapping regions among the expanded
sub-grid domains. When the local triangulations for any pair of overlapping expanded sub-grid domains do not produce
exactly the same triangles on the overlapping region, the triangulation for the whole grid fails to achieve parallel consistency.
As the local triangulations for a pair of overlapping expanded sub-grid domains are generally conducted separately by
different computing resource units, data communication among computing resource units will be required for this step. To
reduce the overhead of the data communication, only the triangles across a common boundary between two kernel sub-grid

domains are considered, and a checksum corresponding to these triangles will be calculated and used for the check.

4.6 Merging all triangles

This main step is optional. It may be unnecessary when the result of triangulation will only be used for generating
remapping weights in parallel, because a computing resource unit generally can only consider the sub-grid domains assigned
to it in parallel remapping weight generation. This step is necessary when the overall triangulation result will be required,
and has already been implemented in PatCC1 for evaluating whether PacCC1 achieves the parallel consistency. The root
computing resource unit will gather all triangles within or across any boundary of each kernel sub-grid domain from all
active computing resource units, and then prune repeated triangles (after passing the parallel consistency check, any pair of

triangles with overlapping area are the same).

4.7 Parallelization with an MPI and OpenMP hybrid
To parallelize PatCC1 with an MPI and OpenMP hybrid, we try to parallelize each main step separately, as follows:

1) Pre-processing of the whole model grid. As parallelization of this step with MPI would introduce MPI data
communication with a space complexity of O(N), where N is the number of points in the whole model grid, while the

time complexity of this step is also O(N), this step is not parallelized with MPI to avoid MPI communication. In other
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4)

5)

6)

7)

words, each MPI process will pre-process the whole model grid. However, all OpenMP threads in an MPI process will
cooperatively finish this step, which means that each OpenMP thread is responsible for pre-processing a part of the
points in the whole model grid.

Initialization of the computing resource manager. This step will introduce collective communication among the MPI
processes. It therefore cannot be accelerated through parallelization, and more MPI processes generally means a higher
overhead for this step.

Grid decomposition. Similar to the first step, the first stage of this step, which decomposes the whole grid into kernel
sub-grid domains, is not parallelized with MPI, while all active OpenMP threads in an MPI process will cooperatively
decompose the whole grid. In detail, task-level OpenMP parallelization (corresponding to the OpenMP directive
“#pragma omp task”) is utilized, where each OpenMP task corresponds to a function call of the procedure
decompose_subgrid if its input sub-grid domain contains enough points (i.e., the point number is larger than a given
threshold). In the second stage of this step, each MPI process is responsible for expanding the sub-grid domains that
have been assigned to it while task-level OpenMP parallelization is further implemented. Therefore, the second stage
has been parallelized with both MP1 and OpenMP.

Local triangulation. Each computing resource unit is responsible for the local triangulation of the expanded sub-grid
domain assigned to it. Therefore, this step has been parallelized with both MPI and OpenMP.

Checking parallel consistency. Parallel consistency is simultaneously checked among different pairs of computing
resource units corresponding to different pairs of overlapping expanded sub-grid domains. Therefore, this step has been
parallelized with both MPI and OpenMP.

Reconducting local triangulation for some sub-grid domains after enlarging them. A computing resource unit is
responsible for its assigned sub-grid domains that fail to pass the parallel consistency check. Therefore, this step has
been parallelized with both MPI and OpenMP.

Merging all triangles. This step will introduce collective communication among all active computing resource units. It
therefore cannot be accelerated through parallelization, and more active computing resource units or more points in the
whole grid generally means a higher overhead for this step.

To minimize memory usage and synchronizations among computing resource units, we prefer data parallelization for

each step of PatCC1, where different computing resource units generally handle different sub-grid domains. Considering that

the sub-grid domains to be decomposed dynamically change throughout the main recursive procedure of the grid

decomposition (Step 3), we implemented task-level OpenMP parallelization to achieve data parallelization, where all tasks

correspond to the same procedure but different sub-grid domains.
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5 Experimental evaluation

This section evaluates PatCC1 in terms of commonality, parallel efficiency, and parallel consistency. As the source

code of the Jacobsen algorithm is publicly available (https://github.com/douglasjacobsen/MPI-SCVT, last access: 08 Nov

2018), we compared it with PatCC1. The parameter of expansion rate of PatCC1 is set to 1.2 throughout the evaluation.

5.1 Experimental setups

5.1.1 Computer platforms

Two computer platforms are used for evaluation: a shared-memory single-node server and a high-performance
computer. The single-node server is equipped with two Intel Xeon E5-2686 18-core CPUs running at 2.3GHz. Simultaneous
MultiThreading (SMT) is enabled when using the single-node server, and thus there are 36 physical processor cores and 72
logical process cores. Each computing node of the high-performance computer contains two Intel Xeon E5-2670 v2 10-core
CPUs running at 2.5GHz. SMT is not enabled on the high-performance computer, and there are 20 physical (and thus also
logical) processor cores in each computing node. Each computer platform provides enough main memory for evaluation.

Both the Jacobsen algorithm and PatCC1 are compiled with GNU compiler 4.8.5 under the optimization level O3 on
either computer platform, and with the same Intel MPI library 3.2.2 on the single-node server and with the same Open MPI

library 3.0.1 on the high-performance computer.

5.1.2 Model grids
As shown in Table 1, a set of spherical grids from real models are used for evaluation: they are of different types and
have different resolutions. Table 2 shows the generation of nine global grids based on three grid types (i.e., longitude—

latitude grid, cubed-sphere grid, and randomly generated grid) and three levels of resolution (i.e., coarse, medium, and fine).

5.2 Evaluation of commonality and parallel consistency
An algorithm with commonality should successfully triangulate all grids in Tables 1 and 2. Given a whole grid, a
successful triangulation should satisfy at least the following criteria:
1) The whole triangulation process finishes normally;
2) Each triangle is a legal Delaunay triangle, and there is no overlapping area between any two triangles;
3) Given that any two grid points do not have the same coordinate values, every grid point is included in at least one
triangle;
4) Each concave boundary (if any) in the original grid is retained after triangulation.
Following the above criteria, PatCC1 successfully triangulates all grids in both tables. Regarding the Jacobsen
algorithm, it fails to triangulate all the longitude—latitude grids that cover at least one pole (shown in red in Tables 1 and 2),
because the triangulation process will exit abnormally when multiple points are at the same location on the sphere, and there

are a number of points at each pole. It also fails to triangulate the polar grids in Table 1 with concave boundaries. As shown
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in Fig. 6, the Jacobsen algorithm will generate a number of false triangles above the concave boundaries, whereas PatCC1
does not generate any false triangles. The above results demonstrate that PatCC1 has much greater commonality than the
Jacobsen algorithm.

To evaluate parallel consistency, the last main step of PatCC1 is enabled, and all triangles will be written into a binary
data file after sorting them. All grids in both tables are used for this evaluation. At least four parallel settings are used for
each grid (with different numbers of MPI processes or different numbers of OpenMP threads). The test results show that for
each grid, the binary data files of triangles under all parallel settings are exactly the same. We therefore conclude that

PatCC1 achieves parallel consistency.

5.3 Evaluation of parallel performance

5.3.1 Performance on the single-node server

We first evaluate the parallel performance using all grids in Table 2 on the single-node server. When the total number
of processes/threads does not exceed 36, each process/thread will be set to a unique physical core. As the Jacobsen algorithm
will use offline grid decomposition information included in two predefined files (one containing a list of region centers for
parallelization and the other containing the connectivity of the regions), and three pairs of these files for three parallel

settings (2, 12, and 42 processes) are publicly available (https://github.com/douglasjacobsen/MPI-SCVT, last access: 8 Nov

2018), we use only these three parallel settings to run the Jacobsen algorithm. To compare the Jacobsen algorithm and
PatCC1, we focus only on the time for local triangulation without considering the time for grid decomposition, because the
Jacobsen algorithm uses offline grid decomposition information, while PatCC1 calculates grid decomposition information
online. According to the test results in Table 3, PatCC1 is faster and achieves higher parallel speedup than the Jacobsen
algorithm in most cases. Moreover, higher parallel speedup is achieved by PatCC1 for finer grid resolution.

To further evaluate the parallel performance of PatCC1 on the single-node server, more parallel settings are used and
the time is measured for each main step (except the last step, because it is optional and cannot be parallelized). The test
results corresponding to randomly generated grids, cubed-sphere grids, and longitude—latitude grids are shown in Tables 4-6,
Tables S1-S3, and Tables S4-S6 (in the supplement), respectively. The results lead to the following observations.

1) Concurrent running of MPI processes will degrade the performance of the first main step (for pre-processing the whole
grid), and more MPI processes generally mean more significant degradation. As this step is memory bandwidth bound

and has not been parallelized with MPI, the overall complexity of memory bandwidth requirement is O(MN), where M

is the number of MPI processes and N is the number of grid points. Given M MPI processes, the increment of the run

time is generally larger than 1 but much lower than an M-fold increase. This is because concurrent running of MPI

processes enables the utilization of more memory bandwidth while the overall memory bandwidth capacity on a

computing node is limited. Regarding OpenMP parallelization, a small parallel speedup (larger than 1) without

performance degradation is obtained. This is because the overall complexity of the memory bandwidth requirement
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remains consistently O(N), and the concurrent running of OpenMP threads also enables the utilization of more memory
bandwidth.

As the second main step (initiating the computing resource manager) will introduce collective communication among
MPI processes, the overhead of this step increases with the increment of MPI processes, while the overhead remains
almost constant with the increment of OpenMP threads.

Similar to the first main step, the first stage of the third main step (decomposing the whole grid into kernel sub domains)
suffers significant degradation when using more MPI processes. Although concurrent running of OpenMP threads can
achieve a faster speed than the concurrent running of MPI processes when the resolution of the grids is medium or fine,
more significant performance degradation is also observed when using more OpenMP threads. This is because the
overall complexity of the memory bandwidth requirement under OpenMP-only parallelization is O(NlogM), where M is
the number of OpenMP threads, the task-level OpenMP parallelization introduces some extra overhead, and the
parallelism exploited is limited. As shown in Table 7, OpenMP parallelization actually accelerates this stage.

As the second stage of the third main step (expanding kernel sub domains) has been parallelized with both MPI and
OpenMP, obvious speedup is obtained in concurrent running of MPI processes or OpenMP threads. Compared with MPI
parallelization, OpenMP parallelization can avoid redundant grid decomposition among MPI processes (different kernel
sub domains assigned to different MPI processes may have the same kernel sub domain as a neighbor), but will
introduce the overhead of OpenMP task management and scheduling. As a result, OpenMP parallelization and MPI
parallelization can outperform each other at different grid sizes (i.e., numbers of grid points).

As the fourth main step (local triangulation) has been parallelized with both MPI and OpenMP, obvious speedup is
obtained in concurrent running of MPI processes or OpenMP threads. Although the same strategy of a computing
resource unit only handling the local triangulation of the expanded sub-grid domain that has been assigned to it is
employed for both parallelizations, MPI parallelization outperforms OpenMP parallelization in most cases. One possible
reason for this is that memory allocation is still necessary in local triangulation after the optimization of the memory
pool is implemented, while concurrent MPI processes handle memory allocation generally more efficiently than
concurrent threads.

Although parallelization with OpenMP or MPI does not achieve obvious parallel speedup for the fifth main step
(checking parallel consistency), this step generally takes a small proportion of the overall execution time of parallel
triangulation.

As SMT can effectively hide the latency from irregular memory access, while frequent irregular memory accesses are
introduced by the pointer-based data structures of triangles, SMT provides additional parallel speedup for local
triangulation in most cases.

Regarding the total execution time, OpenMP-only execution and MPI-only execution can outperform each other at
different levels of grid sizes, while hybrid-MPI-OpenMP execution generally achieves a moderate performance between
the two.
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5.3.2 Performance on the high-performance computer
We next evaluate the parallel performance of PatCC1 using the fine grids in Table 2 on the high-performance computer.

OpenMP is compared using 1, 5, and 10 threads, and the time for each main step (except the last step) is measured. The test

results for the randomly generated grid, cubed-sphere grid and longitude—latitude grid are shown in Tables 8, S7, and S8 (in

the supplement), respectively. Each computing node contributes 10 processor cores when there are 20 computing resource

units or more. For example, when there are 800 computing resource units, 80 computing nodes are used. In addition to the

observations discussed in Section 5.3.1, we can make the following observations regarding the increment of computing

nodes.

1) The execution time of the first main step remains almost constant with the increment of computing nodes, because the
requirement and capacity of the memory bandwidth corresponding to each computing node remain constant.

2) The cost of the second step of increases with the number of computing resource units especially the number of processes,
because this step introduces collective communications among all computing resource units.

3) The execution time of the first stage of the third main step increases slightly with the increment of computing nodes,
because there will be more recursion levels in grid decomposition when more computing resource units are used.

4) The main step of local triangulation achieves significant parallel speedups. When using 800 processor cores, it achieves
more than a 360-fold speedup for all fine grids.

5) The cost of parallel consistency check increases with the increment of computing nodes, and decreases when more
OpenMP threads are used under the same number of computing resource units. This is because the parallel consistency
check will introduce MPI communications among processes and the overhead of communications generally

increases/decreases with the increment/decrement of processes.

5.3.3 Impact of computing resource management

As introduced in Section 4.2, the computing resource manager can adaptively select a part of the computing resource
units for triangulation when too many computing resource units are available. To evaluate the benefit of this functionality,
we employ a randomly generated global grid with 2000 points and run PatCC1 on the single-node server under different
numbers of MPI processes (MPI only). As shown in Table 9, when this functionality is disabled, after the MPI process
number reaches 20, the execution times of local triangulation and the whole PatCC1 algorithm increase with further
increases in MPI processes. When this functionality is enabled (the threshold of the minimum number of points in each sub-
grid domain is set to 100), after the MPI process number reaches 20, the execution times of both local triangulation and the
whole PatCC1 algorithm increase only slightly. (The times for pre-processing the whole grid and initiating the computing

resource manager still increase with the increment of MPI processes.)
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6 Summary and future work

This paper proposes a new parallel triangulation algorithm PatCC1 for spherical and planar grids. Experimental
evaluation employing comparison with a state-of-the-art method and using different sets of grids and two computer
platforms demonstrates that PatCC1, which has been parallelized with a hybrid of MPI and OpenMP, is an efficient parallel
triangulation algorithm with commonality and parallel consistency.

C-Couplerl and C-Coupler2 have already employed a sequential Delaunay triangulation algorithm for the management
of horizontal grids. When cell vertexes of a horizontal grid are not provided, they can be automatically generated from the
Voronoi diagram based on the triangulation and further used by non-conservative remapping algorithms (the couplers will
force users to provide real cell vertexes of grids involved in conservative remapping). Our future work will replace the
sequential triangulation algorithm in C-Coupler2 (the latest version of C-Coupler) by PatCC1, so as to develop the next
coupler version (C-Coupler3), which is planned to be finished and released before the end of 2021.

Calculations for the position of a point to a line (on the line or not) or to the circumcircle of a triangle (on, in or out of
the circle) are fundamental operations in local triangulations. Due to the round-off errors from floating-point calculations,
accurate conditions cannot be employed for such calculations and thus error-tolerant conditions are developed. For example,
a point will be judged on a circle if the ratio between the distance from the point to the circle and the radius of the circle is
within the corresponding tolerant error. Our experiences have shown that improper tolerant errors introduce failures of
triangulation to some grids. Without theoretical guides, the tolerant errors in PatCC1 have to be set empirically, i.e., no failed
triangulation in all test cases generally mean a proper setting of the tolerant errors. In the future, more test cases with more
grids will be designed for bettering the setting of tolerant errors.

An improper setting of the expansion rate can introduce performance reduction to PatCC1. When the expansion rate
gets bigger, an expansion will produce bigger overlapping regions among expanded sub-grid domains, which will result in
higher overhead in local triangulations; when the expansion rate gets smaller, failures of parallel consistency check may be
increased, which will also slow down the whole algorithm. The expansion rate currently is a constant value in PatCC1 that
can be specified by users. In the future, we will investigate how automatically determine its proper values.

When developing the OpenMP parallelization, we preferred to develop coarse-grained rather than fine-grained
parallelization, to minimize code modification. Such an OpenMP parallelization achieves obvious parallel speedup for most
of the main steps of PatCC1, except the first stage of grid decomposition. We tried to develop a fine-grained OpenMP
parallelization for this stage, but without success, because it requires modification of the kernel algorithm, which would thus
degrade the performance.

When using a small number of computing resource units, the main step of local triangulation generally takes most of the
execution time of the whole PatCC1 algorithm, because the time complexity of each other step is lower. With the increment
of computing resource units, the local triangulation is accelerated dramatically, while the non-scalable and low-time-

complexity steps (e.g., pre-processing of the whole grid and grid decomposition) gradually become bottlenecks. Our future
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work will investigate the acceleration of these steps, especially when the grid is extremely large and many computing
resource units are used.

The computer platforms used for evaluation in this paper are heterogeneous. To make PatCC1 adapt to a homogeneous
computer platform where processor cores have different computing powers, the free computational capacity of each

computing resource unit can be initialized according to its computing power.

Code availability. The source code of PatCC1 will be publicly available (e.g., through GitLab, GitHub, or another public
repository) no later than June 2019.

Author contributions. HY was responsible for code development, software testing and experimental evaluation of PatCC1,
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Procedure decompse_whole_grid

Input: 1) the whole grid G after pre-processing; 2) the set of active computing resource units C

Output: 1) kernel sub-grid domains, each of which has been assigned to an active computing resource in C; 2) search tree of sub-grid
domains

(1) If Gisaspherical grid and covers the south pole, generate a circular kernel sub domain corresponding to the south pole, assign it to
an active computing resource c1, and insert it into the search tree; if c1 does not have free computational capacity for new kernel
sub-grid domains, remove c1 from C.

(2) If Gisaspherical grid and covers the north pole, generate a circular kernel sub domain corresponding to the north pole, assign it to an
active computing resource c2, and insert it into the search tree; if c2 does not have free computational capacity for new kernel sub-
grid domains, remove c2 from C.

(3) For the remaining sub-grid domain D, call decompose_subgrid(D, G)

Procedure decompose_subgrid

Input: 1) a sub-grid domain D; 2) a set of active computing resource units C

Output: 1) kernel sub-grid domains of D, each of which has been assigned to an active computing resource in C; 2) update of the search
tree of sub-grid domains

(1) IfDisacyclic domain and C contains only one computing resource unit c1, cut D into two acyclic sub domains with the same area,
assign them to c1, insert them into the search tree as the children of D, and then return

(2) If C contains only one computing resource unit c1, assign D to c1 and then return

(3) Divide C into two subsets (C1 and C2), which have as equal as possible numbers of computing resource units

(4) Cut D into two sub domains (D1 and D2) at the long edge of D, according to the total free computational capacity of C1 and C2

(5) Insert D1 and D2 into the search tree as the children of D

(6) If the current MPI process has common computing resource units with C1, call decompose_subgrid(D1, C1)

(7) If the current MPI process has common computing resource units with C2, call decompose_subgrid(D2, C2)

Procedure expand_sub_grid_domain
Input: 1) a kernel sub-grid domain D; 2) a given expansion rate
Output: 1) expanded sub-grid domain of D; 2) update of the search tree of sub-grid domains

(1) Estimate a halo region based on the expansion rate

(2) Search the kernel sub-grid domains that overlap with the estimated halo region, generate new kernel sub-grid domains and insert them
into the search tree if required.

(3) If the estimated halo region has more points than expected, shrink the halo region gradually

(4) After the halo region is determined, generate the expanded sub-grid domain of D, and record the neighborhoods corresponding to D
in the search tree.

Figure 4. Pseudocode for grid decomposition

23




590

P4 P P g P4

. -'. . . P . P

p, & . P e P; 2 e - 3
(a) illegal triangulation (b) legal triangulation (c) illegal triangulation (d) legal triangulation

Figure 5. Example demonstrating the policy for guaranteeing a unique triangulation solution. The four points P1-P4
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Table 1 Set of spherical grids (from real models) of different types and with different resolutions.

Number

Grid type Name of the grid data file of points Grid region Description
A north-pole From the Regional Arctic Climate
ar9v4_100920.nc 1684800 re iOI’? Model (RACM). This grid has
. g concave boundaries.
Polar grid - ——
A north-pole From the Regional Arctic Climate
wr50a_090301.nc 56375 re iOI’? Model (RACM). This grid has
g concave boundaries.
. From the HOMME dynamic core of
Cubed. ne30np4-t2.nc 48602 Global region the atmosphere model CAM
sphere grid . From the HOMME dynamic core of
ne60np4_pentagons_100408.nc 194402 Global region the atmosphere model CAM
Global region
gx3v5_Present_DP_x3.nc 11600 without From the ocean model POP
Displaced Antarctica
pole grid . Global region
Ver5|on_3_of_Gn_eenIand_pole_xl_T— 122880 without From the ocean model POP
grid.nc !
Antarctica
From the finite-volume dynamic
fv1.9x2.5_050503.nc 13824 Global region core of the atmosphere model
CAM
Global region
licom_eqlxl degree_Grid.nc 70560 without From the ocean model LICOM
Antarctica
Global region
licom grix1 degree Grid.nc 61200 without From the ocean model LICOM
Antarctica
Longitude— Global region
latitude . without
grid LICOM_P5_Grid.nc 242640 Antarctica and From the ocean model LICOM
the north pole
. . . From the spectral dynamic core of
T42_Gaussian_Grid.nc 8192 Global region the atmosphere model CAM
. . . From the spectral dynamic core of
T62_Gaussian_Grid.nc 18048 Global region the atmosphere model CAM
. . . From the spectral dynamic core of
T85_Gaussian_Grid.nc 32768 Global region the atmosphere model CAM
T42_grid.nc 8192 Global region | From the spectral dynamic core of
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the atmosphere model CAM

Gamil_2.8_Grid.nc 7680 Global region | From the atmosphere grid GAMIL
Gamil_1.0_Grid.nc 64800 Global region From the atmosphere grid GAMIL
RO5_Grid.nc 259200 Global region From a land surface model
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Table 2. Set of global grids generated in the present study, based on three grid types and three resolution levels.

Grid type Resolution level Number of points
Coarse 64800
longitude—latitude grid Medium 720000
Fine 6480000
Coarse 48602
cubed-sphere grid Medium 540002
Fine 4860002
Coarse 100000
randomly generated grid Medium 1000000
Fine 10000000
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Table 3. Comparison of local triangulation times for the Jacobsen algorithm and PatCC1 under different numbers of

total MPI processes. Only one OpenMP thread is enabled in each MPI process.
‘ Run time (ms) Parallel speedu
Grid type Re?olu'ilon Algorithm P P
eve 2 processes | 12 processes | 42 processes | (2 processes/42 processes)
Jacobsen 87.3 25.2 14.9 5.87
Coarse
PatCC1 111.0 37.8 14.0 7.93
cubed-sphere Medium Jacobsen 2,428.8 679.0 408.0 5.95
grid PatCC1 1,185.4 248.6 109.9 10.79
i Jacobsen 42,466.1 16,689.4 9,273.0 4.58
ine
PatCC1 12,596.2 2,426.0 983.7 12.80
Jacobsen 363.9 107.5 34.8 10.45
Coarse
PatCC1l 219.6 66.1 28.8 7.61
randomly _ Jacobsen 10,218.5 3,205.4 1,902.3 5.37
generated Medium
grid PatCC1l 2,490.5 429.2 208.6 11.94
i Jacobsen 392,330.7 95,512.4 35,366.5 11.09
ine
PatCCl 28,448.2 4,672.1 2,091.8 13.60
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Table 4. Run time and parallel speedup of each main step of PatCC1 under different parallel settings, when using the

randomly generated grid at the coarse resolution level. “3-1” and “3-2” indicate the first stage (decompose the whole

grid into kernel sub-grid domains) and second stage (expand each kernel sub-grid domain) of the third step,

respectively. “MPI==0penMP” indicates that the number of MPI threads and the number of OpenMP threads in

each MPI process are equal.

Main Settings of Run time (ms) under different numbers of computing resource units Parallel speedup
step ID | MP1+OpenMP 1 unit 6 units 36 units 72 units (1 unit/72 units)

MP1 only 0.3 1.8 1.9 3.7 0.07

1 OpenMP only 0.3 0.2 0.1 0.1 2.03
MPI1==0OpenMP 0.3 - 0.6 - -

MPI only 0.030 0.076 0.388 0.998 0.03

2 OpenMP only 0.030 0.033 0.036 0.038 0.79
MP1==0OpenMP 0.030 - 0.073 - -

MP1 only 13 3.0 2.5 3.7 0.34

3-1 OpenMP only 1.3 1.8 45 5.7 0.22
MPI==0OpenMP 13 - 4.4 - -

MPI only 21.0 8.9 35 5.0 4.18

3-2 OpenMP only 21.0 9.8 6.6 11.3 1.86
MP1==0OpenMP 21.0 - 4.3 - -

MPI only 389.1 110.8 21.1 18.5 21.06

4 OpenMP only 389.1 118.0 50.3 63.4 6.13
MPI==0OpenMP 389.1 - 28.9 - -

MPI only 0.2 0.1 0.6 0.8 0.28

5 OpenMP only 0.2 0.2 0.5 1.3 0.16
MPI1==0OpenMP 0.2 - 0.5 - -

MPI only 411.9 124.7 30.0 32.7 12.60

Total OpenMP only 411.9 130.0 62.1 82.0 5.03
MP1==0OpenMP 411.9 - 38.8 - -
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Table 5. Run time and parallel speedup of each main step of PatCC1 under different parallel settings, when using the
randomly generated grid at the medium resolution level. “3-1” and “3-2” indicate the first stage (decompose the

whole grid into kernel sub-grid domains) and second stage (expand each kernel sub-grid domain) of the third step,

respectively. “MPI==0penMP” indicates that the number of MPI threads and the number of OpenMP threads in
each MPI process are equal.
Main Settings of Run time (ms) under different numbers of computing resource units Parallel speedup
step ID | MP1+OpenMP 1 unit 6 units 36 units 72 units (1 unit/72 units)
MPI only 3.3 12.2 19.4 41.8 0.08
1 OpenMP only 3.3 1.6 1.0 1.0 3.26
MPI==0OpenMP 3.3 - 5.0 - -
MPI only 0.062 0.116 0.369 1.357 0.05
2 OpenMP only 0.062 0.070 0.072 0.070 0.89
MP1==0OpenMP 0.062 - 0.105 - -
MPI only 10.8 26.3 32.6 65.9 0.16
3-1 OpenMP only 10.8 155 235 241 0.45
MPI==0OpenMP 10.8 - 32.6 - -
MPI only 184.6 54.0 32.3 44.6 4.14
3-2 OpenMP only 184.6 66.0 21.1 30.5 6.06
MP1==0OpenMP 184.6 - 30.1 - -
MPI only 4883.3 834.6 172.4 138.0 35.39
4 OpenMP only 4883.3 834.6 193.1 178.8 27.32
MPI==0OpenMP 4883.3 - 178.0 - -
MPI only 0.7 0.2 0.5 0.9 0.80
5 OpenMP only 0.7 0.2 04 14 0.51
MPI1==0OpenMP 0.7 - 0.6 - -
MPI only 5082.7 927.5 257.6 292.5 17.38
Total OpenMP only 5082.7 918.1 239.3 235.8 21.56
MP1==0OpenMP 5082.7 - 246.5 - -
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Table 6. Run time and parallel speedup of each main step of PatCC1 under different parallel settings, when using the
randomly generated grid at the fine resolution level. “3-1” and “3-2” indicate the first stage (decompose the whole
grid into kernel sub-grid domains) and second stage (expand each kernel sub-grid domain) of the third step,
respectively. “MPI==0penMP” indicates that the number of MPI threads and the number of OpenMP threads in

each MPI process are equal.

Main Settings of Run time (ms) under different numbers of computing resource units Parallel speedup
step ID | MPI+OpenMP 1 unit 6 units 36 units 72 units (1 unit/72 units)

MPI only 69.3 101.2 206.3 441.9 0.16

1 OpenMP only 69.3 22.3 10.9 10.9 6.37
MPI==0OpenMP 69.3 - 41.3 - -

MPI only 0.066 0.118 0.286 0.877 0.08

2 OpenMP only 0.066 0.078 0.070 0.087 0.76
MP1==0OpenMP 0.066 - 0.119 - -

MPI only 108.3 135.8 348.6 684.3 0.16

3-1 OpenMP only 108.3 152.7 2934 319.6 0.34
MPI==0OpenMP 108.3 - 224.4 - -

MPI only 1772.3 372.2 317.8 448.7 3.95

3-2 OpenMP only 1772.3 389.4 158.5 1325 13.37
MP1==0OpenMP 1772.3 - 263.6 - -

MPI only 58117.3 9322.6 1662.9 1308.8 44.41

4 OpenMP only 58117.3 9659.6 1782.1 13815 42.07
MPI==0OpenMP 58117.3 - 1923.0 - -

MPI only 1.7 0.5 0.7 1.1 1.56

5 OpenMP only 1.7 1.2 0.5 19 0.90
MP1==0OpenMP 1.7 - 1.1 - -

MP1 only 60069.0 9932.5 2536.5 2885.7 20.82

Total OpenMP only 60069.0 10225.3 2245.6 1846.5 32.53
MP1==0OpenMP 60069.0 - 24535 - -
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Table 7. Run time of step 3-1 with and without OpenMP parallelization when using the randomly generated grid

under different resolution levels.

) ] Run time (ms) under different numbers of computing resource units
Resolution level | Settings of OpenMP - - - -
1 unit 6 units 36 units 72 units
With OpenMP 1.3 1.8 4.5 5.7
Coarse -
Without OpenMP 1.2 1.6 4.0 4.7
] With OpenMP 10.8 15.5 235 24.1
Medium -
Without OpenMP 10.6 14.3 324 40.0
o With OpenMP 108.3 152.7 293.4 319.6
ine
Without OpenMP 108.3 183.6 353.5 427.7
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Table 8. Run time and parallel speedup of each main step of PatCC1 under different parallel settings, when using the

randomly generated grid at the fine resolution level. “3-1” and “3-2” indicate the first stage (decompose the whole

grid into kernel sub-grid domains) and second stage (expand each kernel sub-grid domain) of the third step,

respectively.

Main step Settings of Run time (ms) under different numbers of computing resource units | parallel speedup
ID MP1+OpenMP 1 unit 20 units 200 units 800 units | (1 unit/800 units)
MPI only 78.9 138.0 238.3 170.5 0.46
1 5 OpenMP threads 78.9 29.9 41.4 37.9 2.08
10 OpenMP threads 78.9 19.3 18.3 17.4 4.52
MPI only 1.6 24 2.2 34.4 0.05
2 5 OpenMP threads 1.6 1.6 5.8 8.1 0.20
10 OpenMP threads 1.6 15 2.1 0.3 5.32
MPI only 105.8 410.6 469.4 523.3 0.20
3-1 5 OpenMP threads 105.8 178.5 202.1 181.2 0.58
10 OpenMP threads 105.8 171.4 189.5 174.4 0.61
MPI only 1971.7 392.9 319.7 321.9 6.13
3-2 5 OpenMP threads 1971.7 2194 137.8 163.3 12.07
10 OpenMP threads 1971.7 212.6 117.7 136.5 14.44
MPI only 58416.1 31436 335.4 156.1 374.33
4 5 OpenMP threads 58416.1 3216.3 341.0 154.5 378.00
10 OpenMP threads 58416.1 3448.3 432.0 151.4 385.87
MPI only 2.1 33.6 74.3 136.7 0.02
5 5 OpenMP threads 2.1 16.0 37.0 69.2 0.03
10 OpenMP threads 2.1 19 29.9 54.8 0.04
MPI only 60576.3 4121.2 1439.3 1342.9 45.11
Total 5 OpenMP threads 60576.3 3661.6 765.1 614.3 98.61
10 OpenMP threads 60576.3 3855.0 789.4 534.8 113.26
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Table 9. Evaluation of the functionality of adaptively selecting a part of computing resource units for triangulation. A

randomly generated global grid with 2000 points is used, and PatCC1 is run on the single-node server under different
numbers of computing resource units (MP1 only).

Adaptive active
computing resource units

Main step

Execution time (us) under different number of computing resource units

1 unit 10 units 20 units 25 units | 36 units | 72 units
. Local triangulation 23451 4572 4274 4380 4676 6746
Disabled Whole PatCC1 25488 5612 5891 6057 6686 11613
Local triangulation 23169 4572 4275 4284 4279 4319
Enabled Whole PatCC1 25344 5557 5917 5973 6145 6606
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