S1 Dry deposition scheme by Petroff and Zhang (2010)

Deposition velocity $v_{d,i}$ for aerosol size bin *i* is calculated by Petroff and Zhang (2010) as follows:

$$v_{d,i} = v_{c,i} + U \left[\underbrace{\underbrace{C_B S c_i^{-2/3} \left(\frac{UL}{\nu_a} \right)^{-1/2}}_{\text{Brownian diffusion}} + \underbrace{\underbrace{C_{IN} \frac{\overline{D}_i}{L} \left(2 + \ln \frac{4L}{\overline{D}_i} \right)}_{\text{interception}} + \underbrace{\underbrace{C_{IM} \left(\frac{S t_i}{S t_i + \beta_{IM}} \right)^2}_{\text{impaction}} \right] + \underbrace{\underbrace{C_{IT} \Upsilon}_{\text{turbulent impaction}} \tag{1}$$

where

$$5 \quad \Upsilon = \begin{cases} 2.5 \times 10^{-3} \tau_{\rm ph}^{+2} & \text{if } \tau_{\rm ph}^{+} < 20\\ 1.0 & \text{if } \tau_{\rm ph}^{+} \ge 20 \end{cases}$$

and

10

$$\tau_{\mathrm{ph},i}^{+} = \frac{G_i \rho_p \overline{D}_i^2 u_*^2}{18\mu_a \nu_a} \,. \tag{2}$$

Here $v_{c,i}$ (m s⁻¹) is the settling velocity, U (m s⁻¹) is the wind speed, Sc_i is the particle Schmidt number, L (m) is the obstacle characteristic dimension for different surface types, ν_a (m² s) is the kinematic viscosity of air, \overline{D}_i (m) is the particle diameter, St_i is the Stokes number, ρ_p (kg m⁻³) is the particle density, u_* (m s⁻¹) is the friction velocity of above a surface and μ_a (kg m⁻¹ s⁻¹) the dynamic viscosity of air. Furthermore, C_B , C_{IN} , C_{IM} , β_{IM} and C_{IT} are empirical constants.

S2 Simple test set-up

Figure S1. Visualisation of the simple test domain. Grid shows the horizontal model grid.

S3 Emission number size distributions

Figure S2. Measured aerosol size distribution (PSD) as a function of particle diameter D (nm) at the lowest measurement level h = 1.0 m for the morning simulation. Measurements are shown with a black dotted line with squares, sectional fitting with a blue line and log-normal fitting with a green line.

Figure S3. Measured aerosol size distribution (PSD) as a function of particle diameter D (nm) at the lowest measurement level h = 1.0 m for the evening simulation. Measurements are shown with a black dotted line with squares, sectional fitting with a blue line and log-normal fitting with a green line.

Figure S4. Measured aerosol size distribution (PSD) as a function of particle diameter D (nm)at the lowest measurement level h = 1.0 m for the night-time simulation. Measurements are shown with a black dotted line with squares, sectional fitting with a blue line and log-normal fitting with a green line.

S4 HYSPLIT air mass trajectories

Figure S5. The HYSPLIT air mass trajectories along which ADCHEM was run.

S5 Background concentration profiles from ADCHEM

Figure S6. Background aerosol size distributions at 20.0, 45.0, 80.0 and 125.0 m AGL for the a) morning, b) evening and c) night-time simulations.

S5.1 Morning

Table S1. Background gas concentrations for the morning simulations. Concentrations in $\rm cm^{-3}$.

z (m)	$[\mathrm{H}_2\mathrm{SO}_4](\times 10^4)$	$[HNO_3](\times 10^7)$	$[NH_3] (\times 10^1 0)$	$[\text{OCSV}](\times 10^4)$	$[\text{OCNV}](\times 10^3)$
20.0	7.1	5.9	7.3	5.3	5.5
45.0	7.4	6.1	6.9	5.5	5.8
80.0	7.9	6.4	6.6	5.8	6.3
125.0	8.3	6.2	6.4	6.0	6.7

Table S2. Mass fractions of the background aerosol concentration for the morning simulation.

z (m)	SO_4^{2-}	OC	BC	NH_4^+	NO_3^-
20.0	0.09	0.24	0.64	0.00sac	0.03
45.0	0.09	0.24	0.64	0.00	0.03
80.0	0.09	0.25	0.63	0.00	0.03
125.0	0.09	0.25	0.63	0.00	0.03

S5.2 Evening

Table S3. Background gas concentrations for the evening simulations. Concentrations in $\rm cm^{-3}$.

z (m)	$[\mathrm{H}_2\mathrm{SO}_4](\times 10^4)$	$[HNO_3](\times 10^8)$	$[NH_3] (\times 10^1 0)$	$[\text{OCSV}](\times 10^6)$	$[\text{OCNV}](\times 10^4)$
20.0	8.4	5.6	5.1	5.4	3.1
45.0	7.8	5.6	4.9	5.6	3.2
80.0	7.5	5.8	4.8	5.9	3.5
125.0	7.1	5.6	4.7	6.1	3.7

Table S4. Mass fractions of the background aerosol concentration for the evening simulation.

z (m)	SO_4^{2-}	OC	BC	NH_4^+	NO_3^-
20.0	0.12	0.31	0.53	0.01	0.03
45.0	0.13	0.33	0.49	0.02	0.03
80.0	0.13	0.33	0.47	0.04	0.04
125.0	0.13	0.34	0.44	0.05	0.04

S5.3 Night

Table S5. Background gas concentrations for the night-time simulations. Concentrations in cm^{-3} .

z (m)	$[\mathrm{H}_2\mathrm{SO}_4](\times 10^4)$	$[HNO_3](\times 10^7)$	$[NH_3] (\times 10^1 0)$	$[\text{OCSV}](\times 10^5)$	$[\text{OCNV}](\times 10^4)$
20.0	3.4	9.6	5.1	2.4	1.3
45.0	3.3	9.7	4.9	2.4	1.3
80.0	3.3	9.9	4.8	2.6	1.4
125.0	3.2	9.5	4.7	2.7	1.5

Table S6. Mass fractions of the background aerosol concentration for the night-time simulation.

z (m)	SO_4^{2-}	OC	BC	NH_4^+	NO_3^-
20.0	0.10	0.26	0.61	0.00	0.02
45.0	0.10	0.27	0.60	0.00	0.03
80.0	0.10	0.28	0.59	0.00	0.03
125.0	0.10	0.28	0.59	0.01	0.03

S6.1 Baseline simulations

Figure S7. Relative difference in the total aerosol number concentration ΔN_{tot} (%) at z = 3.5 m between the evening and night-time simulations. Positive values indicate that N_{tot} is higher at night-time than in the evening, and vice versa.

S6.2 Sensitivity tests

S6.2.1 Number of size bins

Figure S8. Measured (red dashed line) and simulated (black lines with triangles) particle size distribution $dN/d\log D$ (cm⁻³) as a function of particle diameter D (nm) in the morning at levels z = 0.5, 2.5, 4.5 and 7.5 m (top to bottom). Left column (a, c, e, f): LB and right column (b, d, f, h): MB simulation. The shape of the number size distribution for the emissions is given with bars (not in units cm⁻³). The grey shaded area shows the span of all horizontal points 1–8 and the line shows their mean value.

References

Petroff, A. and Zhang, L.: Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models, Geoscientific Model Development, 3, 753–769, https://doi.org/10.5194/gmd-3-753-2010, 2010.