
Response to Reviewer #2 (Second round) 
 
[RC1] indicates the reviewer comments from the first round 
[RC2] indicates the reviewer comments from the second round 
[AR1] indicates authors' reply to the first round 
[AR2] indicates authors' reply to the second round 
 
[RC2] EVALUATION SUMMARY: I would like to thank to the authors for their hard work to update 
their paper. Generally, I am happy with the answers to my questions, but I think there are still two 
issues, which needs some more attention:  
1. There is no particular analysis why BARRA is expected to provide additional information with 
respect to its global counterparts and with respect to dynamical downscaling. Only generalities are 
mentioned here and I would be interested in the particular aspects of BARRA at that regard.  
2. The answer for the grid-point storm question is not satisfactory in my opinion. Please don’t try to 
convince the readers that it is normal in an NWP model to have grid-point storms. This is a numerical 
problem, which must be avoided. It is coming from the fact that the convection scheme (and the 
parameterisation schemes in general) is not suited to the resolution used for the reanalysis. 
Normally the convection scheme should have adapted to have the proper match!  
 
[AR2] We appreciate the reviewer's time to provide their comments in this second round. Please see 
below for our specific replies. 
 
[RC2] So overall, I am still not fully happy with the paper, but due to the very positive attitude of the 
other three reviewers I don’t want to block the paper from publication. Therefore, I suggest, to 
accept the paper provided a proper thought is given to these two issues. See below my original 
comments (in italics) the answer of the authors and my latest feedback (red italics).  
The main question for a regional reanalysis is to clearly demonstrate whether the use of such system 
is justified, which means that more value can be added to the global reanalysis then it would be the 
case with a pure dynamical downscaling. For this question one has to understand the additional 
information brought into the regional system in terms of more precise dynamical and physical 
description of the atmosphere, but also in terms of additional and advanced use of observations. I 
miss a summary of this kind from the manuscript though some of these aspects are highlighted here 
and there in the paper.  
[AR1] The introduction has reviewed several papers on the usefulness of regional reanalyses over 
dynamical downscaling, underpinning efforts around the various regional reanalysis projects 
internationally.  
[RC1] My point here was not a general assessment of the value of regional reanalysis with respect to 
dynamical downscaling, but a particular one which analyses the merit of BARRA in that regard.  
[AR1] The comparisons of short-ranged O-A (observation – analysis) and O-B (observation – 
background) statistics in Table 1 (now moved to Table S1 of the Supplementary Material) showed 
that, with O-A being consistently better O-B for various observational types, an analysis within the 
BARRA-R system yields a more accurate short-ranged forecast than simply using the background, 
where the background from the previous analysis is, by extension, better than pure dynamical 
downscaling from the very first cycle.  
[RC2] I think, the fact that O-A is better than O-B does not show that the reanalysis is better than 
dynamical downscaling (it was also admitted by the authors answering to another question of my 
original review). In case of dynamical downscaling there is a higher resolution dynamics and physics 
of the model and the surface characteristics are described in more details (I mean on dynamical 
downscaling that a model is used to downscale the lower resolution information possibly also taking 
into account a better surface description).  
 



[AR2] The purpose of this paper is to document an existing product to assist in assuring that it used 
appropriately to assist further scientific inquiry and decision making by a variety of users. As such, 
we have endeavoured to establish BARRA as a credible reanalysis that adds value to existing and 
widely used data sets (i.e., ERA-Interim and MERRA-2), and that this was done with a system that 
reflects world best practice in analysing and modelling the atmosphere, namely the Unified 
Modelling (UM) System. 
 
Within the confines of the UM System, the approach in BARRA-R has been agreed as the most 
appropriate method within the Unified Modelling Partnership (i.e. the consolidated experts on using 
the Unified Modelling System), as shown by the use both as a candidate for UERRA and for the 
IMDAA reanalysis. We are however not proposing that this is the best or most efficient solution, but 
rather a useful and affordable solution. Comparisons with other methods would require the 
involvement of other experts in the use of these modelling systems, under carefully controlled 
conditions regarding common data sets etc. Such an intercomparison is beyond the scope of this 
work.  
 
Based on RC2, the reviewer may also be mistaken. The higher resolution (12km) modelling system is 
used throughout the warm running analysis-forecast system that comprises the reanalysis, so the 
high resolution dynamics, model physics and surface characterization are all inherent to the entire 
reanalysis process. That is, the background forecast (B) and analysis (A) used in calculating the O-B 
and O-A statistics are based on same model and resolution. It is also outside the scope of this work 
to compare 12 km BARRA-R reanalysis against dynamical downscaling methods at finer resolution < 
12 km. 
 
We have added a sentence in Section 2.2 (Data assimilation system) to refer to the O-A/O-B results 
in the Supplementary Material. It reads, "The observation departure statistics of the analysis, which 
are differences between the analysis and observations, are shown to be less than those of the model 
background in the Supplementary Material (Table S1). The assimilation is therefore behaving as 
desired by drawing the model towards observations for nearly all observational types." 
 
Further, the caption of Table S1 reads "Table S1 Comparisons of the 10-year (2007-2016) mean of the 
RMSD and bias between the analyses and observations (O-A) and those between the background and 
observations (O-B), calculated for various observational types across the BARRA-R domain. Bold 
values show reduction in the RMSD and the magnitude of the bias by the analyses, i.e., the analyses 
draw the model forecasts closer to these observation types." 
 
[RC1] 2.3. The existence of the “grid-point storms” is embarrassing since such numerical problems 
should not happen in a reanalysis, where a robust and properly (thoroughly) tested NWP system 
should be used. Normally, the reanalysis should not be run if such problems are not yet solved. 
There is a need for a thorough explanation how this could happen and how this deficiency 
compromises the validity of the reanalysis results.  
[AR1] The Unified Model is sufficiently robust to be useful for many operational meteorological 
centres in Australia, UK, India, Singapore, Korea, South Africa and New Zealand. The issue of "grid- 
point storms" is also not unique to UM but for instance, also occurs in the widely-used Weather 
Research and Forecasting (WRF) model from NCAR. When the convective (sub-grid) 
parameterization scheme in non-convective resolving models does not stabilize the air column, 
meteorological events can develop at the smallest resolvable scales in the model, producing 
unrealistically strong vertical velocities and precipitation (Scinocca and McFarlane, 2004; Williamson, 
2013). The resulting "grid-point storms" occur more readily in models with higher horizontal 
resolutions (Williamson, 2013). The issue becomes unavoidable for BARRA-R as it aims to be 
sufficiently higher resolution than global reanalyses but could not be sufficiently high resolution (< 2 



km) (and computationally prohibitive) to resolve convection explicitly without the need for a 
convective parameterization scheme.  
Further, we do not think that the wet biases in BARRA-R over the tropics and New Zealand are 
entirely due to grid point storms. Additional analyses have been made to identify the location of  
precipitation excess in the tropics and New Zealand (Figure S3 in Supplementary Material). We 
found that the higher precipitation in BARRA-R are concentrated at high or sharp topographical 
regions in PNG, Indonesia, Sumatra and small Indonesian Islands, and west coast and Southern Alps 
of New Zealand. At these locations, GPCC (gauge analysis) and TMPA would underestimate the 
precipitation. With these considerations, the actual levels of bias observed in BARRA-R are not 
entirely clear. 
[RC2] I am still NOT convinced at all that the grid-point storms are unavoidable details of a numerical 
model. These are really numerical artefacts, which should be avoided! Regarding the answer of the 
authors:  
It is not an argument that other models (e.g. WRF) and other centres (UK, India, Singapore, Korea, 
South Africa, New Zealand) have the same problem. This is not an answer to the question!  
As the authors properly mention this problem is coming from the discrepancy between the 
convection scheme and the non-convective resolving model. It is well-known that in the so called 
grey resolution zone (typically around 3-7km resolution range) adequate convection scheme should 
be used. The occurrence of the grid-point storms indicate that the applied convection scheme is not 
suited to that resolution!  
I think the only way to circumvent this issue in the article is (i) admit this problem (which is already 
the case in the manuscript), (ii) properly explain its origin, (iii) warn the users particularly if they 
would like to have a local evaluation and (iv) convince the readers/users that this problem does not 
have a significant impact on the climate quality of the reanalysis. But, please don’t use such 
arguments that it is also apparent in other models and centres!!  
 
[AR2] We explained in AR1 that grid point storms have been documented for UM and WRF models. 
Met centres continue to use them in operations in spite of this, because the models have proven 
useful in many aspects. While a more diffusive scheme can be used to avoid this issue completely, 
this degrades other aspects of the model. Our explanation is to address the reviewer's perception 
(from [RC1]: The existence of the “grid-point storms” is embarrassing since such numerical problems 
should not happen in a reanalysis, where a robust and properly (thoroughly) tested NWP system 
should be used.). To some people, "grid point storm" is interpreted to occur at model crash due to 
local excessively strong convection; in which case, the model is not considered robust. In our case, 
we use the term to refer to spotty excessive rainfall events that do not cause model crashes. The 
mismatch between our and reviewer's expectations may also stem from this difference in 
interpretation of what grid-point storms mean.  
 
Further, the use of UM's convection parametrisation scheme and the 12 km resolution of the model 
configuration are typical, performed in many prior works, including Chan et al. (2004), Mahood et al. 
(2018, IMDAA reanalysis), and Jermey and Renshaw (2016, UKMO reanalysis in UERRA). 
 
(i) We have already noted the occurrence of grid point storms, which can explain part of the biases 
in BARRA-R, relative to observational data sets. 
 
(ii) In the revised manuscript, we have explained the origin of this model artefacts using the added 
text "When the convective parameterization in non-convective resolving models does not stabilize 
the air column, meteorological events can develop at the smallest resolvable scales in the model, 
producing unrealistically strong vertical velocities and precipitation; this is known as "grid-point 
storms" (Scinocca and McFarlane, 2004; Williamson, 2013; Chan et al., 2014). In our cases, the model 
only produces isolated excessively intense rainfall over the steep topography. Such storms occur more 



readily in models with higher horizontal resolutions (Williamson, 2013). As the resolution increases, 
resolved motions can produce moisture convergence and increase CAPE very rapidly, and the rate at 
which column instability is produced depends on the scale of moisture and heat convergence. This 
also tends to occur over tropical land areas, over steep topography, and during the warm seasons, 
when the atmosphere is unstable and there is sufficient warm moisture supply at the surface.  
 
In section 2.1 (Forecast model), we added "Our choice of the horizontal resolution follows the 
deterministic component of the UKMO reanalysis and the IMDAA reanalyses." 
 
(iii) We have raised a few aspects (including grid point storms) in BARRA-R that differ from other 
reanalyses and observational data sets. As with any model data, local evaluation should be 
conducted before using them. In the conclusion of the revised manuscript, we added "Given all the 
above considerations, local evaluation of BARRA-R reanalysis before application is recommended." 
 
(iv) We have shown that the grid-point storms possibly have impacts on the rainfall averages (Figure 
11). Given the rainfall amounts, they can affect studies of rainfall extremes. We now added to the 
conclusion sentences that read "The characteristics of grid-point storms in terms of superficial spatial 
localization, precipitation amount and vertical wind speed, could be detected and screened out via 
post-processing. It is important as this model artefact affects the analyses of the rainfall averages 
and extremes." It is however beyond the scope of this work to conduct further evaluation. 
 
[RC1] 2.8. page 2, line 25: please give reference for the Copernicus reanalysis  
[AR1] Agreed. I have added a reference to Ridal et al. (2017).  
[RC2] Ridal et al (2017) is a reference to UERRA and not to Copernicus reanalysis (ERA5). Use for 
instance Hersbach and Dee (2016). 
[AR2] The reviewer is mistaken. The text at page 2, line 25 in the original manuscript describes 
UERRA, not ERA5.  
 
The reference Hersbach and Dee (2016) is cited in the Introduction where ERA5 is noted. 
 
[RC1] 2.35. page 16, line13-14: it is important to get an overview in this paper about the relative 
merits between reanalysis and downscaling, since this gives justification for having reanalysis instead 
of simple downscaling. Therefore, some information about this issue should be provided at an early 
part of this paper.  
[AR1] The introduction has reviewed several papers on the usefulness of regional reanalyses over 
dynamical downscaling, underpinning efforts around the various regional reanalysis projects 
internationally.  
[RC2] Again, I mean this particularly for BARRA and not in general!  
[AR1] The comparisons of short-ranged O-A (observation – analysis) and O-B (observation – 
background) statistics in Table 1 (now moved to Table S1 of the Supplementary Material) showed 
that, with O-A being consistently better O-B for various observational types, an analysis within the 
BARRA-R system yields a more accurate short-ranged forecast than simply using the background, 
where the background from the previous analysis is, by extension, better than pure dynamical 
downscaling from the very first cycle.  
[RC2] See my feedback above for the same issue!  
[AR2] See our reply above. 
 
[RC2] Two small additional issues: please use ERA5 without hyphen and I think one has to use short-
range instead of short-ranged. 
[AR2] These have been corrected. 
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Abstract. The Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA) is the first 

atmospheric regional reanalysis over a large region covering Australia, New Zealand and southeast Asia. The production of 

the reanalysis with approximately 12 km horizontal lateral resolution – BARRA-R – is well underway with completion 15 

expected in 2019. This paper describes the numerical weather forecast model, the data assimilation methods, and the forcing 

and observational data used to produce BARRA-R, and analyses results from the 20037-2016 reanalysis. BARRA-R provides 

a realistic depiction of the meteorology at and near the surface over land as diagnosed by temperature, wind speed, surface 

pressure, and precipitation. It shows closer agreement with point-scale observations and gridded analysis of observations, than 

leading global reanalysesComparing against global reanalyses ERA-Interim and MERRA-2,. In particular, BARRA-R 20 

improves upon ERA-Interim global reanalysis in several areas at point-scale to 25 km resolution. BARRA-R shows scores 

lower root-mean-square errors when evaluated against (point-scale) 2 m temperature, 10 m wind speed and surface pressure 

observations. It also shows reduced negative biases in (point-scale) 10 m wind speed during strong wind periods, reduced 

biases in (5 km gridded) daily 2 m temperature maximum and minimum at 5 km resolution, and a higher frequency of very 

heavy precipitation days at 5 km and 25 km resolution when compared to gridded satellite and gauge analyses. Few Some 25 

issues with BARRA-R are also identified:; some of which are common in reanalyses, such as biases in 10 m wind, lower 

precipitation than observed over the tropical oceans, higher precipitation over regions with higher elevations in south Asia and 

New Zealand. and others that are more specific to BARRA such as grid point storms. Some of these issues could be improved 

through dynamical downscaling of BARRA-R fields using convective-scale (< 2 km) models.  

 30 
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1 Introduction 

Reanalyses are widely used for climate monitoring and studying climate change as they provide long-term spatially complete 

records of the atmosphere for long periods that are a balance between physical consistency and observations. This is achieved 

by using data assimilation techniques that produce an observation-constrained model estimate of the atmosphere. They, by 

drawing short-term model states towards observations from multiple, disparate sources to form an atmospheric analysis. The 5 

use of aA physically realistic model  provides the means to infer atmospheric states at locations without observations enables 

the estimation of unobserved parameters from the limited and irregularly distributed collection of irregularly distributed 

observed parametersobservations.  

Global-scale reanalyses using global atmospheric circulation models (GCMs) have advanced in quality and quantity during 

the past two decades (Dee et al., 2014; Hartmann et al., 2013). At present, the available global reanalyses established for the 10 

satellite era include the NCEP/NCAR reanalysis at 210 km horizontal resolution (Kalnay et al., 1996), the Japanese 55-year 

Reanalysis (JRA-55) at 60 km (Ebita et al., 2011), the Modern-Era Retrospective analysis for Research and Applications-2 

(MERRA-2) at about 50 km (Gelaro et al., 2017) and the European Centre for Medium Range Weather Forecasts (ECMWF) 

ReAnalysis Interim (ERA-Interim) at ~79 km (Dee et al., 2011). The latter is currentlywill be being replaced by the new ERA-

5 ~31 km reanalysis (Hersbach and Dee, 2016). These global reanalyses have the advantages of providing globally consistent 15 

information and homogeneous reanalyses, but at the expense of spatial resolution. With resolutions typically greater than 50 

km, they may be deficient into cannot accounting for important subgrid variations in meteorology over heterogeneous terrains 

and islands, and across irregular coastlines, and other small-scale processes (Mesinger et al., 2006; Randall et al., 2007, and 

references therein).  

To address these shortcomings, the development in global reanalysis has also driven concurrent efforts in statistical approaches 20 

and dynamical downscaling (e.g., Dickinson et al., 1989; Fowler et al., 2007; Evans and McCabe, 2013). The latter typically 

embeds a high-resolution meteorological or regional atmospheric model within a global reanalysis, where effects of small-

scale forcing and processes such as convection are modelled. Such development is supported by improvements in non-

hydrostatic models that run at high resolution in operational numerical weather prediction (NWP) (e.g., Clark et al., 2016). 

Regional reanalyses are emerging as a step further in this direction. One of the earliestThe first regional reanalysises was the 25 

North America Regional Reanalysis (NARR, Mesinger et al., 2006). , and the mMore recent examples include the Arctic 

System Reanalysis (ASR, Bromwich et al., 2018), and reanalyses for Europe and Indian Monsoon Data Assimilation and 

Analysis (IMDAA, Mahood et al., 2018) and Uncertainties in Ensembles of Regional Reanalyses (UERRA) in Europe 

(Borsche et al. (2015) and therein). In contrast to dynamically downscaled global reanalyses, observations are used in regional 

reanalyses in the same way as in the global ones to reduce model errors in high-resolution simulations (Bollmeyer et al., 2015). 30 

The resulting observation-constrained reanalyses are expected to have better representations of frequency distributions, 

extremes and actual space and time-dependent variability (particularly for near-ground variables). UERRA consists of Four 
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four such European regional reanalyses were developed by the Swedish Meteorological and Hydrological Institute (SMHI), 

Météo France, Deutscher Wetterdienst (DWD), and UK Met Office (UKMO) within the (recently concluded) European (EU) 

Seventh Framework Programme (FP7) Uncertainties in Ensembles of Regional Reanalyses (UERRA) project (Borsche et al. 

(2015) and therein), . The project has producinged an ensemble range of high resolution (5–25 km) ensemble of regional 

reanalyses of essential climate variables. , and of which, tThe SMHI's HARMONIE [Hi-Resolution Limited Area Model 5 

(HIRLAM) Aire Limitée Adaptation Dynamique Développement International (ALADIN) Regional/Mesoscale Operational 

NWP in Europe] reanalysis has now entered production for the Copernicus Climate Change Service (Ridal et al., 2017). .  

Regional reanalyses provide significant added value to their global counterparts in diverse applications ranging from traditional 

climate studies to industry applications, including regional climate change assessments that include local impact studies (e.g., 

Fall et al., 2010) and extreme events reconstruction (e.g., Zick and Matyas, 2015). As the regional reanalyses are generally 10 

produced with high spatial as well as temporal resolution, the extremes of variables at local scales canmay be quantified more 

accurately. They can provideare also an alternative reference to evaluate climate projections (e.g., Ruiz-Barradas and Nigam, 

2006; Radic and Clarke, 2011). At the same time, embedded forecast models can be used within the framework of the 

Coordinated Regional Climate Downscaling Experiment (CORDEX) (CORDEX, Martynov et al., 2013) within a seamless 

framework for weather and climate prediction, where model deficienciesy in the individual areas that differ in spatial and time 15 

scales, can be more readily understood (Brown et al., 2012)to produce seamless data, where similar modelling systems produce 

both historical data and projections to provide a higher level of consistency than otherwise possible. They also offer useful 

data sets for designing new infrastructure, particularly if they are sufficiently long and spatially relevant in spatial resolution 

and extent to define the likelihood of extremes. For renewable energy production, they can provide valuable information on , 

and intermittency (e.g., wind lull) and covariability (e.g., correlation spatially or between variables) of phenomena. For 20 

instance, COSMO (Consortium for Small-scale Modelling) 6 km reanalysis has shown the potential to provide realistic sub-

daily representations of winds at 10 to 40 m height (Borsche et al., 2016), and to resolve small-scale cloud structures 

(Bollmeyer et al., 2015). NARR has beenwas used to define a climatology of surface wind extremes (Malloy et al., 2015), and 

30-year trends in wind at hub height (Holt and Wang, 2012) over northern America. 

To date, while the regional reanalyses exists forin North America, Europe and India, no atmospheric regional reanalysis for 25 

the Australasian region has been produced. To address close this gap, the Bureau of Meteorology Atmospheric high-resolution 

Regional Reanalysis for Australia (BARRA, Jakob et al., 2017) has been produced. BARRA is the first atmospheric regional 

reanalysis for the Australasian region, with a domainthat covering covers Australia, New Zealand, southeast Asia, and south 

to the Antarctic ice edge (Figure 1Figure 11Figure 1). It is produced by the Australian Bureau of Meteorology (Bureau), with 

sponsorship from in partnership with state fire and governmental agencies across Australia, because of the important 30 

advantages it allows provides for planning and management to reduce risks due to extreme weather events including bushfires. 

For instance, BARRA will address the lack of accurate climate information on highly variable surface winds over large areas 
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of Australia due to the low density of the surface observation network in remote areas to sufficiently observe high variability 

in wind. BARRA covers a 298-year period from 1990 to 20187, with possible further extensions back and forward in time. 

The BARRA project delivers a whole-of-domain reanalysis (identified as BARRA-R) with approximately 12 km horizontal 

lateral resolution, and additional convective-scale (1.5 km horizontal grid-length) downscalinged reanalyses (BARRA-x), 

nested within BARRA-R, centred on major Australian cities to generate additional high-resolution information needed for 5 

local-scale applications and studies. They produce a range of gridded data products over their respective domains at their 

respective resolutions. These resulting gridded (12 km and 1.5 km) products include a variety of 10 min to hourly surface 

parameters, describing weather and land-surface conditions, and hourly upper-air parameters covering the troposphere and 

stratosphere. The fields on standardized pressure levels are generated from vertical interpolation of model-level fields. These 

products include a variety of surface parameters, describing weather and land-surface conditions, at 10 minutes to hourly time 10 

resolution, and upper-air parameters on pressure and model levels covering the troposphere and stratosphere at hourly time 

resolution. BARRA serves to lay the foundation for future generations of reanalyses at the Bureau and to further develop its 

capabilities to produce seamless climate information that integrates its observational networks and NWP programme.  

In this paper, we describe the forecast model, data assimilation methods, and the forcing and observational data used to produce 

BARRA-R in Section 2. Section 3 provides an initial assessment of the reanalysis system over the first 14ten years 200703-15 

2016, with a focus on analysing the quality at or near the surface; Section 4 concludes with a brief summary of our findings.  

2 The BARRA-R reanalysis 

The development of BARRA follows builds onfrom the Bureau’s experience in operational (deterministic) NWP forecasting 

over the Australian region using the Australian Community Climate and Earth-System Simulator (ACCESS)-R system (Bureau 

of Meteorology, 2010; 2013; Puri et al., 2013), and BARRA-R is produced using the UKMO's UERRA system in UERRA 20 

(based on Jermey and Renshaw, 2016) but without the ensemble component. An ensemble NWP forecast system is currently 

under development at the Bureau. BARRA-R is belongs to a class of reanalyses produced by running a limited-area 

meteorological forecast model forced with a global reanalysis' boundary conditions, but drawn closer to observations via data 

assimilation. In other words, the forecast model provides the means to infer atmospheric states at locations without 

observations. This section provides an overview of these components while more technical details are included in the 25 

references.  

2.1 Forecast model 

The Unified Model (UM, Davies et al., 2005) is the grid-point atmospheric model used in BARRA-R and ACCESS. It uses a 

non-hydrostatic, fully compressible, deep-atmosphere formulation and its dynamical core (Even Newer Dynamics for General 

atmospheric modelling of the environment, ENDGame) solves the equations of motion using mass-conserving semi-implicit, 30 
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semi-Lagrangian time-integration methods (Wood et al., 2014). The model includes a comprehensive set of parametrizations, 

including a modified boundary layer scheme based on Lock et al. (2000), a variant of Wilson and Ballard (1999) for mixed-

phase cloud microphysics, thea mass flux convection scheme of Gregory and Rowntree (1990), and the radiation scheme of 

Edwards and Slingo (1996), which have all since been improved.  OtherThe parametrized sub-grid scale processes include 

convection, radiation,  fractional cloud cover , and microphysics, orographic drag and boundary layer turbulence. More details 5 

on all of the physics schemes can be found in Walters et al. (2017a).  

The prognostic variables are three-dimensional wind components, virtual dry potential temperature and Exner pressure, dry 

density, and mixing ratios of moist quantities. The grid discretizationThe model is discretized on uses a horizontally staggered 

Arakawa C-grid (Arakawa and Lamb, 1977) and a vertically staggered Charney-Phillips grid (Charney and Phillips, 1953). 

The staggered arrangement of grid points allows for accurate finite differencing but results in different model fields located on 10 

staggered grids displaced by half a grid spacing along both axes. Data has been left on the staggered grids to allow users to 

apply the most appropriate re-gridding methods suited for given applications. The vertical levels smoothly transition from 

terrain-following coordinates near the surface, to constant height surfaces in the upper atmosphere (Davies et al., 2005).  

BARRA-R uses version 10.2 of the UM and is configured with 70 vertical levels extending from near the surface to 80 km 

above sea level: 50 model levels below 18 km, and 20 levels above this. While configured with this height based on ACCESS-15 

R, we have more confidence in the data up to a height of 25-30 km where we have most information from observations. The 

horizontal domain of BARRA-R spans from 65.0° to 196.9° E, -65.0° to 19.4° N (Figure 1Figure 11Figure 1), with constant 

latitude and longitude increments of 0.11° × 0.11° (approximately 12 km) and 1200 × 768 grid points in the horizontal. Our 

choice of the horizontal resolution follows the deterministic component of the UKMO reanalysis and the IMDAA reanalyses. 

The model was run to produce 12-hour (12h) forecasts in each 6-hourly cycle (see Section 2.2) to give extra data for the driving 20 

aforementioned dynamical downscaling within the domain. 

The model parametrizations of sub-grid scale processes (in convection, surface, boundary layer and mixed-phase clouds) in 

BARRA-R are inherited from the UKMO Global Atmosphere (GA) 6.0 configurations described in Walters et al. (2017a). The 

GA6 configurations are also suited for limited-area models with resolutions > 10 km, but with some modifications. Several 

modifications have been implemented:, 25 

i. A variable Charnock coefficient is used in surface heat exchange over the sea to improve the tropical Pacific air-

sea exchange (Ma et al., 2015).  

ii. The heat capacity of "inland water canopy" is set to 2.11×107 J K-1m-2 for modelling lakes. This , which improves 

the diurnal cycle over the inland waters. By contrast, grid cells containing salt lakes in Australia are modelled as 

bare soil surface (for Lake Eyre and Lake Frome) and vegetated surface (e.g., Lake Lefroy, Lake Ballard).  30 
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iii. For its deep convective mass flux scheme, a grid-box dependent convective available potential energy (CAPE) 

closure scheme is chosen to limit the role of parameterized convection. When vertical velocity exceeds the given 

threshold of 1 m/s, the vertical velocity dependent CAPE closure is chosen to release the convective instability 

efficiently (Zhu and Dietachmayer, 2015). These changes aim to improve the model stability. 

iv. The river routing scheme has been turned off because it is not designed for a limited-area model. Therefore, there 5 

is no routing of runoff from inland grid points out to sea and inland water bodies, and soil moisture is not affected 

by this hydrological process.  

The characteristics of the lower boundary, climatological fields and natural and anthropogenic emissions are specified using 

static ancillary fields. These are created as per Walters et al. (2017a, Table 1), with the exceptions of the land-sea mask and 

canopy tree heights. The land-sea mask is created from the 1 km resolution International Geosphere–Biosphere Programme 10 

(IGBP) land cover data (Loveland et al., 2000), and the canopy tree heights are derived from satellite light detection and 

ranging (LiDAR, Simard et al., 2011; Dharssi et al., 2015). Climatological aerosol fields (ammonium sulphate, mineral dust, 

sea salt, biomass burning, fossil-fuel black carbon, fossil-fuel organic carbon, and secondary organic (biogenic) aerosols) are 

used to derive the cloud droplet number concentration. Absorption and scattering by the aerosols are included in both the 

shortwave and longwave. 15 

2.1.1 Land surface 

The UM uses a community land surface model, the The Joint UK Land Environment Simulator (JULES, Best et al., 2011) is 

the physically-based land surface component of the UM. It models partitioning of rainfall into canopy interception, surface 

runoff and infiltration, and uses the Richards' equation and Darcy's law to model soil hydrology. Sub-grid scale heterogeneity 

of soil moisture is represented by the Probability Distributed Moisture (PDM) model (Moore, 2007). A nine-tile approach is 20 

used to represent sub-grid scale heterogeneity in land cover, with the surface of each land point subdivided into five vegetation 

types (broadleaf tree, needle-leaved trees, temperate C3 grass, tropical C4 grass and shrubs) and four non-vegetated surface 

types (urban, inland water, bare soil and land ice). It describes a 3 m soil column with a 4-layer soil scheme with soil thicknesses 

of 0.1, 0.25, 0.65 and 2.0 m, and models vertical heat and water transfer within the column with van Genuchten hydraulic 

parameters. The JULES urban parameters are optimised for Australia as described by Dharssi et al. (2015). 25 

2.1.2 Soil moisture 

For the 1990- to 2014 period, soil moisture fields in BARRA-R are initialised daily at every 06 UTC using soil moisture 

analyses from an offline simulation of JULES, at 60 km resolution, driven by bias corrected ERA-Interim atmosphere forcing 

data, using methods described in Dharssi and Vinodkumar (2017) and Zhao et al. (2017). The simulation used a 10-year long 

spin-up period and then was run continuously for the 1990 to 2014 period. The near-surface soil moisture analyses are found 30 
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to have good skill for the Australian region when validated against ground-based soil moisture observations (Dharssi and 

Vinodkumar, 2017). As the offline runs were terminated at the end of December 2014, the daily initialization scheme is 

continued For 2015 and onward, soil moisture fields in BARRA are initialised daily at every 06 UTC usingwith 40 km 

resolution soil moisture analyses from the Bureau's global NWP system – ACCESS-G (Bureau of Meteorology, 2016). These 

external soil moisture analyses are downscaled to the BARRA-R grid using a simple method that takes into account differences 5 

in soil texture. The daily initialisation was conducted with the purpose of avoiding spurious drift in the BARRA moisture 

fields. As well, in each 6-hourly cycle, a land surface analysis is conducted within BARRA (see Section 2.2). The daily 

initialisation was conducted with the purpose of avoiding spurious drift in the BARRA moisture fields and reducing the time 

needed to spin up from ERA-Interim initial conditions. However, as multiple parallel production streams are needed to produce 

the reanalysis (see Section 2.2), a adiscontinuity in soil moisture in the bottom two layers exists between successive production 10 

streams, although soil moisture in the top two layers becomes stable after one-month of runs. A discontinuity occurringring at 

the 2014-2015 changeover has recently been reported by BARRA data users. These impacts, particularly on forested regions 

where trees extract water from the deep soil layers, are under investigation. 

2.1.3 Boundary conditions 

The BARRA-R sequential data assimilation process is initialized using ERA-Interim analysis fields (see Section. 2.2), after 15 

which the only relationship with ERA-Interim is solely through the lateral boundary conditions. Hourly lateral boundary 

conditions for BARRA-R are interpolated from ERA-Interim's 6-hourly analysis fields at 0.75° × 0.75° resolution. The rim 

width of the boundary frame is 0.88°.  

The land boundary is provided by a land surface analysis (Section. 2.2). Daily sea-surface temperature (SST) and sea ice (SIC) 

analysis at 0.05° × 0.05° resolution from reprocessed (1985-2007, Roberts-Jones et al., 2012) and near real-time (NRT) 20 

Operational Sea Surface Temperature and Ice Analysis (OSTIA, Donlon et al., 2012) are used as lower boundaries over water 

after being interpolated to the UM grid. The NRT data is used from January 2007. OSTIA is widely used by NWP centres and 

operational ocean forecasting systems, owing to their short real-time latency. Even though the re-processed and NRT data do 

not constitute a homogeneous timeseries, OSTIA is favoured over other SST reanalyses owing to its higher spatial resolution. 

Masunaga et al. (2015, 2018) have shown steep SST gradients, unresolved by coarse SST reanalyses, can influence the 25 

organization of long-lived rain bands and enhancement or reduction of surface convergence, and this is particularly problematic 

for atmosphere-only reanalyses as thermal structure and motions in the marine atmospheric boundary layter are not well 

constrained by data assimilation. 
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2.2 Data assimilation system 

The BARRA-R analysis scheme is based on fixed deterministic atmospheric and land surface assimilation systems used by the 

UKMO for its UERRAin UERRA reanalysis (Jermey and Renshaw, 2016) and IMDAA in the Indian Monsoon Data 

Assimilation and Analysis (IMDAA) reanalysis (Mahmood et al., 2018). BARRA-R uses a sequential data assimilation 

scheme, advancing forward in time using 6-hourly analysis cycles centred at synoptic hours t0 = 0, 6, 12 and 18 UTC, and 12h 5 

forecast cycles from t0-3h  (Figure 2(Figure 22Figure 2)). As noted before, longer-range forecasts are needed for driving the 

downscaling models. 

In each analysis cycle, available observations, distributed across a 6h analysis window t0-3h ≤ t < t0+3h, are combined with 

the prior information of the model forecast from the previous cycle (known as the background state), to provide a more accurate 

estimate of the atmosphere over this window. This first involves a 4-dimensional variational (4DVar) analysis of the basic 10 

upper-air atmospheric fields (wind, temperature, specific humidity, pressure) with conventional and satellite observations (see 

below). 4DVar is favoured over 3DVar as it takes account of time tendency information in the observations and this has 

significant a positive impact on the resulting forecasts (Rawlins et al., 2007). The UKMO's VAR assimilation system (version 

2016.03.0) is used. The 4DVar uses a linear perturbation forecast (PF) model (Lorenc 2003; Rawlins et al., 2007, Lorenc and 

Payne, 2007), which uses a simpler model state linearised aboutabout a 'guess' trajectory (i.e., tangent linear model) with a 15 

lower resolution (0.33° cf. 0.11°) than the full forecast model. The lower resolution is chosen to limit computational costs. The 

PF model uses a simplified set of physical parameterizations including a simple boundary layer, cloud latent heat release, 

large-scale precipitation and convection. In other words, it is assumed that the lower-resolution corrections to the background 

state (i.e. increments), interpolated to a higher resolution, are suitable corrections for the full model. The analysis increments 

from 4DVar valid at t0-3h are added to the background state at t0-3h to produce an improved initial condition for the forecast 20 

model to perform the next 12h forecast from t0-3h to t0+9h. A constraint of zero analysis increments is specified at the model 

boundary such that BARRA-R relies on the driving model ERA-Interim to define large-scale flow and other atmospheric 

conditions (Section 2.1.3). The observation departure statistics of the analysis, which are differences between the analysis and 

observations, are shown to be less than those of the model background (in the Supplementary Material (, Table S1). The 

assimilation is therefore behaving as desired by drawing the model towards observations for nearly all observational types." 25 

The variational method of assimilation minimises a cost function whose two principal terms penalise distance to the 

background state and distance to the observations. The two terms are squared differences weighted by the inverse of their 

corresponding error covariances. In BARRA-R, the background error covariance has been estimated by a smooth 

parameterised approximation to climatology tuned by forecast differences (Ingleby, 2001). Accordingly, the estimated 

background error covariance is invariant between successive analysis windows, but is time varying within the analysis window. 30 

The cost function also includes a pressure-based energy norm that serves as a weak constraint digital filter to suppress spurious 
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fast oscillations associated with gravity-inertia waves produced in model forecasts when analysis increments are added to the 

background state (Gauthier and Thépaut, 2001).  

The initial land surface state can have a significant impact on short-term forecasts of screen-level temperature and humidity, 

and the its quality of the initial state can also be improved through data assimilation. An Extended Kalman Filter (EKF) using 

observations of 2 m temperature and humidity is used to analyse the BARRA land state at every 6 hour cycle and provide 5 

analyses of soil moisture, soil temperature and skin temperature as described by Dharssi et al. (2012). The assimilation of 

satellite- microwave retrieved soil moisture is not attempted here as it has not been implemented realised in ACCESS. The 

UKMO's SURF analysis system (version 2016.07.0) is used to perform EKF. The Jacobian, which relates observed variables 

to model variables, for the Kalman gain matrix is estimated using finite difference by perturbing each model variable to be 

analysed in 40 perturbations and performing short 3-hour forecasts. Here JULES (version 3.0) is run in the standalone mode, 10 

decoupled from the UM. The BARRA-R land state is reconfigured with EKF-derived surface analyses at every t0. 

Noteice that the last 6h forecast of athis model run represents the prior state estimates needed for the next analysis cycle. The 

forecast fields valid at t0-3h, t0-2h and t0-1h are discarded, as these fields may still be influenced by transient artefacts due to 

the slight imbalance introduced by the addition of the analysis increments. It is already noted that this effect is also mitigated 

with the energy norm in the 4DVar's cost function that penalises the unbalanced structure in the increments. 15 

The reanalysis is produced with multiple parallel production streams to speed up production. Each stream has a month of spin-

up time from the ERA-Interim initial conditions before production data is archived, with most streams producinged one year 

of reanalyses. . Trials undertaken at the Met Office have shown that a one-month period is sufficient for spin-up for the 

atmosphere  (Renshaw et al., 2013) and top levels of soil moisture, but . Most streams are set up to produce one year of 

reanalyses, excluding the first month of spin-up.insufficient for soil moisture in the deeper layers. 20 

2.3 Observations 

Conventional observations from (namely, land surface stations, ships, drifting buoys, aircrafts, radiosondes, wind profilers,) 

and satellite observations, namely  (retrieved wind, radiances and bending angle) observations, are assimilated in BARRA-R. 

The various observational types are chosen as they have been assimilated in the Bureau's operational NWP systems; other 

observational types, such as clear-sky radiances, have not been assimilated due to time resource constraints to set them up. 25 

Rain observations from radar and gauges are also not assimilated as their assimilation schemes are still being tested for 

operational NWP. As listed in Table 1Table 1Table 1, the data sets are pragmatically taken from multiple sources, as they are 

being prepared during the production runs. Most of the observations prior to 2003 2009 are supplied by ECMWF, and the 

satellite radiance data fromthose between 2003 to 2009 and conventional observation data from 2017 and onwards03 are 

extracted from the UKMO operational operational archives.  30 
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The Bureau's archived observational data is also used to support this work, especially for the cycles from 2010 and onwards.. 

We BARRA-R also assimilates additional high frequency (10 min) land surface observations from automatic weather stations 

in Australia, and locally derived satellite atmospheric motion vectors (AMV). All the satellite data from 2010 onwards is taken 

from the Bureau's operational archives. Ground positioning system (GPS) radio occultation bending angle data up to 2009 is 

provided by the Radio Occultation Meteorology Satellite Application Facility (ROM SAF) and is extracted from the Bureau's 5 

archives for the time period since 2010. Additional land surface observations over New Zealand are extracted from their 

National Climate Database (CliFlo, 2017). The 4DVar assimilation of local AMV (Le Marshall et al., 2013) and GPSRO (Le 

Marshall et al., 2010) has been shown to improve operational forecasts. 

Before being assimilated, observations are screened to select the best quality observations, remove duplicates and reduce data 

redundancy via thinning, using the UKMO's Observing Processing System (OPS system) (based on version 2016.03.0) 10 

(Rawlins et al., 2007). There are per-cycle quality controls performed based on the method of Lorenc and Hammon (1988). 

Observations significantly different from the model background are rejected when exceeding a threshold calculated by a 

Bayesian scheme, unless they are consistent with other observations nearby. The observational error variances and thinning 

distances are established at the UKMO and the Bureau for their NWP systems. For the surface, sonde and aircraft observations, 

an observation automatic monitoring system performs monthly blacklisting of sites that show consistently large differences 15 

with BARRA-R's forecast over a one-month period. The system also calculates bias corrections for surface pressure and for 

aircraft and sonde temperature.  

For the satellite data, instruments and their individual channels are rejected when they become unreliable. The blacklisting is 

informed by the work of the ECMWF and MERRA-2 reanalysis teams for their reanalyses. Further, airmass-dependent 

variational bias correction is applied to satellite radiances as part of the assimilation process, allowing the time-varying 20 

corrections to fit drifts in instrumental bias (Harris and Kelly, 2001; Dee and Uppala, 2008). The bias corrections were 

calculated monthly, with the satellite radiances during the first month of each production stream not assimilated. There are 

abrupt changes to the amount of satellite data assimilated at the start and end of satellite missions and the various observational 

data archives.; Iin some cases, abrupt changes occur when corrections were made to the observation screening and thinning 

rules mid-production of the 2010-2015 reanalyses. The impacts of such changes, known to cause artificial shifts and spurious 25 

trends in a reanalysis (e.g., Thorne and Vose, 2010; Dee et al., 2011)these are still to be investigated for BARRA-R.. 

3 Preliminary evaluation of ten-year regional reanalysis 

Our evaluation focuses on three areas:, surface variables, pressure-level temperature and wind, and precipitation. For the 

surface variables, we compare BARRA-R against point-scale observations and gridded analyses of observations for 2 m 

temperature. For the pressure levels, we evaluate BARRA-R against point-scale observations of temperature and wind, and 30 

examine the timeseries of the bias between BARRA-R and the global reanalyses. Finally, as rain observations are not 
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assimilated in BARRA-R, gridded analyses of rain observations from gauges and satellites are used to provide the best 

independent reference in this study. 

3.1 Analysis departure statistics 

The observation departure statistics of the analysis can be compared against those of the model background state (Sec. 2.2) to 

indicate how closely the reanalysis fits the observational data before and after an analysis cycle. Root-mean-squared difference 5 

(RMSD) and additive bias (bias, for brevity) are used to measure the departures for a wide range of observed fields, where 

bias is calculated as 𝐸(𝑑𝑚) − 𝐸(𝑑𝑜), where 𝐸(∗) yields the expectation in time, 𝑑𝑚 refers to the timeseries of model values 

and 𝑑𝑜 are the observed values. Table 2 reports the ten-year mean values of the RMSD and bias for surface, sonde, aircraft-

based and satellite wind fields. The assimilation process is behaving as desired by drawing the model towards the observations 

by reducing the RMSD and the magnitude of the bias for nearly all observational types. Monthly timeseries of the departure 10 

statistics, shown in the Supplementary Material, also suggests that this is achieved across the period. 

3.12 Surface 

The advantages of BARRA-R over global reanalyses are most likely to be found near the surface, as BARRA-R resolves 

near-surface features larger thandown to 12 km in scale and assimilates more surface observations over Australia and 

New Zealand. This section first presents a point-scale evaluation of BARRA-R against surface observations, followed 15 

by comparison with gridded climate dataanalyses from observations. 

3.12.1 Point-scale evaluation of 2 m temperature, 10 m wind speed and surface pressure 

The t0+6h model forecasts of screen (2 m) (screen) temperature, 10 m wind speed and surface pressure are evaluated against 

land observations. These observations have only an indirect relation to the forecasts as they These forecasts have some 

independence from the observations as they are not used in the analysis forof the associated cycle t0. Since errors tend to grow 20 

with the forecast range, the assessment estimates places an upper bound on the true errors of the analysis fields between time 

t0 and t0+3h. These fields are interpolated betweenfrom the model's model levels using surface similarity theory (Walters et 

al., 2017a). TThe he ERA-Interim t0+6h forecasts from 0 and 12 UTC are also evaluated to serve as a benchmark, where its 

forecasts are performed twice daily from 0 and 12 UTCand . the MERRA-2 hourly time-averaged forecast fields 

(M2T1NXSLV) are also evaluated to serve as benchmarks. It is not ideal to directly compare two reanalyses with different 25 

resolutions, and interpolating them onto common (observed) locations before evaluation diminishes some of the improvement 

achieved by BARRA-R relative to ERA-Interimcoarser reanalyses. Nonetheless, we undertake the latter to assess whether the 

models contain information at the higherfiner -scale information captured by point measurements; it therefore does not provide 

an assessment of the true quality of the models reanalyses at their native resolutions.  
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To correct representativity errors in both reanalyses, their model fields values at (modelled) land points grid cells are 

interpolated to the observation times and the station locations via bilinear interpolation in time and in the horizontal direction. 

Height corrections are applied to the interpolated fields to match the station heights: the corrections to the screen temperature 

is based on dry adiabatic lapse rate (Sheridan et al., 2010), 10 m wind speed is based on Howard and Clark (2007), and the 

correction to surface pressure is based on the hydrostatic equation under a constant lapse rate. As the observations are 5 

irregularly distributed in time, we consider all observations within a t0+5h to t0+7h time window, with t0 being 0 and 12 UTC, 

and the model grids are linearly interpolated to the observation times. Root-mean-squared difference (RMSD), Pearson's linear 

correlation, additive bias and variance bias are calculated at each station, with the 𝑏𝑖𝑎𝑠 = 𝑚𝑒𝑎𝑛(𝑑𝑚) − 𝑚𝑒𝑎𝑛(𝑑𝑜), the 

variance bias being calculated as 𝑀𝑏𝑖𝑎𝑠 = 𝑣𝑎𝑟(𝑑𝑚)/𝑣𝑎𝑟(𝑑𝑜) − 1 to capture differences in the dispersion, where  𝑣𝑎𝑟(∗)  

computess the variance in time. The correlation assesses the temporal mismatch between the model and observations.  10 

Boxplots in Figure 3 shows the distribution of scores across 900-1500 stations in the BARRA-R domain in boxplots. BARRA-

R shows better agreement with the point observations than ERA-Interim the global reanalyses for most all three surface 

variables and by most of the measures. This resultIt is expected sincefrom the fact that BARRA-R resolves near-surface 

features below 50 km horizontal scale, and assimilates more surface observations over Australia and New Zealand. BARRA-

R's screen temperature shows higher correlation and lower biases. In particular, BARRA-R shows lower RMSD than ERA-15 

Interim at over about 80% of the stations for screen temperature and 10 m wind speed, and at 70% of stations for 10 m wind 

speed and surface pressure (see Figure S1 of the Supplementary Material). At closer inspection in Figure 4(a), a percentile 

comparison plot of screen temperature deviation from monthly mean, shown in Figure 4(a), indicates that the frequency 

distribution of BARRA-R temperature is closer to that of the observations than ERA-Interim, particularly in regimes below 

25% percentiles and above 905% percentiles.  20 

For 10 m wind speed, negative biases for variance exist in both all the reanalyses assessed in this paper, but less so for BARRA-

R. Figure 4(b) shows that 10 m wind speedsthey are positively biased during lightow wind conditions and vice versa during 

strong wind speeds. There are many possible reasons for under-estimating strong winds: the inaccurate descriptions of 

boundary layer mixing and form drag for sub-grid orography, and of surface properties such as land cover and vegetation 

types. Changing the fractional area of the vegetation canopy modifies scalar roughness of the vegetated tiles, affecting the 25 

wind speed. The seemingly linear variation in wind speed is known in the global reanalyses (e.g., Carvalho et al., 2014), and 

Rose and Apt (2016) attributed the problem of wind underestimation to inaccuracy in modelling wind speeds in unstable 

atmospheric conditions.  

Pressure is a large-scale variable which is likely to be better represented by a global model than a limited-area model. However,  

, although  the BARRA-R estimates of point-scale surface pressure are more accurate in topographically complex regions and 30 

coast lines (see Figure S1 of the Supplementary Material), where ERA-Interimthe  estimates from the coarser reanalyses are 
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poorless representative, so that the inter-quartile range of the RMSD scores for BARRA-R is significantly narrower than for 

ERA-Interim.  

3.12.2 Comparisons with gridded analysis of observed 2 m temperature 

The reanalyses are compared against a gridded daily 0.05° × 0.05° analysis of station maximum and minimum 2 m temperature 

data from the Australian Water Availability Project (AWAP, Jones et al., 2007). The AWAP grids are generated using an 5 

optimised Barnes successive-correction method that applies weighted averaging of the station data. Topographical information 

is included by using anomalies from long-term (monthly) averages in the analysis process. The AWAP analysis errors for 

maximum temperature are larger near the coast around northwest Australia and around the Nullarbor Plain, due to strong 

temperature gradients between the coast and inland deserts and a relatively sparse network (Jones et al., 2007). The coast of 

Western Australia and parts of Northern Territory are likely to share this similar analysis issue. The analysis errors are 10 

greaterlarger for minimum temperature, especially over Western Australia and the Nullarbor Plain. 

Figure 5 shows the differences forin 2007-2016 ten-year meanaverages in daily maximum and minimum temperature from 

AWAP, ERA-Interim, MERRA-2 and BARRA-R. The daily statistics are derived from 3-hourly forecast fields of ERA-Interim 

and hourly fields of MERRA-2 and BARRA-R. While inherent biases due to sampling are expected, this comparison also 

distinguishes highlights the advantage of higher frequency data generally found in a regional reanalysis when examining lower 15 

and upper tail statistics. The spatial variation in BARRA-R is very similar to AWAP, especially across the eastern seaboard of 

Australia where Eastern Highlands are the major driver for temperature variability. The insets show the contrasts from AWAP 

when the reanalyses are downscaled to the AWAP grid. BARRA-R shows cold and warm biases (relative to AWAP) of around 

1 K in daily maximum and minimum temperature respectively, particularly over the eastern region. MERRA-2 also shows 

similar levels of biases but with different signs and variability. Despite this, BARRA-R and MERRA-2 shows better 20 

agreementagree better with AWAP than ERA-Interim, which reports differences (in mean) up to 5 K in magnitude. The 

reduced amplitude ofin screen the diurnal cycle of temperature is a long-standing problem in the UM; experiments undertaken 

by UM development partners have shown that changes to the representation of the land surface (e.g., reductions in the amount 

of bare soil and changes to scalar roughness and albedo of vegetated tiles) reduce clear-sky biases (Bush et al., 20198). 

Figure 6 shows the monthly means of the differences in daily maximum and minimum temperature between the reanalyses 25 

and AWAP averaged across Australia. Here the OSTIA SST anomaly timeseries is also included, and it does not show a visible 

discontinuity at 2006/2007 (Section 2.1.3). The maximum temperature in BARRA-R appears cooler than AWAP after a strong 

La Nina event in 2010-2011, while the global reanalyses also show cooler trends in biases after 2010. BARRA-R and ERA-

Interim show smaller levels of temporal variability than MERRA-2. The minimum temperature in BARRA-R does not show 

an obvious trend but is warmer during 2010-2011 when ERA-Interim and MERRA-2 are cooler. These changes do not coincide 30 

with theour change s in soil moisture initialization in 2014-2015 (Section 2.1.2) or OSTIA SST. 
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3.23 Pressure levels 

To assess BARRA-R in the atmosphere, we compare the t0+6h forecasts on pressure levels from BARRA-R with radiosonde 

and pilot wind observations at 0 and 12 UTC on standard pressure levels ranging from 1000 to 10 hPa, using the harmonized 

data set produced by Ramella Pralungo et al. (2014a; 2014b). The pressure-level fields of BARRA-R and ERA-Interim's 

analyses at time t0 are also compared, even though they are not independent from the observations; such comparisons only 5 

provide baselines to interpret the relative quality of the BARRA-R forecasts. Similar comparisons with the ERA-Interim's 

twice-daily forecasts at these observation times are also not possible because they start from 0 and 12 UTC. The model data is 

interpolated horizontally to the sonde and pilot launch locations via bilinear interpolation, and the RMSD is calculated at each 

location and pressure level. T.  

Evaluations are undertaken at pressure levels ranging from 1000 to 10 hPa, and the resulting boxplots of RMSD are shown in 10 

Figure 76Figure 6Figure 7. Depending on the pressure level and parameter evaluated, between 54 to 203 sites were available. 

There is a marked variability in RMSD with the pressure levels, particularly for wind speed, due to a range of reasons such as 

variations in the number of observing sites, increasing sonde drift error on ascent, and differences in dynamic range of the 

fields with height. A markedly higher RMSD for wind speed occurs at height of 200 hPa, a height a which where the jet stream 

can be located occur. 15 

It is difficult to discern the differences between the two analyses, suggesting that they perform similarly from assimilating the 

same observations. Assimilation at a coarser resolution of 0.33° (cf. 0.11° of the forecast model) in BARRA-R does not 

drastically improve 0.75° representations of temperature and wind at these pressure levels and at point scales. There are also 

small differences between the analyses and BARRA-R background, indicating that the 0.11° forecast model does not degrade 

from the lower-resolution analysis of BARRA-R but also does also not improve upon the ERA-Interim's 0.75° representation 20 

of these fields at the observation locations..  

Figure 8 compares BARRA-R's 0 UTC analysis of air temperature at 850, 700 and 500 hPa against the analyses from ERA-

Interim and MERRA-2 (M2I3NPASM). BARRA-R is cooler at 500 hPa across the domain, and warmer at 850 hPa in the 

tropics than the global reanalyses, and the monthly differences in the zonal mean are of the order of 1 K. BARRA-R also shows 

a cooling shift at 700 and 500 hPa in the tropics, and a warming shift over south of 40°S after 2010. But when compared 25 

against MERRA-2, in the tropics, BARRA-R is warmer at 700 hPa, and the apparent shift in BARRA-R is also seen 

ininconclusive as MERRA-2 also shows similar shifts (relative to ERA-Interim) at these levels.  
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3.34 Precipitation 

We consider three reference gridded data sets to compare with the reanalyses. First is the 0.05° × 0.05° rain gauge analysis of 

daily accumulation over Australia from AWAP, produced using the Barnes method where the ratio of observed rainfall to 

monthly average is used in the analysis process (Jones et al., 2009). There is a north-south gradient in the AWAP analysis 

errors with larger analysis errors in the northern tropical regions, where length scales of convective rainfall events are shorter 5 

and more variable (Jones et al., 2009). Second is the 1° × 1° (full data daily) rain gauge (analysis over the domain from the 

Global Precipitation Climatology Centre (GPCC version 2018, Ziese et al., 2018), created using an empirical weighting-based 

interpolation method described in Becker et al. (2013). As with AWAP, GPCC is less accurate in regions where station scarcity 

and high precipitation variability coexist. For instance, different GPCC interpolation methods can yields very different analyses 

over the south Asia region (Becker et al., 2013). The third reference is the 0.25° × 0.25° satellite-based analysis of 3-hourly 10 

rain rates from the Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA 3B42 version 

7, Huffman et al., 2006). TMPA 3B42 combines precipitation estimates from various satellite systems and rain gauge monthly 

analysis. Satellite-derived estimates of convective precipitation are largely accurate in the low latitudes (Ebert et al., 2007, 

Chen et al., 2013), but the TMPA product is less accurate over the ocean due to the absence of local observations used for 

gauge adjustments (Sapiano and Arkin, 2009), and south of 40°S due to limited local cross-sensor calibration (Huffman et al., 15 

2008). TRMM often underestimates precipitation in high-latitude regions with significant topography due to difficulties of 

satellite retrievals over snow covered surfaces and/or due to the high elevations (Barros et al. 2006; Matthews et al. 2013).  

TRMM is also known to underestimatemiss amount of light rainfall and drizzle over subtropical and high-latitude oceans (Berg 

et al., 2010). In addition to these considerations, there are inherent limitations in comparing the reanalyses with AWAP, GPCC 

and TMPA. Specifically, products with coarser grids tend to over-represent low-threshold events occurring at spatial scales 20 

smaller than their grid sizes and under-represent high-threshold events. Further evaluation of BARRA-R precipitation 

estimates against point gauge observations and AWAP are reported in Acharya et al. (2019). 

Rain observations are not assimilated in either Neither BARRA-R noror ERA-Interim assimilated rainfall observations. 

Precipitation estimation within from their forecast models is constrained by other observation typess. Following Section 2.1, 

in BARRA-R, the microphysics scheme based on Wilson and Ballard (1999) parameterises the atmospheric processes that 25 

transfer water between the four modelled states of water (vapour, liquid droplets, ice, and raindrops) to remove moisture 

resolved on the grid scale. As the 12 km model is not "storm resolving", BARRA-R uses the mass flux convective 

parameterization scheme of Gregory and Rowntree (1990) with the CAPE closure to model sub-grid scale precipitating and 

non-precipitatingon convection using an ensemble of cumulus clouds as a single entraining-detraining plume. Such a scheme 

prevents . The UM uses the microphysics scheme based on Wilson and Ballard (1999) to form and evolve precipitation due to 30 

grid-scale processes (Walters et al., 2017a). For sub-grid scale processes, it uses a mass flux convective parameterization 

scheme with the CAPE closure (Gregory and Rowntree, 1990) to produce the convective-scale motion (< 10 km) and thus 
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prevent unstable growth of cloudy structures on the grid, which is otherwise required for explicit vertical circulations to develop 

(Clark et al., 2016). The modelled convectionlatter also works independently at each grid point, and the model can only predict 

the area-average rainfall, instead of the spectrum of rainfall rates. In other wordsConsequently, BARRA-R's precipitation 

estimates from sub-grid convection processes will be more erroneous than those for large-scale precipitation. In other words, 

The the accuracy of BARRA-R is expected to poorer worsen during the warm season and at low latitudes, while and to 5 

improvebetter during cooler season and at high latitudes where non-convective precipitation is dominant. To allow the UM to 

spin-up from the 0.33° analysis increments, we examine the quality of the precipitation accumulation between t0+3h to t0+9h, 

by comparing against gridded data sets. This also addresses the issue that the UM has yields an excess of precipitation at 

analysis time (t0-3h) due to a temporary imbalance in the moisture fields, by allowing time for the model to adjust andto remove 

the excess.  10 

For ERA-Interim, we used its first 12h accumulation, which  because it is considered the most accurate (Kallberg, 2011).  We 

examine BARRA-R and ERA-Interim with 0.05° × 0.05° raingauge analysis of daily accumulation from AWAP and 0.25° × 

0.25° satellite-based analysis of 3-hourly rain rates from the Tropical Rainfall Measuring Mission (TRMM) multi-satellite 

precipitation analysis (TMPA 3B42 version 7, Huffman et al., 2006). The AWAP rain grids are also produced using the same 

Barnes method, where the ratio of observed rainfall to monthly average is used in the analysis process. Some areas in AWAP 15 

have been masked (shown in white) because there were insufficient observations to derive reliable estimates. There are 

limitations in comparing datasets with different grids. Specifically, products with coarser grids tend to over-represent low-

threshold events occurring at spatial scales smaller than their native grid sizes and under-represent high-threshold events.  

3.3.1. Mean annual precipitation and frequency of rain days 

Figure 9Figure 97,The first column in Figure 7 row (i) compares the ten-year (2007-2016) annual mean precipitation amount 20 

estimated from the fiveour data sets. A close-up over Australia can be found in Figure S2 of the Supplementary Material. 

BARRA-R provides a realistic depiction when compared with TMPA across the domain,  but showings higher precipitation 

over the tropics and over the Tasman Sea and Southern Ocean. By contrast, ERA-Interim shows even higher precipitation over 

the tropics and insufficient rain over the Tasman Sea. TMPA is expected to be less accurate over the ocean due to the absence 

of local observations used for gauge adjustments (Sapiano and Arkin, 2009), and south of 40°S due to limited local cross-25 

sensor calibration (Huffman et al., 2008). BARRA-R also agrees very well with AWAP and GPCC over Australian land areas, 

reflecting the markedly higher precipitation in the northern tropics, and western Tasmania. It also agrees with GPCC over New 

Zealand. Notice the discrepancy between AWAP and TMPA over Tasmania, suggesting possible negative biases in TMPA in 

high-latitude regions with significant topography due to difficulties of satellite retrievals over snow covered surfaces and/or 

due to the high elevations where TMPA often underestimates precipitation (Barros et al. 2006; Matthews et al. 2013). BARRA-30 

R also shows better agreement with AWAP, GPCC and TMPA in some of the dry areas such as western Australia. 
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The frequency of days with three intensity regimes is examined next in  Figure 9Figure 97. First in row (ii), we examine the 

frequency of light rain days with amounts between [1,10) mm., with tThe 1 mm threshold being is chosen. This to accounts 

for the tendency of the model to create light "drizzle" events with very low rain rates. Even so, the two reanalyses show 

significantly more rain days in the tropics than TMPA and GPCC, and more rain days than TMPA over the Southern Ocean. 

Comparing with TMPA, the two reanalyses tend to show significantly more rain days in the tropics, western Tasmania, and 5 

the Southern Ocean. TRMM is known to miss light rainfall events over subtropical and high-latitude oceans miss amount of 

light rainfall and drizzle over subtropical and high-latitude oceans (Berg et al., 2010), while simulated precipitation over the 

Southern Ocean over-estimates drizzle (Franklin et al., 2013; Wang et al., 2015) when compared with satellite observations 

(Franklin et al., 2013; Wang et al., 2015). Some of these differences from TMPA are not mirrored by AWAP over Australia, 

suggesting possible under-estimation of rain days in TMPA over land (e.g., eastern seaboard, southwest Australia) wheree the 10 

gauge network is relatively dense (see Supplementary Material).  Despite these considerations, BARRA-R over-estimates the 

frequency of light rain days when compared with AWAP, notably in the northern and central regions of Australia, and 

Tasmania. The UM's parameterized convection scheme assumes that there are many clouds per grid box – which is marginal 

at the BARRA-R's resolution, and thus produces a bias towards widespread precipitation and provides has little indication of 

the areas which could expect larger rain rates (Clark et al., 2016). 15 

For heavy precipitation days, with amounts [10,50) mm, Figure 9Figure 97(iii) shows there are greater similarities between 

BARRA-R and, AWAP and GPCC, over land regions such as the southeast coast of Australia and Tasmania, than for ERA-

Interim. However, BARRA-R shows differences from AWAP and GPCC  underestimates the frequency over Australia north 

of 30°S where the gauge analyses are poorer.. Over the tropical ocean, the two reanalyses show more heavy precipitation days 

than TMPA in the tropics, although BARRA-R is more similar to TMPA. 20 

FinallyLastly, for the very heavy precipitation days (≥ 50mm) in Figure 9Figure 97(iv), it is obvious that ERA-Interim does 

not fully capture the enough frequency over land in northern Australia, and southeast Asia, whereas BARRA-R is more 

comparable with the three reference datasetsAWAP and TMPA.. This agrees with the findings of Jermey and Renshaw (2016) 

that higher-resolution regional reanalyses show improvement in representing high-threshold events at these spatial scales. Over 

the land in northern Australia, there are discernible differences in spatial variability between AWAP and BARRA-R. Over the 25 

ocean, BARRA-R also shows greater rainfall intensity in the tropics than ERA-Interim, but both reanalyses show lower 

intensity compared to TMPA. Since satellite-derived estimates of convective precipitation are largely accurate in the low 

latitudes (Ebert et al., 2007, Chen et al., 2013), tThese results reflect the deficiency of the parameterized convection scheme 

in BARRA-R for estimating convective precipitation amounts in this region. 
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3.3.2. Comparison of monthly totals 

Figure 10 Figure 108 and Figure 11 Figure 8 compares differences in domain-averaged monthly totals between the reanalyses 

(BARRA-R and ERA-Interim) and reference data (TMPA and GPCC)  of the reanalyses with TMPA, on the TMPA grid over 

five separate sub-domains between 80 to 180° E. Precipitation over land and ocean are distinguished. Over the tropical ocean 

between ±10°N [Figure 10Figure 108, row (i)], the two reanalyses show different shifts in overall differences from TMPA at 5 

around 2010, and these shifts are not apparent in the other sub-domains. Across the sub-domains, the variances of the 

differences are similar between the two reanalyses.  

Over tropical land regions, BARRA-R shows much higher totals than others [Figure 11(i)], due to higher precipitation 

occurring in mountainous terrains  beingat high or sharp topographical regions in Papua New Guinea (PNG), Indonesia and 

Sumatra, and relatively small Indonesian islands (see Figure S3 of the Supplementary Material). Other reanalyses and other 10 

gridded precipitation products disagree greatly at these locations with few observations and mountainous terrains (e.g., over 

PNG in Smith et al., (2013)). BARRA-R (and GPCC) also shows markedly higher monthly totals below 39.2° S [Figure 11(v)], 

than TMPA and ERA-Interim. This is due to higher BARRA-R precipitation estimates on the west coast and Southern Alps of 

New Zealand, where precipitation is likely underestimated in TMPA.  

The UM can produce grid localized high precipitation in BARRA-R, especially in unstable atmospheric conditions over steep 15 

orographic slopes. This issue is not unique to the UM but for instance  also occurs in the Weather Research and Forecasting 

model (Gustafson et al., 2014). When the convective parameterization in non-convective resolving models does not stabilize 

the air column, meteorological events can develop at the smallest resolvable scales in the model, producing unrealistically 

strong vertical velocities and precipitation; this is known as "grid-point storms" (Scinocca and McFarlane, 2004; Williamson, 

2013; Chan et al., 2014). Such storms occur more readily in models with higher horizontal resolutions (Williamson, 2013). As 20 

the resolution increases, resolved motions can produce moisture convergence and increase CAPE very rapidly, and the rate at 

which column instability is produced depends on the scale of moisture and heat convergence. This also tends to occur over 

tropical  land areas, over steep topography, and during the warm seasons, when the atmosphere is unstable and there is 

sufficient warm moisture supply at the surface. These considerations do not lend themselves to completely explain the observed 

bias in BARRA-R.  25 

By contrast, BARRA-R shows good better agreement with ERA-InterimGPCC and TMPA in other sub-domains for tropical, 

subtropical and temperate regions between 39.2° to 10.0° South [Figure 11(ii-iv)]. Over the land between 23 to 10°S, . 

BARRA-R shows significantly higher totals between ±10° over land, owing to occurrences of "grid-point storms". These can 

occur over high or sharp topographical regions, such as in Papua New Guinea, and Indonesia, and Pacific islands resolved only 

as single or few 0.11° × 0.11° cells. Numerical noise during computations can accumulate to trigger a fictitious storm by the 30 

convective parameterization scheme. The condensation heat release at the saturated grid box leads to a strong uplift. The model 
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then removes this excess moisture in the column by generating very large precipitation localised at that grid cell. This is more 

likely to occur over land in the tropics and sub-tropics and during the warm seasons, when the atmosphere is unstable and there 

is sufficient warm moisture supply at the surface. BARRA-R simulates wetter summer events than observed in TMPA and 

GPCC from 2011, when Australia was recovering from drought conditions with the onset of La Nina. Between 39 to 23°S, 

BARRA-R also simulated wetter events over Mt Kosciuszko, Tasmania, and North Island of New Zealand than TMPA after 5 

2014. This over-estimation is however less apparent when BARRA-R is compared with GPCC.  

BARRA-R also shows higher monthly totals below 39.2° South latitude over Tasmania and New Zealand, than TMPA and 

ERA-Interim. The discrepancy is partly due to (aforementioned) negative bias in TMPA and ERA-Interim in Tasmania, and 

occurrences of grid-point storms in BARRA-R over its high topography in New Zealand.  

4 Summary Discussion and outlook 10 

The recent development of the global and regional reanalyses addresses the need for high-quality, increasingly higher 

resolution, and longer-term reanalyses, accompanied by estimates of uncertaintyies, within the research and broader user 

communities. BARRA is the first represents one of the latest global efforts to develop regional reanalysises, and is the only 

one to date that focuses on the Australasian section of the Southern Hemisphere. It is developed with significant co-investment 

from state-level emergency service agencies across Australia, due to the advantages of deeper understanding of past weather, 15 

including extreme events, and especially in areas that are have been currently poorly served by observation networks. The 289-

year BARRA reanalysis, which is expected to be completed fully in 2019, will ultimately represent a collection of high-

resolution gridded meteorological data sets with 12 km and 1.5 km lateral spatial resolution and 10 minutes to hourly time 

resolution. BARRA will ultimately represent a collection of high-resolution gridded meteorological data sets with 12 km and 

1.5 km lateral spatialhorizontal resolution and 10 minutes to hourly time resolution. The production is well underway and is 20 

expected to complete in 2019.  

In this paper, we describe the BARRA 12 km regional reanalysis – BARRA-R, which is closely related to the Bureau's regional 

NWP system, although with an updated UM, 4DVar,  (with variational bias correction,) and automated station blacklisting 

systems are used. BARRA-R covers a significant region of the globe including parts of South East Asia and the eastern Indian 

Ocean, the southwest Pacific, Australia and New Zealand and assimilates a wide range of conventional and satellite 25 

observations that have proven to improve the skill of NWP.  

BARRA-R produces a credible reproduction of the meteorology at and near the surface over land as diagnosed by the selected 

variables. BARRA-R improves upon its global driving model, ERA-Interim, showing better agreement with point-scale 

observations of 2 m temperature, 10 m wind speed and surface pressure. Results are similar when BARRA-R is compared with 

MERRA-2. Daily maximum and minimum statistics for 2 m temperature at 5 km resolution are captured in BARRA-R with 30 
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smaller biases than ERA-Interim. There appear to be shifts in biases, relative to land observation analyses, over Australia 

amongst all the reanalyses, mirroring with changes in SST. This behaviour however does not coincide with known changes to 

the forcing data (soil moisture and SST) used in BARRA-R andbut requires further analysis to be better understood. BARRA-

R's 10 m wind fields show lower biases than ERA-Interim and MERRA-2, but the negative bias during strong winds, which 

is common amongst other reanalyses, remains significant. Altogether, BARRA-R provides good representation of near-surface 5 

extremes, which has implications for its uses for energy management, fire risk and storm damages. Theis bias could be 

addressed via post-processing using methods such as thoseat of Glahn and Lowry (1972), and Rose and Apt (2016).. 

Altogether, BARRA-R provides better representation of near-surface extremes, which has implications for its uses for energy 

management, fire risk and storm damages. More generally, a variety of post-processing methods can further improve the 

accuracy of BARRA-R data (e.g., Berg et al., 2012; Frank et al., 2018). Our study did not discern clear merits in BARRA-R 10 

analysis and forecast, relative to ERA-Interim analysis, for the pressure-level temperature and wind. Further, there is no 

conclusive explanation for the shifts in 500, 700 and 850 hPa air temperature occurring at 2010, as comparisons with ERA-

Interim and MERRA-2 yield mixed results. Other evaluations of the UM GA6 configurations including tropical cyclones, 

precipitation, clouds and large-scale flow, are reported in Walters et al. (2017a; 2017b), albeit in global models at coarser 

spatial resolutions. 15 

Precipitation fields from BARRA-R show similarities with AWAP and GPCC AWAP's gridded daily rain gauge analysesis 

over Australia, where it reflects more similar frequency statistics for heavy rain events and annual mean than ERA-Interim. 

While this is expected from comparing grids with different measurement resolutionssupport, BARRA-R is expected to contains 

more information pertaining to rain events at local scales. The frequency statistics (of both light and heavy rain days) of the 

two reanalyses are markedly different from TMPA over regions exterior to Australia, even though the variability of the monthly 20 

totals is very similar amongst the reanalyses and TMPA across the domain. BARRA-R is likely to be positively biased over 

land in the regions north of 10° S and New Zealand due to higher precipitation estimates concentrated in regions with high or 

steepsharp topographyical areas. This is partly due to the presence of grid-point storms that commonly occur in non-convective 

resolving models. Alas, due to grid-point storms, but the likely TMPA precipitation underestimations in observations 

associated with the high elevations make thisposes difficulties to quantify through direct comparisonthe wet bias. The distinct 25 

characteristics of grid-point storms in terms of superficial spatial localization, precipitation amount and vertical wind speed, 

could be detected and screened out via post-processing. ThisIt is important as this model artefact affects the analyses of the 

rainfall averages and extremes.  

The disagreement with TMPA is also apparent over the oceans, but consensus between satellite-based products generally 

degrades over higher latitudes, especially over the Ssouthern Ooceans (Behrangi et al., 2014). The distinct characteristics of 30 

grid-point storms in terms of superficial spatial localization, precipitation amount and vertical wind speed, could be detected 

and screened out via post-processing. DuringOver the the 2003-2016 period, the variability of the monthly precipitation totals 
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is similar amongst the reanalyses, TMPA and GPCC across the domain. Notable exceptions are a dry shift occurring in 

BARRA-R during 2010 over the tropical ocean, and wetter summer events over land in thenorthern and southeast Australia, 

and the North Island of New Zealand after 2014. These coincident shifts in daily maximum 2 m temperature (over Australia), 

upper-air temperature (across the BARRA-R domain), and tropical precipitation in all the reanalyses suggest larger differences  

in large-scale synoptic patterns between them after 2010. Given all the above considerations, local evaluation of BARRA-R 5 

reanalysis before application is recommended. 

 More in-depth evaluation of BARRA-R precipitation estimates against point gauge observations and AWAP are reported in 

Acharya et al. (2018). 

Higher resolution models used to downscale BARRA-R would alsocould alleviate the observedse shortcomings by resolving 

sharp topographical features, resolving sub-grid processes (e.g., convection), and using science configurations more suited for 10 

a given climatic region. Assessment of the UM's first Regional Atmosphere (RA1) science configurations for convective-

permitting models, recently concluded in December 2017, distinguishes two different science configurations for mid-latitude 

and tropical regions (RA1-M and RA1-T respectively). Developments in RA1 have produced can lead to improvements to 2 

m temperature, 10 m wind speed and precipitation (Bush et al., 20198). Further, it is known that BARRA-R's convection 

scheme, involving instantaneous adjustment of cloud fields to changes in forcing (e.g., solar heating, land/sea temperature 15 

differences), can lead to unrealistic behaviour at places such as coasts and in time (e.g., incorrect diurnal cycle) (Clark et al., 

2016). A companion article will examine the relative merits from downscaling between downscaled regional reanalyses and 

BARRA-R with convective-scale models..  

The recent development of the global and regional reanalyses addresses the need for high-quality, increasingly higher 

resolution, and longer-term reanalyses, accompanied by uncertainties, within the research and broader user communities. 20 

BARRA therefore represents the recent effort in the development of regional reanalyses, and is the first to focus on the 

Australasian region. It is developed with significant co-investment from state-level emergency service agencies across 

Australia, due to the advantages of deeper understanding of past weather, including extreme events, and especially in areas 

that are currently poorly served by observation networks. The 28-year BARRA reanalysis, which is expected to be completed 

fully in 2019, will ultimately represent a collection of high-resolution gridded meteorological data sets with 12 km and 1.5 km 25 

lateral spatial resolution and 10 minutes to hourly time resolution.  

Finally, BARRA also represents an important step in supporting the Bureau's ability to prepare for future reanalysis-related 

activities such as data rescue and reprocessing of observational data. Future reanalyses could use higher resolution models and 

ensemble-based forecast and assimilation systems to quantify uncertainties. They will also benefit from international efforts 

in reprocessing historical conventional and satellite observations with enhanced quality and/or more accurate uncertainty 30 

estimates. 
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Figures 

 

 
Figure 111 BARRA-R domain enclosed by the dashed box. Blue shading shows the model orography. 5 
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Figure 222 Cycling setup of BARRA-R at base time t0 = 0, 6, 12, and 18 UTC. Each UM forecast is initialized at t0-3h by the previous 

forecast (grey arrows) with increments from current analysis (red arrows). The purple bars indicate the time steps of the model 5 
states that have been archived. 
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Figure 3 Boxplots showing the distribution of ERA-Interim, MERRA-2, and BARRA-R and ERA-Interim t0+6h forecastevaluation 

scores for (a) 2 m temperature, (b) 10 m wind speed, and (c) surface pressure over all stations in the BARRA-R domain. The scores 

are calculated on model forecasts valid between t0+5h and t0+7h against observations during 2007-2016. Individual boxes extend 

show the interquartile range of the scoresfrom first to third quartile,. Medians medians are marked in each box and 'whiskers' cover 5 
the 5-95% percentile range. 
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Figure 4 Comparisons of percentile values between observations and reanalyses for (a) 2 m temperature, and (b) 10 m wind speed 

during 2010-2013. The values from 0.05% to 99.95% percentiles are calculated using values derived from monthly means. The 5 
vertical blue dashed lines indicate the corresponding percentiles of the observations. 
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Figure 5 Mean differences in (row i) Mean daily minimum maximum (TMax) (top row) and (ii) maximum minimum (TMin)(bottom 

row) screen 2 m temperature [K] for 2007-2016, between (column a) ERA-Interim and AWAP, (b) MERRA-2 and AWAP, and (c) 

BARRA-R and AWAP. The spatial means of the differences  from AWAP, ERA-Interim and BARRA-R. The insets show differences 

when subtracting AWAP statistic from the reanalyses.are reported in the text. 5 
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Figure 6 Monthly mean differences in daily (column a) maximum (TMax) and (b) minimum (TMin) 2 m temperature [K] averaged 

over Australia, between (row i) BARRA-R and AWAP, (ii) ERA-Interim and AWAP, and (iii) MERRA-2 and AWAP. Black curves 

are shaded around the 14-year means. Green curves plot the monthly anomalies, from 2003-2016 monthly averages, of the OSTIA 5 
sea surface temperature averaged over 46-4° S and 94-174°E. 

 

 

Figure 776 Boxplots showing the RMSD RMSD  distribution of BARRA-R t0+6 forecast and t0 analysis, and ERA-Interim analysis 

for (a) temperature and (b) wind speed at over multiple sites in the BARRA-R domain. RMSD is calculated for temperature and 10 
wind speed at pressure levels 10, 50, 100, 200, 400, 500, 700, 850, 925 and 1000 hPa against pilot balloon and radiosonde observations 

at 0 and 12 UTC. The numbers of sites are indicated in the brackets. 
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Figure 8 Hovmöller plots of the monthly difference in zonal mean air temperature [K] at 0 UTC and three pressure levels (row i) 

850, (ii) 700, and (iii) 500 hPa, between (column a) BARRA-R and ERA-Interim, and (b) BARRA-R and MERRA-2. 
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Figure 997 (row i)  Mean annual precipitation [mm] (top row), and (ii) fractions of light rain days with 1-10 mm precipitation (second 

row), (iii) heavy precipitation days with 10-50 mm (third row) and (iv) very heavy precipitation days with > 50 mm (bottom), from 

over 2007- to 2016 from (column a)  AWAP (first column), (b) GPCC, (c) TMPA (second column), (d) ERA-Interim (third column), 

and (e) BARRA-R (last column). Regions with more than 10% missing values in AWAP are masked. Close ups of the plots over 5 
Australia are provided in the Supplementary Material (Figure S2 of the) Supplementary Material. 
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Figure 10108 Differences in Monthly monthly mean precipitation total [mm] averaged over the ocean in five sub-domains (row i-v), 

between (column a) BARRA-R and TMPA, and (b) ERA-Interim and TMPA. Black curves are shaded around the 14-year means. 

Green curves plot the monthly anomalies, from 2003-2016 monthly averages, of the OSTIA sea surface temperature averaged over 

respective sub-domains.land (left) and sea (right), from TMPA, ERA-Interim and BARRA-R, in five sub-domains depicted in the 5 
inset. RMSD, bias and correlation are calculated between each reanalysis and TMPA. 
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Figure 11 As with Figure 10Figure 108Figure 9 (column a) and (b), but over land. Additional comparisons are made between (c) 

BARRA-R and GPCC, and (d) ERA-Interim and GPCC.  
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Tables 

 

Observations Variables Time 

periods 

Sources 

Land synoptic observations (LNDSYN) Surface pressure,  

temperature,  

humidity, wind 

1978-20187 

 

Reanalysis prior to 2003 

uses the data from ECMWF 

archive collected for ERA-

Interim and ERA-40..  

Reanalysis between 2003 

and 2009  uses the data 

from UKMO ECMWF 

operational archive.. 

Reanalysis from 2017 uses 

satellite radiance data from 

the UKMO operational 

archive. 

Reanalysis from 2010 also 

uses satellite data from the 

Bureau's operational 

archive.  

Bureau's archive also 

provides 10 minute land 

synoptic data from 2001, 

METARS between 2000 to 

2009, TEMP from 2002 and 

WINPRO from 2010. 

New Zealand National 

Climate Database (CliDB) 

provides additional 

LNDSYN data over New 

Zealand. 

Meteorological airfield reports (METARS) 

Ship synoptic observations (SHPSYN) 

Buoy Surface pressure, 

temperature, wind 

Radiosondes (TEMP) Upper-air wind, 

temperature, humidity 

1978-2009 

 Wind profilers (WINPRO) 

Wind-only sondes (PILOT) Upper-air wind 1978-20187 

Aircraft Meteorological Data Relay (AMDAR) Flight-level temperature, 

wind 

1978-20187 

 Air Report (AIREP) 

Advanced Infrared Sounder (AIRS) Infrared radiances 2003-20187 

Advanced TIROS operational vertical sounder 

(ATOVS) 

HIRS/AMSU radiances 1998-20187 

TIROS operational vertical sounder (TOVS) MSU and HIRS radiances 1979-2002 

Infrared Atmospheric Sounding Interferometer (IASI) Infrared radiances 2007-20187 

ESA Cloud motion winds (ESACMW) Satellite radiometer-based 

winds (satwinds): cloud 

motion winds, AMV 

1982-20187 

Geostationary Operational Environmental 

(GOESBUFR) 

1995-20187 

Meteosat 2nd Generation satellite winds (MSGWINDS) 1982-20187 

Japanese Geostationary satellite winds (JMAWINDS) 1987-20187 

MODIS winds (MODIS) 2005-20187 

SeaWinds Scatterometer-based winds 

(scatwinds) 

1996-2009 

Advanced Scatterometer (ASCAT) 2007-20187 

GPS Radio Occultation (GPSRO) Bending angle 2001-20187 Reanalysis prior to 2010 uses 

data provided by Radio 

Occultation Meteorology 
Satellite Application Facility 

(ROM SAF) archive, under 

EUMETSAT. 
Reanalysis from 2010 uses the 

data from the Bureau's 

operational archive. 

Australian locally derived satwinds  AMV 2002-20187 Bureau of Meteorology 

operational archive WindSat Scatwinds 2015-20187 

Advanced Technology Microwave Sounder (ATMS) Microwave radiances 2014-20187 

Cross-track Infrared Sounder (CrIS) Infrared radiances 2014-20187 

Tropical Cyclone track (TCBOGUS) Central pressure and 

position 

1848-20186 The International Best 

Track Archive for Climate 

Stewardship (IBTrACS) 

provides the track data up to 

2017.  

The Australian Tropical 

Cyclone Database is used 

for 2018. 

Table 1  Observations assimilated in BARRA. Only the period concurrent with the reanalysis period is used. The various data sets 

were retrieved during the production, and thus the exact periods of each set used may differ. 
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Table 2  Comparisons of the 10-year mean of the RMSD and bias between the analyses and observations (O-A) and those between 

the background and observations (O-B), calculated for selected observational types across the BARRA-R domain. Values in green 

show reduction in the RMSD and the magnitude of the bias by the analyses, otherwise in red. 

 5 

 O-B O-A 

Fields Bias RMSD Bias RMSD 

Surface temperature (K) -0.09 1.78 -0.10 1.61 

Surface pressure (Pa) -3.67 101.69 -2.08 68.85 

Surface relative humidity (%) 0.0 10.0 0.00 8.0 

Surface zonal wind (m/s) 0.05 1.97 -0.01 1.74 

Surface meridional wind (m/s) 0.04 1.94 0.01 1.72 

Aircraft potential temperature (K) -0.24 1.34 -0.17 1.10 

Aircraft zonal wind (m/s) -0.04 3.05 -0.03 2.09 

Aircraft meridional wind (m/s) -0.18 3.06 -0.07 2.07 

Sonde temperature at 980 hPa (K) -0.15 1.11 -0.08 0.81 

Sonde temperature at 500 hPa (K) -0.33 0.92 -0.18 0.60 

Sonde zonal wind at 980 hPa (m/s) -0.15 2.45 -0.06 1.45 

Sonde zonal wind at 500 hPa (m/s) -0.17 2.52 -0.07 1.41 

Sonde meridional wind at 980 hPa (m/s) 0.23 2.34 0.09 1.38 

Sonde meridional wind at 500 hPa (m/s) 0.11 2.44 0.03 1.39 

Satwind zonal wind (m/s) 0.36 3.16 0.27 2.72 

Satwind meridional wind (m/s) 0.05 2.90 0.01 2.40 

Scatwind zonal wind (m/s) 0.06 1.39 0.03 0.95 

Scatwind meridional wind (m/s) 0.20 1.78 -0.02 1.32 


