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 47 
Key Points 48 
 49 
(1) Bayesian inference and prediction are useful to evaluate multiple soil respiration models 50 

with different levels of model complexity. 51 

(2) Data models used in Bayesian inference have substantial impacts on model parameter 52 

distributions and subsequently model predictions. 53 

(3) Using exponential power distribution and considering heteroscedasticity in data models 54 

improve Bayesian inference and prediction.  55 
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Abstract 72 

Bayesian inference of microbial soil respiration models is often based on the assumptions that the 73 

residuals are independent (i.e. no temporal or spatial correlation), identically distributed (i.e. 74 

Gaussian noise) and with constant variance (i.e. homoscedastic). In the presence of model 75 

discrepancy, since no model is perfect, this study shows that these assumptions are generally 76 

invalid in soil respiration modeling such that residuals have high temporal correlation, an 77 

increasing variance with increasing magnitude of CO2 efflux, and non-Gaussian distribution. 78 

Relaxing these three assumptions stepwise results in eight data models. Data models are the basis 79 

of formulating likelihood functions of Bayesian inference. This study presents a systematic and 80 

comprehensive investigation of the impacts of data model selection on Bayesian inference and 81 

predictive performance. We use three mechanistic soil respiration models with different levels of 82 

model fidelity (i.e. model discrepancy) with respect to number of carbon pools and explicit 83 

representations of soil moisture controls on carbon degradation, and accordingly have different 84 

levels of model complexity with respect to the number of model parameters. The study shows data 85 

models have substantial impacts on Bayesian inference and predictive performance of the soil 86 

respiration models such that: (i) the level of complexity of the best model is generally justified by 87 

the cross-validation results for different data models; (ii) not accounting for heteroscedasticity and 88 

autocorrelation might not necessarily result in biased parameter estimates or predictions, but will 89 

definitely underestimate uncertainty; (iii) using a non-Gaussian data model improves the parameter 90 

estimates and the predictive performance; and (iv) separate accounting for autocorrelation or joint 91 

inversion of correlation and heteroscedasticity can be problematic and requires special treatment. 92 

Although the conclusions of this study are empirical, the analysis may provide insights for 93 

selecting appropriate data models for soil respiration modeling.  94 
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1 Introduction  95 

Developing accurate soil respiration models is important for realistic projection of global 96 

carbon [C] cycle, as global soils store 2,300Pg carbon, an amount more than 3 times that of the 97 

atmosphere (Schmidt et al., 2011) and release 60–75 Pg C/yr, about 7 times more CO2 to the 98 

atmosphere than all human-caused emissions (Le Quéré et al., 2014). The major work on soil 99 

respiration modeling has been focused on advancing knowledge about model inputs and 100 

calibration data (e.g. Janssens et al., 2003; Peters et al., 2007; Scott et al., 2009; Barron-Gafford et 101 

al., 2011; Hilton et al., 2014)  and on developing more advanced models for better representing 102 

soil microbial processes (e.g. Schimel and Weintraub, 2003; Allison et al., 2010; Davidson et al., 103 

2011; Wieder et al., 2013, 2015; Xu et al., 2014; Zhang et al., 2014) . Integration of data and 104 

models is indispensable for improving predictability of the terrestrial carbon cycle, and statistical 105 

modeling is a vital tool for the model-data integration (Luo et al., 2011, 2014; Wieder et al., 2015). 106 

In addition, use of state-of-the-art statistical methods is necessary to accurately quantify 107 

uncertainty in parameters and structures of soil respiration models for improvement and practical 108 

uses of the models (Katz et al., 2013). A data model that is also known as a residuals model or an 109 

error model is used to characterize residuals (i.e., the difference between data and corresponding 110 

model simulations). While a large number of data models have been used (e.g. Elshall et al., 2018; 111 

Scholz et al., 2018) to our knowledge comprehensive and systematic evaluation of data models for 112 

soil respiration modeling has not been reported in literature. 113 

The objectives of this study are to evaluate the impacts of data models on Bayesian inference 114 

and predictive performance of three mechanistic soil respiration models, and to use the evaluation 115 

results to make broader recommendations. The three models were developed by Zhang et al. (2014) 116 

to simulate the Birch effect (the peak soil microbial respiration pulses in response to episodic 117 
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rainfall pulses) at a site scale and a short temporal scale; understanding the Birch effect is important 118 

for gaining mechanistic understanding of CO2 efflux production (Högberg and Read, 2006; Vargas 119 

et al., 2011). The models of Zhang et al. (2014) are based on an existing four-carbon pool model, 120 

but have additional carbon pools and/or explicit representations of soil moisture controls on carbon 121 

degradation and microbial uptake rates. The models were calibrated, and Bayesian model selection 122 

was used to select the best model (Zhang et al., 2014). However, this effort was based on a single 123 

data model. It is unknown whether the best model still remains the best (in terms of reproducing 124 

the both calibration data and the cross-validation data) if a different data model is used. In addition, 125 

since predictive performance of the models was not evaluated in Zhang et al. (2014), it is unknown 126 

whether the best model will give the best predictions. These two questions are addressed in this 127 

study by considering eight data models and by evaluating predictive performance in a manner of 128 

cross-validation. The top two models (also the two most high fidelity models) ranked by Zhang et 129 

al. (2014) are considered in this study, and the worst model (also the low fidelity model) is also 130 

considered in this study for comparison. We use the terms model fidelity and model discrepancy 131 

interchangeably. Model fidelity refers to the degree of realism of representing our scientific 132 

knowledge with respect to the real world system. That is a high fidelity model has less discrepancy. 133 

Evaluating predictive performance for the three models with different degrees of fidelity provides 134 

more insights than a single model.  135 

Bayesian inference in general uses the Bayes’ theorem to update the prior distributions of 136 

model parameters to posterior parameter distributions given a likelihood function of data. The 137 

mathematical formulation of the (formal and informal) likelihood function requires a probabilistic 138 

data model that however is intrinsically unknown due to unknown errors in all model components 139 

such as model structures, parameters, and driving forces. Bayesian inference of soil respiration 140 
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models often adopts the assumption of independent, normally distributed and homoscedastic 141 

residuals (e.g. Ahrens et al., 2014; Bagnara et al., 2015, 2018; Barr et al., 2013; Barron-gafford et 142 

al., 2014; Braakhekke et al., 2014; Braswell et al., 2015; Correia et al., 2012; Du et al., 2015, 2017; 143 

Hararuk et al., 2014; Hashimoto et al., 2011; He et al., 2018; Klemedtsson et al., 2008; Menichetti 144 

et al., 2016; Raich et al., 2002; Ren et al., 2013; Richardson and Hollinger, 2005; Steinacher and 145 

Joos, 2016; Tucker et al., 2014; Tuomi et al., 2008; Xu et al., 2006; Yeluripati et al., 2009; Yuan 146 

et al., 2012, 2016; Zhang et al., 2014; Zhou et al., 2010). These assumptions are conveniently 147 

adopted to satisfy the requirement of using an unknown probability model in Bayesian statistics, 148 

which is called “a basic dilemma” by (Box and Tiao, 1992).  149 

Postulating the data models is always based on assumptions about residual statistics, and the 150 

most widely used assumptions are paired as follows: (i) independent vs. correlated residuals, (ii) 151 

homoscedastic vs. heteroscedastic residuals, and (iii) Gaussian vs. non-Gaussian residuals. For soil 152 

respiration modeling few studies have relaxed the non-correlation assumption(e.g. Cable et al., 153 

2008, 2011; Li et al., 2016b), the homoscedasticity assumption (e.g. Berryman et al., 2018; Elshall 154 

et al., 2018; Ogle et al., 2016; Tucker et al., 2013), and the non-Gaussian and  homoscedasticity 155 

assumptions (e.g. Elshall et al., 2018; Ishikura et al., 2017; Kim et al., 2014). The recent study of 156 

Scholz et al. (2018) relaxed these three assumptions using the generalized likelihood function 157 

developed by Schoups and Vrugt (2010). However, few studies have focused on investigating 158 

appropriateness and impact of these assumptions for soil respiration modeling, by relaxing the 159 

independent residuals assumption ( Ricciuto et al., 2011) and the Gaussian residuals assumption 160 

(Ricciuto et al., 2011; van Wijk et al., 2008). By relaxing these three assumptions stepwise 161 

resulting in eight data models, to our knowledge this is the first study that systematically evaluates 162 

the impact of data model selection on Bayesian inference and predictive performance of soil 163 
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respiration modeling. In addition, to our knowledge this is the first soil respiration modeling study 164 

that investigates the impact of data models in relation to model fidelity. 165 

Relaxing these three assumption results in eight data models, which are shown in details in 166 

Section 2. For example, combining the assumptions of independent, homoscedastic, and Gaussian 167 

residuals leads to the standard least squares data model. This model is the simplest one among the 168 

eight data models, since it requires only one parameter, i.e., the constant variance of the Gaussian 169 

distribution. Note that there is a difference between the soil respiration model parameters and the 170 

data model parameters. They technically can be jointly estimated, but one arises from assumptions 171 

about soil respiration processes, and the other from assumptions about the residuals. Relaxing the 172 

homoscedastic assumption to heteroscedastic gives the weighted least squares data model. It is 173 

more complex because it has extra parameters to account for multiple variances for multiple data. 174 

Whenever one or combinations of the three assumptions (independence, homoscedasticity, and 175 

normality) are relaxed, the resulting data models become more complex and require more 176 

parameters.  Such systematic evaluation of data models (McInerney et al., 2017; Smith et al. 2010b, 177 

2015) is necessary to evaluate appropriateness of residuals  assumptions and their impacts on 178 

Bayesian inference. 179 

The assumptions of heteroscedastic, correlated, and non-Gaussian residuals are accounted for 180 

by using the method of Schoups and Vrugt (2010) in the following procedure: (i) the correlation 181 

is removed from the residuals by using an autoregressive model; (ii) the resulting residuals are 182 

normalized by a linear model of variance; and (iii) the normalized residuals are characterized by 183 

using the skew exponential power distribution. The data model parameters (i.e., coefficients of the 184 

autoregressive model, the linear variance model, and the skew exponential power distribution) are 185 

not specified by users, but estimated together with soil respiration model parameters during the 186 



8 

 

Bayesian inference. The skew exponential power distribution is general in that by adjusting the 187 

values of its kurtosis and skewness parameters the distribution can produce other distributions such 188 

as the Laplace distribution (van Wijk et al., 2008; Ricciuto et al., 2011) and other distributions 189 

through using an exponential model with different kurtosis parameters (Tang and Zhuang, 2009).  190 

It is worth pointing out that there exist other methods to account for the three assumptions. Evin 191 

et al. (2013) suggested accounting for residual heteroscedasticity before accounting for residual 192 

autocorrelation. Lu et al. (2013) developed an iterative two-stage procedure to separately estimate 193 

physical model parameters and data model parameters. Evin et al. (2014) developed a similar 194 

procedure to first estimate model parameters and then estimate heteroscedasticity and 195 

autocorrelation parameters. While this study uses the method of Schoups and Vrugt (2010), 196 

exploring other methods is warranted in future studies.        197 

After investigating the impacts of the data models on Bayesian inference, this study evaluates 198 

the impacts of the data models on predictive performance of the three soil respiration models. 199 

Using random samples generated during the Bayesian inference, a prediction ensemble is produced 200 

for each soil respiration model. The ensemble is used to evaluate predictive performance of the 201 

models in a stochastic sense by estimating to what extent the models can predict future events. The 202 

evaluation in this study is done in a cross-validation manner by splitting the dataset of CO2 efflux 203 

into two parts for Bayesian inference and cross-validation, respectively. The evaluation of 204 

predictive performance is important because different data models may give different parameter 205 

distributions and accordingly different predictive performance. For example, the study of van Wijk 206 

et al. (2008) concluded that the choice of the residual function is crucial to achieve accurate model 207 

prediction and parameter estimation. Shi et al. (2014) showed that the posterior parameter 208 

distributions and predictive performance given by two data models (weighted least square and 209 
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skew exponential power distribution after removing heteroscedasticity and autocorrelation) are 210 

dramatically different, and a definitive conclusion was drawn that one data model is better than 211 

the other. The evaluation of predictive analysis is conducted for the following two cases: (1) the 212 

prediction ensemble is generated by random samples of the soil respiration models only (i.e. 213 

credible interval), and (2) the prediction ensemble is generated by random samples of not only the 214 

soil respiration models but also the data models (i.e. predictive interval). The two cases lead to 215 

different conclusions about the predictive performance. It is expected that the evaluation of 216 

predictive performance conducted in this study can help select the most appropriate data model to 217 

achieve optimal model predictions.  218 

The remainder of the paper is organized as follows. Section 2 starts with a description of the 219 

evolving data models and their corresponding likelihood functions used in Bayesian inference, 220 

followed by a brief summary of the three soil respiration models. The results of Bayesian inference 221 

are discussed in Section 3 and Section 4, addressing the data model implications on parameter 222 

estimation and predictive performance, respectively. Section 5 summarizes the key findings and 223 

limitations of this study, and provides recommendations for approaching data model selection.  224 

2 Methodology 225 

This section starts with a description of the eight data models that account for the three pairs 226 

of assumptions about residuals in a stepwise manner in Section 2.1. The data models are used to 227 

build the likelihood functions used in Section 2.2 for Bayesian inference. The three soil respiration 228 

models and observations of CO2 efflux are described in Sections 2.3 and 2.4, respectively. Metrics 229 

for evaluating predictive performance are presented in Section 2.5.   230 

 231 



10 

 

2.1 Data models  232 

This study considers eight evolving data models starting from a data model that assumes 233 

independent, homoscedastic, and Gaussian residuals to a data model that relaxes all the three 234 

assumptions. The eight data models are based on the generic normalized residual,  235 

~t
t t

t

a a X



 ,                  (1) 236 

where t t td Y    is the residual (the difference between data dt and its corresponding model 237 

simulation tY ) at time or location t ; t  is the standard deviation of the residual; and X  is the 238 

probability density function (PDF) of at. The eight data models are formulated with different forms 239 

of t , t , and X. The standard least square (SLS) data model is  240 

0

~ (0,1)t
t ta a N




 ,                 (2) 241 

where 0t   is a constant for all the data (i.e., homoscedasticity), and X is the standard normal 242 

distribution, N(0,1). The unknown parameter 0  is estimated jointly with unknown physical 243 

model parameters. If t  is not a constant (i.e., heteroscedastic), SLS becomes the weighted least 244 

squared (WLS) data model. While heteroscedasticity can be accounted for through residuals 245 

transformation (e.g. Thiemann et al., 200; Smith et al., 2010b) or other similar approaches (Gragne 246 

et al., 2015) , a linear heteroscedastic model 0 1t tY     is assumed here by following the 247 

studies  of Thyer et al. (2009), Schoups and Vrugt (2010), and Evin et al. (2013, 2014). With the 248 

linear model, there is no need to estimate t  for each data. Instead, t  is calculated by estimating 249 

only two parameters, 0  and 1 . The WSL data model is written as  250 

0 1

~ (0,1)t
t t

t

a a N
Y


 




.                (3) 251 
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The two unknown parameters 0  and 1  are estimated jointly with unknown physical model 252 

parameters. The linear model assigns smaller weight to the data with larger simulation, tY . If the 253 

simulation is small and 0 1 tY  , the weight becomes constant for all data. Both SLS and WLS 254 

assume that at is independently and identically distributed. 255 

It is not uncommon that residuals are correlated in space and time, due to propagation of 256 

measurement errors (Tiedeman and Green, 2013) and model structure errors (Evin et al., 2014; 257 

Kavetski et al., 2013; Lu et al., 2013). The temporal correlation that occurs in the numerical 258 

example of this study can be accounted for by using a p-order autoregressive model. This leads to 259 

the data model of standard least square with autocorrelation (SLS-AC),  260 

1

0

~ (0,1)

p

t i t i
i

t ta a N
 










                       (4) 261 

where p is the order of autocorrelation, and i  is an autocorrelation coefficient. The unknown i  262 

and 0  are estimated together with unknown model parameters. By extending the concept of 263 

correlated residuals to WLS leads to the weight least square with autocorrelation (WLS-AC),  264 

1
1

0 1

~ (0,1)

p

t i t
i

t t
t

a a N
Y

 

 










                (5) 265 

The unknown parameters of 0 , 1 , and i  are estimated jointly with physical model 266 

parameters. Equations (2) – (5) assume that the residuals are Gaussian.  267 

The next four data models are similar to the previous four models except that the standard 268 

normal distribution of ta  is replaced by the skew exponential power distribution, (0,1, , )SEP   , 269 

with zero mean and unit standard deviation (Schoups and Vrugt, 2010)  270 
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2/(1 )

,1

2
( | , ) expt tp a c a


  


  

 



    

,                (6) 271 

where   is skewness,   is kurtosis, 
( )

, ( ) tsign a
t ta a   

       , 1( )M     , 272 

1/ 2

3 / 2

[3(1 ) / 2]

(1 ) [(1 ) / 2]


 
 


  

,  2 2 2 2(1 ) ( ) 2 1M M        , 273 

1/2 1/2

[1 ]

[3(1 ) / 2] [(1 ) / 2]
M


 
 


   

, and 
1/(1 )

[3(1 ) / 2]

[(1 ) / 2]
c








  

    
are derived variables of   and 274 

 ,   and [.]  is the gamma function. The kurtosis parameter { : 1 1}      determines the 275 

peakness of the pdf such that the   values of -1, 0, and 1 give uniform, Gaussian and Laplace 276 

distributions, respectively. The skewness parameter { :0.1 10}     determines the 277 

skewness of the pdf such that the   values of 0.1, 1, and 10 give positively skewed, symmetric, 278 

and negatively skewed distributions, respectively. Setting 0   and 1   leads to 0  , 1 279 

, 1 2  , 1 2c   and ,t ta a  , and the skew exponential power distribution 280 

(0,1, 1, 0)SEP     becomes the standard normal distribution,  281 

21 1
( | 1, 0) exp ( )

22
t tp a a 


      

.               (7) 282 

which is the data model of SLS in equation (2). 283 

Replacing ~ (0,1)ta N  with ~ (0,1, , )ta SEP    in equations (2) – (5) leads to the data models 284 

SEP, WSEP, SEP-AC, and WSEP-AC as follows,  285 

 
0

~ (0,1, , )t
t ta a SEP

  


                                                                                                     (8) 286 

0 1

~ (0,1, , )t
t t

t

a a SEP
Y

  
 




.               (9) 287 
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1
1

0

~ (0,1, , )

p

t i t
i

t ta a SEP
 

 









             (10) 288 

1
1

0 1

~ (0,1, , )

p

t i t
i

t t
t

a a SEP
Y

 
 

 










             (11) 289 

In comparison with the Gaussian data models, the SEP-based data models have two more 290 

parameters (  and  ) to be estimated jointly with physical model parameters. Data model WSEP-291 

AC, which is known as the generalized likelihood function, is the most commonly used SEP-based 292 

data model (e.g. Vrugt and Ter Braak, 2011; Hublart et al., 2016; Scholz et al., 2018). A summary 293 

table of the eight data models with corresponding parameters is provided in the supplementary 294 

materials.  295 

2.2 Bayesian inference and likelihood functions  296 

Consider a Bayesian inference problem for a nonlinear model, f, used to simulate state 297 

variables (e.g., CO2 efflux), d = Y(θ) + ε, where d is a vector of data, θ is a vector of model 298 

parameters, and ε is a vector of residuals that may include errors in data, model parameters, and 299 

model structures. The goal of Bayesian inference is to estimate the posterior distributions, p(θ|d), 300 

of model parameters, θ, given data, d, using Bayes’ theorem (Box and Tiao, 1992)  301 

     
   

|
|

|

p p
p

p p d



d θ θ
θ d

d θ θ θ
                                (12) 302 

where p(θ) is the prior distribution, and p(d|θ) is the likelihood function to measure goodness-of-303 

fit between model simulations, Y(θ), and data, d. The prior distribution can be obtained from data 304 

of previous studies (e.g. Elshall and Tsai, 2014) or expert judgment. When prior information is 305 

lacking, a common practice is to assume uniform distributions with relatively large parameter 306 

ranges so that the prior distributions do not affect the estimation of posterior distributions.  307 
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The data models above can be used to construct the likelihood functions. For the Gaussian data 308 

models given in equations (2) – (5), the corresponding Gaussian likelihood functions are 309 

straightforward, and an example is equation (7). For the SEP data models, the corresponding 310 

likelihood that is called generalized likelihood function is (Schoups and Vrugt, 2010)  311 

     2/(1 )1
,1

1

2
| | exp

n

t t t
t

p p c a


  


 

 





  
εd θ θ .                        (13) 312 

where n is the dimension of d. The Gaussian likelihood functions are special case of the generalized 313 

likelihood functions. For example, by setting 0  , 1  , 0i  , 0t  , 1  , 0  , 314 

1 2  , 1 2c  , and ,t ta a  , equation (13) becomes the likelihood function corresponding 315 

to the SLS data model. Replacing 0t   by 0 1t tE    , equation (13) becomes the likelihood 316 

function of the WLS data model.  317 

In this study, the posterior distributions of the data model parameters are jointly estimated with 318 

the soil respiration model parameters using the MT-DREAM(ZS) code (Laloy and Vrugt, 2012). 319 

MT-DREAM(ZS) implements a Markov chain Monte Carlo (MCMC) algorithm by running 320 

multiple Markov chains in parallel with adaptive proposal distribution, multiple-try sampling, and 321 

sampling from an archive of past states. These state-of-the-art features assist in overcoming 322 

common challenges in the sampling space such as multimodality, ill-conditioning, and high 323 

dimensionality, and thus allow for accurate exploration of the targeted distributions.  324 

2.3 Soil respiration models 325 

Zhang et al. (2014) studied the Birch effect (the peak soil microbial respiration pulses in 326 

response to episodic rainfall pulses), and developed five models, evolving from an existing four-327 

carbon pool model to models with additional carbon pools and/or explicit representations of soil 328 

moisture controls on carbon degradation and microbial uptake rates. Three of the five models are 329 
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used in this study, and they are dented as 4C, 5C, and 6C. Note that model 4C is model 4C_NOSM 330 

of Zhang et al. (2014), not their model 4C. Figure 1 is the diagram of model 6C, the most complex 331 

one among the five models. The simplest one, model 4C, has four carbon pools, i.e., soil organic 332 

carbon (SOC), dissolved organic carbon (DOC), microbial biomass (MIC), and enzymes (ENZ), 333 

and does not consider the soil moisture control on carbon degradation and microbial uptake rates. 334 

Models 5C and 6C have an explicit representation of soil moisture controls on the rates. Based on 335 

the dual Arrhenius and Michaelis–Menten kinetics model, the original SOC degradation rate, 336 

decomV , is (Davidson et al., 2011; Davidson and Janssens, 2006)  337 

max
SOC

decom ENZ
m SOC

C
V V C

K C



               (14) 338 

where maxV  [s-1] is the maximum SOC degradation rate per unit enzyme when the substrates is not 339 

limiting, ENZC  [gCm-3] is enzyme pool size, SOCC  [gCm-3] is SOC pool size,  and mK  is the half-340 

saturation for SOC. The original microbial uptake rate, uptakeV , is (Davidson et al., 2011; Davidson 341 

and Janssens, 2006)  342 

2
max_

_ _ 2 2

DOC O
uptake up MIC

m up DOC m upO O

C C
V V C

K C K C


 
,             (15) 343 

where  max_ upV  [s-1] is the maximum DOC uptake rate when the substrates is not limiting, MICC344 

[gCm-3] is the MIC pool size, DOCC  [gCm-3] is the DOC pool size, 2OC  [m3m-3] is the gas 345 

concentration of O2 in the soil pore, and _m upK  [gCm-3] and _ 2m upOK [m3m-3] are the corresponding 346 

half-saturation constants for DOC and O2, respectively. With the explicit representation of soil 347 

moisture control, the two rates become (Zhang et al., 2014) 348 

max
SOC

decom ENZ
m SOC s

C
V V C

K C



 

    
              (16) 349 
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where   [-] is the volumetric soil moisture, and s  [-] is the porosity.   351 

In addition to using the new rate equations, models 5C and 6C have more carbon pools. In 352 

model 5C, DOC is split into two sub-pools for wet zone and dry zone of soil pores, and only the 353 

wet DOC is used by MIC, as shown in Figure 1. The moisture-controlled microbial uptake rate 354 

becomes  355 

_ 2
max_

_ _ _ 2 2

DOC w O
uptake up MIC

m up DOC w m upO O s

C C
V V C

K C K C



 

     
.           (18) 356 

where _DOC wC  [gCm-3] is the DOC pool size in the wet soil pores. Model 6C is more complex in 357 

that ENZ is further split into two sub-pools for wet and dry pores, and both the wet and dry ENZ 358 

are subject to degradation, as shown in Figure 1. The moisture-controlled SOC degradation rate 359 

becomes  360 

max _
SOC

decom ENZ W
m SOC s

C
V V C

K C



 

    
              (19) 361 

for the wet ENZ and  362 

max _ 1SOC
decom ENZ D D

m SOC s

C
V V C

K C

 


 
    

              (20) 363 

for the dry ENZ, where _ENZ WC  [gCm-3] is the wet soil pores enzyme pool size, _ENZ DC  [gCm-3] is 364 

the enzyme pool size in the dry soil pores, and D is the catalysis efficiency of the dry zone enzyme. 365 

Due to considering the moisture control and adding more soil pools, model 5C is expected to 366 

be significantly better than model 4C for simulating the Birch effect. Since the accumulated ENZ 367 

in dry soil is secondary, model 6C is expected to be slightly better than model 5C. In terms of 368 
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model structural error, model 4C has the largest model structure error, model 5C has significantly 369 

less model structure error, and model 6C has the smallest model structural error. In other words, 370 

model 6C has the highest model fidelity (i.e. lowest model discrepancy) among the three models. 371 

As shown below, the degree of model structural error is reflected in the process of Bayesian 372 

inference and verified by the cross-validation.   373 

2.4 Observations and parameter estimation 374 

Figure 2 plots the time series of 17,016 observations of soil moisture and CO2 efflux used in 375 

this study. The observations were obtained during the entire year of 2007, covering a long period 376 

of dry season prior to monsoon and episodic rainfall events during monsoon. The first two third of 377 

this dataset is used for the Bayesian inference, and the last one third is used for cross-validation. 378 

The inference and cross-validation periods have both dry and wet periods, as shown in Figure 2. 379 

The observation site is located within the Santa Rita Experimental Range (SRER, 31.8214°N, 380 

110.8661°W, elevation 1,116 m) outside of Tucson, Arizona (Barron-Gafford et al., 2011; Scott 381 

et al., 2009). This savanna site was covered by 22% of perennial grass, forbs and subshrubs and 382 

35% of mesquite. The soils are uniformly Comoro loamy sand (77.6% sand, 11.0% clay, and 383 

11.4% silt). The half-hourly atmospheric forcing data were collected from measurements through 384 

an eddy covariance tower (Scott et al., 2009). This includes downward shortwave, longwave, 385 

precipitation, wind, air temperature, humidity, and pressure. Volumetric CO2 concentration was 386 

measured at a half-hourly interval through compact probes. The CO2 efflux was estimated from 387 

the gradient of CO2 concentration measured at two depths of 2 cm and 10 cm through Fick’s first 388 

law of diffusion, and the estimates were validated against measurements from a portable CO2 gas 389 

analyzer.  390 
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The parameters estimated in this study include the parameters of the soil respiration models 391 

(4C – 6C) and the parameters of the data models described in Section 2.1. The estimated 392 

parameters of models 4C and 5C include the microbial carbon use efficiency (CUE) [g/g], enzyme 393 

production rate, ke [g/m3s], microbial turnover rate, τm [1/s], and enzyme turnover rate τe [1/s]. 394 

Uniform distributions are used as the prior in the Bayesian inference, and the ranges of the four 395 

parameters are 0.2 – 1.00, 1×10-12 – 1×10-7, 1×10-12 – 1×10-5 and 1×10-11 – 1×10-6, respectively. 396 

The values of other parameters are fixed at the values used in Allison et al. (2010). Model 6C has 397 

two more parameters, and they are the catalysis efficiency D  [-] and the turnover rate of the dry-398 

zone enzymes τen [1/s]. The prior of the two parameters are uniform distributions with the ranges 399 

of 0.2 – 0.8 and 1×10-12 – 1×10-8, respectively.  400 

The DREAM-based MCMC simulation is conducted for a total of 24 cases, the combinations 401 

of eight data models and three soil respiration models. For each case, the parameter distributions 402 

are obtained after drawing a total of 5×105 samples using five Markov chains. The Gelman and 403 

Rubin (1992) R-statistic is used for convergence diagnostic, and it approaches one in less than 404 

40,000 samples. The initial 50% of the samples are discarded during the burn-in period. 405 

2.5 Metrics for evaluating predictive performance 406 

Three criteria are used to evaluate the predictive performance of the soil respiration models 407 

and data models, and they are central mean tendency, dispersion, and reliability. Each criterion is 408 

measured by a single metric. In addition, a newly defined metric by (Elshall et al., 2018) is also 409 

used for simultaneously measuring the three criteria.  410 

The central mean tendency is measured in this study using the Nash-Sutcliffe model efficiency 411 

(NSME) coefficient (Nash and Sutcliffe, 1970), 412 

2 2

1 1

1 ( ) ( )
n n

i i i
i i

NSME d d
 

    Y d ,             (21) 413 
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where n is the number of cross-validation data, di is the i-th data, d  is the mean of the data, and414 

iY  is the mean of the prediction ensemble, Yi, for di. NSME ranges from - to 1, with NSME = 1 415 

corresponding to a perfect match between data and mean prediction, i.e., the ensemble is centered 416 

on the data. NSME = 0 indicates that the model predictions are as only accurate as the mean of the 417 

data, while an efficiency NSME < 1 indicates that the mean of data is a better prediction than the 418 

mean prediction.  419 

In addition to the central mean tendency, it is also desirable that the ensemble is precise with 420 

small dispersion and reliable to cover all the data. This study uses a nonparametric metric for 421 

dispersion, and it is the sharpness of a prediction interval (e.g. Smith et al., 2010a) 422 

 
1

1 ( ) Min( )
n

i ii
Sharpness n Max


  Y Y             (22)  423 

where iY  is the prediction ensemble within the 95% prediction interval, the Bayesian credible 424 

interval, not the confidence interval used in nonlinear regression (Lu et al., 2013). Smaller values 425 

of sharpness indicate better prediction precision. Reliability is measured using predictive coverage. 426 

(e.g. Hoeting et al., 1999), which is the percentages of data contained in the prediction interval. 427 

Larger predictive coverage values are preferred. 428 

To account for the trade-off between the three metrics, Elshall et al. (2018) defined relative 429 

model score (RMS) that simultaneously measure all the three criteria. Scoring rules are commonly 430 

used in hydrology to assess predictive performance (e.g., Weijs et al., 2010; Westerberg et al., 431 

2011). RMS is used in this study to measure the relative predictive performance of the 432 

combinations of soil respiration models and data models. For combination Mj, RMS is defined as  433 
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where m is the number of combinations;  the ensemble prediction Yij is similar to Yi above with  435 

index i over time and index j specific to the j-th combination. The density function p(di|Yij) can be 436 

evaluated by first obtaining the density function p(Yij) of the ensemble prediction Yij (e.g., by using 437 

the kernel density function) and then evaluating p(di|Yij) using interpolation methods based on the 438 

intersection of Yij and di. More details about evaluating RMS can be found in Elshall et al. (2018). 439 

This evaluation is based purely on the model predictions, and does not involve any assumptions 440 

on the models, their parameters, and likelihood functions. Larger RMS values indicate better 441 

overall predictive performance. A figure of our workflow scheme is presented in the 442 

supplementary materials.  443 

3 Results of Bayesian Inverse Modeling 444 

This section analyzes the residuals of the best realization (with the highest likelihood value) of 445 

the MCMC simulation to understand whether the assumptions of the eight data models hold. The 446 

impacts of the data models on the posterior parameter distributions are also analyzed.  447 

3.1 Residual characterization  448 

Figure 3 shows residual plots for model 6C based on data models SLS and WSEP-AC. SLS is 449 

the simplest data model with the assumptions of homoscedastic, independent, and Gaussian 450 

residuals, and the WSEP-AC is the most complex one without the assumptions. Model 6C is the 451 

most complex model and also the best one as ranked by Zhang et al. (2014) using Bayesian model 452 

selection. The variable at plotted in Figures 3a-3c and Figures 3d-3f is defined in equations (2) and 453 

(11), respectively. Figures 3a – 3c show that all the three residual assumptions are violated when 454 

SLS is used, because (i) the residual variance is not constant, but increases as a function of the 455 
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simulated CO2 efflux (Figure 3a); (ii) the autocorrelation function at most lags is beyond the 95% 456 

confidence interval (Figure 3b); (iii) the standard normal density function cannot adequately 457 

characterize the residuals (Figure 3c). Figures 3d-f show that, after relaxing the three assumptions, 458 

the processed residuals, at, can be well characterized by WSEP-AC. Figure 3d shows that, after 459 

normalizing εt with the linear variance ( 0 .034 0.099t tE   ), the variation of the variance of 460 

at becomes significantly smaller, although the variance is still not constant. Figure 3e shows that, 461 

after removing a first-order autoregressive model from εt, at becomes less correlated, although the 462 

correlation is not fully removed. The two coefficients of the autoregressive model are 1 0.989   463 

and 6
2 4.5 10   ; the small value of 2  indicates that there is no need to attempt an autoregressive 464 

model of higher order. Figure 3f shows that at follows the SEP distribution with the estimated 465 

skewness coefficient of 0.933   and kurtosis coefficient of 0.998  . As a summary, Figure 466 

3 shows that it is important to examine the residuals and to determine whether the selected data 467 

model is adequate for charactering the residuals. Although WSEP-AC still cannot perfectly 468 

characterize εt, it is significantly better than SLS. 469 

Although the Gaussian assumption used in SLS is violated for model 6C (Figure 3c), this is 470 

not generally the case for other data models and soil respiration models. This is shown in Figure 471 

4, which presents the quantile-quantile (Q-Q) plot for the eight data models and the three soil 472 

respiration models. For SLS, WLS, SLS-AC, and WLS-AC, the theoretical quantiles are based on 473 

the standard normal distribution, N(0,1); for SEP, WSEP, SEP-AC, and WSEP-AC, the theoretical 474 

quantiles are based on the standard skew exponential power distribution, SEP(0,1,1,0). If the 475 

residuals follow the assumed standard distributions, the Q-Q plots fall on the 1:1 lines, marked as 476 

the theoretical lines in Figure 4. If the residuals are Gaussian or SEP but not standard, the Q-Q 477 

plots fall on a straight line but not the 1:1 line. Figures 4a and 4e show that, for all the soil 478 
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respiration models, the Q-Q plots of SLS and SEP deviate significantly from the theoretical lines 479 

and exhibit fat-tail behaviors, which is an indication of outliers (Thyer et al., 2009). The deviation 480 

is reduced after accounting for autocorrelation in SLS-AC and SEP-AC, as shown in Figures 4c 481 

and 4g. It is interesting to observe from the two figures that the Q-Q plots of the three models are 482 

almost visually identical. The deviation is almost fully removed after accounting for 483 

heteroscedasticity in WLS and WSEP in that their corresponding Q-Q plots fall on the 1:1 lines, 484 

especially for models 5C and 6C, as shown in Figures 4b and 4f. However, the Q-Q plots start 485 

deviating from the 1:1 lines as shown in Figures 4d and 4h, after accounting for both 486 

heteroscedasticity and autocorrelation in WLS-AC and WSEP-AC. As a summary, Figure 4 shows 487 

that, for the numerical example of this study, either the Gaussian or the SEP distribution is valid if 488 

heteroscedasticity is accounted for in the data models. However, accounting for autocorrelation in 489 

the data models does not help improve the characterization of the residual distributions. 490 

3.2 Posterior parameter distributions 491 

While Figures 3 and 4 help understand validity of the three assumptions used in the data 492 

models, the impacts of the data models on estimating model parameter distributions must be 493 

evaluated separately. This section discusses the impact of the data model selection on parameter 494 

estimation with the objective of understanding whether incorrect specification of the data model 495 

necessarily leads to biased parameter estimates. Such assessment is not a trivial task for two main 496 

reasons. First, microbial soil respiration models aggregate complex natural processes and spatial 497 

details into simpler conceptual representations. As a results several model parameters are effective 498 

values of several complex natural processes that cannot be actually measured in the field as 499 

discussed by Vrugt et al. (2013). In addition, even for model parameter that can be measured in 500 

the field, since the model structure is imperfect, calibrated parameter values are sometimes beyond 501 



23 

 

their physically reasonable range, as discussed by Pappenberger and Beven (2006). This is often 502 

undesirable, if we seek to make the models more mechanistically descriptive. 503 

We focus our discussion on carbon use efficiency (CUE) for microbial growth due to two 504 

reasons: (1) CUE is a fundamental parameter in microbial soil respiration models, and (2) a 505 

physically reasonable range for CUE can estimated.  The concept of microbial CUE(Allison et al., 506 

2010; Bradford et al., 2008; Manzoni et al., 2012; Wieder et al., 2013) has been used to present 507 

fundamental microbial processes in recent microbial enzyme models (Allison et al., 2010; German 508 

et al., 2011; Schimel and Weintraub, 2003; Wang et al., 2013). The microbial CUE, which is 509 

marked between MIC and CO2 in Figure 1, controls microbial growth, enzyme production and 510 

microbial respiration. A physically reasonable range of CUE can be estimated from the physical 511 

viewpoint (Tang and Riley, 2014). Sinsabaugh et al. (2013) showed that the thermodynamic 512 

calculations support a maximum CUE of 0.60 and that previous studies that estimate CUE in 513 

terrestrial systems report a mean value of 0.55. Theoretically, there is no lower limit for CUE as it 514 

can approach zero, and CUE< 0.1 has been reported for terrestrial ecosystems (e.g., Fernández-515 

Martínez et al., 2014) and used in modeling studies (Li et al., 2014). Note that, for inverse modeling 516 

with MCMC sampling, we did not assume CUE maximum value of 0.6. In other words, for 517 

parameter estimation and predictive performance we did not impose the constraint that CUE is less 518 

than 0.6. We merely use this CUE maximum value of 0.6 to evaluate whether the posterior CUE 519 

parameter samples obtained using different data models and different soil respiration models are 520 

within the physically reasonable range of 0 ~ 0.6. 521 

Figure 5 plots the CUE posterior marginal density of the three soil respiration models obtained 522 

using the eight data models. The physical range between zero and 0.6 is marked in yellow. Figure 523 

5 shows that the CUE posterior parameter distribution of Model 6C obtained using the data models 524 
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that does not account for autocorrelation are within the physically reasonable range. For models 525 

4C and 5C, the posterior parameter samples are outside the range for six data models. For model 526 

4C, the posterior parameters are within the physical range only for data models SEP and WSEP; 527 

for model 5C, the two data models are WLS and WSEP. It is not surprising to find the posterior 528 

parameter distribution of models 4C and 5C, which have a certain degree of model structure error, 529 

to be out of the physically plausible range. This can be attributed to two reasons. First, the model 530 

solution can be biased toward the missing processes in the model structure such as the additional 531 

carbon pool in both 4C and 5C or missing the explicit accounting for soil moisture in 4C. Second, 532 

biased parameter estimation can compensate for model structure inadequacy and other sources of 533 

discrepancy in both the physical models and the data models. 534 

In addition, it is important to understand how accounting for autocorrelation, heteroscedasticity 535 

and non-Gaussian residuals can affect the parameter estimation. First, it is observed in Figure 5e-536 

h that biased parameter estimates are outside the physically reasonable range when autocorrelation 537 

is explicitly accounted for. This may suggest again that accounting for heteroscedasticity is 538 

desirable but accounting for autocorrelation is not. A possible reason is that filtering 539 

autocorrelation may reduce the residual space such that the transformed residual space cannot 540 

correspond to the parameter space of the models. In other words, parameter information may be 541 

lost due to filtering out autocorrelation. However, it is not fully understood why this does not occur 542 

for the model 6C under data model SLS-AC (Figure 5e), and more research is warranted.  Second, 543 

unlike accounting for auto-correlation, accounting only for heteroscedasticity (i.e., WLS and 544 

WSEP) only amplifies or reduces the variance without affecting the structure of the residual space. 545 

Figures 5c-d show that account for heteroscedasticity (i.e. WLS and WSEP) tends to improve the 546 

parameter estimation in comparison with homoscedastic data models (i.e., SLS and SEP) shown 547 
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in Figure 5a-b. Finally, with respect to non-Gaussian residuals, Schoups and Vrugt (2010) 548 

suggested that, compared to Gaussian pdf, the peaked pdf of the SEP with a longer tail is useful 549 

for making parameter inference robust against outliers. To a certain degree, this can be 550 

substantiated by the results in Figure 5a-d, in that SEP and WSEP provide more favorable 551 

parameter estimates than SLS and WLS.    552 

Finally, Figure 5a shows that the posterior parameter distributions of SLS are very narrow for 553 

the three soil respiration models. The narrow distributions can be attributed to several reasons. 554 

Since SEP distribution can have longer tails than Gaussian distribution, this can further increase 555 

the samples acceptance ratio from tails resulting in wider distribution (Figure 5b). In addition, 556 

accounting for heteroscedasticity will result in wider posterior parameter distribution (Figure 5c) 557 

due to accepting higher variances at peak effluxes. Moreover, filtering correlation (Figure 5e-h) 558 

increases the entropy, and leads to wider distributions. 559 

4. Results of Predictive Performance 560 

Based on the last one third of the CO2 efflux observations, a cross-validation test was 561 

conducted for the combinations of three soil respiration models and eight data models. For the 562 

cross-validation period, the predictive performance is examined using the four statistical metrics 563 

that are defined in Section 2.5. The metrics are also calculated for the calibration period. This is 564 

not to perform Bayesian model selection given the calibration data, but to better understand the 565 

impact of data models on predictive performance of the three soil respiration models. For each 566 

calibration and each cross-validation data, a prediction ensemble is generated from the two 567 

perspectives of parametric uncertainty only and total uncertainty, as presented in Section 4.1 and 568 

4.2, respectively.  569 

 570 
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4.1 Predictive performance with parametric uncertainty of soil respiration model 571 

In this section the ensemble is generated by running the soil respiration models with the 572 

posterior samples (obtained from the Bayesian inference) of the physical model parameters. In 573 

other words, the ensemble addresses parametric uncertainty of the soil respiration models only. 574 

Considering the relative contribution of parametric uncertainty only will provide insights for 575 

modeling approaches that attempt to segregate various sources of uncertainty (e.g., Thyer et al., 576 

2009 ; Tsai and Elshall, 2013). The four statistics above (i.e. NSME, sharpness, coverage, and 577 

RMS) are calculated for the three soil respiration models and the eight data models. Taking data 578 

models SLS and WSEP-AC as an example, Figure 6 plots the data (for the calibration and cross-579 

validation periods separately) along with the mean and 95% credible intervals of the prediction 580 

ensemble for the three models. 581 

 Figure 6 shows that the data models affect model simulations for all the models. The statistics, 582 

especially RMS, indicate that WSEP-AC has better predictive performance than SLS. This is most 583 

visually obvious for model 6C during the cross-validation period after 330 days, as the prediction 584 

ensemble of SLS (Figure 6k) cannot cover the observations, whereas the prediction ensemble of 585 

WSEP-AC can (Figure 6l). This conclusion that WSEP-AC outperforms SLS agrees with that 586 

drawn from Figures 3 and 4. 587 

Figure 7 plots the four statistics for all the soil respiration models and data models. Figures 7a 588 

and 7b show the predictive performance with respect to the central mean tendency measured by 589 

NSME for both the calibration and cross-validation periods respectively.  The results indicate that, 590 

under all data models, the low fidelity model 4C over-fits the data and results in biased predictions, 591 

in that the NSME values become significantly worse (e.g., from 0.6 to -0.6) from the calibration 592 

to the cross-validation period. This is confirmed by the visual inspection of Figures 6a and 6g for 593 
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data model SLS and of Figures 6b and 6h for data model WSEP-AC. For models 5C and 6C, their 594 

NSME values vary with the data models; and the central mean accuracy is the worst for SLS-AC 595 

that considers only autocorrelation (Figure 6b).  596 

With respect to parametric uncertainty estimation, Figures 7c and 7d show that sharpness 597 

generally increases when the three assumptions in the data models are gradually relaxed from SLS 598 

to WSEP-AC. This is even more obvious during the validation period. Given that the prediction 599 

ensemble does not center on the data, the increasing sharpness is desirable as it improves 600 

reliability. This is confirmed by the reliability plots in Figures 7e and 7f. The exceptions are again 601 

for SLS-AC and SEP-AC that generally have the lowest coverage.  602 

With respect to the overall predictive performance measured by RMS, the same variation 603 

pattern and exception are also observed in the RMS plots in Figures 7g and 7h. This is not 604 

surprising because RMS is the metric that can be used to measure all the three criteria (central 605 

mean tendency, sharpness, and reliability). Since the prediction ensemble is not centered on the 606 

data, the sharpness and reliability are the decisive factors for evaluating the predictive 607 

performance.  608 

As a summary, while it is necessary to account for heteroscedasticity in a data model, caution 609 

is needed when accounting for autocorrelation in the manner described in Section 2.1. In addition, 610 

after comparing the RMS values of the residuals using the Gaussian and SEP distributions, the 611 

conclusion is that the SEP distribution outperforms the Gaussian distribution with respect to 612 

predictive performance. Finally, uncertainty underestimation is evidenced by the very small 613 

predictive coverage. The underestimation of uncertainty for all the physical models with all the 614 

data model is not unexpected because only parametric uncertainty is considered in this study.   615 

Considering the overall predictive uncertainty is the subject of the next section.   616 
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4.2 Predictive performance with total uncertainty  617 

The simulated output ( )pY θ is generally not equal to the observed output d , and we have a 618 

residual term ε due to measurement, input and model structure errors such that ( )p d Y εθ . 619 

Accounting for the error term ε can be through separating various error terms. For example, in 620 

section 4.1 we obtained uncertainty due to the physical model parameters. Accounting for other 621 

sources of uncertainty can be done using a single model approach (e.g. Thyer et al., 2009) or a 622 

multi-model approach (e.g. Tsai and Elshall, 2013). Alternatively, we can quantify the uncertainty 623 

based on total residuals that separates out parametric uncertainty, so the residual error includes 624 

errors in measurements, model inputs, and model structures (e.g. Thyer et al., 2009; Schoups and 625 

Vrugt, 2010). This lumped approach is based on sampling the residuals model ( )εε θ  with 626 

parameters εθ .  SLS has one fixed parameter that is the constant variance, and other data models 627 

have two to six parameters. Thus in this section the prediction ensemble addresses parametric 628 

uncertainty of not only the soil respiration models but also the data models. When generating the 629 

prediction ensemble in the procedure described by Schoups and Vrugt (2010), an ensemble of 630 

residuals is first generated by running the data models with posterior samples of the data model 631 

parameters for the positive carbon efflux domain; the residual ensemble is then added to the 632 

prediction ensemble generated in Section 4.1. 633 

We start by a visual assessment of the predictive performance. Figure 8 is similar to Figure 6 634 

with the exception that Figure 8 considers the overall predictive uncertainty (i.e. parametric and 635 

output uncertainty), while Figure 6 considers the parametric uncertainty only. Figure 8 reveals a 636 

practical observation about accounting for the overall uncertainty through the lumped approach of 637 

sampling the data models. For example, Figure 8b shows that, despite the wide prediction interval 638 

of model 4C, the model with significant model structure error cannot capture the birch pulse around 639 
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day 180. It indicates that proper using a data model for model residuals cannot compensate 640 

significant model structure error.  641 

Figure 9 plots the four statistics (NSME, sharpness, predictive coverage, and RMS) of the three 642 

soil respiration models under the eight data models to assess the predictive performance. With 643 

respect to central mean tendency, the NSME values in Figures 9a-9b are visually the same as those 644 

in Figures 7a-7b, indicating that the central mean accuracy under parametric uncertainty is the 645 

same as that under predictive uncertainty.  646 

With respect to uncertainty, the values of sharpness and predictive coverage increase 647 

substantially (Figures 9c – 9f). In particular, Figures 9e and 9f show that, except for SLS and SEP, 648 

the predictive coverage of the rest of the six data models are close to 100% for all the three soil 649 

respiration models, indicating that the prediction intervals cover almost all the data. This is 650 

demonstrated in Figures 6 for WSEP-AC. Similar to Figures 7c and 7d, Figures 9c and 9d also 651 

show a general pattern that the sharpness increases when the three assumptions in the data models 652 

are gradually relaxed from SLS to WSEP-AC. The data models that account for autocorrelation 653 

are still the exceptions.  654 

With respect to the overall predictive performance, the RMS values are largely determined by 655 

the mean accuracy and sharpness as the predictive coverage is similar for different data models. 656 

Figures 9g and 9h of RMS show that the predictive performance of the four data models that 657 

account for autocorrelation is worse than that of the other four data models. This suggests again 658 

that one needs to be cautious when building autocorrelation into a data model. This is consistent 659 

with the finding of Evin et al. (2013, 2014) that accounting for autocorrelation before accounting 660 

for heteroscedasticity or jointly accounting for autocorrelation and heteroscedasticity can result in 661 

poor predictive performance. In summary, Figures 9g and 9h show for both the calibration and 662 
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prediction periods that accounting for heteroscedasticity in WLS and WSEP gives the best overall 663 

predictive performance, and accounting for autocorrelation without heteroscedasticity in SLS-AC 664 

and SEP-AC gives the worst overall predictive performance. Finally, for the three soil respiration 665 

models, RMS shows that model 4C has the worst predictive performance for both the calibration 666 

and cross-validation data. Generally speaking, the high fidelity model 6C outperforms model 5C 667 

for both the calibration and cross-validation data, which justifies the complexity of model 6C.   668 

To demonstrate the impacts of the data models on predictive performance of the soil respiration 669 

models, Figure 10 plots the model simulations and predictions given by model 6C during the 670 

calibration and cross-validation periods using all the eight data models. Figure 10 is used to 671 

investigate predictive performance characteristics of the different data models. By examining the 672 

predictive performance of model 6C, specific predictive performance patterns can be identified. 673 

Figures 10a – 10d show that SLS and SEP have similar predictive performance with SEP generally 674 

having better predictive performance especially during the validation period.  Not accounting for 675 

heteroscedasticity will underestimate the predication uncertainty (Figure 10b and Figure 10d). This 676 

is mainly because the variance of the efflux residuals increases with the magnitude of the carbon 677 

effluxes (Figure 3a), and thus assuming constant variance is not representative.  Accordingly, 678 

accounting for heteroscedasticity using WLS (Figure 10e) or WSEP (Figure 10h) will make the 679 

predictions more sensitive to peak carbon effluxes. This will generally improve the predictive 680 

coverage on the expense of sharpness and the central mean tendency. While WLS and WSEP have 681 

similar predictive performance, WSEP has better central mean tendency and overall predictive 682 

performance than WLS. Figures 10i – 10l show that accounting for autocorrelation using SLS-AC 683 

and SEP-AC results in wider uncertainty bands and insensitivity to peak carbon effluxes as 684 

compared to SLS and SEP (Figures 10a-d), which may be due to reduction of information content 685 
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of the residuals. This results in deteriorating the sharpness, the central mean tendency and the 686 

capturing of peak carbon fluxes, especially during the validation period. Figures 10m – 10p show 687 

that accounting for both heteroscedasticity and autocorrelation using WLS-AC and WSEP-AC 688 

makes the inference robust against peak carbon effluxes. However, due to the loss of information 689 

content, the uncertainty bands are still wider, and uncertainty becomes overestimated especially 690 

during validation period as compared to WLS and WSEP (Figures 10e – 10h). The results of 691 

Models 4C and 5C, which are not shown here, also show the same prediction patterns with respect 692 

to non-Gaussian residuals, heteroscedasticity, and autocorrelation. 693 

Finally, we observe in Figure 10 that the data models that have good overall predictive 694 

performance as measured by RMS during the calibration period will maintain this good predictive 695 

performance during the validation period. For model 6C, RMS values for the calibration and 696 

validation periods are very well correlated with a correlation coefficient of 0.92. However, we note 697 

that for models 4C and 5C the overall predictive performances during the calibration and validation 698 

periods are not that well correlated as 6C, with correlation coefficients of 0.52 for model 4C and 699 

0.61 for model 5C. This suggests that model 6C is more robust than 4C and 5C for forecasting and 700 

hindcasting. 701 

4.3 Discussion on handling residual correlation  702 

  Accounting for autocorrelation can lead to biased parameter estimation (Figure 5) and poor 703 

predictive performance (Figure 10). Auto-correlated residuals may be attributed to model 704 

discrepancy, as shown in Lu et al. (2013). The most obvious solution to handle the autocorrelation 705 

is to reduce the autocorrelation by improving the soil respiration model. If model improvement is 706 

difficult for practical reasons, we can improve the data model to better characterize the 707 
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autocorrelation. Addressing autocorrelation in a data model is challenging since it involves several 708 

interlinked factors as follows: 709 

  (1) Non-stationarity due to wet-dry periods could be a reason for this problem. By drawing on 710 

similarity from surface hydrology, the study of Ammann et al. (2018) suggests that auto-711 

correlated residuals might be attributed to non-stationarity due to wet-dry periods with half-712 

hourly data. Accounting for non-stationarity could better address the problem of auto-713 

correlated residuals (Ammann et al., 2018; Smith et al., 2010b). 714 

(2) The way of implementing autocorrelation could have an impact. Autocorrelation could be 715 

applied to raw residuals directly (e.g., Li et al., 2015), to transformed residuals based on 716 

covariance matrix of residuals L(e) (e.g., Lu et al., 2013), or to normalized residuals L(a) (e.g., 717 

Schoups and Vrugt, 2010; Evin et al., 2013). Note that e is a vector of transformed residuals, 718 

while a denotes a vector of independent and identically distributed random errors with zero 719 

mean and unit standard deviation. The L(e) approach based on covariance matrix of residuals 720 

is generally limited to Gaussian data models (e.g. Lu et al., 2013), while the L(a) approach for 721 

normalized residuals can be readily adopted for non-Gaussian data models. 722 

(3) The autocorrelation model could have an impact. Using an autoregressive model is a popular 723 

technique to account for auto-correlated residuals. However, using an autoregressive model 724 

with either joint inversion approach (e.g., this study and Schoups and Vrugt, 2010) or 725 

sequential approaches (e.g., Evin et al., 2013, 2014; Lu et al., 2013) removes correlation errors 726 

through a filter approach, which can lead to a loss of information content. As this may cause 727 

overcorrection of prediction especially at surge events, Li et al. (2015) developed a restricted 728 

autoregressive model to overcome this adverse effect. Other autocorrelation models include 729 

moving average model and mixed autoregressive-moving averaging model (Chatfield, 2004).  730 
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(4) Joint versus sequential inversion for autocorrelation could have an impact. Sequential inversion 731 

approaches include two-step procedures (e.g. Evin et al., 2013, 2014; Lu et al., 2013) or the 732 

multi-step procedure (Li et al., 2016a). These sequential approach estimates the autoregressive 733 

parameters sequentially in a later step after estimating the physical model parameters and other 734 

data model parameters.  Evin et al. (2013, 2014) used a sequential approach to avoid the 735 

interaction between the parameters of the heteroscedasticity model and the autocorrelation 736 

model. In addition, the autoregressive model parameters can be deterministically calculated as 737 

an internal variables of the data model similar to Lu et al. (2013), and not as calibration 738 

parameters (e.g. Schoups and Vrugt; Evin et al. 2013; 2014). While the first step in the 739 

sequential approach would avoid the biased parameter estimation (Figure 10a-d), the second 740 

step can still lead a poor predicative performance since we are essentially using a filter 741 

approach to remove residual correlation. To address this problem, Li et al. (2016) multi-step 742 

procedure that is based on Gaussian data model uses restricted autoregressive model. 743 

Generally, Ammann et al. (2018) states that the joint inversion is still preferred, and 744 

understanding the conditions where accounting for auto-correlation can be achieved remains 745 

poorly understood. 746 

5. Conclusions  747 

In parameter estimation and prediction of soil carbon fluxes to the atmosphere, one often 748 

assumes that residuals, which include errors in observations, model inputs, parameter estimates, 749 

and model structures, are normally distributed, homoscedastic and uncorrelated. We study these 750 

assumptions by calibrating three soil respiration models, which have varying degrees of model 751 

structure errors. We further explore eight data models that characterize the residuals statistically 752 

by starting with the standard least squares (SLS) and skew exponential power (SEP) data models 753 
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that assume homoscedastic and non-correlated residuals. For these two distributions, we evaluate 754 

six other data models that account for heteroscedasticity (WLS and WSEP), autocorrelation (SLS-755 

AC and SEP-AC), and joint inversion of heteroscedasticity and autocorrelation (WLS-AC and 756 

WSEP-AC). To our knowledge this is the first study that provides such detailed analysis for soil 757 

reparation inverse modeling. We also use three soil respiration models with different degrees of 758 

model fidelity (i.e., model discrepancy) and model complexity (i.e. number of model parameters) 759 

to understand the impact of model discrepancy on the calibration results under different data 760 

models. We analyze the  results with respect to (1) residual characterization, (2) parameter 761 

estimation, (3) predictive performance, and (4) impacts of model discrepancy. The main findings 762 

of this study are summarized as follows: 763 

(1) With respect to residual characterization, residual analysis results suggest that the common 764 

assumption of not accounting for heteroscedasticity and residual autocorrelation in the data 765 

models SLS and SEP results in poor characterization of residuals. Explicit accounting for 766 

heteroscedasticity in WLS and WSEP results in significantly improved characterization of the 767 

residuals, and the improvement is larger than that obtained by accounting for both 768 

heteroscedasticity and autocorrelation in WSL-AC and WSEP-AC. Accounting for 769 

autocorrelation only in SLS-AC and SEP-AC does not significantly improve the 770 

characterization of the residuals. 771 

(2) With respect to parameter estimation, the impacts of the data models are evaluated by focusing 772 

on carbon use efficiency (CUE), which is a central parameter in soil respiration modeling.  773 

Using SLS yields relatively reasonable posterior parameter distributions for CUE , yet very 774 

narrow posterior. The data models SLS-AC, SEP-AC, WLS-AC and WSEP-AC that consider 775 

autocorrelation tend to yield CUE estimates that are physically unreasonable. We speculate 776 
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that filtering residual correlation can affect the mapping of the model physics (as implicitly 777 

included in the residuals) into the parameter space, which might result in biased parameter 778 

estimates that are physically unreasonable. 779 

(3) With respect to predictive performance, it is measured by four statistical criteria: central mean 780 

tendency, sharpness, coverage, and relative model score for both the calibration and the cross-781 

validation periods.  Results show that accounting for autocorrelation in SLS-AC, SEP-AC, 782 

WLS-AC, and WSEP-AC deteriorates the predicative performance, such that the predictive 783 

performance is inferior to that of SLS in terms of the central mean tendency and overall 784 

predictive performance (measured by the relative model score), especially during the cross-785 

validation period. Results also indicates that using the SEP distribution can potentially improve 786 

the predictive performance. The same is true for accounting for heteroscedasticity. Using SEP 787 

distribution and accounting for heteroscedasticity (i.e. WSEP) can potentially improve the 788 

predictive performance.  789 

(4) With respect to the impact of model discrepancy, the high fidelity model (6C) gives the best 790 

results with respect to parameter estimation and predictive performance. Model 6C generally 791 

maintains its superior performance under different data models. This justifies the complexity 792 

of model 6C relative to model 5C that has one less carbon pool. Model 4C with the lowest 793 

fidelity maintains its poor performance for different data models, because the model has only 794 

four carbon pools and lacks the explicit representation of soil moisture control. 795 

Based on the empirical findings above, we conclude the following:  796 

(1) Not accounting for heteroscedasticity and autocorrelation using a Gaussian or non-Gaussian 797 

data model might not necessarily result in biased parameter estimates or biased predictions 798 
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with respect to central mean tendency, but will definitely underestimate uncertainty resulting 799 

in lower overall predictive performance.   800 

(2) Using a non-Gaussian data model can improve parameter estimation and predictive 801 

performance with respect to central mean tendency and uncertainty quantification.  802 

(3) Accounting for heteroscedasticity improves the uncertainty estimation with respect to 803 

reliability at the cost of having a wider predictive interval.   804 

(4) This study confirms other empirical findings and theoretical analyses (Evin et al., 2013; 2014; 805 

Li et al., 2015, Ammann et al. 2018) that separately accounting for autocorrelation or jointly 806 

accounting for autocorrelation and heteroscedasticity can be problematic. While the reasons 807 

remain poorly understood (Ammann et al., 2018), it might be attributed to non-stationarity due 808 

to wet-dry periods with half-hourly data (Ammann et al., 2018) or to the method of handling 809 

autocorrelation (e.g., Schoups and Vrugt, 2010, Evin et al., 2013; 2014; Lu et al., 2013; Li et 810 

al., 2015, 2016a; Ammann et al. 2018). Further investigation to address autocorrelation in soil 811 

respiration modeling is warranted in a future study.  812 

The above conclusions are subject to several limitations. First, the conclusions are specific to 813 

the soil respiration models developed and validated for semi-arid savannah. Performance 814 

variations across different soil respiration models with different levels of complexities is possible. 815 

Second, the conclusions are conditioned on the data that were obtained at the half-hour interval 816 

over a one-year period. Different conclusions are possible if the data are thinned to daily or weekly 817 

scales or data of longer observation periods are used. Third, our study investigates effects of the 818 

residual assumptions of formal likelihood functions through direct conditioning of the residuals 819 

model parameters, yet this can also be done through other approaches such as residuals 820 

transformation (Thiemann et al., 2001), autorgressive bias model (Del Giudice et al., 2013), 821 
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approximate Bayesian computation (Sadegh and Vrugt, 2013), and data assimliation (Spaaks and 822 

Bouten, 2013). Comparing different methods for accounting the residual assumptions are beyond 823 

the scope of this work. Fourth, this study focuses on formal Bayesian computation using formal 824 

likelihood functions, and comparison with other inference functions such as informal likelihood 825 

functions or approximate Bayesian computation is warranted in a future study.    826 

Based on the aforesaid conclusions and limitations, we recommend to start calibrating soil 827 

respiration models with simple SLS or SEP likelihood function. If the residuals characterization is 828 

adequate (e.g., Scharnagl et al., 2011), then the underlying assumptions are met. Otherwise, 829 

increase complexity of the data model until satisfactory results are obtained in terms of residuals 830 

characterization, posterior parameter estimation, and predictive performance. This is similar to the 831 

procedure given in Smith et al. (2015). Although the empirical findings of this study provide 832 

general guidelines for data model selection for soil respiration modeling, more comparative studies 833 

are needed to validate and refute the findings of this study. 834 
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SLS-AC Standard least square with autocorrelation  850 
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Figure 1. Diagram of model 6C representing the processes of (1) degradation of soil organic carbon 1232 
(SOC) to dissolved organic carbon (DOC) through catalysis of enzymes (ENZ) produced by 1233 
microbes (MIC), (2) MIC uptake of DOC, and (3) microbial (MIC) respiration to produce CO2 1234 
(CUE is the carbon use efficiency). SOC degradation and microbial uptake rates are controlled by 1235 
water saturation ( / )s  . The DOC and ENZ pools are split into two subpools, one for the wet zone 1236 
and the other for the dry zone of the soil pore space. Microbial uptake of DOC occurs only in the 1237 
wet zone, and the uptake rate is linearly related to θ/θs. Catalysis through ENZ in the wet zone is 1238 
proportional to θ/θs, while that in the dry zone is proportional to 1 – θ/θs.  maxV  (s-1) is the maximum 1239 

rate, and mK  is the half-saturation concentration.  1240 
 1241 

 1242 
 1243 
 1244 
 1245 
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Figure 2. Time series of soil moisture and efflux observations. The dashed line marks the divide 1246 
of the dataset into calibration and validation periods.  1247 
 1248 

 1249 
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Figure 3. Residual analysis of the best realization (among multiple MCMC realizations) for model 1250 
6C using data models (a-c) SLS and (d-f) WSEP-AC.  1251 
 1252 

1253 
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Figure 4. Residual quantile‐quantile (Q-Q) plots of the best realization (among multiple MCMC 1254 
realizations) for the three soil respiration models and eight data models.  1255 
 1256 

 1257 
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Figure 5. Marginal posterior parameter density of carbon use efficiency (CUE) for the three soil 1258 
respiration models and eight data models. 1259 
 1260 

1261 



60 

 

Figure 6. Observation data (blue dots) and mean prediction (green line) and 95% credible intervals 1262 
(red line) of prediction ensembles for (a)-(f) the calibration period and (g)-(l) the validation period. 1263 
The plots are for the three soil respiration models using data models SLS and WSEP-AC. The 1264 
prediction ensembles are generated to consider parametric uncertainty of the soil respiration 1265 
models only. 1266 
 1267 

1268 
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Figure 7. (a-b) Nash-Sutcliffe model efficiency (NSME), (c)-(d) sharpness, (e)-(f) predictive 1269 
coverage, and (g)-(h) relative model score for measuring predictive performance of the three soil 1270 
respiration models and the eight data models during the calibration and cross-validation periods. 1271 
The statistics are evaluated from the prediction ensembles generated to consider parametric 1272 
uncertainty of the soil respiration models only. 1273 
 1274 

 1275 

 1276 
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Figure 8. Observation data (blue dots) and mean prediction (green line) and 95% credible intervals 1277 
(red line) of prediction ensembles for (a)-(f) the calibration period and (g)-(l) the validation period. 1278 
The plots are for the three soil respiration models using data models SLS and WSEP-AC. The 1279 
prediction ensembles are generated to consider parametric uncertainty of not only the soil 1280 
respiration models but also the data models. 1281 
 1282 

1283 
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Figure 9. (a-b) Nash-Sutcliffe model efficiency (NSME), (c)-(d) sharpness, (e)-(f) predictive 1284 
coverage, and (g)-(h) relative model score for measuring predictive performance of the three soil 1285 
respiration models and the eight data models during the calibration and cross-validation periods. 1286 
The statistics are evaluated from the prediction ensembles generated to consider parametric 1287 
uncertainty of not only the soil respiration models but also the data models. 1288 
 1289 

1290 
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Figure 10. Observation data (blue dots) and mean prediction (green line) and 95% credible 1291 
intervals (red line) for 6C for the eight likelihood functions during the calibration period (a)-(h) 1292 
and the validation period (i)-(p). The prediction ensembles are generated to consider parametric 1293 
uncertainty of not only the soil respiration models but also the data models. 1294 
 1295 
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