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Anonymous Referee #1 
 
The paper evaluates the impacts of statistical data assumptions in soil microbial respiration modeling 
on estimated model parameters and on model predictions. Inference is done using various soil 
respiration models and various likelihood functions, using half hourly CO2 flux data from a field site. 
It’s an interesting study, but I suggest additional effort to clarify and increase contribution of the work. 
 
We are very thankful for the reviewer for talking the time to evaluate the manuscript, and for providing 
constructive comments.  
 
1. Contribution: the authors should more clearly spell out the explicit contributions of the paper. On 
the one hand, the methodology is not new and has been developed and applied in hydrological studies. 
On the other hand, the application to CO2 modeling may also not be entirely new since the likelihood 
approach used here has already been applied to ecological modeling (including carbon flux modeling); 
a recent example is Scholz, K., Hammerle, A., Hiltbrunner, E. et al. Ecosystems (2018) 21: 982. 
https://doi.org/10.1007/s10021-017-0201-5. 
 
Response: We explicitly spelled out the novel contrition of this paper, which is the systematic evaluation 
of the impact of data model selection on Bayesian inference and predictive performance of soil respiration 
modeling with different degrees of model fidelity. We did a systematic review of Bayesian inference for 
soil respiration modeling. Most studies assume independent, Gaussian, and homoscedastic residuals. Few 
studies have relaxed these assumptions. However, only very few studies have focused on investigating 
the impacts of these assumptions for soil respiration modeling by relaxing the independent residuals 
assumption (Ricciuto et al., 2011) and the Gaussian residuals assumption (Ricciuto et al., 2011; van Wijk 
et al., 2008). By relaxing these three assumptions stepwise resulting in eight data models, to our 
knowledge this is the first study that systematically evaluates the impact of data models on Bayesian 
inference and predictive performance of soil respiration modeling. The revised manuscript reads: 
“Bayesian inference of soil respiration models often adopts the assumption of independent, normally 
distributed and homoscedastic residuals (e.g. Ahrens et al., 2014; Bagnara et al., 2015, 2018; Barr et al., 
2013; Barron-gafford et al., 2014; Braakhekke et al., 2014; Braswell et al., 2015; Correia et al., 2012; Du et 
al., 2015, 2017; Hararuk et al., 2014; Hashimoto et al., 2011; He et al., 2018; Klemedtsson et al., 2008; 
Menichetti et al., 2016; Raich et al., 2002; Ren et al., 2013; Richardson and Hollinger, 2005; Steinacher 
and Joos, 2016; Tucker et al., 2014; Tuomi et al., 2008; Xu et al., 2006; Yeluripati et al., 2009; Yuan et al., 
2012, 2016; Zhang et al., 2014; Zhou et al., 2010). These assumptions are conveniently adopted since the 
requirement of using an unknown probability model in Bayesian statistics is called “a basic dilemma” by 
Box and Tiao (1992). Postulating the data models is always based on assumptions about residual statistics, 
and the most widely used assumptions are paired as follows: (i) independent vs. correlated residuals, (ii) 
homoscedastic vs. heteroscedastic residuals, and (iii) Gaussian vs. non-Gaussian residuals. For soil 
respiration modeling few studies have relaxed the independent residuals assumption (e.g. Cable et al., 
2008, 2011; Li et al., 2016b), the homoscedasticity assumption (e.g. Berryman et al., 2018; Elshall et al., 
2018; Ogle et al., 2016; Tucker et al., 2013), and the non-Gaussian and homoscedasticity assumptions (e.g. 
Elshall et al., 2018; Ishikura et al., 2017; Kim et al., 2014). A recent study (Scholz et al., 2018) relaxed these 
three assumptions using the generalized likelihood function (Schoups and Vrugt, 2010). However, few 
studies have focused on investigating appropriateness and impact of these assumptions for soil 



respiration modeling. This was performed by relaxing the independent residuals assumption (Ricciuto et 
al., 2011) and the Gaussian residuals assumption (Ricciuto et al., 2011; van Wijk et al., 2008). By relaxing 
these three assumptions stepwise resulting in eight data models, to our knowledge this is the first study 
that systematically evaluates the impact of data model selection on Bayesian inference and predictive 
performance of soil respiration modeling. In addition, to our knowledge this is the first soil respiration 
modeling study that investigates the impact of data models in relation to model fidelity.” In the first 
paragraph of the introduction we also stated “While a large number of data models have been used (e.g. 
Elshall et al., 2018; Scholz et al., 2018) to our knowledge comprehensive and systematic evaluation of data 
models for soil respiration modeling has not been reported in literature.” 
 
2. The authors find some problems with the estimation of autocorrelation and suggest an alternative 
approach (Evin et al.). Why not test this approach as well? I’m not sure this would warrant a separate 
publication. Including it here would enhance novelty of the paper in my opinion. Note also that the high 
temporal resolution (half hourly) of the data used by the authors may be a complicating factor; see the 
following paper that discusses this: https://www.hydrol-earth-syst-sci-discuss.net/hess-2018-406/. 
 
Thank you very much for bring our attention to this recent article of Ammann et al. (2018).  
 
This manuscript provides a systematic evaluation of the impact of data model selection on Bayesian 
inference and predictive performance of soil respiration modeling. Figure 10 for example shows specific 
trends that would occur when relaxing the three assumptions of non-correlation, normality, and 
homoscedasticity using joint inversion approach, which has never been reported before in literature.  
 
Autocorrelation is a complicated problem that we are currently working on. Joint inversion of 
heteroscedasticity and autocorrelation parameters can lead to poor predictive performance (Evin et al., 
2013, 2014; Ammann et al. 2018; and this study). To address this problem a two-step procedure (e.g. Lu 
et al., 2013; Evin et al., 2013, 2014) is proposed. Our preliminary results show that using the sequential 
approach of Evin et al. (2013; 2014) by estimating the autoregressive parameters sequentially (after 
estimating the soil respiration model parameters and data-model parameters) did not solve this problem. 
Ammann et al. (2018) even states that the joint inversion is still preferred, and understanding the 
conditions where accounting for auto-correlation can be achieved remain poorly understood.  
 
The problem of autocorrelation has several interlinked aspects that we would like to address in another 
manuscript. Auto-correlated errors might be attributed to a systematic error in the soil respiration model. 
The most obvious solution is to improve the soil respiration model. Otherwise, we can improve our data 
model. Our hypothesis that we would like to test is that omitting autocorrelation error through a filter 
approach (e.g. Schoups and Vrugt, 2010; Evin et al., 2013; 2014; this study) could be tricky as this leads to 
a loss of information content. Thus, joint approach may lead to biased parameter estimation (Figure 5) 
and poor predictive performance (Figure 10). While sequential approach would avoid the biased 
parameter estimation, but would still lead a poor predicative performance. Our current understanding is 
that this problem could emerge from several interlinked factors: 
• Non-stationarity due to wet-dry periods as proposed by Ammann et al. (2018) could be a reason for this 
problem and thus accounting for non-stationarity (Smith et al., 2010b, Ammann et al. 2018) could alleviate 
this problem.  
• The method for accounting for autocorrelation could have an impact. Autocorrelation could be 
addressed using a likelihood function based on covariance matrix of residuals L(e) (e.g. Lu et al., 2013) 
with transformed residuals, and likelihood function of normalized residuals L(a) (e.g. Schoups and Vrugt, 
2010; Evin et al., 2013; 2014; this study) with autoregressive model that filter out autocorrelation. Note 



that e is a vector of transformed residuals, while a is a vector independent and identically distributed 
random errors with zero mean and unit standard deviation. We would like to study these two methods. 
• Joint versus sequential inversion for autocorrelation could also have an impact. Ammann et al. (2018) 
suggests that the joint inversion is still preferred over sequential inversion. This will be investigated under 
both L(e) and L(a) approaches. In addition, we would introduce a novel joint inversion procedure based 
on L(a) approach as follows. First, the parameters of the linear heteroscedastic model will be estimated 
similar to Schoups and Vrugt (2010) to remove heteroscedasticity. For each MCMC sample, after applying 
the linear heteroscedasticity model, the auto-correlation parameters can be deterministically calculated 
as internal variables of the data model similar to Lu et al. (2013) and not as calibration parameters as in 
Schoups and Vrugt (2010). This is mainly to avoid interaction between heteroscedasticity and 
autocorrelation parameters. The auto-correlation parameters can be calculated following Lu et al. (2013).  
We have revised the manuscript to further clarify these issues. The revised manuscript reads “This study 
confirms the empirical findings and theoretical analysis (Evin et al., 2013; 2014; Ammann et al. 2018) that 
separate accounting for autocorrelation or joint inversion of correlation and heteroscedasticity can be 
problematic. By drawing on similarity from surface hydrology, the study of Ammann et al. (2018) suggests 
that this might be attributed to non-stationarity due to wet-dry periods with half-hourly data. Accounting 
for non-stationarity (Smith et al., 2010b, Ammann et al. 2018) could address this problem. Relatively poor 
performance with respect to autocorrelation can be also attributed to the implementation scheme. The 
inference scheme such as joint inference as in this study, post-processing inference approach for 
autocorrelation (Evin et al., 2013; 2014), residuals transformation approach (e.g. Lu et al., 2013) or other 
strategies (Li et al., 2015, 2016a) could have an impact. Yet Ammann et al., (2018) study states that the 
joint inversion is still preferred, and understanding the conditions where accounting for auto-correlation 
can be achieved remain poorly understood. Further investigation of this point is warranted in a future 
study.” 
 
3. The paper should be checked for various grammatical errors and typos. One example is 
"heteroscedasticity", which is spelled in multiple creative ways throughout the paper. 
 
Response: Thank you very for pointing this out and we have corrected "heteroscedasticity" at eight 
different locations throughout the manuscript.  We corrected several other grammatical errors and typos.  
 
4. Description of the various evaluation metrics seems better placed in the methods than results 
section. 
 
We moved the description of the various evaluation metrics from the results to the methods section. 
 
5. Terminology: the distinction between model fidelity and discrepancy is not clear 
 
We clarified these two terms as follows: “We use the terms model fidelity and model discrepancy 
interchangeably. Model fidelity refers to the degree of realism of representing our scientific knowledge 
with respect to the real world system. That is a high fidelity model has less discrepancy.” 
 
6. Line 305, "discrete proposal distribution": I don’t think the proposal is discrete, it is a proposal 
distribution over a continuous parameter space. 
 
Response: We revised "discrete proposal distribution" to “adaptive proposal distribution.”  
 



7.  Line 477: please rephrase; I don’t think it’s "expected" that accounting for autocorrelation leads to 
biased parameter values. I would expect the opposite, since autocorrelation provides a (simple) way to 
account for model errors. 
 
Response: We rephrased this sentence to “First, we obtained biased parameter estimates that is out the 
reasonable physical range.” 
 
8. Eq. 23: is index i an index over time or is it an ensemble index? Please clarify. 
 
Thank you very much for point this out. We clarified that this is an ensemble prediction Yij where i is index 
over time, and revised other parts of the manuscript accordingly. The new sentence read “the ensemble 
prediction Yij is similar to Yi above where is   index over time and specific to the j-th combination.” 
 
9. Line 598: approaches that use "total residual error" typically still separate out parametric uncertainty, 
so the residual error includes measurement, model input, and model structure uncertainty, but not 
parameter uncertainty. 
 
That is true. We rephrased that sentence to “total residuals that separates out parametric uncertainty, so 
the residual error includes measurement, model input, and model structure uncertainty.” 
 
Thank you very much for your constructive comments. 
 
Anonymous Referee #2 
 
The manuscript submitted by Elshall et al. is an interesting study dealing with the complexity of soil C 
model parameterization. In recent decades, the complexity of those model as well as the different tools 
to parameterize has increased substantially leading to potential misuses of powerful but complex 
mathematical approaches. The goal of Elshall et al is therefore to evaluate the impact on process-based 
model predictions of neglecting a couple of assumptions of the Bayesian framework as it is often done 
by soil modelers to avoid complexity. 
 
We thank the reviewer very much evaluating the manuscript and for providing constructive feedback and 
suggestions. 
 
The present study might not be super novel for the entire modeling communities in geoscience as 
mentioned by the other referee. Nevertheless, it underlines a flaw of several carbon soil modeling 
studies and might be considered as novel in this context. It is a pity that the author may not freely 
communicate their models and scripts it would have definitely increased the impact of the paper. 
 
We feel sorry for this too, and we would love to share the code and the soil respiration models upon 
request.  
 
Even though the objectives of the paper are important and deserve to be published, in my opinion, the 
manuscript in its present form is sometimes too hard to read and needs some simplifications. A first 
recommendation might be to have a table summarizing all the acronyms and try to reduce them when 
not necessary.  
 
We added a list of acronyms as follows: 



Acronyms  
4C Four carbon pool model  
5C Five carbon pool model 
 6C Six carbon pool model  
CUE Microbial carbon use efficiency  
DOC Dissolved organic carbon  
ENZ Enzymes MCMC Markov chain Monte Carlo  
MIC Microbial biomass NSME Nash-Sutcliffe model efficiency  
PDF Probability density function  
RMS Relative model score  
SEP Skew exponential power distribution  
SEP-AC Skew exponential power distribution with autocorrelation  
SLS Standard least square  
SLS-AC Standard least square with autocorrelation  
SOC Soil organic carbon  
WLS Weighted least squared  
WLS-AC Weight least square with autocorrelation  
WSEP Weighted skew exponential power distribution 
WSEP-AC Weighted skew exponential power distribution with autocorrelation 
 
Secondly, a workflow scheme might also be useful to understand the logic of the authors, which is not 
always super clear. 
 
We added a summary table of the data models and corresponding likelihood functions. The revised 
manuscripts states “A summary table of the eight data models with corresponding parameters is provided 
in the supplementary materials.” We added a workflow scheme as a supplementary figure. The revised 
manuscript reads " Our workflow scheme is presented in the supplementary materials.” The new table 
and figure are presented below and in the attached supplementary file. 
 
Finally, I missed some definition to be sure I fully understood the text. In particular, it is not crystal clear 
to me what the author means by ’data model’. From my understanding, a data model is based on data 
but the observed data are presented quite fare from the data model. 
 
In the revised manuscript we clarified that “A data model that is also known as a residuals model or an 
error model is used to characterize residuals (i.e., the difference between data and corresponding model 
simulations).” In addition, please see our response to the previous comment. 
 
Another point is that I still do not fully understood how the authors link their data model with their 
process-based model. I understood that the data models are used for posterior parameter estimation 
but sometimes the text makes me doubt. 
 
The parameters of the data model are jointly estimated with the parameters of the soil respiration model 
using MCMC. We clarified this in the revised manuscript “the posterior distributions of the data model 
parameters are jointly estimated with the soil respiration model parameters using the MT-DREAM(ZS) 
code (Laloy and Vrugt, 2012).” In addition, a summary of the data model parameters is presented in the 
supplementary materials as we clarified in a previous response. 
 



I don’t understand why the author fixed the upper limit of the physical range of CUE to 0.6 (the mean 
over terrestrial systems) whereas in the paper they cited several observations are above 0.6 
 
The thermodynamic maximum limit of CUE is 0.6 and the empirical observations show that CUE over a 
wide range of field conditions converges to ∼ 0.30 with a mean value of 0.55 for terrestrial ecosystems 
(Sinsabaugh et al., 2013). We used this upper limit for analysis only. We did not fix this limit for Bayesian 
inverse modeling to understand the impact of data model on parameter estimation. 
 
Some typo: l121 ‘and’ not necessary L176 please correct the parenthesis L611: despite instead of 
desp8ite 
 
Thank you very much for pointing out these typos and we corrected them.  
 
I, therefore, think that this manuscript deserves publication after a deep rewriting to clarify the 
methods used 
 
Addressing the review comments helped us to rewrite and clarify several parts of the manuscript. Thank 
you very much. 
 



Supplementary Table 1. Summary of the data models and corresponding likelihood functions  
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Supplementary Figure 1. Workflow scheme 
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Key Points 47 
 48 
(1) Bayesian inference and prediction are useful to evaluate multiple soil respiration models 49 

with different levels of model complexity. 50 

(2) Data models used in Bayesian inference have substantial impacts on model parameter 51 

distributions and subsequently model predictions. 52 

(3) Using exponential power distribution and considering heteroscedasticity in data models 53 

improves Bayesian inference and prediction.  54 
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Abstract 71 

Bayesian inference of microbial soil respiration models is often based on the assumptions that the 72 

residuals are independent (i.e. no temporal or spatial correlation), identically distributed (i.e. 73 

Gaussian noise) and with constant variance (i.e. homoscedastic). In the presence of model 74 

discrepancy, since no model is perfect, this study shows that these assumptions are generally 75 

invalid in soil respiration modeling such that residuals have high temporal correlation, an 76 

increasing variance with increasing magnitude of CO2 efflux, and non-Gaussian distribution. 77 

Relaxing these three assumptions stepwise results in eight data models. Data models are the basis 78 

of formulating likelihood functions of Bayesian inference. This study presents a systematic and 79 

comprehensive investigation of the impacts data model selection on Bayesian inference and 80 

predictive performance. We use three mechanistic soil respiration models with different levels of 81 

model fidelity (i.e. model discrepancy) with respect to number of carbon pools and explicit 82 

representations of soil moisture controls on carbon degradation, and accordingly have different 83 

levels of model complexity with respect to the number of model parameters. The study shows data 84 

models have substantial impacts on Bayesian inference and predictive performance of the soil 85 

respiration models such that: (i) the level of complexity of the best model is generally justified by 86 

the cross-validation results for different data models; (ii) not accounting for heteroscedasticity and 87 

autocorrelation might not necessarily result in biased parameter estimates or predictions, but will 88 

definitely underestimate uncertainty; (iii) using a non-Gaussian data model improves the parameter 89 

estimates and the predictive performance; and (iv) separate accounting for autocorrelation or joint 90 

inversion of correlation and heteroscedasticity can be problematic and requires special treatment. 91 

Although the conclusions of this study are empirical, the analysis may provide insights for 92 

selecting appropriate data models for soil respiration modelings.  93 
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1 Introduction  94 

Developing accurate soil respiration models is important for realistic projection of global 95 

carbon [C] cycle, as global soils store 2,300Pg carbon, an amount more than 3 times that of the 96 

atmosphere (Schmidt et al., 2011) and release 60–75 Pg C/yr, about 7 times more CO2 to the 97 

atmosphere than all human-caused emissions (Le Quéré et al., 2014). The major work on soil 98 

respiration modeling has been focused on advancing knowledge about model inputs and 99 

calibration data (e.g. Janssens et al., 2003; Peters et al., 2007; Scott et al., 2009; Barron-Gafford et 100 

al., 2011; Hilton et al., 2014)  and on developing more advanced models for better representing 101 

soil microbial processes (e.g. Schimel and Weintraub, 2003; Allison et al., 2010; Davidson et al., 102 

2011; Wieder et al., 2013, 2015; Xu et al., 2014; Zhang et al., 2014) . Integration of data and 103 

models is indispensable for improving predictability of the terrestrial carbon cycle, and statistical 104 

modeling is a vital tool for the model-data integration (Luo et al., 2011, 2014; Wieder et al., 2015). 105 

In addition, use of state-of-the-art statistical methods is necessary to accurately quantify 106 

uncertainty in parameters and structures of soil respiration models for improvement and practical 107 

uses of the models (Katz et al., 2013). Statistical modeling always requires adequatelyA data model 108 

that is also known as a residuals model or an error model characterizing  is used to characterize 109 

residuals residuals(, i.e., the difference between data and corresponding model simulations). While 110 

a large number of data models have been used (e.g. (Elshall et al., 2018a; Scholz et al., 2018), to 111 

our knowledge, comprehensive and systematic evaluation of data models for soil respiration 112 

models modeling has not been reported in literature.  113 

The goal of this study is to evaluate the impacts of data models on Bayesian inference and 114 

predictive performance of three mechanistic soil respiration models, and use these findings to 115 

make broader recommendations. The three models were developed by Zhang et al. (2014) to 116 
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simulate the Birch effect (the peak soil microbial respiration pulses in response to episodic rainfall 117 

pulses) at a site scale and a short temporal scale, which are important for gaining mechanistic 118 

understanding of CO2 efflux production (Högberg and Read, 2006; Vargas et al., 2011). Zhang et 119 

al. (2014) developed a total five models, including an existing four-carbon pool model and four 120 

new models with additional carbon pools and/or explicit representations of soil moisture controls 121 

on carbon degradation and microbial uptake rates. The models Zhang et al. (2014) were calibrated, 122 

and Bayesian model selection was used to select and the best model. However, this effort was 123 

based on a single data model. It is unknown whether the best model still remains the best (in terms 124 

of reproducing the both calibration data and the cross-validation data) if a different data model is 125 

used. In addition, since predictive performance of the models was not evaluated in Zhang et al. 126 

(2014), it is unknown whether the best model will give the best predictions. These two questions 127 

are addressed in this study by considering eight data models and by evaluating predictive 128 

performance in a manner of cross-validation. The top two models (also the two most  high fidelity 129 

models) ranked by Zhang et al. (2014) are considered in this study, and the worst model (also the 130 

low fidelity model) is also considered in this study for comparison. We use the terms model fidelity 131 

and model discrepancy interchangeably. Model fidelity refers to the degree of realism of 132 

representing our scientific knowledge with respect to the real world system. That is  a That is high 133 

fidelity model hasmodel with less discrepancy. Conducting Bayesian inference and evaluating 134 

predictive performance for the three models with different degrees of fidelity provides more 135 

insights than for a single model.  136 

Bayesian inference in general uses the Bayes’ theorem to update the distributions of model 137 

parameters to posterior parameter distributions given a likelihood function. The mathematical 138 

formulation of the (formal and informal) likelihood function requires a probabilistic data model 139 
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that however is intrinsically unknown due to unknown errors in all model components such as 140 

observation data, model structures, parameters, and driving forces. Bayesian inference of soil 141 

respiration models often adopts the assumption of independent, normally distributed and 142 

homoscedastic residuals (e.g. Ahrens et al., 2014; Bagnara et al., 2015, 2018; Barr et al., 2013; 143 

Barron-gafford et al., 2014; Braakhekke et al., 2014; Braswell et al., 2015; Correia et al., 2012; Du 144 

et al., 2015, 2017; Hararuk et al., 2014; Hashimoto et al., 2011; He et al., 2018; Klemedtsson et 145 

al., 2008; Menichetti et al., 2016; Raich et al., 2002; Ren et al., 2013; Richardson and Hollinger, 146 

2005; Steinacher and Joos, 2016; Tucker et al., 2014; Tuomi et al., 2008; Xu et al., 2006; Yeluripati 147 

et al., 2009; Yuan et al., 2012, 2016; Zhang et al., 2014; Zhou et al., 2010). These assumptions are 148 

conveniently adopted since the requirement of using an unknown probability model in Bayesian 149 

statistics is called “a basic dilemma” by Box and Tiao (1992). Postulating the data models is always 150 

based on assumptions about residual statistics, and the most widely used assumptions are paired 151 

as follows: (i) independent vs. correlated residuals, (ii) homoscedastic vs. heteroscedastic 152 

residuals, and (iii) Gaussian vs. non-Gaussian residuals. For soil respiration modeling few studies 153 

have relaxed the non-correlation assumption(e.g. Cable et al., 2008, 2011; Li et al., 2016b), the 154 

homoscedasticity assumption(e.g. Berryman et al., 2018; Elshall et al., 2018; Ogle et al., 2016; 155 

Tucker et al., 2013), and the non-Gaussian and  homoscedasticity assumptions (e.g. Elshall et al., 156 

2018; Ishikura et al., 2017; Kim et al., 2014). A recent study (Scholz et al., 2018) relaxed these 157 

three assumptions using the generalized likelihood function (Schoups and Vrugt, 2010). There are 158 

many diagnostics available to assess these choices (a number of them is used in this paper). 159 

However, few studies have focused on investigating appropriateness and impact of these 160 

assumptions for soil respiration modeling, by relaxing the independent residuals assumption ( 161 

Ricciuto et al., 2011) and the Gaussian residuals assumption (Ricciuto et al., 2011; van Wijk et al., 162 
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2008). By relaxing these three assumptions stepwise resulting in eight data models, to our 163 

knowledge this is the first study that systematically evaluates the impact of data model selection 164 

on Bayesian inference and predictive performance of soil respiration modeling. In addition, to our 165 

knowledge this is the first soil respiration modeling study that investigates the impact of data 166 

models in relation to model fidelity.   167 

Relaxing these three assumption results in eight data models, which are shown in details in 168 

Section 2. For example, combining the assumptions of independent, homoscedastic, and Gaussian 169 

residuals leads to the standard least squares data model. This model is the simplest one among the 170 

eight data models, since it requires only one parameter, i.e., the constant variance of the Gaussian 171 

distribution. Note that there is a difference between the physical soil respiration model parameters 172 

and data model parameters. They technically can be estimated together, but one arises from 173 

assumptions about soil respiration processes, and the other assumptions about the residualsdata 174 

models. Relaxing the homoscedastic assumption to heteroscedastic gives the weighted least 175 

squares data model. It is more complex, because it has extra parameters to account for it requires 176 

multiple variances for multiple data. Whenever one or combinations of the three assumptions 177 

(independence, homoscedasticity, and normality) are relaxed, the resulting data models become 178 

more complex and require more parameters.  Such This sSsystematic evaluation way of of 179 

formulating data models ((McInerney et al., 2017; McInerney et al., 201; is similar to that of Smith 180 

et al. (2010b, 2015) , and it is necessary to evaluate appropriateness of residualsthe three basic 181 

assumptions and their impacts on Bayesian inference.    182 

The assumptions of heteroscedastic, correlated, and non-Gaussian residuals are accounted for 183 

using the method of Schoups and Vrugt (2010) in the following procedure: (i) the correlation is 184 

removed from the residuals by using an autoregressive model; (ii) the resulting residuals are 185 
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normalized by a linear model of variance; and (iii) the normalized residuals are characterized by 186 

using the skew exponential power distribution. The data model parameters (i.e., coefficients of the 187 

autoregressive model, the linear variance model, and the skew exponential power distribution) are 188 

not specified by users, but estimated together with physical soil respiration model parameters 189 

during the Bayesian inference. The skew exponential power distribution is general in that by 190 

adjusting the values of its kurtosis and skewness parameters the distribution can produce other 191 

distributions such as the Laplace distribution used by( (van Wijk et al.,,  2008; Ricciuto et al., 192 

2011) and (Ricciuto et al., 2011), and other distributions through given by using an different 193 

kurtosis parameters of an exponential model with different kurtosis parameters (Tang and Zhuang, 194 

2009).  It is worth pointing out that there exist other methods to account for the three assumptions. 195 

Evin et al. (2013) suggested accounting for residual heteroscedasticity before accounting for 196 

residual autocorrelation. Lu et al. (2013) developed an iterative two-stage procedure to separately 197 

estimate physical model parameters and data model parameters. Evin et al. (2014) developed a 198 

similar procedure to first estimate model parameters and then estimate heteroscedasticity and 199 

autocorrelation parameters. While this study uses the method of Schoups and Vrugt (2010), 200 

exploring other methods is warranted in future studies.        201 

After investigating the impacts of the data models on Bayesian inference, this study evaluates 202 

the impacts of the data models on predictive performance of the three soil respiration models. 203 

Using random samples generated during the Bayesian inference, a prediction ensemble is produced 204 

for each soil respiration model. The ensemble is used to evaluate predictive performance of the 205 

models in a stochastic sense by estimating to what extent the models can predict future events. The 206 

evaluation in this study is done in a cross-validation manner byto splitting a the dataset of CO2 207 

efflux into two parts for Bayesian inference and cross-validation, respectively. The evaluation of 208 



9 

 

predictive performance is important because different data models may give different parameter 209 

distributions and accordingly different predictive performance. For example, the study of van Wijk 210 

et al. (2008) concluded that the choice of the residual function is crucial to achieve accurate model 211 

prediction and parameter estimation. Shi et al. (2014) showed that the posterior parameter 212 

distributions and predictive performance given by two data models (weighted least square and 213 

skew exponential power distribution after removing heteroscedasticity and autocorrelation) are 214 

dramatically different, and a definitive conclusion was drawn that one data model is better than 215 

the other. The evaluation of predictive analysis is conducted for the following two cases: (1) the 216 

prediction ensemble is generated by random samples of the soil respiration models only (i.e. 217 

credible interval), and (2) the prediction ensemble is generated by random samples of not only the 218 

soil respiration models but also the data models (i.e. predictive interval). The two cases lead to 219 

different conclusions about the predictive performance. It is expected that the evaluation of 220 

predictive performance conducted in this study can help select the most appropriate data model to 221 

achieve optimal model predictions.   222 

The remainder of the paper is organized as follows. Section 2 starts with a description of the 223 

evolving data models and their corresponding likelihood functions used in Bayesian inference, 224 

followed by a brief summary of the three soil respiration models. The results of Bayesian inference 225 

are discussed in Section 3 and Section 4, addressing the data model implications on parameter 226 

estimation and predictive performance, respectively. Section 5 summarizes the key findings and 227 

limitations of this study, and provides recommendations for approaching data model selection.  228 
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2 Methodology 229 

This section starts with a descriptions of the eight data models that account for the three pairs 230 

of assumptions about residuals in a stepwise manner in Section 2.1. The data models are used to 231 

build the likelihood functions used in Section 2.2 for Bayesian inference. The three soil respiration 232 

models and observations of CO2 efflux are described in Sections 2.3 and 2.4, respectively. Metrics 233 

for evaluating predictive performance are presented in Section 2.5.   234 

 235 

21 Methodology 236 

This section starts with a descriptions of the eight data models that account for the three pairs 237 

of assumptions about residuals in a stepwise manner in Section 2.1. The data models are used to 238 

build the likelihood functions used in Section 2.2 for Bayesian inference. The three soil respiration 239 

models and observations of CO2 efflux are described in Sections 2.3 and 2.4, respectively.  240 

2.1 Data models  241 

This study considers eight evolving data models starting from a data model that assumes 242 

independent, homoscedastic, and Gaussian residuals to a data model that relaxes all the three 243 

assumptions. The eight data models are based on the generic normalized residual,  244 

~t
t t

t

a a X



 ,                  (1) 245 

where t t td Y    is the residual (the difference between data dt and its corresponding model 246 

simulation tY ) at time or location t , t ; t  is the standard deviation of the residual, ; and X  is the 247 

probability density function (PDF) of at. The eight data models are formulated with different forms 248 

of t , t , and X. The standard least square (SLS) data model is  249 
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0

~ (0,1)t
t ta a N




 ,                 (2) 250 

where 0t   is a constant for all the data (i.e., homoscedasticity), and X is the standard normal 251 

distribution, N(0,1). The unknown parameter 0  is estimated jointly with unknown physical 252 

model parameters. If t  is not a constant (i.e., heteroscedastyheteroscedastic), SLS becomes the 253 

weighted least squared (WLS) data model. While heteroscedasticity can be accounted for through 254 

residuals transformation (e.g. Thiemann et al., 200; Smith et al., 2010b) or other similar approaches 255 

(Gragne et al., 2015) a linear heteroscedastic model 0 1t tY     is assumed following other 256 

studies  (Thyer et al., 2009; Schoups and Vrugt, 2010; Evin et al., 2013, 2014). With the linear 257 

model, there is no need to estimate t  for each data. Instead, t  is calculated by estimating only 258 

two parameters, 0  and 1 . The WSL data model is written as  259 

0 1

~ (0,1)t
t t

t

a a N
Y


 




.                (3) 260 

The two unknown parameters 0  and 1  are estimated jointly with unknown physical model 261 

parameters. The linear model assigns smaller weight to the data with larger simulation, tY . If the 262 

simulation is small and 0 1 tY  , the weight becomes constant for all data. Both SLS and WLS 263 

assume that at is independently and identically distributed. 264 

It is not uncommon that residuals are correlated in space and time, due to propagation of 265 

measurement errors (Tiedeman and Green, 2013) and model structure errors (Evin et al., 2014; 266 

Kavetski et al., 2013; Lu et al., 2013). The temporal correlation that occurs in the numerical 267 

example of this study can be accounted for using a p-order autoregressive model. This leads to the 268 

data model of standard least square with autocorrelation (SLS-AC),  269 
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1

0

~ (0,1)

p

t i t i
i

t ta a N
 










                       (4) 270 

where p is the order of autocorrelation, and i  is an autocorrelation coefficient. The unknown i  271 

and 0  are estimated together with unknown model parameters. By extending the concept of 272 

correlated residuals to WLS leads to the weight least square with autocorrelation (WLS-AC),  273 

1
1

0 1

~ (0,1)

p

t i t
i

t t
t

a a N
Y

 

 










                (5) 274 

The unknown parameters of 0 , 1 , and i  are estimated jointly with physical model 275 

parameters. Equations (2) – (5) assume that the residuals are Gaussian.  276 

The next four data models are similar to the previous four models except that the standard 277 

normal distribution of ta  is replaced by the skew exponential power distribution, (0,1, , )SEP   , 278 

(Schoups and Vrugt, 2010)  279 

2/(1 )

,1

2
( | , ) expt tp a c a


  


  

 



    

,                (6) 280 

where zero is mean, one is standard deviation,   is skewness,   is kurtosis, 281 

( )
, ( ) tsign a
t ta a   

       , 1( )M     , 
1/ 2

3 / 2

[3(1 ) / 2]

(1 ) [(1 ) / 2]


 
 


  

,  282 

2 2 2 2(1 ) ( ) 2 1M M        , 
1/2 1/2

[1 ]

[3(1 ) / 2] [(1 ) / 2]
M


 
 


   

, and 283 

1/(1 )
[3(1 ) / 2]

[(1 ) / 2]
c








  

    
are derived variables of   and  ,   and [.]  is the gamma function. The 284 

kurtosis parameter { : 1 1}      determines the peakness of the pdf such that the   values 285 

of -1, 0, and 1 give uniform, Gaussian and Laplace distributions, respectively. The skewness 286 
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parameter { :0.1 10}     determines the skewness of the pdf such that the   values of 0.1, 287 

1, and 10 give positively skewed, symmetric, and negatively skewed distributions, respectively. 288 

Setting 0   and 1   leads to 0  , 1  , 1 2  , 1 2c   and ,t ta a  , and the 289 

skew exponential power distribution (0,1, 1, 0)SEP     becomes the standard normal 290 

distribution,  291 

21 1
( | 1, 0) exp ( )

22
t tp a a 


      

.               (7) 292 

which is the data model of SLS in equation (2). 293 

Replacing ~ (0,1)ta N  with ~ (0,1, , )ta SEP    in equations (2) – (5) leads to the data models 294 

SEP, WSEP, SEP-AC, and WSEP-AC as follows,  295 

 
0

~ (0,1, , )t
t ta a SEP

  


                                                                                                     (8) 296 

0 1
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a a SEP
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             (11) 299 

In comparison with the Gaussian data models, the SEP-based data models have two more 300 

parameters (  and  ) to be estimated jointly with physical model parameters. WSEP-AC data 301 

model, which is known as the generalized likelihood function, is the most commonly used SEP-302 

based data model (e.g. Vrugt and Ter Braak, 2011; Hublart et al., 2016; Scholz et al., 2018). A 303 
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summary table of the eight data models with corresponding parameters is provided in the 304 

supplementary materials.  305 

2.2 Bayesian inference and likelihood functions  306 

Consider a Bayesian inference problem for a nonlinear model, f, used to simulate state 307 

variables (e.g., CO2 efflux), d = fY(θ) + εe, where d is a vector of data, θ is a vector of model 308 

parameters, and ε e is a vector of residuals that may include errors in data, model parameters, and 309 

model structures. The goal of Bayesian inference is to estimate the posterior distributions, p(θ|d), 310 

of model parameters, θ, given data, d, using Bayes’ theorem (Box and Tiao, 1992)  311 

     
   

|
|

|

p p
p

p p d



d θ θ
θ d

d θ θ θ
                                (12) 312 

where p(θ) is the prior distribution, and p(d|θ) is the likelihood function to measure goodness-of-313 

fit between model simulations, fY(θ), and data, d. The prior distribution can be obtained from data 314 

of previous studies (e.g. Elshall and Tsai, 2014) or expert judgment. When prior information is 315 

lacking, a common practice is to assume uniform distributions with relatively large parameter 316 

ranges so that the prior distributions do not affect the estimation of posterior distributions.  317 

The data models above can be used to construct the likelihood functions. For the Gaussian data 318 

models given in equations (2) – (5), the corresponding Gaussian likelihood functions are 319 

straightforward, and an example is equation (7). For the SEP data models, the corresponding 320 

likelihood that is called generalized likelihood function is (Schoups and Vrugt, 2010)  321 

     2/(1 )1
,1

1

2
| | exp

n

t t t
t

p p c a


  


 

 





  
εd θ θ .                        (13) 322 

where n is the dimension of d. The Gaussian likelihood functions are special case of the generalized 323 

likelihood functions. For example, by setting 0  , 1  , 0i  , 0t  , 1  , 0  , 324 
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1 2  , 1 2c  , and ,t ta a  , equation (13) becomes the likelihood function corresponding 325 

to the SLS data model. Replacing 0t   by 0 1t tE    , equation (13) becomes the likelihood 326 

function of the WLS data model.   327 

In this study, the posterior distributions of the data model parameters are are obtained jointly 328 

estimated with the physical soil respiration model parameters using the MT-DREAM(ZS) code 329 

(Laloy and Vrugt, 2012)., MT-DREAM(ZS) which implements a Markov chain Monte Carlo 330 

(MCMC) algorithm by running multiple Markov chains in parallel with discrete adaptive proposal 331 

distribution, multiple-try sampling,  and sampling from an archive of past states. These state-of-332 

the-art features assist in overcoming common challenges in the sampling landscape such as 333 

multimodality, ill-conditioning, and high dimensionality, and thus allow for accurate exploration 334 

of the targeted distributions.  335 

2.3 Soil respiration models   336 

Zhang et al. (2014) studied the Birch effect (the peak soil microbial respiration pulses in 337 

response to episodic rainfall pulses), and developed five models, evolving from an existing four-338 

carbon pool model to models with additional carbon pools and/or explicit representations of soil 339 

moisture controls on carbon degradation and microbial uptake rates. Three of the five models are 340 

used in this study, and they are dented as 4C, 5C, and 6C. Note that model 4C is model 4C_NOSM 341 

of Zhang et al. (2014), not their model 4C. Figure 1 is the diagram of model 6C, the most complex 342 

one among the five models. The simplest one, model 4C, has four carbon pools, i.e., soil organic 343 

carbon (SOC), dissolved organic carbon (DOC), microbial biomass (MIC), and enzymes (ENZ), 344 

and does not consider the soil moisture control on carbon degradation and microbial uptake rates. 345 

Models 5C and 6C has an explicit representation of soil moisture controls on the rates. Based on 346 
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the dual Arrhenius and Michaelis–Menten kinetics model, the original SOC degradation rate, 347 

decomV , is (Davidson et al., 2011; Davidson and Janssens, 2006)  348 

max
SOC

decom ENZ
m SOC

C
V V C

K C



               (14) 349 

where maxV  [s-1] is the maximum SOC degradation rate per unit enzyme when the substrates is not 350 

limiting, ENZC  [gCm-3] is enzyme pool size, SOCC  [gCm-3] is SOC pool size,  and mK  is the half-351 

saturation for SOC. The original microbial uptake rate, uptakeV , is (Davidson et al., 2011; Davidson 352 

and Janssens, 2006)  353 

2
max_

_ _ 2 2

DOC O
uptake up MIC

m up DOC m upO O

C C
V V C

K C K C


 
,             (15) 354 

where  max_ upV  [s-1] is the maximum DOC uptake rate when the substrates is not limiting, MICC355 

[gCm-3] is the microbial biomass pool size, DOCC  [gCm-3] is the DOC pool size, 2OC  [m3m-3] is 356 

the gas concentration of O2 in the soil pore, and _m upK  [gCm-3] and _ 2m upOK [m3m-3] are the 357 

corresponding half-saturation constants for DOC and O2, respectively. With the explicit 358 

representation of soil moisture control, the two rates become (Zhang et al., 2014) 359 

max
SOC

decom ENZ
m SOC s

C
V V C

K C



 

    
              (16) 360 

2
max_

_ _ 2 2

DOC O
uptake up MIC

m up DOC m upO O s

C C
V V C

K C K C



 

     
           (17) 361 

where   [-] is the volumetric soil moisture, and s  [-] is the porosity.   362 

In addition to using the new rate equations, models 5C and 6C have more carbon pools. In 363 

model 5C, DOC is split into two sub-pools for wet zone and dry zone of soil pores, and only the 364 
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wet DOC is used by MIC, as shown in Figure 1. The moisture-controlled microbial uptake rate 365 

becomes  366 

_ 2
max_

_ _ _ 2 2

DOC w O
uptake up MIC

m up DOC w m upO O s

C C
V V C

K C K C



 

     
.           (18) 367 

where _DOC wC  [gCm-3] is the DOC pool size in the wet soil pores. Model 6C is more complex in 368 

that ENZ is further split into two sub-pools for wet and dry pores, and both the wet and dry ENZ 369 

are subject to degradation, as shown in Figure 1. The moisture-controlled SOC degradation rate 370 

becomes  371 

max _
SOC

decom ENZ W
m SOC s

C
V V C

K C



 

    
              (19) 372 

for the wet ENZ and  373 

max _ 1SOC
decom ENZ D D

m SOC s

C
V V C

K C

 


 
    

              (20) 374 

for the dry ENZ, where _ENZ WC  [gCm-3] is the wet soil pores enzyme pool size, _ENZ DC  [gCm-3] 375 

is the enzyme pool size in the dry soil pores, and D is the catalysis efficiency of the dry zone 376 

enzyme. 377 

Due to considering the moisture control and adding more soil pools, model 5C is expected to 378 

be significantly better than model 4C for simulating the Birch effect. Since the accumulated ENZ 379 

in dry soil is secondary, model 6C is expected to be slightly better than model 5C. In terms of 380 

model structural error, model 4C has the largest model structure error, model 5C has significantly 381 

less model structure error, and model 6C has the smallest model structural error. As shown below, 382 

the degree of model structural error is reflected in the process of Bayesian inference and verified 383 

by the cross-validation.   384 
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2.4 Observations and parameter estimation 385 

Figure 2 plots the time series of 17,016 observations of soil moister and CO2 efflux used in 386 

this study. The observations were obtained during the entire year of 2007, covering a long period 387 

of dry season prior to monsoon and episodic rainfall events during monsoon. The first two third of 388 

this dataset is used for the Bayesian inference, and the last one third is used for cross-validation. 389 

The inference and cross-validation periods have both dry and wet periods, as shown in Figure 2. 390 

The observation site is located within the Santa Rita Experimental Range (SRER, 31.8214°N, 391 

110.8661°W, elevation 1,116 m) outside of Tucson, Arizona (Barron-Gafford et al., 2011; Scott 392 

et al., 2009). This savanna site was covered by 22% of perennial grass, forbs and subshrubs and 393 

35% of mesquite. The soils are uniformly Comoro loamy sand (77.6% sand, 11.0% clay, and 394 

11.4% silt). The half-hourly atmospheric forcing data were collected from measurements through 395 

an eddy covariance tower (Scott et al., 2009). This includes downward shortwave, longwave, 396 

precipitation, wind, air temperature, humidity, and pressure. Volumetric CO2 concentration was 397 

measured at half-hourly interval through compact probes. The CO2 efflux was estimated from the 398 

gradient of CO2 concentration measured at two depths of 2 cm and 10 cm through Fick’s first law 399 

of diffusion, and the estimates were validated against measurements from a portable CO2 gas 400 

analyzer.  401 

The parameters estimated in this study include the parameters of the soil respiration models 402 

(4C – 6C) and the parameters of the data models described in Section 2.1. The estimated 403 

parameters of models 4C and 5C include the microbial carbon use efficiency (CUE) [g/g], enzyme 404 

production rate, ke [g/m3s], microbial turnover rate, τm [1/s], and enzyme turnover rate τe [1/s]. 405 

Uniform distributions are used as the prior in the Bayesian inference, and the ranges of the four 406 

parameters are 0.2 – 1.00, 1×10-12 – 1×10-7, 1×10-12 – 1×10-5 and 1×10-11 – 1×10-6, respectively. 407 
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The values of other parameters are fixed at the values used in Allison et al. (2010). Model 6C has 408 

two more parameters, and they are the catalysis efficiency D  [-] and the turnover rate of the dry-409 

zone enzymes τen [1/s]. The prior of the two parameters are uniform distributions with the ranges 410 

of 0.2 – 0.8 and 1×10-12 – 1×10-8, respectively.  411 

The DREAM-based MCMC simulation is conducted for a total of 24 cases, the combinations 412 

of eight data models and three physical soil respiration models. For each case, the parameter 413 

distributions are obtained after drawing a total of 5×105 samples using five Markov chains. The 414 

Gelman and Rubin (1992) R-statistic is used for convergence diagnostic, and it approaches one in 415 

less than 4×104 samples. The initial 50% of the samples are discarded during the burn-in period. 416 

42.15 Metrics for evaluating predictive performance 417 

Three criteria are used to evaluate the predictive performance of the soil respiration models 418 

and data models, and they are central mean tendency, dispersion, and reliability. Each 419 

criteriacriterion is measured by a single metric. In addition, a newly defined metric is also used 420 

for simultaneously measuring the three criteria. The central mean tendency is measured in this 421 

study using the Nash-Sutcliffe model efficiency (NSME) coefficient (Nash and Sutcliffe, 1970), 422 

2 2

1 1

1 ( ) ( )
n n

i i i
i i

NSME d d
 

    Y d ,             (21) 423 

where n is the number of cross-validation data, di is the i-th data, d  is the mean of the data, and424 

iY  is the mean of the prediction ensemble, XYi, for di. NSME ranges from - to 1, with NSME = 425 

1 corresponding to a perfect match between data and mean prediction, i.e., the ensemble is centered 426 

on the data. NSME = 0 indicates that the model predictions are as only accurate as the mean of the 427 

data, while an efficiency NSME < 1 indicates that the mean of data is a better prediction than the 428 

mean prediction.  429 
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In addition to the central mean tendency, it is also desirable that the ensemble is precise with 430 

small dispersion and reliable to cover all the data. This study uses a nonparametric metric for 431 

dispersion, and it is the sharpness of a prediction interval (e.g. Smith et al., 2010a) 432 

 
1

1 ( ) Min( )
n

i ii
Sharpness n Max


  Y Y             (22)  433 

where iX  is the prediction ensemble within the 95% prediction interval (the Bayesian credible 434 

interval, not the confidence interval used in nonlinear regression (Lu et al., 2013). Smaller values 435 

of sharpness indicate better prediction precision. Reliability is measured using predictive coverage. 436 

(e.g. Hoeting et al., 1999), which is the percentages of data contained in the prediction interval. 437 

Larger predictive coverage values are preferred. 438 

To account for the trade-off between the three metrics,(Elshall et al., 2018b)  defined relative 439 

model score (RMS) that simultaneously measure all the three criteria. Scoring rules are commonly 440 

used in hydrology to assess predictive performance (e.g. Weijs et al., 2010; Westerberg et al., 441 

2011). RMS is used in this study to measure the relative predictive performance of the 442 

combinations of soil respiration models and data models. For combination Mj, RMS is defined as  443 
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              (23)  444 

where m = 24 is the number of combinations,; and the ensemble prediction XYij is similar to XYi 445 

above where is i  index over time and specific to the j-th combination. The density function, 446 

p(di|XYij), can be evaluated by first obtaining the density function p(XYij) of the ensemble 447 

prediction XYij (e.g., by using the kernel density function) and then evaluating p(di|XYij) using 448 

interpolation methods based on the intersection of XYij and di. This evaluation is based purely on 449 

the model predictions, and does not involve any assumptions on the models, their parameters, 450 
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and likelihood functions. Larger RMS values indicate better overall predictive performance. A 451 

figure of our workflow scheme is presented in the supplementary materials.  452 

 453 

3 Results of Bayesian Inverse Modeling 454 

This section analyzes the residuals of the best realization (with the highest likelihood value) of 455 

the MCMC simulation to understand whether the assumptions of the eight data models hold. The 456 

impacts of the data models on the posterior parameter distributions are also analyzed.  457 

3.1 Residual characterization  458 

Figure 3 shows residual plots for model 6C based on data models SLS and WSEP-AC. SLS is 459 

the simplest one with the assumptions of homoscedastic, independent, and Gaussian residuals, and 460 

the WSEP-AC is the most complex one without the assumptions. Model 6C is the most complex 461 

model and also the best one as ranked by Zhang et al. (2014) using Bayesian model selection. The 462 

variable at plotted in Figures 3a-3c and Figures 3d-3f is defined in equations (2) and (11), 463 

respectively. Figures 3a – 3c show that the three residual assumptions are violated when SLS is 464 

used because (i) the residual variance is not constant, but increases as a function of the simulated 465 

CO2 efflux (Figure 3a); (ii) the autocorrelation function at most lags is beyond the 95% confidence 466 

interval (Figure 3b); (iii) and the standard normal density function cannot adequately characterize 467 

the residuals (Figure 3c). Figures 3d-f show that, after relaxing the three assumptions, the 468 

processed residuals, at, can be well characterized by WSEP-AC. Figure 3d shows that, after 469 

normalizing εt with the linear variance ( 0 .034 0.099t tE   ), the variation of the variance of 470 

at becomes significantly smaller, although the variance is still not a constant. Figure 3e shows that, 471 

after removing a first-order autoregressive model from εt, at becomes less correlated, although the 472 

correlation is not fully removed. The two coefficients of the autoregressive model are 1 0.989   473 
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and 6
2 4.5 10   ; the small value of 2  indicates that there is no need to attempt an autoregressive 474 

model of higher order. Figure 3f shows that at follows the SEP distribution with the estimated 475 

skewness coefficient of 0.933   and kurtosis coefficient of 0.998  . As a summary, Figure 476 

3 shows that it is important to examine the residuals and to determine whether a data model is 477 

adequate for charactering the residuals. Although WSEP-AC still cannot perfectly characterize εt, 478 

it is significantly better than SLS. 479 

Although the Gaussian assumption used in SLS is violated for model 4C (Figure 3c), this is 480 

not generally the case for other data models and physical soil respiration models. This is shown in 481 

Figure 4, which presents the quantile-quantile (Q-Q) plot for the eight data models and the three 482 

soil respiration models. For SLS, WLS, SLS-AC, and WLS-AC, the theoretical quantiles are based 483 

on the standard normal distribution, N(0,1); for SEP, WSEP, SEP-AC, and WSEP-AC, the 484 

theoretical quantiles are based on the standard skew exponential power distribution, SEP(0,1,1,0). 485 

If the residuals follow the assumed standard distributions, the Q-Q plots fall on the 1:1 line, which 486 

is marked as the theoretical lines in Figure 4. If the residuals are Gaussian or SEP but not standard, 487 

the Q-Q plots fall on a straight line but not the 1:1 line. Figures 4a and 4e show that, for all the soil 488 

respiration models, the Q-Q plots of SLS and SEP deviate significantly from the theoretical lines 489 

and exhibit fat-tail behaviors, which is an indication of outliers (Thyer et al., 2009). The deviation 490 

is reduced after accounting for autocorrelation in SLS-AC and SEP-AC, as shown in Figures 4c 491 

and 4g.  (Iit is interesting to observe from the two figures that the Q-Q plots of the three models 492 

are almost visually identical). The deviation is almost fully removed after accounting for 493 

heteroscedasticity in WLS and WSEP in that their corresponding Q-Q plots fall on the 1:1 lines, 494 

especially for models 5C and 6C, as shown in Figures 4b and 4f. However, the Q-Q plots start 495 

deviating from the 1:1 lines as shown in Figures 4d and 4h, after accounting for both 496 
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heteroscedasticity and autocorrelation in WLS-AC and WSEP-AC. As a summary, Figure 4 shows 497 

that, for the numerical example of this study, either the Gaussian or the SEP distribution is valid if 498 

heteroscedasticity is accounted for in the data models. However, accounting for autocorrelation in 499 

the data models does not help improve the characterization of the residual distribution. 500 

3.2 Posterior parameter distributions 501 

While Figures 3 and 4 help understand validity of the three assumptions used in the data 502 

models, the impacts of the data models on estimating model parameter distributions must be 503 

evaluated separately. This section discusses the impact of the data model selection on parameter 504 

estimation with the objective of understanding if incorrect specification of the data model, will 505 

necessarily lead to biased parameter estimates. Such assessment is not a trivial task for three main 506 

reasons. First, microbial soil respiration models aggregate complex natural processes and spatial 507 

details into simpler conceptual representations. As a results several model parameters are effective 508 

values of several complex natural processes that cannot be actually measured in the field as 509 

discussed by Vrugt et al. (2013). Second, even for model parameter that can be measured in the 510 

field, since the model structure is imperfect, it can be the case that parameter values can be 511 

accepted beyond their physically reasonable range as discussed by Pappenberger and Beven 512 

(2006). This is often undesirable, if we seek to make the models more mechanistically descriptive. 513 

We focus our discussion on carbon use efficiency (CUE) for microbial growth since CUE is a 514 

fundamental parameter in microbial soil respiration models, and a reasonable physical range for 515 

CUE can estimated.  The concept of microbial CUE(Allison et al., 2010; Bradford et al., 2008; 516 

Manzoni et al., 2012; Wieder et al., 2013) has been used to present fundamental microbial 517 

processes recent microbial enzyme models(Allison et al., 2010; German et al., 2011; Schimel and 518 

Weintraub, 2003; Wang et al., 2013). The microbial CUE, which is marked between MIC and CO2 519 
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in Figure 1, controls microbial growth, enzyme production and microbial respiration. A reasonable 520 

range of CUE can be estimated from the physical viewpoint(Tang and Riley, 2014). Sinsabaugh 521 

et al. (2013) study shows that the thermodynamic calculations support a maximum CUE of 0.60 522 

and that methods used to estimate CUE in terrestrial systems report a mean value of 0.55. 523 

Theoretically, there no lower limit for CUE as it can approach zero, and CUE< 0.1 are reported 524 

for terrestrial ecosystems (e.g. Fernández-Martínez et al., 2014) and used in modeling studies (Li 525 

et al., 2014). 526 

Figure 5 plots the CUE posterior marginal density of the three soil respiration models obtained 527 

using the eight data models. The physical range between zero and 0.6 is marked in yellow. Figure 528 

5 shows that the CUE posterior parameter distribution for Model 6C for all likelihood functions 529 

that does not account for autocorrelation are within a reasonable physical range. For models 4C 530 

and 5C, the posterior parameter samples are outside the physical range for six data models. For 531 

model 4C, the posterior parameters are within the physical range only for data models SEP and 532 

WSEP; for model 5C, the two data models are WLS and WSEP. It is not surprising to find the 533 

posterior parameter distribution of models 4C and 5C, which have a certain degree of model 534 

structure error, to be out of the plausible physical range. This can be attributed to two reasons. 535 

First, the model solution can be biased toward the missing processes in the model structure such 536 

as the additional carbon pool in both 4C and 5C or the explicit accounting for soil moister in 4C. 537 

Second, biased parameter estimation can compensate for model structure inadequacy and other 538 

sources of discrepancy in both the physical model and the statistical model. 539 

In addition, it is important to understand how accounting for autocorrelation, heteroscedasticity 540 

and non-Gaussian residuals can affect the parameter estimation.  First, it is not unexpected to getwe 541 

obtained biased parameter estimates that can be is out the reasonable physical range when 542 
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autocorrelation is explicitly accounted for as shown in Figure 5e-h. This may suggest again that 543 

accounting for heteroscedasticity is desirable but accounting for autocorrelation is not. A possible 544 

reason is that filtering autocorrelation may reduce the residual space such that the transformed 545 

residual space cannot correspond to the parameter space of the models. In other words, parameter 546 

information may be lost due to filtering out autocorrelation. However, it is not fully understood 547 

why this does not occur for the model 6C under data model SLS-AC, and more research is 548 

warranted.  Second, unlike accounting for auto-correlation, accounting only for heteroscedasticity 549 

(i.e. WLS and WSEP) since this will only amplify or reduce the variance without affecting the 550 

structure of the residual space. Figure 5c-d shows that account for heteroscedasticity (i.e. WLS 551 

and WSEP) tends to improve the parameter estimation in comparison with homoscedastic data 552 

models (i.e. SLS and SEP) shown in Figure 5a-b. Finally, with respect to non-Gaussian residuals, 553 

Schoups and Vrugt (2010) proposes that the peaked pdf of the SEP with heavier tails compared to 554 

Gaussian pdf is useful for making parameter inference robust against outliers. To a certain degree, 555 

this can be substantiated by the results in Figure 5a-d, such that SEP and WSEP provide more 556 

favorable parameter estimates than SLS and WLS.    557 

Finally, from Figure 5 we can also notice that the posterior parameter distribution of SLS 558 

(Figure 5a) is very narrow. This narrow posterior parameter distribution of SLS compared to other 559 

likelihood functions can be attributed to several reasons. Since SEP can have heavier tails than 560 

Gaussian distribution, this can further increase the samples acceptance ratio from tails resulting in 561 

wider distribution (Figure 5b). In addition, accounting for heteroscedasticity will wider the 562 

posterior parameter distribution (Figure 5c) due to accepting higher variances at peak effluxes. 563 

Moreover, filtering correlation (Figure 5e-h) increases the entropy. 564 
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4. Results of Predictive Performance 565 

Based on the last one third of the CO2 efflux observations, a cross-validation test was 566 

conducted for all the 24 models,  the combinations of three soil respiration models and eight data 567 

models. Given the cross-validation dataperiod, the predictive performance is examined using the 568 

four statistical metrics that are defined in Section 24.51. The metrics are also calculated for the 569 

calibration dataperiod. This is not to perform Bayesian model selection given the calibration data, 570 

but to better understand the impact of data models. For each calibration and each cross-validation 571 

data, a prediction ensemble is generated from the two perspectives of parametric uncertainty only 572 

and total uncertainty, as presented in Section 4.2 1 and 4.23, respectively.  573 

4.1 Metrics for evaluating predictive performance 574 

Three criteria are used to evaluate the predictive performance of the soil respiration models 575 

and data models, and they are central mean tendency, dispersion, and reliability. Each criteria is 576 

measured by a single metric. In addition, a newly defined metric is also used for simultaneously 577 

measuring the three criteria. The central mean tendency is measured in this study using the Nash-578 

Sutcliffe model efficiency (NSME) coefficient (Nash and Sutcliffe, 1970), 579 

2 2

1 1

1 ( ) ( )
n n

i i i
i i

NSME d X d
 

     d ,             (21) 580 

where n is the number of cross-validation data, di is the i-th data, d  is the mean of the data, and581 

iX  is the mean of the prediction ensemble, Xi, for di. NSME ranges from - to 1, with NSME = 1 582 

corresponding to a perfect match between data and mean prediction, i.e., the ensemble is centered 583 

on the data. NSME = 0 indicates that the model predictions are as only accurate as the mean of the 584 

data, while an efficiency NSME < 1 indicates that the mean of data is a better prediction than the 585 

mean prediction.  586 
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In addition to the central mean tendency, it is also desirable that the ensemble is precise with 587 

small dispersion and reliable to cover all the data. This study uses a nonparametric metric for 588 

dispersion, and it is the sharpness of a prediction interval (e.g. Smith et al., 2010a) 589 

 
1

1 ( ) Min( )
n

i ii
Sharpness n Max X X


              (22)  590 

where iX  is the prediction ensemble within the 95% prediction interval (the Bayesian credible 591 

interval, not the confidence interval used in nonlinear regression (Lu et al., 2013). Smaller values 592 

of sharpness indicate better prediction precision. Reliability is measured using predictive coverage. 593 

(e.g. Hoeting et al., 1999), which is the percentages of data contained in the prediction interval. 594 

Larger predictive coverage values are preferred. 595 

To account for the trade-off between the three metrics,(Elshall et al., 2018)  defined relative 596 

model score (RMS) that simultaneously measure all the three criteria. Scoring rules are commonly 597 

used in hydrology to assess predictive performance (e.g. Weijs et al., 2010; Westerberg et al., 598 

2011). RMS is used in this study to measure the relative predictive performance of the 599 

combinations of soil respiration models and data models. For combination Mj, RMS is defined as  600 
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where m = 24 is the number of combinations, and Xij is similar to Xi above and specific to the j-th 602 

combination. The density function, p(di|Xij), can be evaluated by first obtaining the density function 603 

p(Xij) of the ensemble prediction Xij (e.g., by using the kernel density function) and then evaluating 604 

p(di|Xij) using interpolation methods based on the intersection of Xij and di. This evaluation is based 605 

purely on the model predictions, and does not involve any assumptions on the models, their 606 

parameters, and likelihood functions. Larger RMS values indicate better overall predictive 607 

performance. 608 
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4.21 Predictive performance with parametric uncertainty of soil respiration models 609 

In this section the ensemble is generated by running the soil respiration models with the 610 

posterior samples (obtained from the Bayesian inference) of the physical model parameters. In 611 

other words, the ensemble addresses parametric uncertainty of the soil respiration models only. 612 

Considering the relative contribution of parametric uncertainty only will provide insights for 613 

modeling approaches that attempt to segregate various sources of uncertainty (e.g. Thyer et al., 614 

2009; Elshall and Tsai, 2014 ).;  (Tsai and Elshall, 2013). 615 

The four statistics above (i.e. NSME, sharpness, coverage, and RMS) are calculated for the 616 

three soil respiration models and the eight data models. Taking data models SLS and WSEP-AC 617 

as an example, Figure 6 plots the data (for the calibration and cross-validation periods separately) 618 

along with the mean and 95% credible intervals of the prediction ensemble for the three models. 619 

 Figure 6 shows that the data models affect model simulations for all the models. The statistics, 620 

especially RMS, indicate that WSEP-AC has better predictive performance than SLS. This is most 621 

visually obvious for model 6C during the cross-validation period after 330 days, as the prediction 622 

ensemble of SLS (Figure 6k) cannot cover the observations, unlike the prediction ensemble of 623 

WSEP-AC can (Figure 6l). This conclusion that WSEP-AC outperforms SLS agrees with that 624 

drawn from Figures 3 and 4. 625 

Figure 7 plots the four statistics for all the soil respiration models and data models. Figures 7a 626 

and 7b show the predictive performance with respect to the central mean tendency using NSME 627 

for both the calibration and cross-validation periods respectively.  The results indicates that the 628 

low fidelity model 4C under all data models will over-fit the data resulting in biased predictions 629 

such that the NSME values become significantly worse (from 0.6 to -0.6) from the calibration to 630 

the cross-validation period. This is confirmed by the visual inspection of Figures 6a, 6b, 6g, and 631 
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6h for data models SLS and WSEP-AC. For models 5C and 6C, their NSME values vary with the 632 

data models; with and the central mean accuracy is being the worst for SLS-AC thatwhich 633 

considers only autocorrelation.  634 

With respect to parametric uncertainty estimation, Figures 7c and 7d show sharpness generally 635 

increases when the three assumptions in the data models are gradually relaxed from SLS to WSEP-636 

AC. This is even more obvious during the validation period. Given that the prediction ensemble 637 

does not center on the data, the increasing sharpness is desirable as it improves reliability. This is 638 

confirmed by the reliability plots in Figures 7e and 7f. The exceptions are again SLS-AC and SEP-639 

AC that generally have the lowest coverage.  640 

With respect to the overall predictive performance, the same variation pattern and exception 641 

are also observed in the RMS plots in Figures 7g and 7h. This is not surprising because RMS is 642 

the metric that can be used to measure all the three criteria (central mean tendency, sharpness, and 643 

reliability). Since the prediction ensemble is not centered on the data, the sharpness and reliability 644 

are the decisive factors for evaluating the predictive performance.  645 

As a summary, while it is necessary to account for heteroscedasticity in a data model, caution 646 

is needed when accounting for autocorrelation in the manner described in Section 2.1. In addition, 647 

after comparing the RMS values of the residuals using the Gaussian and SEP distributions, t. The 648 

conclusion is that the SEP distribution outperforms the Gaussian distribution with respect to 649 

predictive performance. Finally, uncertainty underestimation as evident by the very small 650 

predictive coverage. The underestimation of uncertainty for all the physical models with all 651 

likelihood functions makes sense because only parametric uncertainty is considered.  Considering 652 

the overall predictive uncertainty is the subject of the next section.   653 
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4.32 Predictive performance with parametric uncertainty of soil respiration models and 654 

uncertainty from data modeltotal uncertainty s 655 

The simulated output ( )pY will generally not be equally to the observed output d  D  and 656 

we have a residual ue error term e  due to measurement, input and model structure errors such that657 

( )p d Y e . Accounting for the error term e  can be through separating various error terms. For 658 

example, in section 4.2 1 we obtained uncertainty due to the physical model parameters. 659 

Accounting for other sources of uncertainty can be done using a single model approach (e.g. Thyer 660 

et al., 2009) or a multi-model approach (e.g. Tsai and Elshall, 2013). Alternatively, we can quantify 661 

the uncertainty based on total residuals that ,separates out parametric uncertainty, so the residual 662 

error includes measurement, model input, and model structure uncertainty  which include 663 

measurement, model input, model structure and parameter estimation errors (e.g. Thyer et al., 664 

2009; Schoups and Vrugt, 2010). This lumped approach is based on sampling the residual error 665 

modelresiduals model ( )ee  with parameters e .  SLS has one fixed parameter that is the constant 666 

variance and other data models have two to six parameters. Thus in Section 4.3this section, the 667 

prediction ensemble addresses parametric uncertainty of not only the soil respiration models but 668 

also the data models. When generating the prediction ensemble in the procedure described by 669 

Schoups and Vrugt (2010), an ensemble of residuals is first generated by running the data models 670 

with posterior samples of the data model parameters for the positive carbon efflux domain; the 671 

residual ensemble is then added to the prediction ensemble generated in Section 4.12. 672 

We start by the visual assessment of the predictive performance. Figure 8 is similar to Figure 673 

6 with the exception that Figure 8 considers the overall all predictive uncertainty (i.e. parametric 674 

and output uncertainty), while Figure 6 considers the parametric uncertainty only. Figure 8 reveals 675 

a practical observation about accounting for the overall uncertainty through the lumped approach 676 
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of sampling the residuals  errors model. Figure 8b shows that desp8ite the wide prediction interval 677 

of model 4C, which has significant model structure error, it could not capture the birch pulse 678 

around day 180. This clearly indicates that proper modeling of the residuals  error will not make-679 

up for of significant model structure error.  680 

Figure 9 plots the four statistics (NSME, sharpness, predictive coverage, and RMS) of the three 681 

models under the eight data models to assess the predictive performance. First with respect to 682 

central mean tendency, The NSME values in Figures 9a-9b are visually the same as those in 683 

Figures 7a-7b, indicating that the central mean accuracy under parametric uncertainty is the same 684 

as that under predictive uncertainty.  685 

With respect to uncertainty, the values of sharpness and predictive coverage increase 686 

substantially (Figures 9c – 9f). In particular, Figures 9e and 9f show that, except for SLS and SEP, 687 

the predictive coverage of the rest of the six data models are close to 100% for all the three soil 688 

respiration models, indicating that the prediction intervals cover almost all the data. This is 689 

demonstrated in Figures 6 for WSEP-AC. Similar to Figures 7c and 7d, Figures 9c and 9d also 690 

show a general pattern that the sharpness increases when the three assumptions in the data models 691 

are gradually relaxed from SLS to WSEP-AC. The data models that account for autocorrelation 692 

are still the exceptions.  693 

With respect to the overall predictive performance, the RMS values are largely determined by 694 

mean accuracy and sharpness as the predictive coverage is similar for different data models. 695 

Figures 9g and 9h of RMS show that the predictive performance of the four data models that 696 

account for autocorrelation is worse than that of the other four data models. This suggests again 697 

that one needs to be cautious when building autocorrelation into a data model. This is consistent 698 

with the finding of Evin et al. (2013, 2014) that accounting for autocorrelation before accounting 699 
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for heteroscedasticity or jointly accounting for autocorrelation and heteroscedasticity can result in 700 

poor predictive performance. In summary, Figures 9g and 9h show for both the calibration and 701 

prediction periods that accounting for heteroscedasticity (i.e. WLS and WSEP) will give the best 702 

overall predictive skillperformance, and accounting for autocorrelation without heteroscedasticity 703 

(i.e. SLS-AC and SEP-AC) will give the worst overall predictive skillperformance. Finally, for the 704 

three soil respiration models, RMS shows that model 4C has the worst predictive performance for 705 

both the calibration and cross-validation data. Generally speaking, the high fidelity model 6C 706 

outperforms model 5C for both the calibration and cross-validation data, which justifies the 707 

complexity of model 6C.   708 

To demonstrate the impacts of the data models on predictive performance of the soil respiration 709 

models, Figure 10 plots the model simulations and predictions given by model 6C during the 710 

calibration and cross-validation periods using all the eight data models.  711 

In Figure 10 we try to understand the predictive performance characteristics of the different 712 

data models by looking at the predictive performance of model 6C. Specific predictive 713 

performance patterns can be identified. Figures 10-a-d show that SLS and SEP have similar 714 

predictive performance with SEP generally having better predictive skillperformance especially 715 

during the validation period.  Accounting for heteroscedasticity using WLS as shown in Figures 716 

10e and 10h will make the predictions more sensitive to peck carbon effluxes and will generally 717 

improve the predictive coverage on the expense of sharpness and the central mean tendency.   WLS 718 

and WSEP have similar predictive performance. However, WSEP maintains slightly better central 719 

mean tendency and overall predictive performance than WLS. Accounting for autocorrelation 720 

using SLS-AC and SEP-AC as shown in Figures 10i and 10l reduces the information content of 721 

the residuals, and thus resulting in wider uncertainty bands and insensitivity to peak carbon 722 
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effluxes as compared to SLS and SEP (Figures 10a-d). This resulted in deteriorating the sharpness, 723 

the central mean tendency and the capturing of peak carbon fluxes, especially during the validation 724 

period.  Accounting for both heteroscedasticity and autocorrelation using WLS-AC and WSEP-725 

AC will make the inference robust against peck carbon effluxes, yet due to the loss of information 726 

content uncertainty bands are still wider and uncertainty becomes overestimated especially during 727 

validation period as compared to WLS and WSEP. The results of Models 4C and 5C, which are 728 

not shown here, also show the same prediction patterns with respect to non-Gaussian residuals, 729 

heteroscedasticity and autocorrelation. 730 

From figure 10 we also notice that data models that have good overall predictive performance 731 

as measured by RMS during the calibration period will maintain this good predictive performance 732 

during the validation period. For model 6C, RMS values for the calibration and validation periods 733 

are very well correlated with a correlation coefficient of 0.92. However, we note that for models 734 

4C and 5C the overall predictive performance during the calibration and validation periods are not 735 

that well correlated as 6C, with correlation coefficients of 0.52 for model 4C and 0.61 for model 736 

5C. This suggests that model 6C is more robust than 4C and 5C for forecasting and hindcasting.  737 

5. Conclusions  738 

In parameter estimation and prediction of soil carbon fluxes to the atmosphere we often 739 

assume that residuals, which include observation, model input, model structure and parameter 740 

estimation errors, are normally distributed, homoscedastic and uncorrelated. We studied these 741 

assumptions by calibrating three microbial enzyme models, which have varying degrees of model 742 

structure errors. We tested eight data modelsing starting with the standard least squares (SLS) and 743 

skew exponential power (SEP) data models that assume homoscedastictic and non-correlated 744 

residuals. Given these two distributions, we evaluated six other data models that account for 745 
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heteroscedasticity (WLS and WSEP), autocorrelation (SLS-AC and SEP-AC) and joint inversion 746 

of heteroscedasticity and autocorrelation (WLS-AC and WSEP-AC). To our knowledge this is the 747 

first study that provide such detailed analysis soil reparation inverse modeling. We also used three 748 

solid respiration models with different degrees of model fidelity (i.e. model realism) and model 749 

complexity (i.e. number of model parameters), to understand the impact of model discrepancy on 750 

the calibration results under different data models. We analyzed the calibration results with respect 751 

to (i) residual characterization, (ii) parameter estimation, (iii) predictive performance and (iv) 752 

impact of model discrepancy. The main findings of this study can be synthesized summarized as 753 

follows: 754 

(i) With respect to residual characterization, residual analysis results suggest that the common 755 

assumption of not accounting for heteroscedastiicity and autocorrelation of residuals (i.e. SLS and 756 

SEP) results in poor characterization of residuals. Explicit accounting for heteroscedasticity (i.e. 757 

WLS and WSEP) can result in good characterization of the residuals, and is followed by joint the 758 

inversion of heteroscedasticity and autocorrelation (i.e. WSL-AC and WSEP-AC). Accounting for 759 

autocorrelation only (i.e. SLS-AC and SEP-AC) may not improve much the characterization of the 760 

residuals. 761 

(ii) With respect to parameter estimation, we focused on carbon use efficiency (CUE), which 762 

is a central parameter in soil respiration modeling.  We found the SLS with relatively reasonable 763 

posterior parameter distribution for CUE, yet very narrow posterior. Data models consider 764 

autocorrelation (i.e. SLS-AC, SEP-AC, WLS-AC and WSEP-AC) tend to generally yield CUE 765 

estimates that are physically non-reasonable. We speculate that filtering correlation can affect the 766 

mapping of the model physics (as implicitly included in the residuals) into the likelihood space, 767 

which might result in biased parameter estimates that are physically unreasonable. 768 
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(iii) With respect to predictive performance, we assessed the central mean tendency, 769 

uncertainty bands and the overall predictive performance for both the calibration and the cross-770 

validation periods.  Results show that accounting for autocorrelation (i.e. SLS-AC, SEP-AC, WLS-771 

AC, and WSEP-AC) deteriorates the predicative performance, such that the predictive 772 

performance is inferior to SLS in terms of the central mean tendency and overall predictive 773 

skillperformance, especially during the cross-validation period. Results also indicates that using a 774 

SEP distribution can potentially improve the predictive performance. The same is true for 775 

accounting for heteroscedasticity. Using SEP distribution and accounting for heteroscedasticity 776 

(i.e. WSEP) can potentially improve the predictive performance.  777 

(iv) With respect to the impact of model discrepancy, the high fidelity complex model (6C) 778 

gives the best results with respect to parameter estimation and predictive performance. Model 6C 779 

generally maintained its superior performance under different data models. This justifies the 780 

complexity of model 6C relative to model 5C that has one less carbon pool. Model 4C that has a 781 

low fidelity model with only four carbon pools and lacks the explicit representation of soil moisture 782 

control, maintains its poor performance for different data models. 783 

From the empirical findings of this research we conclude the following:  784 

(i) Not accounting for heteroscedasticity and autocorrelation using a Gaussian or non-Gaussian 785 

data model might not necessarily result in biased parameter estimates or biased predictions with 786 

respect to central mean tendency, but will definitely underestimate uncertainty resulting in lower 787 

overall predictive performance.   788 

(ii) Using a non-Gaussian residual error model can improve the parameter estimates, and the 789 

predictive performance with respect to central mean tendency and uncertainty estimation.  790 
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(iii) Accounting for heteroscedasticity will definitely improve the uncertainty estimation with 791 

respect to reliability at the cost of having a wider predictive interval.   792 

(iv) This study confirms the empirical findings and theoretical analysis of ( Evin et al.,  (2013; 793 

2014; Ammann et al. 2018)) that separate accounting for autocorrelation or joint inversion of 794 

correlation and heteroscedasticity can be problematic. Relatively poor performance with respect 795 

to autocorrelation can be due to our implementation scheme, By drawing on similarity from surface 796 

hydrology, the study of Ammann et al. (2018) suggests that this might be attributed to non-797 

stationarity due to wet-dry periods with half-hourly data. Accounting for non-stationarity (Smith 798 

et al., 2010b, Ammann et al. 2018) could address this problem. Relatively poor performance with 799 

respect to autocorrelation can be also attributed to the implementation scheme. The inference 800 

scheme such as joint inference as in this study, which can be improved by using the post-processing 801 

inference approach for autocorrelation (Evin et al., 2013; 2014), residuals transformation approach 802 

(e.g. Lu et al., 2013) or similar other strategies (Li et al., 2015, 2016a) could have an impact. Yet 803 

(Ammann et al., (2018) study states that the joint inversion is still preferred, and understanding the 804 

conditions where accounting for auto-correlation can be achieved remain poorly understood..  805 

Further investigation of this point is warranted in a future study.   806 

The above conclusions above are subject to several limitations. First, the conclusions are 807 

specific to the soil respiration models developed and validated for semi-arid savannah. 808 

Performance variations across different soil respiration models with different levels of 809 

complexities is possible. Second, the conclusions are conditioned on the data that were obtained 810 

at the half-hour interval over a one-year period. Different conclusions are possible if the data are 811 

thinned to daily or weekly scales or data of longer observation periods are used. Third, the study 812 

investigates effects of the residual assumptions of formal likelihood functions through direct 813 
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conditioning of the error residuals model parameters, yet this can also be done through other 814 

approaches such as residuals transformation (Thiemann et al., 2001), autorgressive bias model 815 

(Del Giudice et al., 2013), approximate Bayesian computation (Sadegh and Vrugt, 2013), data 816 

assimliation (Spaaks and Bouten, 2013). Comparing different methods for accounting the residual 817 

assumptions are beyond the scope of this work. Fourth, this study focuses on formal Bayesian 818 

computation using formal likelihood functions, and comparison with other inference functions 819 

such as informal likelihood functions or approximate Bayesian computation is warranted in a 820 

future study.    821 

 Based on the aforesaid conclusions and limitations, we recommend to start calibrating soil 822 

respiration models with simple SLS or SEP likelihood function. If the residuals characterization is 823 

adequate (e.g. Scharnagl et al., 2011), then the underlying assumptions are met. Otherwise, 824 

increase complexity of the data model until satisfactory results are obtained in terms of residuals 825 

characterization, posterior parameter estimation and predictive performance. Although the 826 

empirical findings of this study provide general guidelines for data model selection of microbial 827 

soil respiration models, more comparative studies are needed to validate and refute the findings of 828 

this study. 829 
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SLS  Standard least square  844 
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Figure 1. Diagram of model 6C representing the processes of (1) degradation of soil organic carbon 1217 
(SOC) to dissolved organic carbon (DOC) through catalysis of enzymes (ENZ) produced by 1218 
microbes (MIC), (2) MIC uptake of DOC, and (3) microbial (MIC) respiration to produce CO2 1219 
(CUE is the carbon use efficiency). SOC degradation and microbial uptake rates are controlled by 1220 
water saturation ( / )s  . The DOC and ENZ pools are split into two subpools, one for the wet 1221 
zone and the other for the dry zone of the soil pore space. Microbial uptake of DOC occurs only 1222 
in the wet zone, and the uptake rate is linearly related to θ/θs. Catalysis through ENZ in the wet 1223 
zone is proportional to θ/θs, while that in the dry zone is proportional to 1 – θ/θs.  maxV  (s-1) is the 1224 

maximum rate, and mK  is the half-saturation concentration.  1225 
 1226 

 1227 
 1228 



55 

 

Figure 2. Time series of soil moisture and efflux observations. The dashed line marks the divide 1229 
of the dataset into calibration and validation periods.  1230 
 1231 

 1232 
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Figure 3. Residual analysis of the best realization (among multiple MCMC realizations) for model 1233 
6C using data models (a-c) SLS and (d-f) WSEP-AC.  1234 
 1235 

1236 
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Figure 4. Residual quantile‐quantile (Q-Q) plots of the best realization (among multiple MCMC 1237 
realizations) for the three soil respiration models and eight data models.  1238 
 1239 

 1240 
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Figure 5. Marginal posterior parameter density of carbon use efficiency (CUE) for the three soil 1241 
respiration models and eight data models. 1242 
 1243 

1244 
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Figure 6. Observation data (blue dots) and mean prediction (green line) and 95% credible intervals 1245 
(red line) of prediction ensembles for (a)-(f) the calibration period and (g)-(l) the validation period. 1246 
The plots are for the three soil respiration models using data models SLS and WSEP-AC. The 1247 
prediction ensembles are generated to consider parametric uncertainty of the soil respiration 1248 
models only. 1249 
 1250 
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Figure 7. (a-b) Nash-Sutcliffe model efficiency (NSME), (c)-(d) sharpness, (e)-(f) predictive 1252 
coverage, and (g)-(h) relative model score for measuring predictive performance of the three soil 1253 
respiration models and the eight data models during the calibration and cross-validation periods. 1254 
The statistics are evaluated from the prediction ensembles generated to consider parametric 1255 
uncertainty of the soil respiration models only. 1256 
 1257 

 1258 

 1259 
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Figure 8. Observation data (blue dots) and mean prediction (green line) and 95% credible intervals 1260 
(red line) of prediction ensembles for (a)-(f) the calibration period and (g)-(l) the validation period. 1261 
The plots are for the three soil respiration models using data models SLS and WSEP-AC. The 1262 
prediction ensembles are generated to consider parametric uncertainty of not only the soil 1263 
respiration models but also the data models. 1264 
 1265 

1266 
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Figure 9. (a-b) Nash-Sutcliffe model efficiency (NSME), (c)-(d) sharpness, (e)-(f) predictive 1267 
coverage, and (g)-(h) relative model score for measuring predictive performance of the three soil 1268 
respiration models and the eight data models during the calibration and cross-validation periods. 1269 
The statistics are evaluated from the prediction ensembles generated to consider parametric 1270 
uncertainty of not only the soil respiration models but also the data models. 1271 
 1272 
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Figure 10. Observation data (blue dots) and mean prediction (green line) and 95% credible 1274 
intervals (red line) for 6C for the eight likelihood functions during the calibration period (a)-(h) 1275 
and the validation period (i)-(p). The prediction ensembles are generated to consider parametric 1276 
uncertainty of not only the soil respiration models but also the data models. 1277 
 1278 

 1279 


