
Dear Editor,

Thanks a lot for giving us a series of suggestions that are essentially important for

further improving the manuscript. Next, we’d like to reply them one by one.

1. P.2, L.14-16: In “Considering this, and that the next C-Coupler versions may not be

compatible with C-Coupler1, we did not aim to achieve wide usage of C-Coupler1,

but sought to overcome the limitations while guaranteeing backwards compatibility

in subsequent C-Coupler versions”, the first part of the sentence “the next C-

Coupler versions may not be compatible with C-Coupler1” seems contradictory to

the last part of the sentence “while guaranteeing backwards compatibility in

subsequent C-Coupler versions”. Please modify and clarify.

Response: It seems unnecessary to state about the backwards compatibility here that

will be discussed in the Section of summary and future work. The corresponding

context therefore has been changed to “With such a limitation, C-Coupler1 did not

achieve wide usage”. Please refer to P2L13 of the revised manuscript.

2. P.6, L.7-8: you should not write “Most existing couplers require the user to develop

explicitly all coupling procedures”; some do but I would not write that most of them

do.

Response: This sentence has been changed into “Some existing couplers require the

user to develop explicitly all coupling procedures”. Please refer to P6L6 of the revised

manuscript.

3. If I understand well, the software structure illustrated on Figure 1 was never

implemented as such. C-Coupler1 and C-Coupler-2 structures are illustrated on

Figure 2 and Figure 4 respectively. Therefore, what is represented on Figure 1

should be referred in the caption and in the text to as “General software design of

C-Coupler” (i.e. with “design” instead of “structure”). Please change Figure 1

captions and the text referring to Figure 1 accordingly. For example, I think that

writing on P.9, L.2-3 “This software structure is similar to that of the original C-

Coupler software design (Fig. 1)” and on P.9, L.4 “The original design of the C-

Coupler …” would be clearer.

Response: The manuscript has been improved accordingly. Please refer to P4L2, P4L10,

P6L12, P9L3, P9L4, P9L9, and the title of Figure 1 (P44) in the revised manuscript.

4. P.17, L.21: after “… has experienced two designs”, please add (as explained in your

reply) “The second design can be viewed as an upgrade of the first design and is

currently implemented in C-Coupler2”.

Response: This sentence has been added into the revised manuscript. Please refer to

P17L21~L22.

5. P.19, L.1: This whole section 4.1.1.9 is too detailed and related Figures 6 and 7 are

too hard to read. I suggest moving them to a supplement and referencing to the

supplement at the beginning of section 4.1.1.

Response: Section 4.1.1.9 and the related Figures 6 and 7 have been moved to the

supplement and are referenced in the revised manuscript. Please refer to P12L4~L5.

6. P.24, L.8: please add “The choice is done by the user when registering the import

interface” there as the explanation on P.25, L.24-26 is too far below.

Response: This sentence has been added to the revised manuscript. Please refer to

P23L12~L13.

7. P.24, L.15: for clarity, please add “based on the user’s choice”.

Response: These words have been added to the revised manuscript. Please refer to

P23L16.

8. Section 4.3, P.22-26: should be subdivided into subsections for better readability, I

suggest:

o “4.3.1 Creation of MPI communicators” : from P.22,L.28 to P.23,L.28

o “4.3.2 Timers matching and lags”: from P.23,L.29 to P.24,L.32

o “4.3.3 Steps for coupling procedure generation”: from P.24,L.33 to P.26, L.2

Response: The above subtitles have been inserted into the revised manuscript. Please

refer to P22L2, P23L1 and P24L7.

9. P.27, L.22-30: I am not sure why this paragraph is written putting emphasis on

OASIS3-MCT and not on C-Coupler2. The current paper is on C-Coupler2 and not

on OASIS3-MCT so this should be modified. Describe how non-blocking data

transfer is implemented in C-Coupler2 and then maybe conclude “Similar non-

blocking data transfer is implemented in OASIS3-MCT”. Also sentence starting

with “To achieve non-blocking data transfer …” and ending with “… last put of the

same coupling field” is way to cumbersome; please rephrase and simplify.

Response: The corresponding context has been modified in the revised manuscript.

Please refer to P27L2~L8.

10. P.28, L.17-19: You write “if all model time tags in its message passing buffer …

are the same and later than the tags of the last receive, it means that new coupling

field values have been received”; I don’t understand how a new coupling field can

be associated with same tags than the last receive; I would say that a new coupling

field is only associated with tags later than the tag of the last receive. Please clarify

or correct if I am right.

Response: The corresponding context has been modified in the revised manuscript.

Please refer to P27L27~L28.

11. P.29,L.6: I still don’t understand, as in my first round of review, what do you mean

by “it is unnecessary to execute imp2_1”; I have the same question with imp2_1

and imp2_2 on Fig 9(c). The component model needs those input fields to run,

where will it get it from ???

Response: The imp2_1 will not be executed, because it corresponds to exp1 executed

at the model time of -600 s that is earlier than the start time of the model run, while the

coupling field values imported by imp2 can be initialized via data files or coupling in

the initialization stage of the coupled model. The corresponding context (P28L16~L18)

and the title of Figure 7 has been modified in the revised manuscript.

12. P.30,L.1: change “unbreakable” for “unsolvable”; I understand that 9(e) case is

unsolvable even with one-sided MPI communication where message passing

buffers can be increased adaptively; if I am right, please state it in the text by adding

“(even with one-sided MPI communication)” after “deadlock”.

Response: “unbreakable” has been changed to “unsolvable” at P28L31 and P29L12 of

the revised manuscript. “even with one-sided MPI communication” has also been added

(P29L12).

13. P.30,L31-32: how do you define “coupling latencies”?

Response: “coupling latencies” means coupling lags. All “coupling latencies” has been

changed into “coupling lags” throughout the revised manuscript.

14. Section “4.8 Adaptive restart capability”: I consider that this section is still too

complex and very hard to follow and understand. I propose to move this whole

section and Figure 10 to a supplement and to provide in the paper just a summary

of the C-Coupler2 adaptive restart capability. (Note that on p.34, “bybrid” should

be “hybrid”).

Response: We are sorry that Section 4.8 is still very hard to follow and understand. As

Section 4 introduces the design and implementation of C-Coupler2, in the revised

manuscript, we list out the implementation of the adaptive restart capability in Section

4.8, in addition to the summary, while the examples as well as Figure 10 have been

moved into the supplement. We are sorry that the current revision does not strictly

follow the above suggestion. We will further modify the manuscript if such

modification is still improper.

15. Section 4.9 is too detailed for a paper; this section looks more like a section of the

User Guide. In my comment from the previous round of review, I did not ask for a

whole new section on defaults, I just asked to mention somewhere that default for

each option is described in the User Guide. Please remove section 4.9 and just add

somewhere in the text that default for each option is described in the User Guide.

Response: Section 4.9 has been removed. Most default options have been introduced in

the User Guide. The User Guide will be further improved according to this manuscript.

16. P.40, L.1: how can you speculate about the C-Coupler2 memory usage based on the

assessment of OASIS3-MCT? This seems quite unjustified to me. Please clarify or

modify.

Response: We are sorry about such speculation. Section 5.4 has been modified

accordingly. Please refer to P36L13~L19 of the revised manuscript.

17. Section “6 Future work”: this section was improved compared to the previous

version but I think it is still too weak. I think you should turn this section into

“Summary and future work” including a first half page summarizing the differences

between C-Coupler1 and C-Coupler2, i.e. highlighting the most important points

from Table 2 and then going on with what you currently have in your section “6

Future work” with one paragraph on the integration of external calculation routines

(current P.41, L.1-9), one paragraph on the coupling configuration interface

backward compatibility (current P.41, L.10-11) and one paragraph on initialization

cost and memory use (current P.41, L.12-14)

Response: The title and the organization of Section 6 has been modified according to

the above suggestions. Please refer to P37L13~P38L16 of the revised manuscript.

18. Suggestion for English improvement

Response: Thanks a lot for these suggestions. The manuscript has been modified

accordingly. Please refer to P1L15~L16, P1L19, P1L27, P1L27~L28, P3L12,

P3L29~L30, P6L18, P6L20, P8L19, P9L15~L17, P21L19, P23L2, P23L16~L17,

P24L1, P26L7, P27L32, P28L32, P29L12, P28L12, P29L8, and P37L14 of the revised

manuscript.

1

C-Coupler2: a flexible and user-friendly community coupler for

model coupling and nesting

Li Liu1,2, Cheng Zhang1,2, Ruizhe Li1,2, Bin Wang1,2,3, Guangwen Yang1,2
1Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua

University, Beijing, China 5

2Joint Center for Global Change Studies (JCGCS), Beijing, China

3State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute

of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Correspondence to: L. Liu (liuli-cess@tsinghua.edu.cn), Cheng Zhang (zhangc-cess@tsinghua.edu.cn)

Abstract. The Chinese C-Coupler (Community Coupler) family aims primarily to develop coupled models for weather 10

forecasting and climate simulation and prediction. It is targeted to serve various coupled models with flexibility, user-

friendliness, and extensive coupling functions. C-Coupler2, the latest version, includes a series of new features in addition to

those of C-Coupler1, including a common, flexible, and user-friendly coupling configuration interface that combines a set of

application programming interfaces and a set of XML formatted configuration files, capability of coupling within one

executable or the same subset of MPI (Message Passing Interface) processes, flexible and automatic coupling procedure 15

generation for any subset of component modelsand automatic coupling procedure generation that enables to automatically

generate coupling procedures for any subset of component models, dynamic 3-D coupling that enables convenient coupling

of fields on 3-D grids with time-evolving vertical coordinate values, non-blocking data transfer, facilitation for model

nesting, facilitation for increment coupling, adaptive restart capability and debugging capability. C-Coupler2 is ready for use

to develop various coupled or nested models. It has passed a number of test cases involving model coupling and nestingIt has 20

passed a number of test cases derived from a sample model with model coupling and nesting, and with various MPI process

layouts between component models, and has already been used in several real coupled models.

1 Introduction

Couplers, which can handle data interpolation and data transfer between different models and different grids, have been

widely used to develop coupled models for fields such as weather forecasting and climate simulation and prediction. The 25

Community Coupler (C-Coupler) family was initiated in 2010 in China. It aims to flexibly serve various coupled models

with a user-friendly interface and to provide extensive coupling functions to complement the ever increasing number of

coupled models being developed and used in China. To this end, the first version (C-Coupler1; Liu et al., 2014) included

new features such as flexible coupling configuration based on configuration files and 3-D coupling capability. Two coupled

mailto:liuli-cess@tsinghua.edu.cn
mailto:zhangc-cess@tsinghua.edu.cn

2

models were built using C-Coupler1 There are two coupled models with C-Coupler1. The first is a coupled climate system

model version FGOALS-gc (Liu et al., 2014) that was built by replacing the original coupler CPL6 (Craig et al., 2005) used

in the CMIP5 (Coupled Model Intercomparison Project, phase 5) model FGOALS-g2 (a gridpoint version of the Flexible

Global Ocean–Atmosphere–Land System model) (Li et al., 2013a) by C-Coupler1. FGOALS-gc can achieve exactly the

same (bitwise identical) simulation results as FGOALS-g2, and was further used in several Chinese research projects. The 5

second is a regional coupled model FIO-AOW (Zhao et al., 2017) that consists of an atmosphere model WRF (Weather

Research Forecasting model) (Wang et al., 2014), an ocean model POM (Princeton Ocean Model) (Wang et al., 2010), and a

wave model MASNUM (MArine Science and NUmerical Modeling) (Yang et al., 2005). FIO-AOW employs both 2-D and

3-D coupling, where the coupling from MASNUM to POM includes a 3-D field, the wave-induced mixing coefficient (Qiao

et al., 2004). FIO-AOW has been used in research to improve typhoon forecasting (Zhao et al., 2017). These coupled models 10

demonstrate that C-Coupler1 can be used for different coupling configurations. C-Coupler1 demonstrates the feasibility of

the general design of C-Coupler, although as the first version, it does not fully achieve all our targets and still has some

limitations. A significant limitation is that C-Coupler1 is not sufficiently user-friendly. To construct a coupled model with C-

Coupler1 requires much effort to prepare the configuration files in ASCII format. For example, there are about 2500 and 700

lines in the configuration files for FGOALS-gc and FIO-AOW, respectively. Considering this, and that the next C-Coupler 15

versions may not be compatible with C-Coupler1, we did not aim to achieve wide usage of C-Coupler1, but sought to

overcome the limitations while guaranteeing backwards compatibility in subsequent C-Coupler versions With such a

limitation, C-Coupler1 did not achieve wide usage.

The next version, C-Coupler2, includes not only increased coupling function support but also flexibility and user-

friendliness. It is now ready for use and has passed hundreds of test cases based on a sample coupled model and several real 20

coupled models. Compared with C-Coupler1 or even other existing couplers, C-Coupler2 has the following new features.

1) A common, flexible, and user-friendly coupling configuration interface that combines a set of application programming

interfaces (APIs) and a set of configuration files in XML format. This interface enables the user to flexibly and

conveniently specify or change coupling configurations including the component models used in a coupled model, the

time step of each component model, model grids, parallel decompositions on model grids, coupling frequencies, 25

coupling lags between component models (given two component models that are coupled, they can have different model

times in a coupling exchange), the fields to be coupled, the data type of coupling fields, coupling connections between

component models, and coupling procedure generations. Remapping configurations are also modifiable: the user can

either use the remapping weights that are read from an existing remapping weight file produced by software tools such

as SCRIP (Jones, 1999), ESMF (Hill et al., 2004), YAC (Hanke et al., 2016), and CoR1 (Liu et al., 2013), or use 30

remapping weights that are automatically generated by C-Coupler2 in parallel.

2) Coupling within one executable or the same subset of MPI (Message Passing Interface) processes. The component

models that are coupled together can be in either multiple executables or in one, and can fully or partially share the same

subset of MPI processes. Different processes in the same component model can also be coupled with C-Coupler2.

3

3) Flexible and automatic coupling procedure generation. In a coupling procedure generation, the coupling generator can

automatically detect existing component models in the coupled model, detect possible coupling connections within a

subset of component models, and generate a coupling procedure for each coupling connection. A coupling procedure

can include a set of operations such as data transfer, data interpolation, data type transformation, and data averaging

when necessary (please refer to Section 4.3 for details). Multiple coupling procedure generations can be performed for a 5

coupled model, and a coupling procedure generation can be performed for any subset of component models.

4) Dynamic 3-D coupling capability. This allows convenient coupling of fields between two 3-D grids, either of which has

variable vertical coordinate values that change in time integration.

5) Non-blocking data transfer. It is implemented with two-sided MPI communication (i.e., MPI_Isend and MPI_Irecv) by

default, and with one-sided MPI communication (i.e., MPI_put and MPI_get) as an additional option to enable flexible 10

setting of coupling lags and to minimize potential deadlocks.

6) Facilitation for model nesting. C-Coupler2 facilitates a regional model (either a component model or a coupled model

constructed with a coupler) to be nested (either one way or two ways) into itself or another model without significant

changes to the model codes, and can enable different grid domains in a nested system to be integrated simultaneously for

better parallel performance. 15

7) Facilitation for incremental coupling. An existing coupled model using any coupler coupled model coupled by any

coupler can be used as a component model by C-Coupler2, which employs the component models of the existing

coupled model as its child components. Thus, an existing coupled model can be coupled with another model (itself

either a single component model or a coupled model) to make a bigger coupled model, where only the new model

coupling through C-Coupler2 requires to be newly developed, without changes to the original coupling in the existing 20

coupled model.

8) Adaptive restart capability. It can adaptively achieve exact (bitwise identical) restart for coupling fields no matter the

setting of coupling lags and no matter the implementation of coupling. It also provides supports for model fields and can

automatically determine a right model time for restarting a “continue” run.

9) Debugging capability. A series of implementations in C-Coupler2 enable to alert the user, as early as possible, to the 25

potential risks of constructing or using a coupled model, and guide the user to fix the errors in model codes and

configuration files.

The remainder of this paper is organized as follows. We briefly review C-Coupler and C-Coupler1 in Section 2,

introduce the motivation for the development of C-Coupler2 in Section 3, describe the implementation of C-Coupler2 in

Section 4, evaluate C-Coupler2 in Section 5, and briefly summarize this paper and discuss the future work in Section 6. 30

4

2 Brief review of C-Coupler and C-Coupler1

The general goal of C-Coupler includes two key aspects. First, C-Coupler can serve various coupling configurations in

different coupled models. For example, C-Coupler works as a library and can be used to develop a centralized coupler

component for a coupled model and can also achieve model coupling between component models without a separate coupler

component. Second, a component model only tells C-Coupler which fields it can provide and which fields it wants to obtain 5

from a coupled model, without caring about where the fields it wants are from (i.e., from specific data files or from specific

component models) and where the fields it can provide will be transferred to. Thus, a component model can have an identical

code version in coupled models with different coupling configurations. This general goal can be achieved through C-

Coupler’s original software structuredesign (Fig. 1), which consists of a coupling configuration system, a coupling generator,

and a runtime software system. The runtime software system works a common, flexible, and extendable library that includes 10

various coupling functions or can even integrate external calculation routines to serve various coupling configurations. The

configuration system defines common rules for describing various coupling configurations. Besides the coupling

configuration of component models and coupled models, the configuration system includes a runtime configuration, which

describes detailed coupling procedures corresponding to a coupling configuration. This is the input of the runtime software

system. The coupling generator can automatically generate the runtime configuration, facilitating the construction of a 15

coupled model.

The first version, C-Coupler1, was not developed with the aim of achieving the full software structure design in Fig. 1,

but with a focus only on the runtime software system and the runtime configuration (Fig. 2). To describe the runtime

configuration, a set of ASCII configuration files were designed. Besides the traditional coupling functions of data transfer

and data interpolation for 2-D coupling, the runtime software system of C-Coupler1 can integrate external calculation 20

routines and has 3-D coupling capability that enables convenient coupling of fields between different 3-D grids. To achieve

simultaneous 2-D and 3-D coupling, remapping software CoR1 was developed and included in C-Coupler1. CoR1 can

effectively manage 1-D, 2-D, and 3-D grids, and can interpolate the fields on such grids, where the 3-D interpolation is

performed in a “2-D + 1-D” manner (“2-D” corresponds to interpolation between horizontal sub-grids, and “1-D”

corresponds to interpolation between vertical sub-grids). 25

3 Motivation

We considered the following motivations when designing and developing C-Coupler2.

3.1 Coupling configuration

The runtime configuration in C-Coupler1 is almost fully based on configuration files, which can improve flexibility in

specifying or changing the coupling configuration, but their overuse may significantly lower user-friendliness. For example, 30

5

many changes to configuration files are required for changing coupling frequencies based on C-Coupler1. Moreover, overuse

of configuration files can cause problems. Configuration files can be inconsistent with the configuration information

determined by the model codes. For example, C-Coupler1 will read in the time step of each component model from the

runtime configuration files, while the user can change the time step of a component model through the namelist file or the

model codes. C-Coupler1 must read in each model grid through a grid data file managed by the runtime configuration, while 5

a model grid of a component model can be generated by the model code or read from a grid data file that is not managed by

the runtime configuration. To avoid problems resulting from such inconsistencies, extra effort is required to develop code to

detect them, and the user will have to fix the corresponding configuration files when an inconsistency is detected.

Therefore, C-Coupler2 should not allow configuration files to include any configuration information determined by

component models, and it should provide flexible APIs to enable component models to specify various coupling 10

configuration information flexibly. Considering various kinds of component models, the configuration system should have

commonality in, for example, supporting various kinds of component models and model grids. Considering the low

readability of ASCII format, another format with better readability should be used to design the configuration files.

3.2 Coupling within one executable or a subset of MPI processes

Similar to CPL6, C-Coupler1 requires each component model to have its own executable. However, there are increased 15

requirements for coupling within one executable or a subset of MPI processes. For example, CESM (Community Earth

System Model) (Hurrell et al., 2013) has the component models and driver containing the coupler CPL7 (Craig et al., 2012)

enclosed in a unique executable, and any two different component models can run on non-overlapping, partially overlapping,

or overlapping MPI processes. The rapid expansion of model codes requires modularization to guarantee the quality of the

models’ software, and a coupler can be used to achieve this when it can support coupling between different procedures in the 20

same component model.

3.3 Dynamic 3-D coupling

Atmospheric chemistry modeling is becoming increasingly important for simulating air quality and climate. Such

modeling strongly depends on meteorological fields, and can be included as an internal package in an atmosphere model

where the atmospheric chemistry package generally uses the same 3-D grid as the model. The rapid development of 25

atmospheric chemistry modeling has led to standalone atmospheric chemistry models, such as GEOS-Chem (Long et al.,

2015), which read in meteorological fields from data files that can be produced by various atmosphere models. As increasing

numbers of atmosphere models require the time-variant aerosol concentration, which can be produced by atmospheric

chemistry modeling, there is increasing demand for two-way coupling between an atmosphere model and a standalone

atmospheric chemistry model. Even if an atmosphere model includes an atmospheric chemistry package, considering that 30

atmospheric chemistry modeling generally is very time consuming, it might run with a lower resolution. Overall, there is

6

increasing demand for 3-D coupling between atmosphere models and atmospheric chemistry models (or packages) with

different 3-D grids.

Despite its 3-D coupling capability, C-Coupler1 might fail to handle the 3-D coupling between an atmosphere model

and an atmospheric chemistry model, because it requires the 3-D grids to be constant throughout the whole simulation,

whereas the terrain-following pressure coordinates that are widely used in atmosphere models and atmospheric chemistry 5

models make the vertical coordinate values of 3-D grids change with the surface pressure in time integration. In this paper,

we call 3-D coupling on constant grids “static 3-D coupling” and 3-D coupling on the 3-D grids with time-variant vertical

coordinate values “dynamic 3-D coupling”. A coupler having dynamic 3-D coupling capability will be much more capable

of achieving coupling between an atmosphere model and an atmospheric chemistry model (or package).

3.4 Coupling procedure generation 10

Model coupling is generally achieved through coupling procedures that consist of operations such as data transfer, data

interpolation, data averaging, data type transformation, etc. SomeMost existing couplers require the user to develop

explicitly all coupling procedures. This is inflexible and not user-friendly enough, because the user must modify the model

code, perhaps even significantly, when developing a new coupled model or changing coupling configurations. The coupler

OASIS (Redler et al., 2010; Valcke, 2013; Craig et al., 2017) is more flexible and user-friendly in this regard, because it can 15

automatically generate coupling procedures.

To make C-Coupler2 flexible and user-friendly, it should also include a coupling generator capable of automatically

generating coupling procedures. In fact, a coupling generator has already been considered in the overalloriginal software

design of C-Coupler.

3.5 Non-blocking data transfer 20

Data transfer enables a sender to transfer a set of coupling fields to a receiver. A data send/receive operation is blocking

when it does not return until the communication is finished (i.e., the receiver has successfully received the data), while a

non-blocking operation can return immediately before the communication is finished. In a two-way coupled model, a

component model always executes both data send and receive operations (i.e., two-way coupled). As mentioned above, C-

Coupler aims to enable a model to have identical code versions in different coupled models, so the order of data send and 25

data receive operations in a component model can remain the same in different coupled models. To avoid potential

deadlocks, we recommendpropose to execute data send operations as early as possible and execute data receive operations as

late as possible. Specifically, in the initialization stage or at a time step, data send operations should occur before data

receive operations. Fig. 3 shows an example of model coupling between two component models, in each of which the data

send operation is executed before the data receive operation at each time step. During blocking data send operations, the data 30

send operations in both component models cannot return, because the corresponding data receiving operations subsequent to

7

the data send operations will never be executed, leading to a deadlock. Similarly, blocking data send operations can also

introduce deadlocks to model coupling within the same component model. Therefore, non-blocking data transfer is highly

desirable for developing C-Coupler2.

3.6 Model nesting

Model nesting generally involves nesting a small grid domain with finer resolution into a larger grid domain with 5

coarser resolution. This approach has been widely used in weather forecasting and climate simulation to achieve higher-

resolution simulations in key grid domains, without significantly increasing the computational cost. Generally, a regional

model can be nested into another model so that different grid domains are simulated by different models, while some models

such as WRF have self-nesting capability, where different grid domains are simulated by the same model. Although WRF

and its self-nesting capability have been widely used, the corresponding software implementation has a number of 10

limitations. First, a data structure that can simultaneously manage the fields on different grid domains and a driver that

orders initialization and integration among different grid domains are implemented in WRF. For a regional model without

self-nesting capability, significant code changes in the data structure and driver are required to achieve self-nesting capability.

Second, all grid domains must use the same set of MPI processes for integration, so that grid domains must run one by one,

not simultaneously. Such an implementation can limit parallelism as well as scalability to the grid domains with fewest grid 15

cells, and will also waste the parallelism between different grid domains.

Model nesting will introduce field exchange between the same type of component models on different grid domains. As

such field exchange generally includes data transfer and data interpolation that are the fundamental functions of a coupler,

model nesting can potentially benefit from couplers. If each domain in model nesting can be treated as a component model in

model coupling, a regional model can easily achieve self-nesting with its original data structure only managing the fields on 20

one grid domain, and different domains can be integrated simultaneously on different sets of MPI processes for higher

parallelism and better parallel efficiency. To aid in the nesting of a regional coupled model (e.g., a regional ocean–

atmosphere coupled model) to itself or another coupled model, couplers can serve the field exchanges both between the same

type of component models on different grid domains and between different types of component models on the same grid

domain. 25

3.7 Incremental coupling

Building a new coupled model version involves either directly coupling a set of component models together or updating

an existing coupled model through coupling external component models or replacing some component models. Such

updating of an existing coupled model is here called “incremental coupling”. Directly coupling many component models

together is difficult and possibly unwise, because it requires much effort in software implementation, software testing, 30

scientific testing, etc., while incremental coupling is always better when a suitable existing coupled model is available.

8

However, incremental coupling may still face some technical challenges when the existing coupled model and the

component models to be coupled have different software frameworks. For example, He et al. (2013) successfully nested

WRF into CESM, where both the main driver of CESM and the driver of WRF were modified to enable CESM to drive the

integration of WRF and so achieve effective nesting. Successful incremental coupling can give a new coupled model that

may become a new code version corresponding to the original coupled model. Further developing the original and the new 5

coupled model in separate code version branches can lead to conflicts when trying to merge the two branches. For example,

following the work of He et al. (2013), the main driver of CESM in the original code version branch (managed and

maintained by the National Center for Atmospheric Research, NCAR) was significantly changed without considering WRF

nesting, leading to much further work being required to re-nest the latest version of WRF into the latest version of CESM.

As C-Coupler aims to enable a model (either a component model or a coupled model) to have an identical code version 10

in different coupled models (i.e., a model can have the same code in different coupled models after incremental coupling), C-

Coupler should be able to facilitate incremental coupling.

3.8 Restart capability

A component model generally has the capability of exactly restarting a simulation run from a checkpoint that was

produced in a previous run. To make a coupled model achieve exact restart capability, besides each component model, all 15

coupling procedures should also have exact restart capability. A lot of effort will be required for users to directly develop

exact restart capability of coupling procedures and new effort will be further required after updating coupling procedures. To

improve user-friendliness and to enable a model to have an identical code version in different coupled models, C-Coupler2

should be able to automatically achieve exact restart capability of coupling procedures, without requiring users to develop

specific code for different coupled models. 20

3.9 Debugging capability

Models can behave anomalously where theiry run exits due to an error but without giving a report. In such a case, the

corresponding simulation setting might be abandoned and another tried, or much effort might be expended locating and

fixing the model code segment corresponding to the abnormal exit. Fixing an error is not easy, because it can easily and

quickly propagate throughout a component model and from one component model to another through a coupler. 25

C-Coupler2 aims to facilitate software debugging for model coupling. Specifically, C-Coupler2 should promptly report

an error after an abnormal exit, and the error report should effectively help to locate the code segment or configuration file

that requires fixing. Moreover, C-Coupler2 should thoroughly examine its inputs to avoid the propagation of errors.

9

4 Design and implementation of C-Coupler2

Similar with OASIS3-MCT (Craig et al., 2017)_3.0, C-Coupler2 also works as a library without a driver layer and is

driven by calls from the models. As the second version of C-Coupler, C-Coupler2 is guided by the family’s general coupling

architecture (Fig. 1), so it should be applicable to various coupled models and enable a model to have an identical code

version in different coupled models. These considerations influenced the design of the software structure of C-Coupler2 (Fig. 5

4), which consists of a coupling configuration interface, a coupling generator, and a set of function modules. This software

structure is similar to that of the original software design of C-Coupler (Fig. 1), but has the following differences.

1) The original software design structure of C-Coupler has the coupling generator as a standalone tool that produces the

runtime configuration files that drive the runtime software system. However, C-Coupler2 works as a common and

flexible library (which can be viewed as the runtime software system), and the coupling generator is an internal program 10

of the library. The coupling generator does not produce runtime configuration files, but directly uses the function

modules to generate coupling procedures. Such a design can save redundant code development related to runtime

configuration files.

2) Coupling procedure generation in the original software designstructure of C-Coupler fully depends on the offline

configuration files that are managed by the configuration system. In C-Coupler2, coupling procedure generation depends 15

on the coupling configuration information obtained by the coupling configuration interface via online API calls and

offline configuration files.

3) C-Coupler2 does not include functions to support integrating external algorithms. This will be further discussed in

Section 6.

In detail, the function modules of C-Coupler2 include managers for a non-blocking data transfer manager, a component 20

models manager, a grids, manager, a remapping functions manager, a restart managercapability, a parallel decomposition

manager, modela time manager, a coupling field instances manager, a coupling interfaces manager, and a debugging manage

rcapability. The non-blocking data transfer manager manages a set of runtime data transfer algorithms, each of which is

responsible for the non-blocking transfer of a set of coupling fields within a component model or between two different

component models. The component model manager handles basic information (e.g., name, type, MPI processes) about the 25

component models registered to C-Coupler2. The grid manager manages model grids registered to C-Coupler2; similar to the

grid manager in C-Coupler1, it also utilizes CoR1 to support various types of grid with dimensions from 1-D to 4-D. The

remapping manager controls a set of runtime remapping algorithms, each of which interpolates a set of coupling fields from

one grid to another. Similar to the remapping manager in C-Coupler1, it also utilizes CoR1 to achieve data interpolation

between any kind of grid with dimensions from 1-D to 4-D. It has been further upgraded to support dynamic 3-D 30

interpolation. The restart manager achieves adaptive restart capability that enables each component model as well as the

whole coupled model to conveniently achieve exact restart. The parallel decomposition manager oversees parallel

decompositions on model grids. Similar to C-Coupler1, each parallel decomposition must be on a 2-D horizontal grid that

10

has been registered to C-Coupler2, while the parallel decomposition on vertical grids remains unsupported. The coupling

field instance manager supervises a set of coupling field instances registered by component models or used by C-Coupler2

internally. The coupling interface manager operates a set of coupling interfaces, each of which imports, exports, or remaps a

set of coupling fields. The time manager manages the model time of each component model and manages a set of timers. A

timer can be used to control the time to execute a coupling interface and to control lag in model coupling. The debugging 5

manager enables C-Coupler2 as well as component models to flexibly report log information or errors.

We will further introduce here the design and implementation related to each main feature of C-Coupler2, including the

common, flexible, and user-friendly coupling configuration interface, coupling within one executable or a subset of MPI

processes, flexible and automatic coupling procedure generation, dynamic 3-D coupling capability, non-blocking data

transfer, facilitation for model nesting, facilitation for incremental coupling, and debugging capability. Moreover, we will list 10

out some default options for using C-Coupler2.

4.1 Common, flexible, and user-friendly coupling configuration interface

The coupling generator of C-Coupler2 can automatically generate coupling procedures for model coupling and nesting.

As it takes coupling configuration information as its input, the coupling configuration interface should be able to obtain

sufficient information for successful coupling procedure generation. Moreover, the constitution of the coupling configuration 15

information determines the flexibility of specifying coupling configurations, and more types of coupling configuration

information generally means greater flexibility of C-Coupler2. Finally, the coupling configuration information of C-

Coupler2 includes the following.

1) Basic information about each component model, including the model name, model type, the parallel setting (i.e., the

MPI processes that are involved in running the component model), and the relationship with other component models. 20

To facilitate incremental coupling, an existing coupled model with any coupler can be referred to C-Coupler2 as a

component model, and a component model of the existing coupled model can be further referred to C-Coupler2 as a

child component model. For a component model with self-nesting capability within one executable, one grid domain can

be employed as a component model and a smaller grid domain directly nested to it can be used as its child component

model. Different component models can share common MPI processes. 25

2) Coupling connections. Model coupling by C-Coupler2 can be viewed as a set of data flows, each of which couples a set

of coupling fields provided by a component model to a component model that uses these fields—possibly the same

component model, as C-Coupler2 supports coupling within one component model. Here we call such a data flow a

“coupling connection”. The coupling generator can automatically detect all possible coupling connections, while the

user can also specify some coupling connections with higher priority. 30

3) Attributes of coupling fields. Coupling fields are distinguished using field names. All component models in C-Coupler2

share the same name space of the coupling fields as well as the default attributes corresponding to each field name.

11

4) Model grids. A coupling field is either a scalar variable or is associated with a model grid. A model grid may be vertical

or horizontal, or a 3-D grid consisting of a horizontal grid and a vertical grid. There might be some relationship between

two grids; e.g., a horizontal or vertical grid can be a sub-grid of a 3-D grid.

5) Decomposition of grid domain for parallelization. To accelerate modeling on a modern high-performance computer with

many processor cores, a grid domain in a component model is generally decomposed into a number of subdomains, each 5

of which is assigned to an MPI process for parallel integration. We call this “parallel decomposition”.

6) Coupling field instances. A coupling field generally has multiple instances in a coupled model. First, different

component models can produce or use the same coupling field. For example, when all grid domains in self-nesting WRF

are registered as component models in C-Coupler2, they can produce the same coupling fields (e.g., precipitation),

where each component model has its own coupling field instances. Second, a given component model can have different 10

instances of the same coupling field due to different model grids or different parallel decompositions on the same model

grid. For example, a component model can interpolate a coupling field from a source grid to a target grid, which means

that this coupling field has two separate instances: one on the source grid and one on the target grid.

7) Conducting coupling field instances. A component model can export coupling field instances to the coupled model,

import coupling field instances from the coupled model, or remap its own coupling field instances on a source grid to 15

the coupling field instances on a target grid.

8) Coupling frequencies. A component model can specify the frequency at which it exports, imports, or remaps the

coupling field instances. Different coupling frequencies might be needed in different simulations; e.g., model coupling

can be more frequent when the resolution increases.

9) Model time. C-Coupler2 manages model time information for each component model to control model coupling in the 20

time integration of the whole coupled model. It uses a separate and unique time manager for each active component

model. The coupling frequencies should be consistent with the model time. For example, a coupling frequency should be

a positive integer multiple of the time step of the corresponding model.

10) Remapping configurations. Most existing couplers, including C-Coupler1, enables the user to specify how to remap a set

of fields from a source grid to a target grid; e.g., using the offline remapping weights read from an input data file 25

produced by a remapping software tool or using the online remapping weights produced by the coupler (if supported).

11) Shared input parameters for a model run. C-Coupler will require shared input parameters for a model run, such as case

information of the model run, the start time of the model run, how to stop the model run, and the frequency at which to

write restart files.

The above coupling configuration information can be classified into two categories: private coupling configuration 30

information of a component model (including information about the component model, model grids, parallel decompositions,

coupling field instances, conducting coupling field instances, coupling frequencies, and model time) and public coupling

configuration information shared by component models (including coupling connections, attributes of coupling fields, and

shared input parameters for a model run). Considering the motivation for coupling configuration (Section 3.1), we design a

12

set of C-Coupler2 APIs to enable a component model to specify flexibly its private coupling configuration information

through model codes, and design a set of configuration files for flexibly specifying the public coupling configuration

information. Although the remapping configurations can be either private or public (the source and target grid used in data

remapping may belong to the same or different component models), we only design the corresponding configuration file to

guarantee a unique way to specify remapping configurations. 5

We introduce in this section the implementation of the coupling configuration interface for each kind of configuration

information.

4.1.1 C-Coupler2 APIs

4.1.1 This subsection will briefly introduce each kind of C-Coupler2 APIs. For examples of using C-Coupler2

APIs to implement coupled models, please refer to Section 1 of the Supplement. 10

4.1.1.1 APIs for component model management

To couple component models running on non-overlapping, partially overlapping, or overlapping subsets of MPI

processes, C-Coupler2 allows a component model to run on any subset of MPI processes. Therefore, the coupler can support

almost any kind of MPI process layout among the component models. Figure 5 shows an example of a complex MPI process

layout: comp1, comp2, and comp3 do not share any MPI process; comp4 runs on a proper subset of the MPI processes of 15

comp1; comp8 run on all MPI processes of comp2; and comp4 and comp5 partially share some MPI processes. Moreover,

there are relationships between the component models in Fig. 5: comp1 is the parent of comp4 and comp5; comp5 is the

parent of comp6 and comp7; and comp2 is the parent of comp8. In C-Coupler2, a component model must cover all MPI

processes of its children (e.g., comp1 in Fig. 5 includes all processes of comp4 and comp5). A component model without a

parent is a root component model (e.g., comp1, comp2, and comp3 in Fig. 5 are root component models). Each MPI process 20

must belong to a unique root component model (e.g., each process in Fig. 5 only belongs to one of comp1, comp2, or comp3);

i.e., all root component models cover all MPI processes without sharing any MPI process with each other. This constraint

seems contradictory to the target of supporting shared MPI processes among component models, and may make C-Coupler2

unable to support some MPI process layouts. For example, given that a component model consists of two component models

that run on partially overlapping subsets of MPI processes, both component models cannot be root component models. To 25

support this kind of MPI process layout, a coupled model can be registered as a root component model of C-Coupler2, and

its component models can be further registered as children of the root component model.

Coupler2 provides 10 APIs for component model management, including CCPL_register_component,

CCPL_end_coupling_configuration, etc. CPL_register_component is responsible for registering a component model to C-

Coupler2. C-Coupler2 only serves component models registered to it. (Almost any model can be registered to C-Coupler2, 30

带格式的: 正文, 缩进: 首行缩进: 0.71 厘米, 行距: 单倍行距, 无
项目符号或编号, 孤行控制, 段中分页

带格式的: 字体: (中文) Times New Roman

带格式的: 行距: 1.5 倍行距

13

while it is unnecessary to register a model whose model coupling is fully served by other couplers to C-Coupler2). The

arguments of this API include the ID of the parent component model, model name, model type, and MPI communicator. Any

component model except a root component model must have a parent. C-Coupler2 will allocate an ID and generate a unique

full name for each component model that is formatted as “parent_full_name@model_name”, where “model_name” means

the name of the current component model and “parent_full_name” is the full name of the parent component model. (For a 5

root component model, “parent_full_name” corresponds to an empty string.) A component model is either active or pseudo

(inactive), as specified by the model type. A pseudo component model can be the parent of some component models, while

its name will not be included in the full name of any component model. Moreover, coupling configurations cannot be further

specified to a pseudo component model. Table 1 lists the model types currently supported by C-Coupler2. Note that

“active_coupled_system” and “pseudo_coupled_system” indicate that an existing coupled model can be registered as a 10

component model of C-Coupler2. This API can create the MPI communicator of the component model when required. It will

start the stage of coupling configuration of the component model, while the API CCPL_end_coupling_configuration will

finalize the stage of coupling configuration. A component model can successfully call CCPL_end_coupling_configuration

only when all its children component models have already called this API.

For more details of the APIs for component model management, please refer to the user guide (https://gitlab.com/c-15

coupler-group/c-coupler-doc/raw/master/C-Coupler2%20User%20Guide.pdf).

4.1.1.2 APIs for time management

C-Coupler2 provides 26 APIs for time management, including CCPL_set_normal_time_step,

CCPL_check_current_time, CCPL_define_single_timer, etc. These APIs enable C-Coupler2 to manage the model time

information for each active component model. Detailed time information of a component model can also be accessed 20

through C-Coupler2, and thus a component model can employ C-Coupler2 for its model time management. A component

model with its own model time management must keep its model time constantly consistent with C-Coupler2. The API

CCPL_check_current_time can be used to check such consistency. An active component model can have a unique time

manager that is not activated until a unique time step has been set through the API CCPL_set_normal_time_step. After a

time manager is activated, the user can access detailed information on the model time, define timers, advance the model time, 25

and use timers to control model coupling.

C-Coupler2 currently only provides the API CCPL_define_single_timer to define a periodic timer that is an alarm for

specifying coupling period. The arguments of this API include the ID of the corresponding component model, a period unit,

a period count, a local lag count, and an optional remote lag count. The period unit and period count specify the period of the

timer. The local lag count corresponds to the period unit, which is used to specify a local lag (it can be viewed as a time 30

offset from the start time) that influences when the timer is on. For example, a timer set with <period_unit=“steps”,

period_count=“5”, local_lag_count=“2”> will be on at the 2nd, 7th, 12th, etc. (i.e., 5i + 2, where i is a non-negative integer)

https://gitlab.com/c-coupler-group/c-coupler-doc/raw/master/C-Coupler2%20User%20Guide.pdf
https://gitlab.com/c-coupler-group/c-coupler-doc/raw/master/C-Coupler2%20User%20Guide.pdf

14

time steps of the corresponding component model. The remote lag count also corresponds to the period unit. It can be used to

specify a lag on a coupling connection between two component models or within one component model. Its default value is

0 (i.e., no lag). Note that the lag for a coupling connection is determined by the timer from the receiver component model.

The lag corresponding to a coupling connection can be viewed as the model time difference from the receiver component

model to the sender component model, which can control the time sequence between the two component models. For 5

example, given a lag of 1/-1 hour, the coupling fields produced by the sender component model at the sender’s 0th/1st hour

will be obtained by the receiver component model at the receiver’s 1st/0th hour. Thus, the user can flexibly achieve

concurrent run or sequential run between component models. Incorrectly setting “remote_lag_count” may introduce

deadlocks between component models.

For more details about the APIs for time management , please refer to the user guide. 10

4.1.1.3 APIs for grid management

Each grid managed by C-Coupler2 belongs to a unique active component model. A grid shared by multiple component

models should be registered to each component model separately. The keyword for a grid can be expressed as <ID of the

component model, grid name>. Therefore, different grids in the same component model cannot have the same grid name,

while grids in different component models can have the same grid name. 15

C-Coupler2 provides 15 APIs for grid management. A horizontal grid can be registered via global grid data (through the

API CCPL_register_H2D_grid_via_global_data), local grid data (through the API

CCPL_register_H2D_grid_via_local_data), or a grid data file (through the API CCPL_register_H2D_grid_via_file).

Considering that a horizontal grid in a component model may be determined by another component model (e.g., the

horizontal grid of a land surface model will be determined by an atmosphere model when both models require the same 20

horizontal grid), we designed the API CCPL_register_H2D_grid_from_another_component. A vertical grid can be

registered via global grid data. The coordinate of a vertical grid can be registered as a Z coordinate (through the API

CCPL_register_V1D_Z_grid_via_model_data), a SIGMAsigma coordinate (through the API

CCPL_register_V1D_SIGMAsigma_grid_via_model_data), or a HYBRID hybrid coordinate (through the API

CCPL_register_V1D_hybridHYBRID_grid_via_model_data). A 3-D grid can be registered by combining a horizontal grid 25

and a vertical grid (through the API CCPL_register_MD_grid_via_multi_grids). Thus, C-Coupler2 can know the

relationship between a 3-D grid and its sub grids. A 3-D grid can be either an interface-level grid or a middle-point grid. A

middle-point grid can be generated from an interface-level grid through the API CCPL_register_mid_point_grid. Thus, C-

Coupler2 can know the relationship between an interface-level 3-D grid and a middle-point 3-D grid.

For a 3-D grid that consists of a horizontal grid and a vertical grid with SIGMAsigma or hybrid HYBRID coordinate, 30

C-Coupler2 can set its unique surface field on the horizontal grid in order to calculate the vertical coordinates at each

horizontal grid point. The surface field of a 3-D grid can be static (through the API

15

CCPL_set_3D_grid_constant_surface_field), dynamic (through the API CCPL_set_3D_grid_variable_surface_field), or

external (through the API CCPL_set_3D_grid_external_surface_field). A static surface field has constant values with time

integration, so the vertical coordinate values in the corresponding 3-D grid are constant. A dynamic surface field has

changing values with time integration, so that the vertical coordinate values in the corresponding 3-D grid vary. An external

surface field has values determined by the surface field of another 3-D grid. 5

For more details about the APIs for grid management, please refer to the user guide.

4.1.1.4 API for parallel decomposition management

To accelerate modeling by taking advantage of a high-performance computer with many processor cores, the model

needs to be parallelized with MPI, whereby the domains of the model grids are decomposed into separate subdomains for

parallel integration. To accommodate the parallel integration of component models and to allow model coupling to be 10

handled in parallel, C-Coupler2 both manages parallel decompositions and provides APIs to enable active component

models to register their parallel decompositions to the coupler. C-Coupler2 currently supports parallel decompositions only

on horizontal grids, and further parallel decomposition on vertical grids is yet not supported. Therefore, parallel

decomposition is associated with a horizontal grid, and thus with the component model corresponding to the horizontal grid.

The keyword for parallel decomposition is expressed as <ID of component model, parallel decomposition name>. Therefore, 15

different parallel decompositions in the same component model cannot have the same name, while parallel decompositions

in different component models can have the same name. Multiple parallel decompositions on the same horizontal grid are

allowed.

Parallel decomposition on a horizontal grid is described through enumerating global grid cell indexes of the local grid

cells assigned to each MPI process of the corresponding component model. A valid global grid cell index should be between 20

1 and the size of the horizontal grid. For any local grid cells that need not be considered in model coupling (e.g., land-only

grid cells in an ocean model), the corresponding values of the global grid cell index can be set to a C-Coupler2 pre-defined

variable CCPL_NULL_INT, to save some overheads in model coupling.

Currently, C-Coupler2 provides only one API for parallel decomposition management, i.e.,

CCPL_register_normal_parallel_decomp. Please refer to the user guide for more details. 25

4.1.1.5 API for coupling field instance management

A coupling field instance includes a set of meta information and a memory buffer that keeps the data values of an

instance of a coupling field. A coupling field instance is associated with a unique component model, a unique grid, and a

unique parallel decomposition. An attribute of “buf_mark”, which is a non-negative integer mark given by users, is

employed in each coupling field instance to separate multiple coupling field instances in the same component model, on the 30

same grid, and on the same parallel decomposition. For example, as the land surface, oceans, and sea ice lie under the

16

atmosphere, an atmosphere model may receive multiple coupling field instances of surface temperature from land surface,

ocean, or sea ice models. Therefore, the keyword for a coupling field instance is expressed as <field name, ID of component

model, ID of grid, ID of parallel decomposition, buf_mark>. For a scalar coupling field instance that is not on a grid, the

corresponding grid ID and parallel decomposition ID should be set to -1.

Currently, C-Coupler2 provides only one API for field instance management, i.e., CCPL_register_field_instance. This 5

API allows a component model to register a coupling field instance to the coupler to provide, obtain, and remap coupling

field instances in model coupling. An internal model field instance that will not be used in model coupling can also be

registered to C-Coupler2 for exact restart capability. For more details of this API, please refer to the user guide for more

details.

4.1.1.6 APIs for coupling interface management 10

In C-Coupler2, an active component model can handle coupling field instances through coupling interfaces. The

keyword of a coupling interface is expressed as <ID of the component model, interface name>. Therefore, different coupling

interfaces in the same component model cannot have the same interface name, while coupling interfaces in different

component models can have the same interface name.

Coupling interfaces are classified into three categories: import, export, and remap. An import interface enables a 15

component model to obtain coupling field instances from itself (For example, C-Coupler2 can achieve coupling between the

physical package and the dynamic core in the same component model) or other component models. Specifically, it can be

specified to obtain instantaneous or averaged coupling field instances. An export interface enables a component model to

provide a number of coupling field instances to the coupled model. A remap interface enables a component model to remap

its coupling fields from a source grid to a target grid. There are two detailed kinds of remap interface: normal and fraction 20

based. A normal remap interface directly interpolates coupling field instances from the source grid to the target grid, while a

fraction-based remap interface additionally takes a source fraction (for example, the area fraction of atmosphere, ocean, land

surface or sea ice in each cell of the source grid) as input, will first adjust the values of coupling field instances on the source

grid based on the source fraction before remapping and will finally adjust the values of coupling field instances on the target

grid based on the target fraction after remapping (the source fraction is also remapped from the source grid to the target grid 25

to produce the target fraction at the same time). Fraction-based remap interfaces are generally necessary to guarantee

conservation in model coupling between different horizontal grids.

There are three steps taken to utilize a coupling interface. The coupling interface is first registered, whereby a timer is

required to be specified to control the timing of coupling interface execution. Coupling procedures are next generated for the

coupling interface, which is then executed in the third step. Although the API to execute a coupling interface can be called at 30

each time step, a coupling interface will be truly executed only when its timer is bypassed or its timer is on. C-Coupler2

allows the timer to be bypassed when executing a coupling interface, in order to achieve flexible coupling at the initialization

17

stage of the coupled model. Note that the timer of a coupling interface cannot be bypassed again if this coupling interface has

already been executed with the timer on, and when the timer of a coupling interface is not bypassed, the coupling interface

will be truly executed at most once each time step, which means that any additional API calls for executing the coupling

interface at a time step will be ignored.

For a remap interface that does not refer to coupling between different coupling interfaces or different component 5

models, its coupling procedures are generated implicitly by the coupling generator when registering it. Coupling procedures

of an export/import interface are also generated automatically by the coupling generator, but will not be generated when

registering the interface, because an export/import interface refers to coupling between different coupling interfaces in the

same or different component models. To generate coupling procedures for export or import interfaces, the coupling generator

will analyze possible connections from export interfaces to import interfaces based on the field name of each coupling field 10

instance. A coupling connection from an export interface to an import interface can be generated only when these two

coupling interfaces have common field names. Regarding a field name, C-Coupler2 allows an export interface to be

connected to any number of import interfaces, while forcing an import interface to be connected from a unique export

interface. In other words, each coupling field instance in an import interface must have only one provider. If there are

multiple providers for a coupling field instance in an import interface, the user must select only one provider through the 15

corresponding configuration file (see Section 4.1.2.4). Different coupling field instances in an import interface can have

different providers. The coupling procedures for import and export interfaces are generated through explicitly calling the

APIs for coupling procedure generation.

An export interface or a remap interface can always be executed successfully without error, while the execution of

import interfaces can fail and lead to an error report, if the coupling procedures of some necessary coupling field instances 20

have not been generated (i.e., if the providers of some necessary coupling field instances have not been found). When

registering an import interface, each import coupling field instance can be specified as necessary or optional. No error will

be reported if the providers of some optional coupling field instances have not been found.

C-Coupler2 provides 8 APIs for coupling interface management, including CCPL_register_port_interface,

CCPL_register_import_interface, CCPL_register_normal_remap_interface, CCPL_execute_interface_using_id, etc. Please 25

refer to the user guide for more details.

4.1.1.7 APIs for coupling procedure generation

The development of coupling procedure generation capability in C-Coupler2 has experienced two designs, and the

second design can be viewed as an upgrade of the first design and is currently implemented in C-Coupler2. The first design

enforces only one global coupling procedure generation for the whole coupled model: it is performed when finalizing the 30

coupling configuration stages of the whole coupled model (when all root component models are calling the API

18

CCPL_end_coupling_configuration), and involves all component models that have already been registered to C-Coupler2.

Along with the development of C-Coupler2, the first design shows the following limitations:

1) It assumes that the whole coupled model as well as each component model is organized as a unique three-stage

flowchart consisting of a coupling configuration stage, coupling procedure generation, and a model coupling run.

However, the main drivers of many existing models, such as the CESM driver, consist of not a unique but multiple 5

three-stage flowcharts, indicating that multiple coupling procedure generations are necessary for wide usage in real

cases.

2) As a global coupling procedure generation will involve the participation of all component models, and will require

global synchronization of all the MPI processes in the whole coupled model, it will be costly, inconvenient, and

unnecessary to conduct multiple global coupling procedure generations. For example, an increment coupling case that 10

seeks to nest a regional atmosphere model into an existing climate system model through C-Coupler2 requires only

partial coupling procedure generation between the regional atmosphere model and the global atmosphere model.

Besides the global coupling procedure generation, the second design achieves partial coupling procedure generation for

any subset of component models through the APIs for coupling procedure generation. The coupling procedure generation

related to a component model is classified as either individual or family. Individual mode considers only the given 15

component model in coupling procedure generation, while family mode considers the given component model and its

descendant component models in the same coupling procedure generation. When registering a component model through the

API CCPL_register_component, it can be specified to enable or disable the given component model in the family coupling

procedure generation of its parent or any ancestor. The API CCPL_do_external_coupling_generation can do coupling

procedure generation regarding any subset of component models, where either individual or family coupling procedure 20

generation can be specified for each given component model. The API CCPL_get_configurable_comps_full_names allows

flexible specification of a subset of component models in an XML configuration file; it can cooperate with the API

CCPL_do_external_coupling_generation to improve further the flexibility of coupling procedure generation. Besides partial

coupling procedure generations, a global coupling procedure generation will still be performed when root component models

are calling the API CCPL_end_coupling_configuration, while a root component model that has been disabled in the family 25

coupling procedure generation will not be involved in the global coupling procedure generation.

Coupling procedure generation requires the synchronization of all MPI processes of the involved component models.

Please refer to the user guide for more details of the APIs for coupling procedure generation.

4.1.1.8 Other APIs

Like most component models, C-Coupler2 can restart model simulation from a checkpoint. It does so through 6 APIs, 30

including CCPL_do_restart_write_IO, CCPL_start_restart_read_IO, etc. More details of these APIs can be found in the

user guide. The restart management not only serves the variables or data involved in the model coupling handled by C-

19

Coupler2, but also can serve the internal field instances of any component model that have been registered to C-Coupler2.

To achieve the restart capability of a model coupled using C-Coupler2, all active component models should separately call

the corresponding APIs. Besides the “initial” run, C-Coupler2 supports three types of model run: “continue”, “branch”, and

“hybrid”, which are related to the restart capability. Detailed implementation of the restart capability will be further

introduced in Section 4.8. 5

C-Coupler2 enables each MPI process in each component model to have a separate log file, thus improving parallel

debugging capability. Several APIs (CCPL_report_log, CCPL_report_progress, CCPL_report_error,

CCPL_get_comp_log_file_name and CCPL_get_comp_log_file_device) allow component models to benefit from such a

capability. For more details of these APIs, please refer to the user guide.

4.1.2.0 Examples of implementing a coupled model with C-Coupler2 APIs 10

Figure 6 shows an example of the use of C-Coupler2 APIs to achieve hybrid coupling configuration and model coupling

during the initialization stage of a coupled model with four component models (comp1–comp4). We assume that comp1 and

comp2 are coupled together, comp3 and comp4 are coupled together, and that comp3 and comp4 are the children of comp1

and depend on some boundary conditions from comp1. First, comp1 and comp2, which cover all MPI processes (processes

0–34) and do not share any MPI process, simultaneously call the API CCP_register_component to register themselves as the 15

root component models. The child component models comp3 and comp4 partially share a subset of MPI processes (processes

9–12). All MPI processes of comp3 first register comp3 as a child of comp1, and next set the unique time step, register

several model grids, register a parallel decomposition, register several coupling field instances, specify a coupling field

instance as the dynamic surface field of a 3-D grid, define several timers, and register several coupling interfaces. After

calling the API CCPL_do_individual_coupling_generation for coupling procedure generation within comp3 itself, comp3 20

executes some coupling interfaces, and then finalizes its coupling configuration stage through calling the API

CCPL_end_coupling_configuration. Comp4 follows a C-Coupler2 flowchart similar to comp3. As comp3 and comp4 share

some processes, they cannot conduct coupling configuration and model coupling at the same time in most cases (in this

example, we specify comp3 to run before comp4), except for the simultaneous calling of the API

CCPL_do_external_coupling_generation that can generate coupling procedures for the coupling connections between the 25

two child models. After both child models have finished their coupling initialization stage, their parent conducts its coupling

configuration, following a similar flowchart. As comp1 shares processes with its children, comp1 cannot conduct coupling

registration simultaneously with comp3 and comp4, and thus comp1 runs after its children here. As comp2 does not share any

process with the other component models, it can conduct coupling registration simultaneously with comp1, comp3, and

comp4. Finally, comp1 and comp2, the root component models, simultaneously call the API 30

CCPL_end_coupling_configuration to finalize the coupling configuration stage of themselves and the whole coupled model

20

and to invoke global coupling procedure generation. At the end of the initialization stage, each component model can read in

the restart data files when necessary.

Figure 7 shows an example of model coupling in the kernel (time integration) stage of the coupled model in Figure 6. In

addition to the assumptions in Figure 6, comp1 and comp2 are further assumed to have the same time step, which is double

that of comp3 and comp4. All coupling interfaces are executed here without bypassing the timers. At a time step of comp1 5

and comp2, they can simultaneously execute coupling interfaces, call the API CCPL_do_restart_write_IO to generate restart

data files when the restart timer is bypassed or is on, and finally call the API CCPL_advance_time to advance the model time

managed by C-Coupler2. We strongly recommend checking the consistency of model time between a component model and

C-Coupler through calling the API CCPL_check_current_time. Comp3 and comp4 alternately use a C-Coupler2 flowchart

similar to that for comp1 and comp2, but they will advance their model time twice when comp1 and comp2 advance their 10

model time once.

4.1.54.1.2 C-Coupler2 configuration files

As mentioned above, the C-Coupler2 configuration files allow flexible specification of public coupling configuration

information including shared input parameters for a model run, attributes of coupling fields, remapping configurations, and

coupling connections. In order to achieve good readability, all configuration files are in XML format. This subsection briefly 15

introduces the four kinds of configuration files; i.e., input parameter configuration file, field attribute configuration file,

remapping configuration file, and coupling connection configuration file. Additional details can be found in the user guide.

4.1.5.14.1.2.1 Input parameter configuration file

The input parameter configuration file specifies a set of global input parameters shared by all component models. The

input parameters include simulation times (e.g., start and stop times), the type of simulation run (i.e., initial, continue, branch, 20

or hybrid), whether leap years are considered, and the frequency of writing restart data files. Note that C-Coupler2 requires

all component models to use the same start and stop times, and the user should guarantee that the input parameter

configuration file is consistent with the corresponding modeling settings.

4.1.5.24.1.2.2 Field attribute configuration file

When registering a coupling field instance to C-Coupler2, the field name should be specified as an input parameter. A 25

field name is legal only when there is a corresponding entry in the field attribute configuration file that is shared by all

component models in a coupled model. When the coupling generator tries automatically to generate coupling procedures,

field names are used to detect possible coupling connections between coupling interfaces: an import interface and an export

interface can have a coupling connection only when their coupling field instances have common field names. The attributes

of each coupling field include “long_name”, “default_unit”, “dimensions”, and “type”. The attribute “dimensions” means a 30

21

label of grid dimensions. It can be set to “0D”, “H2D”, “V1D”, or “V3D”, denoting that a field is a scalar variable that is not

on any grid, is on a horizontal grid, is on a vertical grid, or is on a 3-D grid that consists of a horizontal grid and a vertical

grid, respectively. The attribute “type” gives the type of the coupling field, either “state” or “flux”.

4.1.5.34.1.2.3 Remapping configuration file

Remapping configuration files can flexibly and conveniently specify the remapping of coupling fields between grids, as 5

follows.

1) For remapping from a source horizontal grid to a target horizontal grid, the user can either employ the remapping

weights that are automatically generated by C-Coupler2 in parallel or read from an existing remapping weight file

produced by external software such as SCRIP, ESMF, YAC, or CoR1. Unstructured horizontal grids such as cube-

sphere grid or non-quadrilateral grids are supported in the online remapping weight generation. 10

2) Like C-Coupler1, C-Coupler2 uses the “2-D + 1-D” approach to achieve 3-D remapping. Regarding 3-D remapping, the

remapping configuration for the 2-D (horizontal) remapping and for the 1-D (vertical) remapping can be specified

separately; the 2-D remapping can also use the remapping weights loaded from a remapping weight file.

3) Different coupling fields in the same component model can have different remapping configurations, and the same

coupling field in different component models can have different remapping configurations. 15

4) Given a coupling field, a component model can either use its own remapping configuration or use that inherited from its

parent (if its own remapping configuration is not specified); a root component model (i.e., one without a parent) without

a specified remapping configuration can use the specified overall remapping configuration or use the default remapping

configuration set by C-Coupler2 (if the overall remapping configuration is not specified). In the default remapping

configuration, the bilinear remapping algorithm is used to remap the “state” fields between horizontal grids, the 20

conservative remapping algorithm is used to remap the “flux” fields between horizontal grids, and the linear remapping

algorithm is used to remap the vertical and time dimensions. Note that all remapping weights in the default remapping

configuration are generated automatically by C-Coupler2.

5) A remapping configuration file consists of a set of remapping settings, each of which can specify the remapping

configuration for all coupling fields, coupling fields of the same type (“flux” or “state”), or a specific set of coupling 25

fields (possibly even only one field). A prioritization strategy is designed accordingly: a remapping setting

corresponding to all coupling fields is at the lowest priority, a remapping setting corresponding to a type of coupling

fields is at medium priority, and a remapping setting corresponding to specific coupling fields is at the highest priority.

A procedure with data remapping for a given coupling field on a coupling connection between two different component

models will be generated when the component models use different corresponding grids. It is possible that the remapping 30

configuration of this coupling field is not the same in the two component models. In such a case, C-Coupler2 will only use

the remapping configuration in the source component model (the component model that exports the coupling field). In

22

general, given a coupling field on a coupling connection, C-Coupler2 uses only the remapping configuration in the source

component model for coupling procedure generation. Therefore, it is meaningless to specify remapping configurations for

the imported coupling fields of a component model.

Figure 8Figure 6 shows an example of a remapping configuration file that consists of three active remapping settings

(corresponding to the XML node of “remapping_setting” with the attribute “status” of value “on”). The first remapping 5

setting (from L1 to L15 in Fig. 8) corresponds to all coupling fields, the second remapping setting (from L16 to L27 in Fig. 8)

corresponds to the “flux” coupling fields, and the third (from L28 to L39 in Fig. 8) corresponds to two specific coupling

fields “t_atm_3D” and “ghs_atm_3D” that should be 3-D “state” fields. Specific to the remapping configuration of these two

fields, the vertical remapping configuration is determined by the third remapping setting and the horizontal remapping

configuration is determined by the first remapping setting. Both the first and second remapping settings specify an online 10

horizontal remapping algorithm (corresponding to the XML node of “H2D_algorithm”) and offline horizontal remapping

weight files (corresponding to the XML node of “H2D_weights”). Note that offline remapping weight files have higher

priority than the online remapping algorithm. To generate the coupling procedures for data remapping, a remapping weight

file in the corresponding remapping configuration (if present) will be used if it matches both the source grid and the target

grid of this data remapping. 15

4.1.5.44.1.2.4 Coupling connection configuration files

A coupling connection configuration file can be used to specify coupling connections for a component model. The

connections are classified into three types: 1) for import interfaces, 2) for model grids (corresponding to the API

CCPL_register_H2D_grid_from_another_component), and 3) sets of component model full names used for external

coupling procedure generation (corresponding to the API CCPL_do_external_coupling_generation). The coupling 20

connections for an import interface specify the providers (a provider is a component model as well as its export interface) of

imported coupling fields, while a distinct subset of imported coupling fields can have a distinct provider. When the coupling

generator tries to generate coupling procedures for an imported field of an import interface, it will first check the

corresponding coupling connection configuration file. If the configuration file contains a coupling connection for the

imported field, the coupling generator will only use the corresponding provider in coupling procedure generation; otherwise, 25

it will try to detect a provider and will report an error when no provider or multiple providers are detected.

4.2 Coupling within one executable or a subset of MPI processes

As mentioned in Section 4.1, to support coupling within one executable or a subset of MPI processes, C-Coupler2

allows coupling between two component models that run on non-overlapping, partially overlapping, or overlapping MPI

processes, and can also automatically generate coupling connections between the export and import interfaces of the same 30

component model. Each component model registered to C-Coupler2 can have its own model coupling resources, including

23

time step, timers, model grids, parallel decompositions, coupling field instances, and coupling interfaces. In other words, a

model coupling resource must be associated with a unique component model. Most model coupling resources, including the

time step, model grids, parallel decompositions, coupling field instances, and coupling interfaces, are public to a component

model and shared by all its MPI processes. When registering a public model coupling resource of a component model, all

MPI processes of the component model are required to call the corresponding API simultaneously, with consistent 5

parameters. To manage different component models and model coupling resources effectively, each component model, as

well as each model coupling resource, has a unique ID.

4.3 Flexible and automatic coupling procedure generation

4.3.1 Creation of MPI communicators

As mentioned in Section 4.1.1.7, C-Coupler2 can achieve a partial coupling procedure generation for any subset of 10

component models. A partial coupling procedure generation should only involve the MPI processes of the corresponding

subset of component models but not all MPI processes of the whole coupled model. Therefore, the first step in C-Coupler2 is

to create a union MPI communicator that only includes the MPI communicator of each component model involved in the

same coupling procedure generation. To create a union MPI communicator based on a set of sub MPI communicators, the

root process in a sub MPI communicator should know the root process (for example, the ID of the process in the global 15

communicator MPI_COMM_WORLD) of each other MPI communicator. In other words, the component models involved in

the same coupling procedure generation should know the MPI processes of each other. As the registration of root component

models generally involves all MPI processes of the whole coupled model, each root component model can easily know the

MPI processes of any other root component model through global synchronization. However, as the registration of a non-

root component model only involves a subset of MPI processes (the MPI processes of itself in general and the MPI processes 20

of its parent component model at most), it is possible that a component model does not know the MPI processes of a non-

root component model. For an example based on Fig. 5, when registering the component model comp4 that is a child of the

root component model comp1, the root component model comp2 and its child comp8 will not be notified by this event, so

that comp2 and comp8 do not know which MPI processes belong to comp4. Similarly, comp1 and its children comp4 and

comp5 do not know which MPI processes belong to comp8. Given that comp4 and comp8 are involved in the same coupling 25

procedure generation, they should be synchronized for creating a union communicator, but they do not know the MPI

processes of each other.

To overcome the above challenge, a new solution should be implemented to enable one component model to know the

MPI processes of any other component model. It is a possible solution that the root process of comp4 broadcasts a message

to all processes of the whole coupled model and then the processes of comp8 reply the message. However, it will introduce 30

global synchronization. To avoid global synchronization, we implemented a file based solution in C-Coupler2 as follows. C-

Coupler2 will write information about the MPI processes of each component model into an internal XML file. Thus, in a

带格式的: 标题 2, 缩进: 左侧: 0 厘米, 悬挂缩进: 5.67 字符, 行距:

1.5 倍行距, 多级符号 + 级别: 3 + 编号样式: 1, 2, 3, … + 起始编号:

1 + 对齐方式: 左侧 + 对齐位置: 1 厘米 + 缩进位置: 2.9 厘米, 无
孤行控制, 段中不分页

24

coupling procedure generation, a component model can know the MPI processes of any other component model through

reading the corresponding XML file. The XML files of all component models are put under the same directory and this

directory will be automatically emptied when initializing C-Coupler2 in new coupled model run. The XML file

corresponding to a component model will be produced as early as when registering the component model. When a

component model wants to read an XML file that does not exist currently, it will keep to wait until the corresponding 5

component model has been registered. Only one MPI process of a component model will write or read the XML file, to

minimize the overhead of this solution.

4.3.2 Timers matching and lags

The coupling generator will generate a coupling procedure for each coupling connection that couples a subset of fields

from an export interface to an import interface. As introduced in Section 4.1.1.6, the API for registering an import/export 10

interface takes as an input parameter a timer, which specifies when a component model must import/export coupling fields.

The second challenge during coupling procedure generation is achieving effective coupling when the timers of the import

and export interfaces, which can be set independently, are different or even do not “match” in periods. For example, how to

achieve effective coupling when the periods of the import and export timers are 900 and 200 seconds respectively (assumed

that no lags are specified in the two timers)? At the model time of 0 s, both timers are activated, and the import interface will 15

obtain the coupling fields from the export interface. Before the second activation of the import timer (at 900 s), the export

timer will have been on four times (i.e., at 200, 400, 600, and 800 s). The import interface at 900 s can obtain either the

average values of the coupling fields from the four times at which the export timer was on, or the instantaneous coupling

fields at its last activation (i.e., at 800 s). The choice regarding to average values or instantaneous values is done by the user

when registering the import interface. Similarly, before the third activation of the import timer (at 1800 s), the export timer 20

will have been on a further five times, at model times of 1000, 1200, 1400, 1600, and 1800 s. Thus, the import interface (at

1800 s) will obtain from the export interface either the average values of the coupling fields at its five intervening occasions

or the instantaneous coupling fields at its last activation (at 1800 s) based on the user’s choice. As an additional example,

suppose that periods of the import and export timers are now 200 and 900 s, respectivelysuppose swapping the periods of the

import and export timers (i.e., 200 and 900 s, respectively), still with no lags specified in the timers. As before, the import 25

interface will obtain the coupling fields from the export interface at the model time of 0 s when both timers are on. Although

the import timer will be further activated at model times of 200, 400, 600 and 800 s, the import interface will not obtain new

coupling fields from the export interface, but will use those previously obtained at 0 s, because the export interface will not

export coupling fields again until a model time of 900 s. In summary, regardless of the difference in periods between the

import and export timers, C-Coupler2 can adapt to conduct model coupling in a suitable manner. 30

As introduced in Sections 4.1.1.6, a coupling lag can be specified through the input parameter of timer when registering

an import interface. Given a lag of m seconds (m ≠ 0), the coupling fields obtained by a receiver component model at its

带格式的: 标题 2, 缩进: 左侧: 0 厘米, 悬挂缩进: 5.67 字符, 行距:

1.5 倍行距, 多级符号 + 级别: 3 + 编号样式: 1, 2, 3, … + 起始编号:

1 + 对齐方式: 左侧 + 对齐位置: 1 厘米 + 缩进位置: 2.9 厘米, 无
孤行控制, 段中不分页

25

model time of N + m seconds are exported by a sender component model at its model time of N seconds. To support coupling

lags, existing coupled models such as CCSM3 (Collins et al., 2006) or FGOALS-g2 essentially extend the simulation stop

time of some component models, so that component models have different simulation periods. However, C-Coupler2 only

supports a uniform stop time among all component models. To support coupling lags in C-Coupler2 effectively, an import

interface will be bypassed if it would request coupling fields produced after the simulation stop time, and an export interface 5

will be bypassed if its coupling fields would be used after the simulation stop time. Such an implementation may introduce

errors into the model states at the last steps of simulation run. We therefore propose to extend the simulation period properly

to guarantee correct simulation of the model states in the concerned simulation period. For example, given a coupled model

consisting of an atmosphere model and an ocean model and that the coupling lag from the atmosphere model to the ocean

model is -600 s (i.e., the ocean model at its model time of 0 s will receiverequire the coupling fields of the atmosphere model 10

at its model time of 600 s), when the stop time of a simulation run is 86400 s, the ocean model after the model time of 85800

s will not obtain the coupling fields from the atmosphere model because the corresponding model time of the atmosphere

model will be later than the stop time. Therefore, incorrect states of the ocean model may be obtained after its model time of

85800 s. If users want to guarantee correct states of the ocean model before the model time of 86400 s, the stop time should

be extended to 87000 s or later. 15

4.3.3 Steps for coupling procedure generation

The coupling procedure generation for a subset of component models follows the steps outlined below.

1) No matter which API is used to start the coupling procedure generation (Section 4.1.1.7), the coupling generator first

confirms the subset of component models participating in the coupling procedure generation and confirms their MPI

processes. 20

2) Determine all coupling connections. An export interface and an import interface will be connected for model coupling

only when they have common coupling fields (with the same field names). As a component model manages its own

coupling interfaces as well as coupling fields, an MPI communicator that includes all MPI processes in the subset of

component models will be generated for aggregating the information of all coupling interfaces among different

component models. As the user can also specify coupling connections through configuration files, file reading is 25

required for analyzing possible coupling connections. To minimize the cost of reading, only one MPI process analyzes

possible coupling connections, while other MPI processes await its results. An error will be reported if a coupling field

in an import interface has multiple providers in this coupling procedure generation.

3) Generate a coupling procedure for each coupling connection. A coupling connection aims to couple a set of fields from

an export interface to an import interface. When these interfaces belong to different component models, their models 30

will exchange information about the corresponding timers, model grids, parallel decompositions, remapping

configurations, data types, etc. If a coupling field has different data types in the two coupling interfaces, an operation of

带格式的: 标题 2, 缩进: 左侧: 0 厘米, 悬挂缩进: 5.67 字符, 行距:

1.5 倍行距, 多级符号 + 级别: 3 + 编号样式: 1, 2, 3, … + 起始编号:

1 + 对齐方式: 左侧 + 对齐位置: 1 厘米 + 缩进位置: 2.9 厘米, 无
孤行控制, 段中不分页

26

data type transformation will be generated. The coupling generator adaptively selects a component model to execute the

data type transformation for improved model coupling. For example, given that the data type in the export/import

interface is double/float, the sender component model will transform the data type from double (8 bytes) to float (4

bytes), so that float values but not double values will be transferred from the export interface to the import interface. If a

coupling field has different grids in the two coupling interfaces, a runtime algorithm for parallel data interpolation will 5

be generated following the corresponding remapping configuration, where existing remapping weights will be used or

new remapping weights will be read from an external data file or calculated by C-Coupler2 online and in parallel.

Currently, only the receiver component model executes the parallel data interpolation. In the future, the coupling

generator will adaptively select a component model to process data interpolation calculation for better coupling

performance. When the import interface has been specified to import time-averaged coupling fields through the 10

corresponding input parameter of the API CCPL_register_import_interface (please refer to the user guide for more

details), operations for data averaging will be generated. To transfer the coupling fields from the export interface to the

import interface, a runtime algorithm of non-block data transfer will be generated. In summary, a coupling procedure

can include as necessary a runtime algorithm for data transfer, a runtime algorithm for data interpolation, operations for

data type transformation, and operations for data averaging. 15

As a coupling procedure generation can be performed for any subset of component models, a component model can

participate in multiple coupling procedure generations. In other words, the coupling procedures of a component model or

even an import/export interface can be incrementally generated through multiple coupling procedure generations. For an

import interface in a coupling procedure generation, only the import fields whose coupling procedures have not been

generated will be considered in the coupling procedure generation, while the import fields whose coupling procedures have 20

already been generated will be neglected.

4.4 Dynamic 3-D coupling capability

Given a 3-D grid that consists of a horizontal grid and a vertical grid with SIGMAsigma or hybrid HYBRID

coordinates, the vertical coordinate values at each horizontal grid point are determined by a unique surface field on the

horizontal grid. For example, the 3-D grid of an atmosphere model with SIGMAsigma or hybrid HYBRID coordinates will 25

have constant vertical coordinate values when the surface field is terrain height, but the values will be variable and change in

time integration when the surface field is surface pressure, because the terrain height generally remains constant while the

surface pressure changes in time integration. C-Coupler2 therefore provides two APIs,

CCPL_set_3D_grid_constant_surface_field and CCPL_set_3D_grid_variable_surface_field (Section 4.1.1.3), for specifying

constant and variable surface fields, respectively. Given a 3-D grid of an atmospheric chemistry model, the API 30

CCPL_set_3D_grid_variable_surface_field can be used to specify the surface pressure as the surface field. As an

atmospheric chemistry model generally does not produce the surface pressure, additional implementation will be required to

27

enable an atmospheric chemistry model to obtain external surface pressure (e.g., from an atmosphere model in online model

coupling). To facilitate coupling implementation for such a case, C-Coupler2 provides the API

CCPL_set_3D_grid_external_surface_field, which, rather than specifying a surface field, states that the surface field of a 3-

D grid is externally determined by the surface field of another 3-D grid. Moreover, the external surface field of a 3-D grid

will be obtained automatically and implicitly by C-Coupler2 in model coupling. 5

As mentioned above, the 3-D interpolation involved in 3-D coupling is still performed in the “2-D + 1-D” manner in C-

Coupler2, where 2-D interpolation between the horizontal sub grids is performed first, followed by 1-D interpolation

between the vertical sub grids. Given a 3-D interpolation from a source 3-D grid (expressed as H2Ds + V1Ds) to a target grid

(H2Dt + V1Dt), the 2-D interpolation between the horizontal sub grids H2Ds and H2Dt eventually interpolates coupling fields

from the source 3-D grid to an intermediate 3-D grid consisting of H2Dt and V1Ds, and thus the 1-D interpolation between 10

the vertical sub grids V1Ds and V1Dt eventually interpolates coupling fields from the intermediate 3-D grid to the target 3-D

grid. Specifically, the 2-D interpolation will be performed a number of times, each of which corresponds to a horizontal level

of the source and intermediate 3-D grids, and the 1-D interpolation will also be performed for a number of times, each

corresponding to a column in the intermediate and target 3-D grids. For dynamic 3-D coupling, 2-D interpolation can use

pre-calculated remapping weights, because the horizontal sub grids do not change throughout a simulation, while 1-D 15

interpolation cannot use pre-calculated remapping weights, and instead must dynamically calculate the remapping weights

according to the changes of vertical coordinate values in the source or target 3-D grid in time integration. To

complementachieve dynamic 3-D interpolation based on the implementation of static 3-D interpolation in C-Coupler1,

dynamic calculation for 1-D remapping weights is implemented with the following steps in C-Coupler2.

1) If the source 3-D grid has a variable surface field, the import interface first receives the source surface field transferred 20

from the export interface, and next uses the pre-calculated horizontal remapping weights to interpolate the source

surface field from the source horizontal grid (the horizontal sub grid of the source 3-D grid) to the target horizontal grid

(data interpolation will be bypassed if the two horizontal grids are the same). The source surface field on the target

horizontal grid will be used as the surface field of the intermediate 3-D grid, and will be further used as the target

surface field when the target 3-D grid has an external surface field. 25

2) If the source 3-D grid has an external surface field, the import interface uses the target surface field as the surface field

of the intermediate 3-D grid (the target 3-D grid must have a non-external surface field in this case).

3) The import interface calculates the vertical coordinate values of the intermediate/target 3-D grid when the 3-D grid has a

surface field (the import interface can obtain all constant information of the source 3-D grid in coupling procedure

generation before the first execution of the corresponding export and import interfaces). 30

4) For each column in the intermediate or target 3-D grid, the import interface calculates the 1-D remapping weights.

As dynamic 3-D interpolation cannot fully utilize pre-calculated remapping weights and must update 1-D remapping

weights at almost all coupling steps, it has a higher computational cost than static 3-D interpolation. To minimize the impact

of the increased computation cost, all of the above steps, including data transfer for the source surface field, 2-D

28

interpolation for the source surface field, calculation of vertical coordinates of the intermediate/target 3-D grid, and

calculation of 1-D remapping weights, are parallelized based on the MPI processes and parallel decompositions in the

corresponding component models. Moreover, the implementations of static 3-D interpolation and dynamic 3-D interpolation

are unified. In detail, static 3-D interpolation will be treated as dynamic 3-D interpolation at the first step of coupling; the 1-

D remapping weights will thus be calculated online during the first step of coupling; and they will be treated as static 3-D 5

interpolation and use the existing remapping weights in the subsequent coupling steps.

4.5 Non-blocking data transfer

Non-blocking data transfer is a necessary function of OASIS3-MCT, because it can achievinge coupling within one

executable or a subset of MPI processes. Two-sided MPI communication (e.g., MPI_Send, MPI_Recv, and their non-

blocking mode MPI_Isend, MPI_Irecv) has been widely used in existing couplers for data transfer. It is still used in C-10

Coupler2 as a default option of data transfer. To achieve non-blocking data transfer based on two-sided MPI communication

in OASIS3-MCT, the import interfaces of C-Coupler2gets of coupling fields (corresponding to the import interfaces of C-

Coupler2) are still blocking, while the non-blocking mode is used to make the export interfaces puts of coupling fields

(corresponding to the export interfaces of C-Coupler2) non-blocking, and a mechanism that later blocks non-blocking an

export interface puts is involved to guarantee successful and correct completion of each put: an export interface put will wait 15

for the completion of the last execution put of the same coupling field. Two-sided MPI communication is also used in C-

Coupler2 as a default option of data transfer, Similar non-blocking data transfer has already been implemented in OASIS3-

MCTand the corresponding non-blocking implementation is similar as OASIS3-MCT.

Unpredictable “deadlocks” in non-blocking two-sided MPI-communication-based data transfer can occur when an

excessive number of messages sent to a single MPI process exhaust the message passing buffer space allocated by the MPI 20

library (Dennis et al., 2012). We therefore implemented an additional option of non-blocking data transfer based one-sided

MPI communication (i.e., MPI_Put and MPI_Get), which enables C-Coupler2 to manage the message passing buffer space,

so as to ensure a “safe” implementation of non-blocking data transfer. If unpredictable “deadlocks” happen when using the

default two-sided MPI-communication-based data transfer, users will be advised to try the one-sided MPI-communication-

based implementation. In fact, we have encountered such a case when using our sample coupled model for software testing 25

(Section 5).

The wait of two-sided MPI communication is easily achieved through the MPI function MPI_Wait. However, there is

no corresponding MPI function available for one-sided MPI communication, and thus extra effort is required to implement

such a mechanism. In detail, non-blocking data transfer based on one-sided MPI communication is implemented as follows

in C-Coupler2. 30

1) The export interface calls MPI_Put to send coupling field values to the message passing buffer managed by the import

interface. Before sending coupling field values, the export interface examines whether the message passing buffer of the

带格式的: 字体: 非倾斜

带格式的: 字体: 非倾斜

带格式的: 字体: 非倾斜

带格式的: 字体: 非倾斜

带格式的: 字体: 非倾斜

带格式的: 字体: 非倾斜

带格式的: 字体: (中文) Times New Roman

带格式的: 字体: (中文) Times New Roman

带格式的: 字体: (中文) Times New Roman

29

import interface is available. The message passing buffer remains unavailable until the import interface has received

coupling field values from the last data transfer.

2) Before the import interface copies out coupling field values from its message passing buffer, it first checks whether new

coupling field values have been received. Besides coupling field values, the export interface will send a model time tag

to the import interface at the same time. Given an MPI process of the import interface, iIf coupling field values are only 5

associated with tags later than the tag of the last receive, all model time tags in its message passing buffer (different

model time tags correspond to different MPI processes of the export interface) are the same and later than the tags of the

last receive, it means that new coupling field values have been received. After copying out coupling field values, the

message passing buffer is set as available. Another model time tag is used for identifying the status of the message

passing buffer (i.e., available or unavailable). The export interface uses MPI_Get/MPI_Put to query/update the status of 10

the message passing buffer.

3) The data receive command issued by the C-Coupler2 API calls of executing import interfaces is blocking. Beyond the

API calls, C-Coupler2 issues additional non-blocking data receives for import interfaces, in order to make the data

receive finish and the data send execute as early as possible. In a non-blocking data receive, if new coupling field values

have been received, C-Coupler2 will copy out coupling field values and set the message passing buffer as available; 15

otherwise, C-Coupler2 will do nothing.

As noted above, C-Coupler2 provides flexibility in setting a lag on a coupling connection via the “remote_lag_count” in

the timer of the import interface. One challenge associated with this function is that a deadlock can occur if the lag is greater

than the corresponding coupling period. For example, Fig. 9Fig. 7 includes two component models (comp1 and comp2)

coupled with two connections. The first coupling connection is from the export interface exp1 of comp1 to the import 20

interface imp2 of comp2, while the second is from the export interface exp2 of comp2 to the import interface imp1 of comp1.

Both connections have equal coupling periods of 600 s. At each coupling step of each model, the export interface is executed

before the import interface. In Fig. 9Fig. 7(a), there is no lag on each coupling connection, and thus comp1 and comp2 can

run concurrently. In Fig. 9Fig. 7(b), there is no lag on the second coupling connection, while the first coupling connection

has a lag of 600 s, which means that imp2 at the current coupling step will receivewants the coupling fields from exp1 at the 25

previous coupling step. At the first coupling step, exp1_1 (meaning exp1 executed at the first coupling step) tries to send

coupling fields to imp2_2. As no-blocking data transfer is used, exp1_1 can successfully put the coupling fields into the

message passing buffer of imp2, and thus comp1 can finish imp1_1, and so finish the first coupling step. At the same time,

comp2 can finish the first coupling step (it is unnecessary to execute imp2_1 will not be executed, because it corresponds to

exp1 executed at the model time of -600 s that is earlier than the start time of the model run; the coupling field values 30

imported by imp2 can be initialized via data files or coupling in the initialization stage of the coupled model). At the second

coupling step, exp1_2 will first await the message passing buffer of imp2 that still keeps the coupling fields from exp1_1.

After comp2 finishes exp2_2, imp2_2 is executed, and the message passing buffer of imp2 will be set as available. Next,

exp1_2 can successfully put the coupling fields into the message passing buffer of imp2. Although the lag of 600 s on the

30

second coupling connection does not introduce a deadlock, a problem in the sequencing of comp1 and comp2 is introduced:

exp1 in comp1 must await the completion of imp2 in comp2 at the same coupling step. In Fig. 9Fig. 7(c), there is no lag on

the second coupling connection, while the first has a lag of 1200 s. Similarly to Fig. 9Fig. 7(b), both comp1 and comp2 can

finish the first coupling step. At the second coupling step, exp1_2 first awaits the message passing buffer of imp2 that will

not be set as available before comp2 finishes imp2_3 at the third coupling step, while exp2_2 can successfully put the 5

coupling fields into the message passing buffer of imp1, which has been set as available by imp1_1 at the first coupling step.

At the third coupling step of comp2 (exp1_2 in comp1 is still waiting at the second coupling step), exp2_3 first awaits the

message passing buffer of imp1 that will not be set as available before comp1 finishes imp1_2. As a result, both comp1 and

comp2 wait for each other, causing a deadlock.

The sequencing problem in Fig. 9Fig. 7(b) and the deadlock in Fig. 9Fig. 7(c) result from the unavailability of message 10

passing buffers. They are almost unsolvablebreakable regarding to two-sided MPI communication, because the message

passing buffer space is allocated by the MPI library. However, they are not unbreakable regarding to one-sided MPI

communication, and can be avoided by increasing the corresponding message passing buffers. In C-Coupler2, the message

passing buffers for one-sided MPI-communication-based data transfer can be increased adaptively. At each time step of a

component model, C-Coupler2 checks each import interface and will adaptively increase the message passing buffers when 15

required. As a result, a positive lag on a coupling connection will never result in a sequencing problem or a deadlock

between component models, when the one-sided MPI communication based non-blocking data transfer is used. The extra

memory usage due to the increased message passing buffers would be affordable in most cases, because generally only a

small proportion of model fields are involved in model coupling.

A negative lag can also be specified for a coupling connection, but can result in sequencing problems between 20

component models or even an unbreakable deadlock. For example, Fig. 9Fig. 7(d) shows no lag on the second coupling

connection and a lag of -600 s on the first, which means that imp2 at the current coupling step wwill receiveants the coupling

fields from exp1 at the next coupling step. This lag setting will not introduce a deadlock, but will introduce a sequencing

problem between comp1 and comp2: imp1 is coupled with exp2 at the same step, while imp2 at the current coupling step

waits for exp1 at the next coupling step. In Fig. 9Fig. 7(e), there is no lag on the second coupling connection, while the first 25

has a lag of −1200 s, which introduces an unbreakablesolvable deadlock (corresponding to the red arrows in the figure) even

with one-sided MPI communication, where import interfaces are awaiting the export interfaces that cannot be executed until

the import interfaces return.

4.6 Facilitation for model nesting

C-Coupler2 can help achieve self-nesting in a regional model that does not originally support this possibility, as follows: 30

1) The code of the regional model can still only manage a unique grid domain, but multiple grid domains for self-nesting

can be achieved through running multiple copies of the executable of the regional model on non-overlapping MPI

31

processes, while each copy can have separate input parameters and input data files for a unique grid domain and can be

registered as a separate component model of C-Coupler2. The different grid domains should have different component

model names, but they can use the same names for the model grids, parallel decompositions, coupling fields, coupling

interfaces, etc. Therefore, C-Coupler2 only requires the regional model to obtain a few additional input parameters. In

other words, slight modification of the namelist file and the corresponding model code of the regional model can enable 5

C-Coupler2 to recognize multiple grid domains.

2) Given that a small grid domain is nested in a larger grid domain, C-Coupler2 can recognize the relationship between the

two grid domains through the coupling connection configuration files. As all grid domains can correspond to identical

code in the regional model, the coupling connection configuration files of different grid domains can be similar,

differing only in terms of the full names of component models in the file contents. Thus, the coupling connection 10

configuration files of all grid domains can be generated easily or even automatically by a script.

3) Self-nesting capability requires the exchange of model fields that are generally 3-D between grid domains.

Implementation of this exchanging can benefit from the 3-D coupling capability, especially the dynamic 3-D coupling

capability, of C-Coupler2. Moreover, given that a small grid domain is nested in a larger grid domain, the coupling

procedures for exchanging model fields between them can be automatically generated in their partial coupling procedure 15

generation.

C-Coupler2 does not provide any lateral boundary condition scheme. This is not a problem, because a regional model

generally includes lateral boundary condition schemes that can also be used in self-nesting. To achieve two-way self-nesting,

schemes for using the feedback from smaller grid domains should be added to the regional model.

As each grid domain corresponds to a separate copy of the executable, each grid domain can easily use a distinct subset 20

of MPI processes, which allows simultaneous integration of grid domains for better parallel performance. Scientists may

want to integrate a grid domain earlier than its nested grid domains. For example, after a grid domain finishes integration

from 0 to 90 s, its nested grid domains can start the integration from 0 s. This can be achieved by adjusting coupling

latenciescoupling lags among grid domains based on the timers of the corresponding import interfaces. In one-way nesting,

the coupling latenciescoupling lags generally do not affect the parallelism among grid domains. In other words, different grid 25

domains can always be integrated simultaneously in one-way nesting, regardless of the coupling latenciescoupling lags. In

two-way nesting, even when a specific setting of coupling latenciescoupling lags forces sequential running between a grid

domain and its nested grid domains, multiple nested grid domains of the same grid domain can also run simultaneously, so

that C-Coupler can also help improve the parallel performance of self-nesting. One challenge resulting from sequential

running is that the corresponding processors will be essentially idle, and therefore wasted, when a grid domain is waiting for 30

another grid domain. In the future, we will investigate technical solutions to overcome this inefficiency. Moreover, it may be

an interesting topic to investigate the scientific impact of different settings of coupling latenciescoupling lags in model

nesting.

32

Similarly, C-Coupler2 can be used to nest a regional model into a different model. For a model that already has self-

nesting capability (such as WRF), all grid domains and the field instances on each grid domain are allocated and managed by

the regional model itself, while each grid domain as well as the field instances on it can be registered to C-Coupler2 as a

component model. Therefore, a grid domain in a self-nesting model can be further coupled with another kind of grid domain

or component model through C-Coupler2. 5

4.7 Facilitation for incremental coupling

Incremental coupling can be viewed as coupling external component models with an existing coupled model. A

straightforward implementation is to treat the external component models as internal component models of the existing

coupled model, and use the coupler of the existing coupled model to handle the corresponding incremental coupling. For

example, regarding the work of nesting WRF into CESM done by He et al. (2013) that has been introduced in Section 3.7, 10

WRF is treated as an internal component model of CESM, and the incremental coupling for its nesting is handled by CPL7,

the coupler of CESM. A major challenge in this kind of implementation is that the independence might need to be broken

between external component models and the existing coupled model that may have been developed independently by

different groups for a number of years. This introduces significant code changes to the models (even including the coupler),

and results in inconsistent code versions of the same model among different model groups. For example, all component 15

models of CESM share the same driver and are compiled into a unique executable, while WRF has its own driver, different

from the others. When treating WRF as an internal component model of CESM, WRF will have to use the driver of CESM,

and will also be compiled into the unique executable. Thus, WRF’s original driver and compiling scripts as well as CESM

need to be modified. Moreover, as the original driver and coupler of CESM do not consider the existence of a regional

atmosphere model, the driver and coupler codes of CESM also need to be modified. 20

Incremental coupling faces the fundamental problem of guaranteeing independence between external component

models and the existing coupled model, so as to minimize code changes to the models or the coupler. To help in this regard,

C-Coupler2 should minimize the constraints on using external component models and existing coupled models that are

already coupled with other couples; it should also work as an additional coupler specifically for incremental coupling as part

of coupling in a new coupled model, thus letting developers focus only on the coupling between external component models 25

and the corresponding component models in the existing coupled model. In response to these requirements, C-Coupler2

includes the following implementations for incremental coupling.

1) An existing coupled model can be registered to C-Coupler2 as a component model, and its component models involved

in incremental coupling can be further registered as its children, while other component models that are irrelevant to

incremental coupling can be neglected. Generally, several API calls are enough for the model registration, which only 30

introduces slight code changes to the existing coupled model. As C-Coupler2 can support almost any MPI process

layout among component models, a component model in any existing coupled model can be easily registered to C-

33

Coupler2. Similarly, an external component model can be easily registered to C-Coupler2.

2) As C-Coupler2 allows coupling procedure generation to be performed for any subset of component models, partial

coupling procedure generations for only the component models relevant to incremental coupling can be performed

flexibly. Similarly, several API calls are enough for partial coupling procedure generations, which only introduces a

slight code change to the external component models and the existing coupled model. 5

4.8 Adaptive restart capability

In a coupled model, all component models generally share a unique restart timer that notifies all component models to

prepare restart data corresponding to the same model time (called restart write model time hereafter). It does not mean that

the restart data files should only include the data values at the restart write model time. EHere, we’d like to set the first

example based on the coupled model setting in Fig. 10(a), where the coupling connection from the component model comp1 10

to comp2 has a lag of 600 s. Given that the whole coupled model has already produced restart data files corresponding to the

model time of 600 s in a previous run (corresponding to the red words of “do restart write” in the second iteration in Fig.

10(a)), in a restart run of the coupled model restarted from the model time of 600 s (Fig. 10(b)), after the both component

models read in the corresponding restart data (corresponding to the red words of “do restart read” in the second iteration in

Fig. 10(b)) and next advance the model time, comp2 will enter the third iteration with the model time of 1200 s and the 15

coupling interface imp2_3 will import the coupling field instance values exported by the coupling interface exp1_2 of comp1

at its model time of 600 s. However, comp1 will also enter the third iteration with the model time of 1200 s and will never

execute exp1_2 again. Therefore, besides the values imported by imp2_2 (these values may be used by comp2 before

executing imp2_3), the values imported by imp2_3 should also be included in the restart data files corresponding to the

model time of 600 s. This examples 1~3 in Section 2 of the Supplement indicates that the restart data files corresponding to 20

a restart write model time should may need to include the coupling field instance values at different model time

corresponding to a positive positive lag on a coupling connection or an order between writing restart data files and advancing

model time, .

We’d like to set the second example based on the coupled model setting in Fig. 10(c). There are no coupling lags on the

coupling connections between the two component models, and the only difference between the two component models is 25

that, they have different orders for writing restart data files and advancing model time in each iteration of the main loop.

Given that the whole coupled model should prepare restart data corresponding to the model time of 600 s, the component

model comp1 should produce restart data files at the second iteration, while comp2 should produce restart data files at the

first iteration because its model time has already been advanced to 600 s. In a restart run of the coupled model restarted from

the model time of 600 s (Fig. 10(d)), after the both component models read in the corresponding restart data (corresponding 30

to the red words of “do restart read” in the second iteration of comp1 and in the first iteration of comp2 in Fig. 10(d)),

comp2 will enter the second iteration with the model time of 600 s and it coupling interface imp2_2 will import the coupling

34

field instance values exported by the coupling interface exp1_2 of comp1 at its model time of 600 s. However, comp1 will

enter the third iteration with the model time of 1200 s and will never execute exp1_2 again. Therefore, besides the values

imported by imp2_1 (these values may be used by comp2 before executing imp2_2), the values imported by imp2_2 should

also be included in the restart data files corresponding to the model time of 600 s. This example indicates that the restart data

files corresponding to a restart write model time may need to include the coupling field instance values at different model 5

time even when there is no lag on any coupling connection.

As shown in Fig. 10(d), comp2 will execute the coupling interface exp2_2 after the coupled model run is restarted.

exp2_2 will try to export the coupling field instance values to the coupling interface imp1_2 of comp1, however, imp1_2 will

never be executed again in the restart run. Therefore, the data export by exp2_2 should be bypassed, to avoid deadlocks.

Similarly, regarding the third example corresponding to Fig. 10(e) with a coupling lag of -600 s from comp1 to comp2, in the 10

restart run corresponding to Fig. 10(f), the data export by the coupling interface exp1_3 of comp1 should also be bypassed.

These examples indicate thatand that it may need to bypass the data export of some export interfaces at some model time

after restarting the coupled model run.

To conveniently achieve exact restart for coupling fields under any setting of coupling lags and any order between

writing restart data files and advancing model time, the restart manager of C-Coupler2 provides an adaptive restart capability 15

implemented as follows (For further illustration about the implementation, please refer to Example 4 in Section 2 of the

Supplement).

• The restart manager conducts restart writing as follows:

1) The restart data corresponding to a component model are classified into two categories: management information that

will be written into a binary formatted data file at once, and field instance values that will be written into a NetCDF 20

formatted data file incrementally.

2) Each active component model that has been registered to C-Coupler2 should call the API CCPL_do_restart_write_IO at

each time when the restart timer is on. (Generally, this API will be bypassed when the restart timer is not on).

3) CCPL_do_restart_write_IO Generally, if the unique restart timer is not on at the current model time,

CCPL_do_restart_write_IO will be bypassed. Otherwise, it will be truly executed: it will set the restart writing model 25

time asto the current model time, optionally write the current values of all importedrestart-related field instances into the

NetCDF restart data file based on the user’s configuration, in default (Users can disable this through an input parameter

of the API; please refer to the user guide for details), and prepare the restart management information that will be

written into the binary restart data file later.

4) When a receiver component model is importing the values of a coupling field instance from a sender component model, 30

if the model time at the sender or receiver component model is not later than the restart writing model time, the values

obtained by the receiver component model will be written into the corresponding NetCDF restart data file automatically

and incrementally.

35

5) Restart management information will be written into a binary restart data file only Wwhen the corresponding a

component model is advancing its model time , the restart manager will check whether it should write the restart

management information into the corresponding binary restart data file. Ifand has already received all values with the

latest sender’s model time corresponding to an import coupling field instance is earlier than the restart writing model

time, the corresponding binary restart data file will not be produced. 5

• The restart manager conducts restart reading as follows:

6) When users want to restart a coupled model run, each active component model should firstly call the API

CCPL_start_restart_read_IO (can be called at most once and will be bypassed in an “initial” run) which will read in the

restart management information from the corresponding binary restart data file, and the model time corresponding to the

restart management information is marked as restarted model time. 10

7) A component modelUsers can call the API CCPL_restart_read_fields_all or CCPL_restart_read_fields_interface (The

both APIs can be called multiple times and redundant restart read of the same values will be avoided in multiple calls;

they will be bypassed in an “initial” run) to read in the values of some field instances at the restarted model time from

the corresponding NetCDF restart data file, if required.

8) In a “continue” run or a “hbybrid” run, when a sender component model tries to export a coupling field instance to a 15

receiver component model, if the corresponding model time at the sender or receiver component model is not later than

the restarted model time, the sender will bypass the field instance export; when a receiver component model tries to

import a coupling field instance from a sender component model, if the corresponding model time at the sender or

receiver component model is not later than the restarted model time, the values of the import field instance will be

automatically read from the corresponding NetCDF restart data file but not imported from the sender component model 20

(an error will be reported if the corresponding restart data file does not contain the import field instance values).

• The restart manager provides the following supports for “continue” run that will automatically and exactly

restart the model run from a previous restart write model time:

9) C-Coupler2 automatically records the latest restart write model time of each component model in an implicit file called

“rpointer” file that will be updated only when the corresponding binary restart data file has been produced. 25

10) Besides the latest restart write model time, C-Coupler2 will also automatically and implicitly record the previous restart

write model time before the latest restart write model time for each component model.

11) When starting a “continue” run, C-Coupler2 will adaptively determine the right restarted model time (i.e., the latest

restart write model time or the previous restart write model time) and then restart the model run.

12) A component model can also get the right restarted model time determined by C-Coupler2 through the API 30

CCPL_get_restart_setting (Please refer to the user guide for details).

8)

 Fig. 10(g) shows an example about the above implementation based on the coupled model setting in Fig. 10(a), where

the red operations are restart write related. Given that the unique restart timer will be on at the model time of 600 s, for

带格式的: 两端对齐

带格式的: 字体: 倾斜

带格式的: 字体: (中文) Times New Roman, 加粗

带格式的: 字体: (中文) Times New Roman, 加粗

带格式的: 字体: (中文) Times New Roman, 加粗

带格式的: 字体: (中文) Times New Roman, 加粗

带格式的: 字体: (中文) Times New Roman, 加粗

带格式的: 字体: (中文) Times New Roman, 加粗

带格式的: 两端对齐

带格式的: 字体: (中文) Times New Roman

带格式的: 字体: (中文) Times New Roman

带格式的: 字体: (中文) Times New Roman

带格式的: 字体: (中文) Times New Roman

带格式的: 字体: (中文) Times New Roman

带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 3.57 字符, 在相同样式
的段落间不添加空格, 孤行控制

带格式的: 字体: (中文) Times New Roman

带格式的: 字体: 非加粗

带格式的: 两端对齐

带格式的: 列表段落, 缩进: 左侧: 0 厘米, 悬挂缩进: 3.57 字符, 多
级符号 + 级别: 2 + 编号样式: 1, 2, 3, … + 起始编号: 1 + 对齐方式:

左侧 + 对齐位置: 1.27 厘米 + 制表符后于: 1.9 厘米 + 缩进位置:

1.9 厘米

36

each of comp1 and comp2, the API CCPL_do_restart_write_IO will write the coupling field instance values imported at

the model time of 600 s (corresponding to imp1_2 and imp2_2) into the corresponding NetCDF restart data file and

mark 600 s as the restart writing model time. At the third iteration with the model time of 1200 s, imp2_3 of comp2 will

obtain the coupling field instance values that are exported by exp1_2 of comp1 at its model time of 600 s. As 600 s is the

same with but not later than the restart writing model time, according to the above step 4, imp2_3 will write its obtained 5

coupling field instance values into the corresponding NetCDF restart data file. According to the above step 5, comp1

will produce the corresponding binary restart data file when advancing the model time at the third iteration, while comp2

will produce the corresponding binary restart data file when advancing the model time at the fourth iteration. Fig. 10(h)

shows a restart run of the coupled model restarted from the model time of 600 s, where red operations are restart read

related. Both comp1 and comp2 should call the API CCPL_start_restart_read_IO, which will read in the restart 10

management information and set the restarted model time to 600 s. After entering the main loop, comp2 will first

execute the third iteration (with the model time of 1200 s), where the coupling field instance values obtained at the

second iteration (with the model time of 600 s) may be used and can be recovered through calling the API

CCPL_restart_read_fields_all or CCPL_restart_read_fields_interface in advance. As the coupling field instance values

that will be obtained by imp2_3 of comp2 at its model time of 1200 s are exported by comp1 at its model time of 600 s, 15

and 600 s is the same with but not later than the restarted model time, according to the above step 8, C-Coupler2 will

automatically read in the corresponding coupling field instance values from the corresponding NetCDF restart data file

automatically. Similar examples can be derived from Fig. 10(c) ~ 10(f).

For a component model, the API CCPL_start_restart_read_IO can be called at most once, while

CCPL_restart_read_fields_all or CCPL_restart_read_fields_interface can be called multiple times. For a field instance 20

whose values have been recovered in a restart run and have not been changed since the last recovery, the latter two APIs will

not read in its values from the corresponding NetCDF restart data file again, to avoid redundant overhead. In addition to

coupling field instances, C-Coupler2 also provides supports for exact restart capability of model field instances. When

registering a field instance to C-Coupler through the API CCPL_register_field_instance, it can be specified as restart related

through an input parameter of this API (Please refer to the user guide for details). The values of a restart related model field 25

instance will be written into the corresponding NetCDF restart data file automatically and can be recovered through the API

CCPL_restart_read_fields_all in a restart run.

As mentioned before, C-Coupler2 supports four types of model run: “initial”, “continue”, “branch” and “hybrid”,

where the latter three types are restart reading related. All APIs related to restart reading can be called and will be bypassed

in a “initial” run. A “hybrid” run does not target to achieve exact restart: the API CCPL_restart_read_fields_interface or 30

CCPL_restart_read_fields_all can be used to recover the values of some field instances at the restarted model time, while

the above step 8 will not be conducted. Both “branch” and “continue” run will target to achieve exact restart. A “branch”

run will restart the coupled model run from the model time explicitly specified by users, while a “continue” run will restart

the coupled model run from the latest restart write model time. Similar with most of existing coupled models, C-Coupler2

37

also records the latest restart write model time of each component model in an implicit file called “rpointer” file. A “rpointer”

file will be updated only when the corresponding binary restart data file has been produced. It may fail to start a “continue”

run because the latest restart write model time is determined by each component model separately and may be not the same

among all component models. We have encountered such kind of failures before when using existing coupled models. To

avoid such kind of failure, besides the latest restart write model time, C-Coupler2 will also implicitly record the previous 5

restart write model time before the latest restart write model time for each component model. When starting a “continue”

run, C-Coupler2 will first adaptively determine the right restarted model time. A component model can also get the right

restarted model time determined by C-Coupler2 through the API CCPL_get_restart_setting (Please refer to the user guide

for details).

A coupling lag can be adaptively achieved through setting the remote lag count in the timer of an import interface when 10

the import interface is executed without bypassing its timer. However, even when constantly bypassing the timer of an

import interface, a coupling lag can also be achieved through adjusting the execution of the import interface and the

corresponding export interfaces. Please note that, C-Coupler2 currently does not guarantee exact restart capability under

such kind of coupling lag specification. We therefore highly propose users to enable the timer when executing a coupling

interface as possible, especially in the main loop of the time integration. 15

For a summary, when the timer of each coupling interface is enabled in the main loop of the time integration, C-

Coupler2 will guarantee exact restart for coupling field values no matter the setting of coupling lags and no matter the

implementation of coupling. In a “continue” run, C-Coupler2 will adaptively determine the right model time to exactly

restart the simulation. In a “branch” run or “hybrid” run, C-Coupler2 will stop the model simulation with an error report if

the restarted model time specified by users is wrong (e.g., some corresponding restart data files are missing or do not contain 20

necessary coupling field instance values). Besides coupling fields, C-Coupler2 also provides the support of exact restart

capability for the model fields irrelevant to coupling.

4.9 Debugging capability

The following aspects enhance the debugging capability of C-Coupler2.

1) C-Coupler2 performs a series of checks for almost all API calls. For example, when registering a component model, 25

model grid, parallel decomposition, coupling field, or coupling interface, when setting the time step of a component

model, and when executing a coupling interface, C-Coupler2 can check whether all MPI processes of the component

model call the API at the same time and with consistent parameters. For example, when registering a horizontal grid

with global grid data or registering a vertical grid, C-Coupler2 can check whether the grid data are the same among MPI

processes, and when registering a coupling interface, C-Coupler2 can check whether the timer, coupling field instances, 30

and other parameters are consistent among MPI processes. When an API call includes an array as a parameter, C-

Coupler2 can check the size of the array. For example, when registering a coupling field instance, C-Coupler2 can check

38

whether the array size of the memory buffer of the coupling field instance matches that required. When an API call

includes the ID of a coupling resource as a parameter, C-Coupler2 can check whether the ID is legal. When an API call

will read information in configuration files, C-Coupler2 can check whether the files are in the correct XML format and

check the correctness of the required information. Given the additional overheads in computation and communication

introduced by performing such checks, most of them can be disabled in a model run. We strongly recommend that the 5

user enables the checks fully when developing a coupled model.

2) When an error or a warning is detected, it will be reported, including a suggestion for fixing the relevant model codes or

configuration files. Almost all APIs include an optional input parameter “annotation”, which is a string giving a hint for

locating the model code of the API call corresponding to an error or warning. There are around 1000 error reports

throughout the code of C-Coupler2. 10

3) C-Coupler2 can report many kinds of log information, about coupling configurations, progress in handling coupling

configurations, coupling procedure generations, coupling run, and the values of coupling field instances. Each process in

a coupled model can have a separate log file for reporting log information, errors, and warnings, which can facilitate

parallel debugging. Moreover, C-Coupler2 also enables the internal code of a component model to report log

information through the C-Coupler2 log files. The user can enable or disable the reporting of log information. 15

5.0 Default options for using C-Coupler2

Many C-Coupler2 APIs have optional input parameters. Moreover, some configuration files are optional. Default

options will be used when optional input parameters or configuration files are not specified or provided. Here we’d like to

list out some default options for using C-Coupler2 as follows. For more default options, please refer to the user guide.

0) The API CCPL_register_component for registering a component model has an optional input parameter 20

“considered_in_ancestor_coupling_gen”. Its default value is true, which means the component model registered

currently will be involved in the family coupling procedure generation of its parent component model. For example,

given the component models in Fig. 5 and that “considered_in_ancestor_coupling_gen” is not specified when

registering comp1 and comp2 while it has been set to false when registering comp3, comp1 and comp2 will be involved

in the global coupling procedure generation while comp3 will be not. 25

0) The API CCPL_define_single_timer for defining a periodic timer has an optional input parameter “remote_lag_count”.

Its default value is 0, which means there will be no coupling lag on the corresponding coupling connections.

0) The API CCPL_register_H2D_grid_via_global_data and CCPL_register_H2D_grid_via_local_data have an optional

input parameter “mask” that specifies whether each grid cell is active or not. Its default value is 1, which means all grid

cells are active. 30

0) The API CCPL_register_import_interface for registering an import interface has an optional input parameter

“necessity”. It is an array, each element of which specifies whether the corresponding import field instance is necessary

39

(with value of 1) or optional (with value of 0). Its default value is 1, which means all import field instances are necessary.

When executing an import interface, if a necessary import field instance has not been connected (the provider has not

been found and the corresponding coupling procedures have not been generated), the whole model run will be stopped

with an error report.

11) Coupling connection configuration files are optional (in some cases when no coupling connection configuration file has 5

been given, component models can still be successfully coupled together) and will become necessary when multiple

providers for a coupling field instance in an import interface have been detected in a coupling procedure generation.

12) Remapping configuration files are optional and the default remapping configuration will be used when no remapping

configuration file is provided. In the default remapping configuration, the bilinear remapping algorithm is used for

remapping the “state” fields between horizontal grids, the conservative remapping algorithm is used for remapping the 10

“flux” fields between horizontal grids, the linear remapping algorithm is used for remapping in both the vertical

dimension and the time dimension, and the remapping weights between different grids will be generated by C-Coupler2.

135 Evaluation

This section evaluates C-Coupler2 in several aspects, including software testing, scaling of initialization, data transfer,

memory use, and dynamic 3-D coupling. 15

13.15.1 Software testing

To improve the reliability of C-Coupler2 in various areas of application, we first designed a sample coupled model that

includes coupling between several sample component models and self-nesting component models. Next, we developed

hundreds of use cases based on the sample coupled model, to evaluate whether C-Coupler2 properly detects and reports

errors in various cases of incorrect use, properly generates coupling procedures and handles model coupling and nesting in 20

correct cases.

Besides the sample coupled model, existing real coupled models were used to test C-Coupler2, including FIO-AOW,

BCC_CSM (Beijing Climate Center Climate System Model) (Xin et al., 2013), and CESM. For each coupled model, C-

Coupler2 was used to replace some coupling functions from other couplers, while trying to keep exactly the same (bitwise

identical) simulation results. Specifically, C-Coupler2 was used to replace C-Coupler1 employed in FIO-AOW, MCT 25

(Larson et al., 2005) based data transfer and interpolation functions of the CPL5 coupler (the version immediately prior to

CPL6) employed in BCC_CSM, and MCT based data transfer and interpolation functions of the CPL7 coupler employed in

CESM. Various MPI process numbers of component models and various run types (i.e., “initial”, “continue”, “branch”, and

“hybrid” run) of each real coupled model were used for testing using nearly 2000 processor cores. As CESM enables the

user to flexibly set MPI process layouts among component models, the tests considered non-overlapping, partially 30

overlapping, and overlapping MPI processes among component models of CESM.

40

We further coupled an atmosphere model GAMIL2 (Grid-point Atmospheric Model of IAP LASG version 2) (Li et al.,

2013) and the CESM version with C-Coupler2 (the original atmosphere model was disabled) via incremental coupling,

which generates the executables of both GAMIL2 and CESM, while GAMIL2 keeps its original driver unchanged. C-

Coupler2 thus successfully demonstrated incremental coupling. The dynamic 3-D coupling capability of C-Coupler2 was

evaluated when coupling GAMIL2 and GEOS-Chem. A coupled model with the atmosphere model in MPAS (Model for 5

Prediction Across Scales) (https://mpas-dev.github.io/) and a wave model WaveWatch

(polar.ncep.noaa.gov/waves/wavewatch/) has been newly developed, which also contributes to software testing of C-

Coupler2.

Moreover, various processors (i.e., Intel X86, IBM Power, and the SW26010 processors employed in the Sunway

TaihuLight system), various operating systems (i.e., Linux and IBM AIX), various compilers (i.e., Intel compilers, GNU 10

compilers and IBM compilers), and various MPI libraries (Intel MPI, MPICH, Open MPI, and IBM MPI) were involved in

testing C-Coupler2.

13.25.2 Initialization cost

The evaluation of initialization cost considered coupling 10 2-D fields between two toy component models that define

horizontal grids but do not have real model initialization. The component models’ horizontal grids were a regular longitude–15

latitude grid with 1440 × 720 grid points and a tripolar grid with 1440 × 1021 grid points. Therefore, model coupling

required data remapping, and we used the corresponding remapping weights file generated by CoR1. The two component

models ran concurrently on a supercomputer, with the same number of processor cores (MPI processes). Each computing

node on the supercomputer included two Intel Xeon CPUs, with 20 processor cores in total, and all computing nodes were

connected with an InfiniBand network. The codes were compiled by an Intel Fortran and C++ compiler at the optimization 20

level O2, using an Intel MPI library.

Figure 11Figure 8 shows the initialization cost of C-Coupler2 when scaling the number of processor cores of each

component model from 15 to 960. It increases with increasing core number. C-Coupler2 initialization consists of several

steps, including registering component models, setting time steps, registering model grids, registering parallel

decompositions, registering coupling field instances, registering coupling interfaces, generating coupling procedures, reading 25

and then distributing the remapping weights from a file, and computing routing information for data transfer between

component models. Most of these steps include non-scalable operations; i.e., MPI collective communications or I/O.

Increasing the core number increases the overhead of the non-scalable operations, and thus increases initialization cost. The

results in Fig. 11Fig. 8 indicate that the initialization cost of C-Coupler2 may be not negligible, but it would be affordable in

most cases, especially for long-term climate simulations. 30

https://mpas-dev.github.io/

41

13.35.3 Data transfer

As introduced above, C-Coupler2 can employ one-sided MPI communication in data transfer, while other existing

couplers only use two-sided MPI communication in transfer data. We evaluated the performance of our one-sided

communication in comparison to a two-sided implementation, based on a ping-pong coupling for the same configuration

used in Section 5.2. Figure 12Figure 9 shows the cost of the two implementations when scaling the number of processor 5

cores of each component model from 15 to 960. The times are per 100 ping-pong couplings. Overall, the one-sided

communication achieves similar performance to the two-sided communication. In other words, the option of one-sided MPI

communication does not obviously degrade the performance of data transfer.

13.45.4 Memory usage

Figure 13Figure 10 shows the memory use per core for the coupled model configuration used in Section 5.2, as 10

measured using the gptl (http://jmrosinski.github.io/GPTL/) interface (similar to Craig et al., 2017). The memory usage

remained around 360–380 MB regardless of the core number from 15 to 960.. Lacking computing resources, we were unable

to evaluate the memory usage at a much higher number of processor cores. When more processor cores are used, However,

we can speculate based on the assessment of OASIS3-MCT (Craig et al., 2017): owing to the MPI memory footprint (Balaji

et al., 2008), the memory use per core for the whole coupled model configuration will get higher owing to the MPI memory 15

footprint (Balaji et al., 2008). However, the memory use per core due to C-Coupler2 itself would not get higher because the

number of local grid cells per core will get lower.

might be around 1300–1400 MB at 16000 cores for each component model. The memory use is relatively high, but

would be acceptable for many applications and hardware configurations.

13.65.5 Dynamic 3-D coupling 20

The capability of dynamic 3-D coupling was tested based on the coupled model consisting of GAMIL2 and GEOS-

Chem that has been mentioned before. In this coupled model, the 3-D grids of GAMIL2 and GEOS-Chem are different in

both horizontal direction and vertical direction. Specifically, GAMIL2 includes a 2.8° horizontal grid with the uniform grid

in the low and middle latitudes region and a weighted even area grid in the high latitudes and polar region, and 26-

SIGMAsigma vertical levels (pressure normalized by surface pressure) with the model top at 2.194hPa, while GEOS-Chem 25

uses a 4°x5° uniform horizontal grid and 72-hybrid -HYBRID vertical levels with the model top at 0.01hPa. As GEOS-

Chem does not calculate the atmospheric pressure, the surface pressure corresponding to its 3-D grid is declared as an

external surface field through the API CCPL_set_3D_grid_external_surface_field and will be determined by the surface

field of the 3-D grid of GAMIL in dynamic 3-D coupling. For the first step of the evaluation, we examined the vertical

coordination values of the two 3-D grids and the corresponding vertical remapping weights that change in time integration. 30

http://jmrosinski.github.io/GPTL/

42

Next, we examined each coupling field from one component model to the other. For example, Fig. 14Fig. 11 and 15 show

the values of the coupling fields of atmospheric temperature (T) and the zonal wind speed (U) from GAMIL2 and GEOS-

Chem, which reveal that C-Coupler2 achieves consistent results between the source grid and the target grid in dynamic 3-D

coupling.

To evaluate the parallel scalability of dynamic 3-D coupling, we derived a new configuration from the configuration 5

used in Section 5.2, where the 2-D grid corresponding to the 2-D coupling fields in each component model is extended to be

a 3-D grid with a 50-level vertical sub-grid of SIGMAsigma coordinate. The SIGMAsigma coordinate values are different

between the two component models, and the surface field corresponding to the 3-D grid of one component model changes at

every time step, while the surface field corresponding to the other component model has been set to be external. Therefore,

the vertical coordinate values of all 3-D grids and the corresponding vertical remapping weights are updated in each time of 10

3-D coupling. Figure 16Figure 13 shows the parallel speedup of dynamic 3-D coupling when scaling the number of

processor cores of each component model from 15 to 960, measured from 100 ping-pong couplings. The results in Fig. 16Fig.

13 reveal that C-Coupler2 can achieve acceptable parallel scalability in dynamic 3-D coupling.

146 Summary and Ffuture work

As a new version of C-Coupler, C-Coupler2 follows the family’s targets and the main designs, but is significantly 15

different from C-Coupler1 with advancements 1 in many aspects, , e.g., coupling configuration, 3-D coupling capability,

coupling procedure generation, support for incremental coupling, coupling lags, etc. (Please refer to Table 2 for the

differences between C-Coupler1 and C-Coupler2 in all aspects):

1) The coupling configuration of C-Coupler2 properly combines near 80 APIs and several kinds of XML formatted

configuration files, while the coupling configuration of C-Coupler1 strongly depends ASCII formatted configuration 20

files. Therefore, the coupling configuration of C-Coupler2 is much more flexible and user-friendly.

2) C-Coupler2 supports dynamic 3-D coupling that enables vertical coordinate values of 3-D grids to change in time

integration, while C-Coupler1 only supports static 3-D coupling where coordinate values of 3-D grids must keep

constant throughout time integration.

3) C-Coupler2 has coupling procedure generation capability that achieves automatic and incremental coupling procedure 25

generation for any subset of component models, while C-Coupler1 does not achieve such a capability.

4) C-Coupler2 can facilitate the implementation of incremental coupling because an existing coupled model as well as its

component models coupled with any coupler can be used as component models of C-Coupler2, while C-Coupler1 can

not couple existing coupled models coupled with other couplers.

5) The APIs, non-blocking data transfer and adaptive restart capability of C-Coupler2 enable users to flexibly set coupling 30

lags that can be greater than the corresponding coupling periods, while a coupling lag in C-Coupler1 cannot exceed the

corresponding coupling period.

带格式的: 字体: (中文) +中文正文 (宋体), 10 磅, (中文) 中文(中
国)

带格式的: 字体: (中文) +中文正文 (宋体), 10 磅, (中文) 中文(中
国)

带格式的: 字体: (中文) +中文正文 (宋体), 10 磅, (中文) 中文(中
国)

带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 3.57 字符, 多级符号 +

级别: 3 + 编号样式: 1, 2, 3, … + 起始编号: 1 + 对齐方式: 左侧 +

对齐位置: 1.9 厘米 + 制表符后于: 2.54 厘米 + 缩进位置: 2.54 厘
米

带格式的: 字体: 10 磅

带格式的: 字体: (中文) Times New Roman

带格式的: 字体: (中文) Times New Roman

带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 3.57 字符

带格式的: 字体: 10 磅

带格式的: 字体: 10 磅

43

As shown in Table 2, as summarized in Table 2. Here we further discuss its capability in integrating external calculation

routines. In C-Coupler1 has the capability of integrating external calculation routines,, awhich means that a private

subroutine of a component model or a common algorithm such as a flux calculation algorithm can be registered as an

external calculation routine. An external calculation routine cannot have any explicit argument while its inputs and outputs

are implicitly specified through the corresponding configuration files. The integration of a Fortran external calculation 5

routine generally requires an additional C interface. An external calculation routine can be further used as a runtime

algorithm in a coupling procedure by specifying it in the corresponding configuration files.

C-Coupler2 does not inherit this capability from C-Coupler1, because configuration files for implicitly specifying the

inputs and outputs of an external calculation routine and for specifying the runtime algorithms in a coupling procedure do

not exist in C-Coupler2. We intend to recover this capability in future versions of C-Coupler. 10

As C-Coupler1’s coupling configuration interface has been significantly changed in C-Coupler2, C-Coupler2 does not

achieve backwards compatibility. However, keeping backwards compatibility will be a primary goal for future C-Coupler

versions. For example, we will try to make C-Coupler versions support all existing C-Coupler2 APIs, so that the coupled

models using C-Coupler2 can be conveniently upgraded with future C-Coupler versions without code changes.

Although the results in Section 5 indicate that the initialization cost and memory use of C-Coupler2 may be affordable 15

in most cases, a problem might arise when the model resolution or the number of processor cores is extremely high. When

developing future C-Coupler versions, we will investigate ways to decrease initialization cost and memory use.

Code availability. C-Coupler2 is an open-source coupler that is always free for non-commercial activities. The latest version

and future updates of the source code, user guide and examples can be downloaded from https://github.com/C-Coupler-20

Group/c-coupler-lib. We highly recommend users to watch this project, so as to be notified with the future updates of C-

Coupler2. We also applied a DOI (10.5281/zenodo.1283512) for a specific code version of C-Coupler2, that can be accessed

via https://doi.org/10.5281/zenodo.1283512.

Acknowledgements. This work was jointly supported in part by the National Grand Fundamental Research 973 Program of 25

China (grant no. 2014CB441302) and the National Key Research Project of China (grant no. 2017YFC1501903).

References

Balaji, P., Buntinas, D., Goodell, D., Gropp,W. D., Kumar, S., Lusk, E. L., Thakur, R., and Traff, J. L.: MPI on a Million

Processors. Recent Advances in Parallel Virtual Machine and Message Passing Interface, Lecture Notes in Computer

Science, Volume 5759, 20–30, https://doi.org/10.1007/978-3-642-03770-2_9, 2009. 30

https://github.com/C-Coupler-Group/c-coupler-lib
https://github.com/C-Coupler-Group/c-coupler-lib
https://doi.org/10.5281/zenodo.1283512

44

Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., Chang, P., Doney, S. C., Hack,

J. J., Henderson, T. B., Kiehl, J. T., W. G. Large, D. S. McKenna, B. D. Santer, R. D. Smith: The Community Climate

System Model Version 3 (CCSM3). J. Climate, 19, 2122–2143, 2006.

Craig, A. P., Jacob, R. L., Kauffman, B., Bettge, T., Larson, J. W., Ong, E. T., Ding, C. H. Q., He, Y.: CPL6: The New

Extensible, High Performance Parallel Coupler for the Community Climate System Model. International Journal of 5

High Performance Computing Applications, 19(3): 309-327, 2005.

Craig, A. P., Vertenstein, M., and Jacob, R.: A New Flexible Coupler for Earth System Modeling developed for CCSM4 and

CESM1. International Journal of High Performance Computing Applications, 26-1, 31–42,

doi:10.1177/1094342011428141, 2012.

Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-10

MCT_3.0, Geosci. Model Dev., 10, 3297-3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017.

Dennis, J. M., Edwards, J., Loy, R., Jacob, R., Mirin, A. A., Craig, A. P., and Vertenstein, M.: An application-level parallel

I/O library for Earth system models. International Journal of High Performance Computing Applications, 26(1):43-53,

2012.

Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0: new aspects for coupling software in Earth system 15

modelling, Geosci. Model Dev., 9, 2755-2769, https://doi.org/10.5194/gmd-9-2755-2016, 2016

He, J., Zhang, M., Lin, W., Colle B., Liu, P., and Vogelmann, A. M.. The WRF nested within the CESM: Simulations of a

midlatitude cyclone over the southern great plains. Journal of Advances in Modeling Earth Systems, 5(3):611-622,

2013.

Hill, C., DeLuca, C., Balaji， V., Suarez, M., and Silva, A. D.: Architecture of the Earth System Modeling Framework. 20

Comput. Sci. Eng., 6, 18–28, 2004.

Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, Lamarque, P. J., J.-F., Large, W. G. , Lawrence,

D. , Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S.,

Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model:

A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 94(9), 1339–1360, 2013. 25

Larson, J., Jacob, R., and Ong, E.: The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics

Parallel Coupled Models, Int. J. High Perf. Comp. App., 19, 277–292, https://doi.org/10.1177/1094342005056116,

2005.

45

Li, L. J., Lin, P. F., Yu, Y. Q., Wang, B., Zhou, T. J., Liu, L., Liu, J. P., Bao, Q., Xu, S. M., Huang, W. Y., Xia, K., Pu, Y.,

Dong, L., Shen, S., Liu, Y. M., Hu, N., Liu, M. M., Sun, W. Q., Shi, X. J., Zheng, W. P., Wu, B., Song, M.-R., Liu, H.

L., Zhang, X. H., Wu, G. X., Xue, W., Huang, X. M., Yang, G. W., Song, Z. Y., and Qiao, F. L.: The Flexible Global

Ocean-Atmosphere-Land System Model: Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30(3), 543-560, 2013a.

Li, L. J., Wang, B., Dong, L., Liu, L., Shen, S., Hu, N., Sun, W., Wang, Y., Huang, W., Shi, X., Pu, Y. and Yang, G.: 5

Evaluation of Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2), Adv. Atmos. Sci., 30, 855–867,

doi:10.1007/s00376013-2157-5, 2013b.

Liu, L., Yang, G., and Wang, B.: CoR: a multi-dimensional common remapping software for Earth System Models, in: The

SecondWorkshop on Coupling Technologies for Earth System Models (CW2013), available at:

https://wiki.cc.gatech.edu/CW2013/index.php/Program (last access: 8 May 2014), 2013 10

Liu, L., Yang, G., Wang, B., Zhang, C., Li, R., Zhang, Z., Ji, Y., and Wang, L.: C-Coupler1: a Chinese community coupler

for Earth System Modeling, Geosci. Model Dev., 7, 2281-2302, doi:10.5194/gmd-7-2281-2014, 2014

Long, M. S., Yantosca, R., Nielsen, J. E., Keller, C. A., da Silva, A., Sulprizio, M. P., Pawson, S., and Jacob, D. J.:

Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an atmospheric chemistry

module for Earth system models, Geosci. Model Dev., 8, 595-602, https://doi.org/10.5194/gmd-8-595-2015, 2015 15

Jones, P.: Conservative remapping: First- and second-order conservative remapping. Mon. Weather Rev., 127, 2204, 1999.

Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., Xia, C., and Ma, J.: Wave-induced mixing in the upper ocean: Distribution and

application in a global ocean circulation model, Geophysical Research Letter, 31:L11303,doi:10.1029/2004GL019824,

2004.

Redler, R., Valcke, S., and Ritzdorf, H.: OASIS4 – a coupling software for next generation Earth System Modelling, Geosci. 20

Model Dev., 3, 87–104, doi:10.5194/gmd-3-87-2010, 2010.

Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388,

doi:10.5194/gmd-6-373-2013, 2013.

Wang, G., Qiao, F., and Xia, C.: Parallelization of a coupled wave-circulation model and its application, Ocean Dynamics,

60(2), 331-339, 2010. 25

Wang, W., Barker, D., Bray, J., Bruyère, C., Duda, M., Dudhia, J., Gill, D., and Michalakes, J., WRF Version 3 Modeling

System User's Guide , 2014. [Available at http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html.]

Xin, X.-G., Wu, T.-W., and Zhang, J.: Introduction of CMIP5 experiments carried out with the climate system models of

Beijing Climate Center. Adv. Clim. Change Res., 4(1), doi: 10.3724/SP.J.1248.2013.041, 2013

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html

46

Yang, Y., Qiao, F., Zhao, W., Teng, Y. and Yuan, Y.: MASNUM ocean wave numerical model in spherical coordinates and

its application, Acta Oceanologica Sinica, 27(2): 1-7, 2005.

Zhao, B., Qiao, F., Cavaleri, L., Wang, G., Bertotti, L., and Liu, L.: Sensitivity of typhoon modeling to surface waves and

rainfall. Journal of Geophysical Research Oceans, 122(3), 1702-1723, DOI: 10.1002/2016JC012262, 2017

 5

47

Table 1 Model types currently supported by C-Coupler2

Model type Description Remark

cpl Coupler Active component model

atm Atmosphere model Active component model

glc Glacier model Active component model

atm_chem Atmospheric chemistry model Active component model

ocn Ocean model Active component model

lnd Land surface model Active component model

sea_ice Sea ice model Active component model

wave Wave model Active component model

roff Runoff model Active component model

active_coupled_system Coupled model that consists of a set of

component models

Active component model

pseudo_coupled_system Coupled model that consists of a set of

component models

Pseudo component model

48

Table 2 Differences between C-Coupler1 and C-Coupler2

No. Technical aspects C-Coupler1 C-Coupler2

1 Coupling configuration Strongly dependsent on ASCII formatted

configuration files

Properly combines APIs and XML formatted

configuration files

2 MPI process layout of

coupling

Only root component models are

supported; cannot handle model coupling

within a subset of MPI processes or the

same component model

Can support almost any kind of MPI process

layout among component models (including

existing coupled models); can handle model

coupling within a subset of MPI processes or

the same component model

3 3-D coupling capability Static 3-D coupling only Both static and dynamic 3-D coupling

4 Coupling procedure

generation

No coupling procedure generation

function

Automatic and incremental coupling

procedure generation for any subset of

component models

5 Data transfer Blocking data transfer based on two-sided

MPI

communicationMPI_Send/MPI_Isend and

MPI_Recv/MPI_Irecv

Non-blocking data transfer is implemented

with two-sided MPI communication by

default, and with one-sided MPI

communication as an additional option based

on MPI_Put/MPI_Get

6 Support for model

nesting

No specific support Can facilitate to nest a regional model into

itself or into another model

7 Support for incremental

coupling

No specific support Can facilitate to couple external component

models with an existing coupled model

8 Debugging capability Not prioritized; little support Implemented, with support provided

9 Coupling lags Supported, but lag cannot be greater than

the corresponding coupling period

Supported, with lag able to be greater than the

corresponding coupling period

10 Coupling procedures Runtime algorithms in a coupling

procedure are explicitly specified in a

configuration file

Runtime algorithms in a coupling procedure

are implicitly generated by the coupling

generator

11 Restart capability Can achieve exact restart for model field

instances and coupling field instances,

without supporting the case with a

coupling lag greater than the

corresponding coupling period.

Can achieve exact restart for model field

instances and coupling field instances, no

matter the setting of coupling lag. Can

automatically determine a right model time for

restarting a “continue” run

12 Online remapping

weight generation

Sequential online remapping weight

generation

Parallelized online remapping weight

generation

13 Integration of external Can integrate an external calculation Cannot integrate an external calculation

带格式表格

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式的: 字体: 小五

带格式的: 字体: 非倾斜

带格式的: 字体: 非倾斜

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

带格式表格

带格式的: 字体: (中文) +中文正文 (宋体), (中文) 中文(中国)

49

calculation routines routine as a runtime algorithm and then

further use it in a coupling procedure

routine

50

Figure 1 General Original software designstructure of C-Coupler (from Liu et al., 2014).

51

Figure 2 C-Coupler1 software structure.

52

Figure 3 Example of model coupling between two component models: deadlocks occur when blocking data send/receive

operations are used.

53

Figure 4 C-Coupler2 software structure.

54

Figure 5 Sample process layout of component models (comp1–comp8).

55

Figure 6 An example of hybrid coupling configuration and model coupling in the initialization stage of a coupled model

constructed with C-Coupler2. Comp1–comp4 are the four component models. Labels and boxes of the same color correspond

to the same component model.

56

Figure 7 An example of model coupling in the kernel (time integration) stage of a coupled model constructed with C-

Coupler2. Comp1–comp4 are the four component models. Labels and boxes of the same color correspond to the same

component model.

 5

57

Figure 8Figure 6 Sample of a remapping configuration file

 <root>

L1: <remapping_setting status="on">

L2: <remapping_algorithms status="on">

L3: <H2D_algorithm status="on" name="bilinear">

L4: <parameter name="enable_extrapolate" value="true" />

L5: </H2D_algorithm>

L6: <V1D_algorithm status="on" name="linear">

L7: <parameter name="enable_extrapolate" value="true" />

L8: </V1D_algorithm>

L9: <H2D_weights status="on">

L10: <file name="map_to_global_grid1_default.nc" />

L11: <file name="map_to_regional_grid1_default.nc" />

L12: </H2D_weights>

L13: </remapping_algorithms>

L14: <fields status="on" specification="default" />

L15: </remapping_setting>

L16: <remapping_setting status="on">

L17: <remapping_algorithms status="on">

L18: <H2D_algorithm status="on" name="conserv_2D" />

L19: <H2D_weights status="on">

L20: <file name="map_to_global_grid1_conserv.nc" />

L21: <file name="map_to_regional_grid1_conserv.nc" />

L22: </H2D_weights>

L23: </remapping_algorithms>

L24: <fields status="on" specification="type">

L25: <entry value="flux" />

L26: </fields>

L27: </remapping_setting>

L28: <remapping_setting status="on">

L29: <remapping_algorithms status="on">

L30: <V1D_algorithm status="on" name="linear">

L31: <parameter name="enable_extrapolate" value="true" />

L32: <parameter name="use_logarithmic_coordinate" value="true" />

L33: </V1D_algorithm>

L34: </remapping_algorithms>

L35: <fields status="on" specification="name">

L36: <entry value="t_atm_3D" />

L37: <entry value="ghs_atm_3D" />

L38: </fields>

L39: </remapping_setting>

 </root>

58

(a) Two-way coupling without lags

(b) Two-way coupling with a lag of 600 s from

comp1 to comp2

(c) Two-way coupling with a lag of 1200 s from

comp1 to comp2

59

(d) Two-way coupling with a lag of -600 s from

comp1 to comp2

(e) Two-way coupling with a lag of -1200 s from

comp1 to comp2

Figure 9Figure 7 Sample two-way couplings with different lag settings. A coupling interface with light

grey words means that it will not be executed, because it corresponds to the coupling interface executed

at the model time earlier than the start time (0 s) of the model run

 5

60

(a) An initial run of a two-way coupled model

with a lag of 600 s from comp1 to comp2

(b) A restart run of the coupled model in Figure

(a) restarted from the model time of 600 s

(c) An initial run of a two-way coupled model without

coupling lags.

(d) A restart run of the coupled model in Figure

(c) restarted from the model time of 600 s

61

(e) An initial run of a two-way coupled model with

a lag of -600 s from comp1 to comp2

(f) A restart run of the coupled model in Figure

(e) restarted from the model time of 600 s

(g) An initial run corresponding to Figure (a). The

first iteration is not shown. The red operations

are restart write related

(h) A restart run of the coupled model in Figure

(g) restarted from the model time of 600 s.

The red operations are restart read related

Figure 10 Sample restart requirements under different coupling lag settings. The grey words indicate that the corresponding

operations will be bypassed or not executed.

62

Figure 11Figure 8 Initialization cost for coupling two toy models with C-Coupler2 on a supercomputer with Intel Xeon

CPUs and an InfiniBand network. 5

12.022 13.599
16.958

24.43

36.7295

48.453

85.505

0

10

20

30

40

50

60

70

80

90

15 30 60 120 240 480 960

T
im

e
in

 s
ec

o
n

d
s

Number of cores per component model

63

Figure 12Figure 9 Comparison of data transfer times (for 100 ping-pong couplings) between a one-sided and a two-sided

implementation, with the same configuration as Fig. 11Fig. 8.

0

0.5

1

1.5

2

2.5

3

3.5

15 30 60 120 240 480 960

T
im

e
in

 s
ec

o
n

d
s

Number of cores per component model

one-sided communication two-sided communication

64

Figure 13Figure 10 Memory use of C-Coupler2 for the toy coupled model considered in Section 5.2.

373
367 367 366 365

370

377

300

310

320

330

340

350

360

370

380

390

400

15 30 60 120 240 480 960

M
B

 o
f

m
em

o
ry

Number of cores per component model

65

(a) Temperature (T)

(a) Zonal wind speed (U) 5

Figure 14Figure 11 The temperature (a) and zonal wind speed (U) from GAMIL2 to GEOS-Chem (GC) at the 500 hPa level

at two different model time.

66

(a) Temperature (T)

(b) Zonal wind speed 5

Figure 15Figure 12 The global vertical profile of the temperature (a) and zonal wind speed (U) from GAMIL2 to GEOS-

Chem (GC) at the 500 hPa level at two different model time.

67

Figure 16Figure 13 The parallel speedup of dynamic 3-D coupling (for 100 ping-pong couplings) between the two

component models, with a new configuration derived from the configuration used in Fig. 11Fig. 8. The speedup is

normalized to the time at 15 cores per component model (1583 s).

 5

0

5

10

15

20

25

30

35

40

45

15 30 60 120 240 480 960

S
p

ee
d

u
p

Number of cores per component model

