Part 1: Responses to the Chief Editor.

We thank the Chief Editor for the comments and suggestions.

1. Code that is to be made publicly available, must be made publicly available before
the paper is accepted for GMD. The precise version of the code discussed in the
manuscript must be made available. The current best practice is for this code to be
uploaded to a public repository and a DOI assigned. The DOI should be cited in
the manuscript. github/gitlab are inadequate because they do not readily link to the
precise version of the code. However, making github code citable is not difficult;
see: https://quides.github.com/activities/citable-code/

Response: The source code of C-Coupler2 is publicly available. Please refer to the
code availability section.


https://guides.github.com/activities/citable-code/

Part 2: Responses to the Reviewer #1

We thank Reviewer #1 for the comments and suggestions. We have modified the
manuscript accordingly. In the following, we will reply them one by one.

1. ' would encourage the authors to publish additional results in the future detailing
the performance cost of higher resolution and higher core counts tests and sharing
the performance of 3D weight generation and coupling.

Response: We are sorry that we fail to obtain more processor cores for evaluating the
performance cost under higher resolution and higher core counts. However, we share
the results and performance of 3D coupling in Section 5.5 and Figure 15-17, in the
revised manuscript.

2. page23, lines25-29. The ability to run with lags properly is critical. Lags almost
always create additional requirements on restart files and the ability to restart a
model exactly (bit-for-bit) with lagged coupling fields should be a requirement if
lags are going to be supported. It sounds like this is not currently supported in C-
Coupler2? Maybe rather than saying “We therefore propose”, it would be clearer
to say something like “Lags are not fully supported in the current version, but in
the future, the C-Coupler2 will ...”

Response: A new feature, adaptive restart capability, has been implemented in C-
Couper2, for conveniently achieving exact restart of coupling fields no matter the
setting of coupling lags and no matter the implementation of coupling. Please refer to
Section 4.8 (P32L1~P35L17) of the revised manuscript.

3. page 26, Section 4.5. Is the only reason MPI_Put and MPI_Get is used is to avoid
possible exhaustion of MPI buffer space? That should be very rare in practice. Are
there other reasons? Performance, ease of implementation, etc? Based on the
description on Section 4.5, the MPI_Put/Get implementation sounds slower and
more complicated than well managed MPI_I1Send/IRecv implementations with
MPI1_Wait implemented appropriately. Are the authors happy with this
implementation? Section 5.3 answers this question in part, but it might be nice to
add a few more words in either section 4.5 or 5.3. | think one-side communication
potentially helps with both MPI buffer usage and ability to have greater flexibility
in coupling lags, but does not improve performance? How about implementation
complexity?



Response: In the released code version of C-Coupler2, non-blocking data transfer has
two implementations. The first is the default option based on two-sided MPI
communication, while the second is an additional option based on one-sided MPI
communication. Please refer to section 4.5 (P27L11~P27L28, and P29L4~P29L 13) of
the revised manuscript.

4. page 28, line 8. This is a nice feature. One has to be concerned about memory
usage but this provides a nice way to allow extra flexibility in lags compared to
other implementations.

Response: The extra memory usage has been reminded in the revised manuscript
(please refer to P29L.11).

5. page 22, paragraph beginning at line 6. | believe the comparison between
Oasis3BMCT _3.0, CESM, and C-Coupler2 is not particularly clear. The authors
compare how components interact in different systems, but the definition of the
component is not the same in each system. In CESM and the C-Coupler2, the
component is defined by separation of scientific models. In Oasis, the component
is defined by the separation of MPI tasks. In addition, CESM is more than a
coupling layer, it also includes a top level driver that supports the ability to call
multiple components from the same MPI tasks in a single executable but only to
couple via the driver layer. Oasis3-MCT _3.0 does not have a driver layer and is
driven by calls from inside the models. In practice, users could implement a top
level driver using Oasis3-MCT_3.0, so Oasis3-MCT_3.0 can behave just like
CESM plus it can behave in other ways. | am still a little unclear about whether
the C-Coupler2 consists of a driver. If so, is it just a single executable system or
does is support multiple executables? | believe none of the coupled systems
discussed in this paragraph support multiple MPI tasks running on a single
processor, and otherwise they are very similar in capabilities. The main difference
is that CESM does not support coupling within a component compared to the
other two. I think this paragraph should be clarified. It’s difficult to read and the
similarities and differences should be more clearly qualified.

Response: The corresponding paragraph has been modified accordingly. Please refer
to P22L.26~P23L.27 in the revised manuscript.

6. page 22, paragraph beginning at line 22. It seems C-Coupler? is using a file to
coordinate MPI tasks between components. While this may be simpler than
synchronizing with MPI, there is still the equivalent of a global barrier in the
interaction. A component cannot know the tasks of other components until other
components have written to the file. How does the C-Coupler2 ensure that other



components have written to the file before the information is needed? What is
“file” synchronization chosen over MPI?

Response: When a component model wants know the MPI processes of any other
component model, all its MP1 processes will wait to read the corresponding XML file.
This point has been clarified in the revised manuscript (P23L23).

7. page 34, line 30. The issues with 3D conservative coupling are the same as 2D.
Even with areas, model areas and conservation method areas can differ and this
needs to be taken into account with 2D conservative mapping. | do not believe
there are any fundamental hurdles to extend 2D conservative coupling to 3D and
there may be tools that already accomplish that.

Response: In fact, we still do not have a good idea for achieving 3-D conservative
coupling, so we do not modify the corresponding context. If required, we can remove
some discussion in future revision.

8. Isthe C-Coupler a hub coupler a component, is it just a layer in the system, is it
the driver? | think C-Couplerl was a hub and C-Coupler2 is a coupling layer, is
that correct? It might be good to discuss this in the introduction and in regard to
Figure 1.

Response: Both C-Couplerl and C-Coupler2 are libraries but not a hub coupler
component. Please refer to P3L30 and P23L6 of the revised manuscript.

9. With self-coupling or self-nesting on the same pes with the same executable and
multiple grids, how does the C-Coupler2 address the issue of multi-instance data
privacy within the executable? It may not be enough just to instantiate a new
domain or a new state. The underlying model has to meet specific and complex
requirements to support that feature with regard to fully separating the memory of
the two instances and most models do not. Does the C-Coupler2 actually support
this and does it introduce any requirements on components to support that
capability? For example, running multiple instances on concurrent pes does not
create the same problems. Also, using the Coupler2 to couple internal data within
a model that supports nesting is not difficult. It’s not clear whether the C-Coupler2
supports self nesting on overlapping pes between a component model and another
instance of the same component model. Section 4.6 suggests it can. How can that
be? Maybe that could be clarified. This comes up in Section 3.6 and Section 4.6.

Response: This point has been clarified in the revised manuscript. Please refer to
P30L27~P30L31 in the revised manuscript.



10. Does the C-Coupler2 support unstructured grids in 2D or 3D such as cubed
sphere, non quadrilaterals, and other complex geometries? Does the on-line
remapping support weight generation for those grids? Please indicate in the text.

Response: Unstructured grids are supported in the on-line remapping weight
generation. Please refer to P20L28 in the revised manuscript.

11. The results show reasonable performance at moderately high resolution and
pecounts. | think these results are adequate at this point, but it would be nice if
there were an opportunity to test and publish results at higher resolution and
higher task counts in the future, and I agree with the final statement on page 35,
line 6.

Response: We only used moderately high resolution and pecounts in this paper mainly
due to limited computing resource. We are sorry that we failed to obtain more
processor cores for testing and evaluation because most super computers in China are
full of usage. We will keep to apply more processor cores in the future.

12. I think section 4.1.1.1 to 4.1.1.8 could be removed and the user guide could be
referenced instead. | think the API details are not needed in this paper. 4.1.1 could
just a paragraph that provides a few sentences about the API and points to the user
guide plus 4.1.1.9. That would be my recommendation, but will allow the authors
to respond to this point.

Response: In the revised manuscript, we shrink Section 4.1.1 where most of tables are
removed. As flexible APIs is an important feature of C-Coupler2 and most of
scientists do not know C-Coupler, we hope we can keep some introduction to the C-
Coupler2 APIs with the remaining content that briefly introduce the motivations or
considerations for the APIs.

13. Use of word “generations”. Maybe it can be defined in first use as it is not clear or
maybe another word is better, like “coupling interactions”, “coupling procedures”,
or “coupling methods”. I realize “coupling generations” is the output of the

“coupling generator” but it’s not the clearest language.
Response: “Coupling generation” has been modified into “coupling procedure

generation” throughout the revised manuscript. “Coupling procedure generation”
means generating coupling procedures. Please refer to P2L33 to P3L4.

14. page 4, line 9, please define CoR1 better at the first instance and as needed in



other locations in the paper and provide a reference if it exists.

Response: Please refer to P2L28 in the revised manuscript.

15. page5,linel4,chemistry can also be a separate package/component and 3D
coupling in that case is important. I don’t think you should say “is always
included as an internal package”.

Response: The manuscript has been modified accordingly. Please refer to P5SL19 to
P5L20.

16. page 5, line 28, please clarify that time varying is only supported in the vertical
dimension, not the full 3D grid.

Response: The manuscript has been modified accordingly. Please refer to P6L2.

17. page 6, line 25, most couplers non block on sends and block on recvs to reduce
deadlocking. Deadlocking is always an issue even for fully non-blocking
communication. At some point, you have to block and check the data has been
received before it’s used.

Response: The manuscript has been modified accordingly. Please refer to Section 3.5

(P6L15 to P6L2S).

18. page 10, line 13, locates is not a good word, try “a gridcell”

Response: The manuscript has been modified accordingly. Please refer to P10L26.

19. page 12, line 10, please clarify “model whose model coupling is fully served by
other couplers but not C-Coupler2 is unnecessarily registered to C-Coupler2”.
Does this mean is should be registered, should not be registered, can be registered,
or what? This sentence is unclear.

Response: The manuscript has been modified accordingly. Please refer to P12L.21.

20. page 13, line 3, I find use of “timer” in this context to be confusing. I think you

mean time, coupling period, alarm, coupling frequency or something similar. I
understand timer is the word you have chosen to use in the interface, but it would



be good to explain what “periodic timer” is in the context of the C-Coupler2. I
think it defines the coupling period/frequency?

Response: The manuscript has been modified accordingly. Please refer to P13L18

21. page 15, line 4, what is buf mark?

Response: It is a non-negative integer mark given by users, employed in each
coupling field instance to separate multiple coupling field instances in the same
component model, on the same grid, and on the same parallel decomposition. Please
refer to P15L.23 in the revised manuscript.

22. page 23, line 23, please rewrite the first sentence in this paragraph. It is unclear.

Response: This sentence has been rewritten. Please refer to P24L15 in the revised
manuscript.



Part 3: Responses to the Reviewer #2

We thank Reviewer #2 for the comments and suggestions. We have modified the
manuscript accordingly. In the following, we will reply them one by one.

1. Page 1, line 23: Have couplers (as described here) been used in disciplines other
than environmental prediction? If not, combine these two sentences into one
shorter sentence.

Response: The manuscript has been modified accordingly. Please refer to P1L23 and
P1L24.

2. Page 1, line 29 to Page 2, line 15: There are two representative applications of
CCouplerl. What does representative mean in this context? How about just say
the CCouplerl was built to support Chinese global and regional coupled modeling
efforts? And then briefly mention limitations of C-Couplerl, which led to C-
Coupler2. If the components models are mentioned, WRF, POM, MASNUM, and
other abbreviations should be defined. Also, I am not sure FGOALS-g2 is a
common known model and should be introduced.

Response: The manuscript has been modified accordingly. Please refer to P1L28 to

P2L10.

3. Page 2 and 3, the list: Details of these features are disused elsewhere in this paper.
They do not have to be discussed in the amount of detail here.

Response: This part can be viewed as a summary for each new feature of C-Coupler2.

We really hope this part can be retained to make readers get to know all features of C-
Coupler2 at the beginning and then decide whether to read the details of this paper.

4. Page 3, line 25: This description of Figure 1 is not clear. Figure 1 may not be
needed.
Response: The description of Figure 1 has been improved in the revised manuscript.

Please refer to P3L29 to P3L3.

5. Page 4 through 8: | feel that section 3 can be summarized in a table similar to



Table 10 (or use Table 10). The motivations are repeated in the Design section.
Removing this section will increase readability for this paper.

Response: As the motivations for the new features in C-Coupler2, we think that
Section 3 is necessary to make C-Coupler2 as well as its software structure in Fig.5
more understandable, and should be retained. Section 3 and Section 4 have been
modified accordingly, to avoid the repetition between them.

6. Page 8, Line 20: The items in 1) have been mentioned before. Specifically, the
text talking about the C-Coupler should be in the motivation and this section
should be more about description.

Response: It seems that this part which focuses on the difference between C-Couplerl
and C-Coupler2 on software structures has not been introduced before, which is
related to the detailed implementation of C-Coupler2. Section 3 is about the
motivations for each new feature of C-Coupler2. So we still propose to retain this part
in Section 4.

7. Pagell, line 19ish: Throughout section 4.1, | was curious if there are defaults for
each option.

Response: The default values of some parameters of APIs have been introduced in the
user guide.

8. Page 15, line19: coupling field instances from itself. I’'m not exactly sure why a
component would want field instances from itself? I may be missing something.
Could you provide an example?

Response: For example, C-Coupler2 can achieve coupling between the physical

package and the dynamic core in the same component model. Please refer to P16L9.

9. Page 15, line 35: How is a source fraction calculated? What are the multiple
sources that would be used?

Response: The source fraction used by C-Coupler2 is given by the component model

via the input parameter of the corresponding API. It is required for conservative
remapping. Please refer to P16L16 in the revised manuscript.

10. Page 15, line 40: Coupling procedures. Could you list some of these procedures at



this point.

Response: A coupling procedure can include a set of operations such as data transfer,
data interpolation, data type transformation, and data averaging when necessary.
Please refer to P3L1 to P3L3 in the revised manuscript.

11. Page 17, line 4: CESM needs to be defined. Also, CESM has a lot of components,
and I’m not sure what the model CESM means in this context.

Response: Here CESM means the main driver of CESM that is shared by all
component models. Please refer to P17L27 in the revised manuscript.

12. Page 22, line 6: OASIS-MCT_3.0 needs an introduction.

Response: OASIS3-MCT _3.0 is the latest coupler in OASIS family. The manuscript

is modified accordingly. Please refer to P22L26.

13. Page 33, line 13: 960 cores seems small to stop the diagnostics. Many high
resolution models require more than 960 cores.

Response: We only used moderately high resolution and pecounts in this paper mainly

due to limited computing resource. We are sorry that we failed to obtain more

processor cores for testing and evaluation because most super computers in China are
full of usage. We will keep to apply more processor cores in the future.

14. Page 34, line 24: Guarantee is a strong word and you may not want backwards
compatibility for all applications.

Response: The manuscript has been modified accordingly. Please refer to P39L13.



Part 3: a marked-up manuscript version
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C-Coupler2: a flexible and user-friendly community coupler for
model coupling and nesting
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Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science (CESS), Tsinghua
University, Beijing, China

2Joint Center for Global Change Studies (JCGCS), Beijing, China

3State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute
of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Correspondence to: L. Liu (liuli-cess@tsinghua.edu.cn), Cheng Zhang (zhangc-cess@tsinghua.edu.cn)

Abstract. The Chinese C-Coupler (Community Coupler) family aims primarily to develop coupled models for
weather forecasting and climate simulation and prediction. It is targeted to serve various coupled models with flexibility,
user-friendliness, and extensive coupling functions. C-Coupler2, the latest version, includes a series of new features in
addition to those of C-Couplerl, including a common, flexible, and user-friendly coupling configuration interface that
combines a set of application programming interfaces and a set of XML formatted configuration files, capability of
coupling within one executable or the same subset of MPI (Message Passing Interface) processes, flexible and automatic
that enable coupling

for any subset of component models, dynamic 3-D coupling that enables convenient coupling of fields on 3-D grids
with time-evolving vertical coordinate values, non-blocking data transfer, facilitation for model nesting, facilitation for
increment coupling, and debugging capability. C-Coupler2 is ready for use to develop various
coupled or nested models. It has passed a number of test cases derived from a sample model with model coupling and
nesting, and with various MPI process layouts between component models, and has already been used in several real coupled

models.

1 Introduction

Couplers can handle data interpolation and data transfer between different models and
different grids have been widely used to develop coupled models for fields such as weather forecasting and climate
simulation and prediction. The Community Coupler (C-Coupler) family was initiated in 2010 in China. It aims to flexibly
serve various coupled models with a user-friendly interface and to provide extensive coupling functions to complement the
ever increasing number of coupled models being developed and used in China. To this end, the first version (C-Couplerl;

Liu et al., 2014) included new features such as flexible coupling configuration based on configuration files and 3-D coupling


mailto:liuli-cess@tsinghua.edu.cn
mailto:zhangc-cess@tsinghua.edu.cn

10

15

20

25

30

capability. There are two representative-apphications—efcoupled models with C-Couplerl. The first is a coupled climate
system model version FGOALS-gc (Liu et al., 2014) that was built by replacing the original coupler CPL6 (Craig et al., 2005)
used in the CMIP5 (Coupled Model Intercomparison Project, phase 5) model FGOALS-g2 (a gridpoint version of the
Flexible Global Ocean-Atmosphere—Land System model) —(Li et al., 2013a) by C-Couplerl. FGOALS-gc can achieve

exactly the same (bitwise identical) simulation results as FGOALS-g2, and was further used in several Chinese research
projects. The second apphication-is a regional coupled model FIO-AOW (Zhao et al., 2017) that consists of an atmosphere
model WRF_(Weather Research Forecasting model) (Wang et al., 2014), an ocean model POM (Princeton Ocean Model)
(Wang et al., 2010), and a wave model MASNUM (MArine Science and NUmerical Modeling) (Yang et al., 2005). FIO-
AOW employs both 2-D and 3-D coupling, where the coupling from MASNUM to POM includes a 3-D field, the wave-

induced mixing coefficient (Qiao et al., 2004). FIO-AOW has been used in research to improve typhoon forecasting (Zhao et
al., 2017). These apphcationscoupled models demonstrate that C-Couplerl can be used for different—various coupling
configurations. C-Couplerl demonstrates the feasibility of the general design of C-Coupler, although as the first version, it
does not fully achieve all our targets and still has some limitations. A significant limitation is that C-Couplerl is not
sufficiently user-friendly. To construct a coupled model with C-Couplerl requires much effort to prepare the configuration
files in ASCII format. For example, there are about 2500 and 700 lines in the configuration files for FGOALS-gc and FIO-

AOW, respectively. Considering this, and that the next C-Coupler versions may not be compatible with C-Couplerl, we did

not aim to achieve wide usage of C-Couplerl, but sought to overcome the limitations while guaranteeing backwards

compatibility in subsequent C-Coupler versions.

The next version, C-Coupler2, includes not only increased coupling function support but also flexibility and user-
friendliness. It is now ready for use and has passed hundreds of test cases based on a sample coupled model and several real
coupled models. Compared with C-Couplerl or even other existing couplers, C-Coupler2 has the following new features.

1) A common, flexible, and user-friendly coupling configuration interface that combines a set of application programming
interfaces (APIs) and a set of configuration files in XML format. This interface enables the user to flexibly and
conveniently specify or change coupling configurations including the component models used in a coupled model, the
time step of each component model, model grids, parallel decompositions on model grids, coupling frequencies,

coupling lags between component models (given two component models that are coupled, they can have different model

times in a coupling exchange), the fields to be coupled, the data type of coupling fields, coupling connections between

component models, and eeuphing—generatiencoupling procedure generations. Remapping configurations are also
modifiable: the user can either use the remapping weights that are read from an existing remapping weight file produced
by software tools such as SCRIP (Jones, 1999), ESMF (Hill et al., 2004), YAC (Hanke et al., 2016), and CoR 1 (Liu et
al., 2013), or use remapping weights that are automatically generated by C-Coupler2 in parallel.

2) ChMedel—coupling within one executable or the same subset of MPI (Message Passing Interface) processes. The
component models that are coupled together can be in either multiple executables or in one, and can fully or partially
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3)

4

5)

6)

share the same subset of MPI processes. Different processes in the same component model can also be coupled with C-
Coupler2.

Flexible and automatic coupling-generationcoupling procedure generation. In a coupling procedure generation, Fthe

coupling generator can automatically detect existing component models in the coupled model, detect possible coupling
connections within a subset of component models, and generate a coupling procedure for each coupling connection. A
coupling procedure can include a set of operations such as data transfer, data interpolation, data type transformation, and

data averaging when necessary. Multiple couphing-generationcoupling procedure generations can be performed for a

coupled model, and a coupling-generationcoupling procedure generation can be performed at any time for any subset of

component models.

Dynamic 3-D coupling capability. This allows convenient coupling of fields between two 3-D grids, either of which has
variable vertical coordinate values that change in time integration.

Non-blocking data transfer.- 1t is-implemented-with-one-sided-MPI communication (i.e., MPI_put-and -MPI_get), to

in_default, and with one-sided MPI communication (i.e., MPI put and MPI get) as an additional option to enable

ECETT
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R
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flexible setting of coupling lags and to minimize potential deadlocks.

Facilitation for model nesting. C-Coupler2 facilitates a regional model (either a component model or a coupled model
constructed with a coupler) to be nested (either one way or two ways) into itself or another model without significant
changes to the model codes, and can enable different grid domains in a nested system to be integrated simultaneously for
better parallel performance.

7) Facilitation for incremental coupling. An existing coupled model coupled by any coupler can be used as a component

8)

model by C-Coupler2, which employs the component models of the existing coupled model as its child components.
Thus, an existing coupled model can be coupled with another model (itself either a single component model or a coupled
model) to make a bigger coupled model, where only the new model coupling through C-Coupler2 requires to be newly
developed, without changes to the original coupling in the existing coupled model.

Adaptive restart capability. It can adaptively, achieve exact (bitwise identical) restart for coupling fields no matter the

setting of coupling lags and no matter the implementation of coupling. It also provides supports for model fields and can

automatically determine a right model time for restarting a “continue” run.

7_)i

8)9) Debugging capability. A series of implementations in C-Coupler2 enable to alert the user, as early as possible, to the

potential risks of constructing or using a coupled model, and guide the user to fix the errors in model codes and

configuration files.
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The remainder of this paper is organized as follows. We briefly review C-Coupler and C-Couplerl in Section 2,
introduce the motivation for the development of C-Coupler2 in Section 3, describe the implementation of C-Coupler2 in
Section 4, evaluate C-Coupler2 in Section 5, and discuss and conclude C-Coupler2 in Section 6.

2 Brief review of C-Coupler and C-Couplerl

Figure 1 shows the-two-key-aspects-of the general architecture of models coupled with C-Coupler. This architecture
includes two key aspects. First, C-Coupler can serve different-various coupling configurations inin varieusdifferent coupled

models. For example, C-Coupler works as a library and can be used to develop a centralized coupler component for a

coupled model and can also achieve model coupling between component models without a coupler component. Second, a
component model only tells C-Coupler which fields it can provide and which fields it wants to obtain from a coupled model,

without caring about where the fields it wants are from (i.e., from specific data files or from specific component models) and

where the fields it can provide will be transferred to. Thus, aa component model can have an identical code version in

coupled models with different coupling configurations. This general architecture can be achieved through C-Coupler’s
software structure (Fig. 2), which consists of a coupling configuration system, a coupling generator, and a runtime software
system. The runtime software system works a common, flexible, and extendable library that includes various coupling
functions or can even integrate external coupling algorithms (e.g., flux computation algorithms) to serve various coupling
configurations. The configuration system defines common rules for describing various coupling configurations. Besides the
coupling configuration of component models and coupled models, the configuration system includes a runtime configuration,
which describes detailed coupling procedures corresponding to a coupling configuration. This is the input of the runtime
software system. The coupling generator can automatically generate the runtime configuration, facilitating the construction
of a coupled model.

The first version, C-Couplerl, was not developed with the aim of achieving the full software structure in Fig. 2, but
with a focus only on the runtime software system and the runtime configuration (Fig. 3). To describe the runtime
configuration, a set of ASCII configuration files were designed. Besides the traditional coupling functions of data transfer
and data interpolation for 2-D coupling, the runtime software system of C-Couplerl can integrate external coupling
algorithms and has 3-D coupling capability that enables convenient coupling of fields between different 3-D grids. To
achieve simultaneous 2-D and 3-D coupling, remapping software CoR1 was developed and included in C-Couplerl. CoR1
can effectively manage 1-D, 2-D, and 3-D grids, and can interpolate the fields on such grids, where the 3-D interpolation is
performed in a “2-D + 1-D” manner (“2-D” corresponds to interpolation between horizontal sub-grids, and “1-D”

corresponds to interpolation between vertical sub-grids).
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3 Motivation

We considered the following motivations when designing and developing C-Coupler2.

3.1  Coupling configuration

models-The runtime configuration in C-Couplerl is almost fully based on configuration files, which can improve flexibility

in specifying or changing the coupling configuration, but their overuse may significantly lower user-friendliness. For
example, many changes to configuration files are generathy-required forte changinge coupling frequencies based on C-
Couplerl. Moreover, overuse of configuration files can cause problems. Configuration files can be inconsistent with the

contatning-configuration information determined by the model codes-can-be-incensistent-with-the-model-codes. For example,
C-Couplerl will read in the time step of each component model from the runtime configuration files, while the user can
change the time step of a component model through the namelist file or the model codes. C-Couplerl mustwill read in each
model grid through a grid data file managed by the runtime configuration, while a model grid of a component model can be
generated by the model code or read from a grid data file that is not managed by the runtime configuration. To avoid
problems resulting from such inconsistencies, extra effort is required to develop code to detect them, and the user will have
to fix the corresponding configuration files when an inconsistency is detected.

Therefore, to-make the-configuration-system-both-user-friendhy-and flexible-C-Coupler2 should not allow configuration
files to include any ceupling-configuration information determined by component models, and it should provide flexible
APIs to enable component models to specify various coupling configuration information flexibly. Considering that-there-are
various kinds of component models, the configuration system should have commonality in, for example, supporting various
kinds of component models and model grids. Considering-that the low readability of ASCII format-can-lowerthereadability
of configurationfiles, another format with better readability should be used to design the configuration files.

3.2 CMedelecoupling within one executable or a subset of MPI processes

Similar to CPL6, C-Couplerl requires each component model to have its own executable. However, there are increased
requirements for redel-coupling within one executable or a subset of MPI processes. For example, CESM (Community
Earth System Model) (Hurrell et al., 2013) has the component models and driver containing the €PL7-coupler CPL7 (Craig
et al., 2012) enclosed in a unique executable, and any two different component models can run on non-overlapping, partially
overlapping, or overlapping MPI processes. The rapid expansion of model codes requires modularization to guarantee the
quality of the models” software, and a coupler can be used to achieve this when it can support coupling between different
procedures in the same component model.
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3.3 Dynamic 3-D coupling

Atmospheric chemistry modeling is becoming increasingly important for simulating air quality and climate. Such
modeling strongly depends on meteorological fields, and can beis-ahways included as an internal package in an atmosphere
model where the atmospheric chemistry package generally uses the same 3-D grid as the model. The rapid development of
atmospheric chemistry modeling has led to standalone atmospheric chemistry models, such as GEOS-Chem (Long et al.,
2015), which read in meteorological fields from data files that can be produced by various atmosphere models. As increasing
numbers of atmosphere models require the time-variant aerosol concentration, which can be produced by atmospheric
chemistry modeling, there is increasing demand for two-way coupling between an atmosphere model witheut-atmospheric
chemistry-modeling-and a standalone atmospheric chemistry model. Even if an atmosphere model includes an atmospheric
chemistry package, considering that atmospheric chemistry modeling generally is very time consuming, it might run with a
lower resolution. Overall, there is increasing demand for 3-D coupling between atmosphere models and atmospheric
chemistry models (or packages) with different 3-D grids.

Despite its 3-D coupling capability, C-Couplerl might fail to handle the 3-D coupling between an atmosphere model
and an atmospheric chemistry model, because it requires the-correspending 3-D grids to be constant throughout the whole
simulation, whereas the terrain-following pressure coordinates that are widely used in atmosphere models and atmospheric
chemistry models make the vertical coordinate values of 3-D grids change with the surface pressure in time integration. In
this paper, we call 3-D coupling on constant grids “static 3-D coupling” and 3-D coupling on the 3-D grids with time-variant

vertical coordinate values grids-“dynamic 3-D coupling”. A coupler having dynamic 3-D coupling capability will be much

more capable of achieving coupling between an atmosphere model and an atmospheric chemistry model (or package).

3.4 Coupling generator

Model coupling is generally achieved through isvehwes—couplinger procedures that consist offunctions—such—as

operations such as data transfer, data interpolation,-an¢ data averaging, data type transformation, etc. Most existing couplers

require the user to develop explicitly all coupling procedures. This is inflexible and not user-friendly enough, because the
user must modify the model code, perhaps even significantly, when developing a new coupled model or changing coupling
configurations. The coupler OASIS (Redler et al., 2010; Valcke, 2013; Craig et al., 2017) is more flexible and user-friendly
in this regard, because it can automatically generate coupling procedures.

To make C-Coupler2 flexible and user-friendly, it should also include a coupling generator capable of automatically
generating coupling procedures. In fact, Altheugh-a coupling generator is-net-included-in-C-Couplerl -it-has already been
considered in the overall design of C-Coupler.
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3.5  Non-blocking data transfer

Data transfer enables a sender to transfer a set of coupling fields to a receiver

. A data send/receive operation is blocking when it does not return until the communication is finished (i.e.,
the receiver has successfully received the data), while a non-blocking operation can return immediately before the
communication is finished. In a coupled model, a component model is-always

executes both data send and receive operations . As mentioned above, C-Coupler
aims to enable a model to have identical code versions in different coupled models, so the order of data send and data receive
operations in a component model can remain the same in different coupled models. To avoid potential deadlocks, we
propose to execute data send operations as early as possible and execute data receive operations as late as possible.
Specifically, in the initialization stage or at a time step, data send operations should occur before data receive operations. Fig.
4 shows an example of model coupling between two component models, in each of which the data send operation is
executed before the data receive operation at each time step. During blocking data send operations, the data send
operations in both component models cannot return, because the corresponding data receiving operations subsequent to the
data send operations will never be executed, leading to a deadlock. Similarly, blocking data can also
introduce deadlocks to model coupling within the same component model. Therefore, non-blocking data transfer is highly
desirable for developing C-Coupler2.

3.6 Model nesting

Model nesting generally involves nesting a small grid domain with finer resolution into a larger grid domain with
coarser resolution. This approach has been widely used in weather forecasting and climate simulation to achieve higher-
resolution simulations in key grid domains, without significantly increasing the computational cost. Generally, a regional
model can be nested into another model so that different grid domains are simulated by different models, while some models
such as WRF have self-nesting capability, where different grid domains are simulated by the same model. Although WRF
and its self-nesting capability have been widely used, the corresponding software implementation has a number of
limitations. First, a data structure that can simultaneously manage the fields on different grid domains and a driver that
orders initialization and integration among different grid domains are implemented in WRF. For a regional model without
self-nesting capability, significant code changes in the data structure and driver are required to achieve self-nesting capability.
Second, all grid domains must use the same set of MPI processes for integration, so that grid domains must run one by one,
not simultaneously. Such an implementation can limit parallelism as well as scalability to the grid domains with fewest grid

, and will also waste the parallelism between different grid domains.
Model nesting will introduce field exchange between the same type of component models on different grid domains. As

such field exchange generally includes data transfer and data interpolation that are the fundamental functions of a coupler,
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model nesting can potentially benefit from couplers. If each domain in model nesting can be treated as a component model in
model coupling, a regional model can easily achieve self-nesting with its original data structure only managing the fields on
one grid domain, and different domains can be integrated simultaneously on different sets of MPI processes for higher
parallelism and better parallel efficiency. To aid in the nesting of a regional coupled model (e.g., a regional ocean—
atmosphere coupled model) to itself or another coupled model, couplers can serve the field exchanges both between the same
type of component models on different grid domains and between different types of component models on the same grid

domain.

3.7  Incremental coupling

Building a new coupled model version involves either directly coupling a set of component models together or updating
an existing coupled model through coupling external component models or replacing some component models. Such
updating of an existing coupled model is here called “incremental coupling”. Directly coupling many component models
together ereate—a—new—coupled-—model-is difficult and possibly unwise, because it requires much effort in software
implementation, software testing, scientific testing, etc., while incremental coupling is always better when a suitable existing
coupled model is available. However, incremental coupling may still face some technical challenges when the existing
coupled model and the component models to be coupled have different software frameworks. For example, He et al. (2013)
successfully nested WRF into CESM, where both the main driver of CESM and the driver of WRF were modified to enable
the-main-driver-of CESM to drive the integration of WRF and so achieve effective nesting. Successful incremental coupling
can give a new coupled model that may become a new code version corresponding to the original coupled model. Further
developing the original and the new coupled model in separate code version branches can lead to conflicts when trying to
merge the two branches. For example, following the work of He et al. (2013), the main driver of CESM in the original code
version branch (managed and maintained by the National Center for Atmospheric Research, NCAR) was significantly
changed without considering WRF nesting, leading to much further work being required to re-nest the latest version of WRF
into the latest version of CESM.

As C-Coupler aims to enable a model (either a component model or a coupled model) to have an identical code version
in different coupled models (i.e., a model can have the same code in different coupled models after incremental coupling), C-
Coupler should be able to improvefacilitate incremental coupling.

3.8 Restart capability

A component model generally has the capability of exactly restarting a simulation run from a checkpoint that was

produced in a previous run. To make a coupled model achieve exact restart capability, besides each component model, all

coupling procedures should also have exact restart capability. A lot of effort will be required for users to directly develop

exact restart capability of coupling procedures and new effort will be further required after updating coupling procedures. To
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improve user-friendliness and to enable a model to have an identical code version in different coupled models, C-Coupler2

should be able to automatically achieve exact restart capability of coupling procedures, without requiring users to develop

specific code for different coupled models.,

3-83.9 Debugging capability

Models can behave anomalously where they run exits due to an error but without giving a report. In such a case, the
corresponding simulation setting might be abandoned and another tried, or much effort might be expended locating and
fixing the model code segment corresponding to the abnormal exit. Fixing an error is not easy, because it can easily and
quickly propagate throughout a component model and from one component model to another through a coupler.

C-Coupler2 aims to facilitate software debugging for model coupling. Specifically, C-Coupler2 should promptly report
an error after an abnormal exit, and the error report should effectively help to locate the code segment or configuration file

that requires fixing. Moreover, C-Coupler2 should thoroughly examine its inputs to avoid the propagation of errors.

4 Design and implementation of C-Coupler2

As the second version of C-Coupler, C-Coupler2 is guided by the family’s general coupling architecture (Fig. 1), so it
should be applicable to various coupled models and enable a model to have an identical code version in different coupled
models. These considerations influenced the design of the software structure of C-Coupler2 (Fig. 5), which consists of a
coupling configuration interface, a coupling generator, and a set of function modules. This software structure is similar to
that of the original C-Coupler (Fig. 2), but has the following differences.

1) The original structure of C-Coupler has the coupling generator as a standalone tool that produces the runtime
configuration files that drive the runtime software system. However, C-Coupler2 works as a common and flexible
library (which can be viewed as the runtime software system), and the coupling generator is an internal program of the
library. The coupling generator does not produce runtime configuration files, but directly uses the function modules to

generate coupling procedures. Such a design can save redundant code development related to runtime configuration files.

2) Ceuphing-generationCoupling procedure generation in the original structure of C-Coupler fully depends on the offline
configuration files that are managed by the configuration system. In C-Coupler2, couphing-generationcoupling procedure

generation depends on the coupling configuration information obtained by the coupling configuration interface via
online API calls and offline configuration files.

3) C-Coupler2 does not include functions to support integrating external algorithms. This will be further discussed in
Section 6.
In detail, the function modules of C-Coupler2 include a non-blocking data transfer manager, a component model

manager, a grid manager, a remapping manager, a restart manager, a parallel decomposition manager, a time manager, a
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coupling field instance manager, a coupling interface manager, and a debugging manager. The non-blocking data transfer
manager manages a set of runtime data transfer algorithms, each of which is responsible for the non-blocking transfer of a
set of coupling fields within a component model or between two different component models. The component model
manager handles basic information (e.g., name, type, MPI processes) about the component models registered to C-Coupler2.
The grid manager manages model grids registered to C-Coupler2; similar to the grid manager in C-Couplerl, it also utilizes
CoR1 to support various types of grid with dimensions from 1-D to 4-D. The remapping manager controls a set of runtime
remapping algorithms, each of which interpolates a set of coupling fields from one grid to another. Similar to the remapping
manager in C-Couplerl, it also utilizes CoR1 to achieve data interpolation between any kind of grid with dimensions from 1-
D to 4-D. It has been further upgraded to support dynamic 3-D interpolation. The restart manager
component model as well as the whole coupled model to
restarts. The parallel decomposition manager oversees parallel decompositions on model grids. Similar to C-
Couplerl, each parallel decomposition must be on a 2-D horizontal grid that has been registered to C-Coupler2, while the
parallel decomposition on vertical grids remains unsupported. The coupling field instance manager supervises a set of
coupling field instances registered by component models or used by C-Coupler2 internally. The coupling interface manager
operates a set of coupling interfaces, each of which imports, exports, or remaps a set of coupling fields. The time manager
manages the model time of each component model and manages a set of timers. A timer can be used to control the time to
execute a coupling interface and to control lag in model coupling. The debugging manager enables C-Coupler2 as well as
component models to flexibly report log information or errors.

We will further introduce here the design and implementation related to each main feature of C-Coupler2, including the
common, flexible, and user-friendly coupling configuration interface, coupling within one executable or a subset of
MPI processes, flexible and automatic , dynamic 3-D coupling capability,
non-blocking data transfer, facilitation for model nesting, facilitation for incremental coupling, and debugging capability.

4.1 Common, flexible, and user-friendly coupling configuration interface

The coupling generator of C-Coupler2 can automatically generate coupling procedures for model coupling and nesting.
As it takes coupling configuration information as its input, the coupling configuration interface should be able to obtain
sufficient information for successful . Moreover, the constitution of the
coupling configuration information determines the flexibility of specifying coupling configurations, and more types of
coupling configuration information generally means greater flexibility of C-Coupler2. Finally, the coupling configuration
information of C-Coupler2 includes the following.
1) Basic information about each component model, including the model name, model type, the parallel setting (i.e., the

MPI processes that are involved in running the component model), and the relationship with other component models.

To facilitate incremental coupling, an existing coupled model with any coupler can be referred to C-Coupler2 as a
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component model, and a component model of the existing coupled model can be further referred to C-Coupler2 as a
child component model. For a component model with self-nesting capability within one executable, one grid domain can
be employed as a component model and a smaller grid domain directly nested to it can be used as its child component
model. Different component models can share common MPI processes.

Coupling connections. Model coupling by C-Coupler2 can be viewed as a set of data flows, each of which couples a set
of coupling fields provided by a component model to a component model that uses these fields—possibly the same
component model, as C-Coupler2 supports coupling within one component model. Here we call such a data flow
a “coupling connection”. The coupling generator can automatically detect all possible coupling connections, while the
user can also specify some coupling connections with higher priority.

Attributes of coupling fields. Coupling fields are distinguished using field names. All component models in C-Coupler2
share the same name space of the coupling fields as well as the default attributes corresponding to each field name.
Model grids. A coupling field is either a scalar variable or a model grid. A model grid may
be vertical or horizontal, or a 3-D grid consisting of a horizontal grid and a vertical grid. There might be some
relationship between two grids; e.g., a horizontal or vertical grid can be a sub-grid of a 3-D grid.

Decomposition of grid domain for parallelization. To accelerate modeling on a modern high-performance computer with
many processor cores, a grid domain in a component model is generally decomposed into a number of subdomains, each
of which is assigned to an MPI process for parallel integration. We call this “parallel decomposition”.

Coupling field instances. A coupling field generally has multiple instances in a coupled model. First, different
component models can produce or use the same coupling field. For example, when all grid domains in self-nesting WRF
are registered as component models in C-Coupler2, they can produce the same coupling fields (e.g., precipitation),
where each component model has its own coupling field instances. Second, a given component model can have different
instances of the same coupling field due to different model grids or different parallel decompositions on the same model
grid. For example, a component model can interpolate a coupling field from a source grid to a target grid, which means
that this coupling field has two separate instances: one on the source grid and one on the target grid.

Conducting coupling field instances. A component model can export coupling field instances to the coupled model,
import coupling field instances from the coupled model, or remap its own coupling field instances on a source grid to
the coupling field instances on a target grid.

Coupling frequencies. A component model can specify the frequency at which it exports, imports, or remaps the
coupling field instances. Different coupling frequencies might be needed in different simulations; e.g., model coupling
can be more frequent when the resolution increases.

Model time. C-Coupler2 manages model time information for each component model to control model coupling in the
time integration of the whole coupled model. It uses a separate and unique time manager for each active component
model. The coupling frequencies should be consistent with the model time. For example, a coupling frequency should be

a positive integer multiple of the time step of the corresponding model.
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10) Remapping configurations. Most existing couplers, including C-Couplerl, enables the user to specify how to remap a set
of fields from a source grid to a target grid; e.g., using the offline remapping weights read from an input data file
produced by a remapping software tool or using the online remapping weights produced by the coupler (if supported).

11) Shared input parameters for a model run. C-Coupler will require shared input parameters for a model run, such as case
information of the model run, the start time of the model run, how to stop the model run, and the frequency at which to
write restart files.

The above coupling configuration information can be classified into two categories: private coupling configuration
information of a component model (including information about the component model, model grids, parallel decompositions,
coupling field instances, conducting coupling field instances, coupling frequencies, and model time) and public coupling
configuration information shared by component models (including coupling connections, attributes of coupling fields, and
shared input parameters for a model run). Considering the motivation for coupling configuration (Section 3.1), we design a
set of C-Coupler2 APIs to enable a component model to specify flexibly its private coupling configuration information
through model codes, and design a set of configuration files for flexibly specifying the public coupling configuration
information. Although the remapping configurations can be either private or public (the source and target grid used in data
remapping may belong to the same or different component models), we only design the corresponding configuration file to
guarantee a unique way to specify remapping configurations.

We introduce in this section the implementation of the coupling configuration interface for each kind of configuration
information.

4.1.1 C-Coupler2 APIs

4.1.1.1 APIs for component model management

To couple component models running on non-overlapping, partially overlapping, or overlapping subsets of MPI
processes, C-Coupler2 allows a component model to run on any subset of MPI processes. Therefore, the coupler can support
almost any kind of MPI process layout among the component models. Figure 6 shows an example of a complex MPI process
layout: compl, comp2, and comp3 do not share any MPI process; comp4 runs on a proper subset of the MPI processes of
compl; comp8 run on all MPI processes of comp2; and comp4 and comp5 partially share some MPI processes. Moreover,
there are relationships between the component models in Fig. 6: compl is the parent of comp4 and comp5; comp5 is the
parent of comp6 and comp7; and comp2 is the parent of comp8. In C-Coupler2, a component model must cover all MPI
processes of its children (e.g., compl in Fig. 6 includes all processes of comp4 and comp5). A component model without a
parent is a root component model (e.g., compl, comp2, and comp3 in Fig. 6 are root component models). Each MPI process

must belong to a unique root component model (e.g., each process in Fig. 6 only belongs to one of compl, comp2, or comp3);
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i.e., all root component models cover all MPI processes without sharing any MPI process with each other. This constraint
seems contradictory to the target of supporting shared MPI processes among component models, and may make C-Coupler2
unable to support some MPI process layouts. For example, given that a component model consists of two component models
that run on partially overlapping subsets of MPI processes, both component models cannot be root component models. To
support this kind of MPI process layout, a coupled model can be registered as a root component model of C-Coupler2, and
its component models can be further registered as children of the root component model.

Coupler2 provides 10Fhe APIs for component model management, including CCPL register_component,
CCPL_end_coupling_configuration, etc-are-listed-in-Table-1, Formore detalls-about-the APls-listed-in-Table 1. pleaserefer

APL<CCPL_register_component” is responsible for registering a component model to C-Coupler2. C-Coupler2 only serves

component models registered to it. (Almost any model can be registered to C-Coupler2, while it is unnecessary register Aa

cempenent-model whose model coupling is fully served by other couplers but-not-C-Coupler2-is-unnecessariby-registered-to
C-Coupler2). The arguments of this API include the ID of the parent component model, model name, model type, and MPI
communicator. Any component model except a root component model must have a parent. C-Coupler2 will allocate an 1D
and generate a unique full name for each component model that is formatted as “parent_full_name@model_name”, where
“model_name” means the name of the current component model and “parent_full_name” is the full name of the parent
component model. (For a root component model, “parent_full_name” corresponds to an empty string.) A component model
is either active or pseudo (inactive), as specified by the model type. A pseudo component model can be the parent of some
component models, while its name will not be included in the full name of any component model. Moreover, coupling
configurations cannot be further specified to a pseudo component model. Table 12 lists the model types currently supported
by C-Coupler2. Note that “active_coupled system” and “pseudo_coupled system” indicate that an existing coupled model
can be registered as a component model of C-Coupler2. This API can create the MP1 communicator of the component model
when required. It will start the stage of coupling configuration of the component model, while the API
“CCPL_end_coupling_configuration will finalize the stage of coupling configuration. A component model can successfully
call “CCPL_end_coupling_configuration” only when all its children component models have already called this API.

For more details of the APIs for component model management, please refer to the user guide (https://gitlab.com/c-

coupler-group/c-coupler-doc/raw/master/C-Coupler2%20User%20Guide.pdf).

Table 1 nleasao rofor to th, user
T i
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4.1.1.2 APIs for time management

C-Coupler2 provides 26Fable—3—lists—the APIs for time management, including CCPL_set normal_time_step,

CCPL_check_current_time, CCPL_define_single timer, etc. thatThese APls enable C-Coupler2 to manage the model time
information for each active component model. Detailed time information of a component model can also be accessed
through C-Coupler2, and thus a component model can employ C-Coupler2 for its model time management. A component
model with its own model time management must keep its model time constantly consistent with C-Coupler2. The API
“CCPL_check_current_time” can be used to check such consistency. An active component model can have a unique time
manager that is not activated until a unique time step has been set through the API
“CCPL-set-time-stepCCPL _set normal_time step”. After a time manager is activated, the user can access detailed

information on the model time, define timers, advance the model time, and use timers to control model coupling.

C-Coupler2 currently only provides the AP1 “CCPL_define_single_timer” to define a periodic timer that is an alarm for
specifying coupling period. The arguments of this API include the ID of the corresponding component model, a period unit,
a period count, a local lag count, and an optional remote lag count. The period unit and period count specify the period of the
timer. The local lag count corresponds to the period unit, which is used to specify a local lag (it can be viewed as a time
offset from the start time) that influences when the timer is on. For example, a timer set with <period_unit="steps”,
period_count==5", local_lag_count="2"> will be on at the 2", 7%, 12" etc. (i.e., 5i + 2, where i is a non-negative integer)
time steps of the corresponding component model. The remote lag count also corresponds to the period unit. It can be used to
specify a lag on a coupling connection between two component models or within one component model. Its default value is
0 (i.e., no lag). Note that the lag for a coupling connection is determined by the timer from the receiver component model.
The lag corresponding to a coupling connection can be viewed as the model time difference from the receiver component
model to the sender component model, which can control the time sequence between the two component models. For
example, given a lag of 1/-1 hour, the coupling fields produced by the sender component model at the sender’s 0™/1* hour
will be obtained by the receiver component model at the receiver’s 15/0" hour. Thus, the user can flexibly achieve
concurrent run or sequential run between component models. Incorrectly setting “remote_lag_count” may introduce
deadlocks between component models.

For more details about the APIs for time management hstecHin-Fable-3, please refer to the user guide.

4.1.1.3 APIs for grid management

Each grid managed by C-Coupler2 belongs to a unique active component model. A grid shared by multiple component
models should be registered to each component model separately. The keyword for a grid can be expressed as <ID of the
component model, grid name>. Therefore, different grids in the same component model cannot have the same grid name,

while grids in different component models can have the same grid name.

14



10

15

20

25

30

APIs for grid management. A horizontal grid can be registered via global grid
data (through the API “CCPL_register_H2D_grid_via_global_data”), local grid data (through the API
CCPL_register_H2D_grid_via_local_data™), or a grid data file (through the APl “CCPL_register_H2D_grid_via_file).
Considering that a horizontal grid in a component model may be determined by another component model (e.g., the
horizontal grid of a land surface model will be determined by an atmosphere model when both models require the same
horizontal grid), we designed the APl “CCPL_register_H2D_grid_from_another_component”. A vertical grid can be
registered via global grid data. The coordinate of a vertical grid can be registered as a Z coordinate (through the API
CCPL_register_V1D_Z_grid_via_model_data™), a SIGMA coordinate (through the API
CCPL_register_V1D_SIGMA_grid_via_model_data”), or a HYBRID coordinate  (through  the  API
CCPL_register_V1D_HYBRID_grid_via_model_data”). A 3-D grid can be registered by combining a horizontal grid and a
vertical grid (through the APl CCPL_register_MD_grid_via_multi_grids). Thus, C-Coupler2 can know the relationship
between a 3-D grid and its sub grids. A 3-D grid can be either an interface-level grid or a middle-point grid. A middle-point
grid can be generated from an interface-level grid through the API “CCPL_register_mid_point_grid>. Thus, C-Coupler2 can
know the relationship between an interface-level 3-D grid and a middle-point 3-D grid.

For a 3-D grid that consists of a horizontal grid and a vertical grid with SIGMA or HYBRID coordinate, C-Coupler2
can set its unique surface field on the horizontal grid in order to calculate the vertical coordinates at each horizontal grid
point. The surface field of a 3-D grid can be static (through the APl “CCPL_set_3D_grid_constant_surface_field™), dynamic
(through  the  API CCPL_set_3D_grid_variable_surface_field™), or  external (through  the  API

CCPL_set_3D_grid_external_surface_field”). A static surface field has constant values with time integration, so the
vertical coordinate values in the corresponding 3-D grid are constant. A dynamic surface field has changing values with time
integration, so that the vertical coordinate values in the corresponding 3-D grid vary. An external surface field has values
determined by the surface field of another 3-D grid.

For more details about the APIs , please refer to the user guide.

4.1.1.4 API for parallel decomposition management

To accelerate modeling by taking advantage of a high-performance computer with many processor cores, the model
needs to be parallelized with MPI, whereby the domains of the model grids are decomposed into separate subdomains for
parallel integration. To accommodate the parallel integration of component models and to allow model coupling to be
handled in parallel, C-Coupler2 both manages parallel decompositions and provides APIs to enable active component
models to register their parallel decompositions to the coupler. C-Coupler2 currently supports parallel decompositions only
on horizontal grids, and further parallel decomposition on vertical grids is yet not supported. Therefore, parallel
decomposition is associated with a horizontal grid, and thus with the component model corresponding to the horizontal grid.

The keyword for parallel decomposition is expressed as <ID of component model, parallel decomposition name>. Therefore,
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different parallel decompositions in the same component model cannot have the same name, while parallel decompositions
in different component models can have the same name. Multiple parallel decompositions on the same horizontal grid are
allowed.

Parallel decomposition on a horizontal grid is described through enumerating global grid cell indexes of the local grid
cells assigned to each MPI process of the corresponding component model. A valid global grid cell index should be between
1 and the size of the horizontal grid. For any local grid cells that need not be considered in model coupling (e.g., land-only
grid cells in an ocean model), the corresponding values of the global grid cell index can be set to a C-Coupler2 pre-defined
variable CCPL_NULL_INT, to save some overheads in model coupling.

Fable-5Currently, C-Coupler2 provides only one -hists—the-unigue-API for parallel decomposition management, i.c.,
CCPL register_normal parallel_decomp. Please refer to the user guide for more details.

4.1.1.5 API for coupling field instance management

A coupling field instance includes a set of meta information and a memory buffer that keeps the data values of an
instance of a coupling field. A coupling field instance is associated with a unique component model, a unique grid, and a

unique parallel decomposition. An attribute of “buf_mark”, which is a non-negative integer mark given by users, is

employed in each coupling field instance to separate multiple coupling field instances in the same component model, on the
same grid, and on the same parallel decomposition. For example, as the land surface, oceans, and sea ice lie under the
atmosphere, an atmosphere model may receive multiple coupling field instances of surface temperature from land surface,
ocean, or sea ice models. Therefore, the keyword for a coupling field instance is expressed as <field name, 1D of component
model, ID of grid, 1D of parallel decomposition, buf_mark>. For a scalar coupling field instance that is not on a grid, the

corresponding grid ID and parallel decomposition ID should be set to -1.

Currently, C-Coupler2 provides only one API fFable-6-lists-the-unigue-ARHfor coupling-field instance management, i.e.,

CCPL _reqister_field instance. Thise-E-Ceupler2 APIs allows a component model to register a coupling_field instances to

the coupler to provide, obtain, and remap coupling field instances in model coupling. An internal model field instance that

will not be used in model coupling can also be registered to C-Coupler2 for exact restart capability. For more details of this

AP, Pplease refer to the user guide for more details.
4.1.1.6 APIs for coupling interface management
In C-Coupler2, an active component model can handle coupling field instances through coupling interfaces. The

keyword of a coupling interface is expressed as <ID of the component model, interface name>. Therefore, different coupling
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interfaces in the same component model cannot have the same interface name, while coupling interfaces in different
component models can have the same interface name.

Coupling interfaces are classified into three categories: import, export, and remap. An import interface enables a
component model to obtain coupling field instances from itself

or other component models. Specifically, it can be
specified to obtain instantaneous or averaged coupling field instances. An export interface enables a component model to
provide a number of coupling field instances to the coupled model. A remap interface enables a component model to remap
its coupling fields from a source grid to a target grid. There are two detailed kinds of remap interface: normal and fraction
based. A normal remap interface directly interpolates coupling field instances from the source grid to the target grid, while a
fraction-based remap interface will first adjust the values of coupling field instances on the source grid based on the source
fraction before remapping and finally adjusting the values of coupling field instances on the
target grid based on the target fraction after remapping. (The source fraction is also remapped from the source grid to the
target grid to produce the target fraction at the same time.) Fraction-based remap interfaces are generally necessary to
guarantee conservation in model coupling.

There are three steps taken to utilize a coupling interface. The coupling interface is first registered, whereby a timer is
required to be specified to control the timing of coupling interface execution. Coupling procedures -are next generated for the
coupling interface, which is then executed in the third step. Although the API to execute a coupling interface can be called at
each time step, a coupling interface will be truly executed only when its timer is bypassed or its timer is on. C-Coupler2
allows the timer to be bypassed when executing a coupling interface, in order to achieve flexible coupling at the initialization
stage of the coupled model. Note that the timer of a coupling interface cannot be bypassed again if this coupling interface has
already been executed with the timer on, and when the timer of a coupling interface is not bypassed, the coupling interface
will be truly executed at most once each time step, which means that any additional API calls for executing the coupling
interface at a time step will be ignored.

For a remap interface that does not refer to coupling between different coupling interfaces or different component
models, its coupling procedures are generated implicitly by the coupling generator when registering it. Coupling procedures
of an export/import interface are also generated automatically by the coupling generator, but will not be generated when
registering the interface, because an export/import interface refers to coupling between different coupling interfaces in the
same or different component models. To generate coupling procedures for export or import interfaces, the coupling generator
will analyze possible connections from export interfaces to import interfaces based on the field name of each coupling field
instance. A coupling connection from an export interface to an import interface can be generated only when these two
coupling interfaces have common field names. Regarding a field name, C-Coupler2 allows an export interface to be
connected to any number of import interfaces, while forcing an import interface to be connected from a unique export
interface. In other words, each coupling field instance in an import interface must have only one provider. If there are

multiple providers for a coupling field instance in an import interface, the user must select only one provider through the
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corresponding configuration file (see Section 4.1.2.4). Different coupling field instances in an import interface can have
different providers. The coupling procedures for import and export interfaces are generated through explicitly calling the

APIs for coupling-generationcoupling procedure generation.

An export interface or a remap interface can always be executed successfully without error, while the execution of
import interfaces can fail and lead to an error report, if the coupling procedures of some necessary coupling field instances
have not been generated (i.e., if the providers of some necessary coupling field instances have not been found). When
registering an import interface{through-the ARPI“CCPL register—impori-interface™), each import coupling field instance
can be specified as necessary or optional. No error will be reported if the providers of some optional coupling field instances

have not been found.

TFable—7—Mists—+theC-Coupler2  provides 8 APIs for coupling interface management, including

CCPL_register_import_interface, CCPL_register_import_interface, CCPL_register normal remap_interface,

CCPL_execute interface using_id, etc. Please refer to the user guide for more details.

4.1.1.7 APIs for eoupling-generationcoupling procedure generation

Two designs for the coupling-generationcoupling procedure generation function-capability wereare compared. The first

enforces only one ceupling-generationcoupling procedure generation for the whole coupled model: the unique ceupling

generationcoupling procedure generation is performed when finalizing the coupling configuration stages of the whole
coupled model (when all root component models are calling the API “CCPL_end_coupling_configuration), and it involves
all component models that have already been registered to C-Coupler2. This unique global coupling-generationcoupling
procedure generation function was not favored for two main reasons, as follows.

1) This design assumes that the whole coupled model as well as each component model is organized as a unique three-

stage flowchart consisting of a coupling configuration stage, ceupling-generationcoupling procedure generation, and a

model coupling run. However, the main drivers of many existing models such as CESM consist of not a unique but
multiple three-stage flowcharts, indicating that multiple coupling—generationcoupling procedure generations are
necessary for wide usage in real cases.

2) As a global coupling-generationcoupling procedure generation will involve the participation of all component models,

and will require global synchronization of all the MPI processes in the whole coupled model, it will be costly,
inconvenient, and unnecessary to conduct multiple global ceupling-generationcoupling procedure generations. For
example, an increment coupling case that seeks to nest a regional atmosphere model into an existing climate system
model through C-Coupler2 requires only partial ceupling-generationcoupling procedure generation between the regional

atmosphere model and the global atmosphere model.
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The second design achieves partial coupling-generationcoupling procedure generation for any subset of component
models at any time through the APIs for coupling-generationcoupling procedure generation-Hsted-in-TFable-8. The eouphing
generationcoupling procedure generation related to a component model is classified as either individual or family. Individual

mode considers only the given component model in coupling-generationcoupling procedure generation, while family mode

considers the given component model and its descendant component models in the same coupling—generationcoupling
procedure generation. When registering a component model through the APl “CCPL_register_component”, it can be

specified to enable or disable the given component model in the family ceuplinggenerationcoupling procedure generation of

its parent or any ancestor. The APl “CCPL_do_external_coupling_generation” can do coupling—generationcoupling
procedure generation regarding any subset of component models, where either individual or family eceuphing

generationcoupling  procedure generation can be specified for each given component model. The API
“CCPL_get_configurable_comps_full_names” allows flexible specification of a subset of component models in an XML
configuration file; it can cooperate with the APl “CCPL_do_external_coupling_generation” to improve further the

flexibility of coupling—generationcoupling procedure generation. Besides partial coupling—generationcoupling procedure
generations, a global esuphing-generationcoupling procedure generation will still be performed when root component models

are calling the APl “CCPL_end_coupling_configuration”, while a root component model that has been disabled in the
family eeupling-generationcoupling procedure generation will not be involved in the global ceupling-generationcoupling
procedure generation.

GCoupling-generationCoupling procedure generation requires the synchronization of all MPI processes of the involved
component models. Please refer to the user guide for more details of the APIs for ceupling-generationcoupling procedure
generation.

4.1.1.8 Other APIs

Like most component models, C-Coupler2 can restart model simulation from a checkpoint. It does so through three-6
APIs, including: CCPL_do_restart_write_lO, CCPL _start_restart_read_|OCCPL—do—restartreadHO, and
CCPLis—restart—timer—onetc{Table-9). More details of these APIs can be found in the user guide. Currently,tThe restart

management not only serves the lecal-variables or data involved in the model coupling handled by C-Coupler2-managed-by

C-Coupler2, but also can serve the internal field instances of any component model that have been registered to C-Coupler2.

model coupled using C-Coupler2, all active component models should separately call the corresponding twe—APIs.

CCPL-do—restart-write 10-and - CCPLdo-—restartread 1O Besides the “initial” run, C-Coupler2 supports three types of
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model run: “continue”, “branch”, and “hybrid”, which are related to the restart capability. Detailed implementation of the

restart capability will be further introduced in Section 4.8.

C-Coupler2 enables each MPI process in each component model to have a separate log file, thus improving parallel
debugging capability. Several ~APIs  (“CCPL_report_log”, “CCPL_report_progress”, “CCPL_report_error~,
“CCPL_get_comp_log_file_name* and “CCPL_get_comp_log_file_device) allow component models to benefit from such a
capability.

For more details of thesee APIs-in-Table-9, please refer to the user guide.

4.1.1.9 Examples of implementing a coupled model with C-Coupler2 APIs

Figure 7 shows an example of the use of C-Coupler2 APIs to achieve hybrid coupling configuration and model coupling
during the initialization stage of a coupled model with four component models (compl-comp4). We assume that compl and
comp?2 are coupled together, comp3 and comp4 are coupled together, and that comp3 and comp4 are the children of compl
and depend on some boundary conditions from compl. First, compl and comp2, which cover all MPI processes (processes
0-34) and do not share any MPI process, simultaneously call the APl CCP_register_component to register themselves as the
root component models. The child component models comp3 and comp4 partially share a subset of MPI processes (processes
9-12). All MPI processes of comp3 first register comp3 as a child of compl, and next set the unique time step, register
several model grids, register a parallel decomposition, register several coupling field instances, specify a coupling field
instance as the dynamic surface field of a 3-D grid, define several timers, and register several coupling interfaces. After

calling the API “CCPL_do_individual_coupling_generation for coupling-generationcoupling procedure generation within

comp3 itself, comp3 executes some coupling interfaces, and then finalizes its coupling configuration stage through calling
the API “CCPL_end_coupling_configuration”. Comp4 follows a C-Coupler2 flowchart similar to comp3. As comp3 and
comp4 share some processes, they cannot conduct coupling configuration and model coupling at the same time in most cases
(in this example, we specify comp3 to run before comp4), except for the simultaneous calling of the API
“CCPL_do_external_coupling_generation” that can generate coupling procedures for the coupling connections between the
two child models. After both child models have finished their coupling initialization stage, their parent conducts its coupling
configuration, following a similar flowchart. As compl shares processes with its children, compl cannot conduct coupling
registration simultaneously with comp3 and comp4, and thus comp1 runs after its children here. As comp2 does not share any
process with the other component models, it can conduct coupling registration simultaneously with compl, comp3, and
comp4. Finallyy, compl and comp2, the root component models, simultaneously call the API
“CCPL_end_coupling_configuration” to finalize the coupling configuration stage of themselves and the whole coupled

model and to invoke global coupling-generationcoupling procedure generation. At the end of the initialization stage, each

component model can read in the restart data files when necessary.
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Figure 8 shows an example of model coupling in the kernel (time integration) stage of the coupled model in Figure 7. In
addition to the assumptions in Figure 7, compl and comp2 are further assumed to have the same time step, which is double
that of comp3 and comp4. All coupling interfaces are executed here without bypassing the timers. At a time step of compl
and comp2, they can simultaneously execute coupling interfaces, call the APl “CCPL_do_restart_write_IO” to generate
restart data files when the restart timer is bypassed or is on, and finally call the APl “CCPL_advance_time” to advance the
model time managed by C-Coupler2. We strongly recommend checking the consistency of model time between a component
model and C-Coupler through calling the APl “CCPL_check_current_time>. Comp3 and comp4 alternately use a C-Coupler2
flowchart similar to that for compl and comp2, but they will advance their model time twice when compl and comp2

advance their model time once.
4.1.2 C-Coupler2 configuration files

As mentioned above, the C-Coupler2 configuration files allow flexible specification of public coupling configuration
information including shared input parameters for a model run, attributes of coupling fields, remapping configurations, and
coupling connections. In order to achieve good readability, all configuration files are in XML format. This subsection briefly
introduces the four kinds of configuration files; i.e., input parameter configuration file, field attribute configuration file,

remapping configuration file, and coupling connection configuration file. Additional details can be found in the user guide.
4.1.2.1 Input parameter configuration file

The input parameter configuration file specifies a set of global input parameters shared by all component models. The
input parameters include simulation times (e.qg., start and stop times), the type of simulation run (i.e., initial, continue, branch,
or hybrid), whether leap years are considered, and the frequency of writing restart data files. Note that C-Coupler2 requires
all component models to use the same start and stop times, and the user should guarantee that the input parameter
configuration file is consistent with the corresponding modeling settings.

4.1.2.2 Field attribute configuration file

When registering a coupling field instance to C-Coupler2, the field name should be specified as an input parameter. A
field name is legal only when there is a corresponding entry in the field attribute configuration file that is shared by all
component models in a coupled model. When the coupling generator tries automatically to generate coupling procedures,
field names are used to detect possible coupling connections between coupling interfaces: an import interface and an export
interface can have a coupling connection only when their coupling field instances have common field names. The attributes
of each coupling field include “long_name”, “default_unit”, “dimensions™, and “type”. The attribute “dimensions” means a

label of grid dimensions. It can be set to “0D”, “H2D”, “V1D”, or “V3D”, denoting that a field is a scalar variable that is not
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on any grid, is on a horizontal grid, is on a vertical grid, or is on a 3-D grid that consists of a horizontal grid and a vertical

grid, respectively. The attribute “type” gives the type of the coupling field, either “state” or “flux”.

4.1.2.3 Remapping configuration file

Remapping configuration files can flexibly and conveniently specify the remapping of coupling fields between grids, as

follows.

1

2)

3)

4)

5

For remapping from a source horizontal grid to a target horizontal grid, the user can either employ the remapping
weights that are automatically generated by C-Coupler2 in parallel or read from an existing remapping weight file
produced by external software such as SCRIP, ESMF, YAC, or CoR1. Upstructured horizontal grids such as cube-

sphere, grid or hon-quadrilateral grids are supported in the online remapping weight generation.

Like C-Couplerl, C-Coupler2 uses the “2-D + 1-D” approach to achieve 3-D remapping. Regarding 3-D remapping, the
remapping configuration for the 2-D (horizontal) remapping and for the 1-D (vertical) remapping can be specified
separately; the 2-D remapping can also use the remapping weights loaded from a remapping weight file.

Different coupling fields in the same component model can have different remapping configurations, and the same
coupling field in different component models can have different remapping configurations.

Given a coupling field, a component model can either use its own remapping configuration or use that inherited from its
parent (if its own remapping configuration is not specified); a root component model (i.e., one without a parent) without
a specified remapping configuration can use the specified overall remapping configuration or use the default remapping
configuration set by C-Coupler2 (if the overall remapping configuration is not specified). In the default remapping
configuration, the bilinear remapping algorithm is used to remap the “state” fields between horizontal grids, the
conservative remapping algorithm is used to remap the “flux” fields between horizontal grids, and the linear remapping
algorithm is used to remap the vertical and time dimensions. Note that all remapping weights in the default remapping
configuration are generated automatically by C-Coupler2.

A remapping configuration file consists of a set of remapping settings, each of which can specify the remapping
configuration for all coupling fields, coupling fields of the same type (“flux” or “state”), or a specific set of coupling
fields (possibly even only one field). A prioritization strategy is designed accordingly: a remapping setting
corresponding to all coupling fields is at the lowest priority, a remapping setting corresponding to a type of coupling
fields is at medium priority, and a remapping setting corresponding to specific coupling fields is at the highest priority.

A procedure with data remapping for a given coupling field on a coupling connection between two different component

models will be generated when the component models use different corresponding grids. It is possible that the remapping

configuration of this coupling field is not the same in the two component models. In such a case, C-Coupler2 will only use

the remapping configuration in the source component model (the component model that exports the coupling field). In

general, given a coupling field on a coupling connection, C-Coupler2 uses only the remapping configuration in the source
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component model for eoupling-generationcoupling procedure generation. Therefore, it is meaningless to specify remapping

configurations for the imported coupling fields of a component model.

Figure 9 shows an example of a remapping configuration file that consists of three active remapping settings
(corresponding to the XML node of “remapping_setting” with the attribute “status” of value “on”). The first remapping
setting (from L1 to L15 in Fig. 9) corresponds to all coupling fields, the second remapping setting (from L16 to L27 in Fig. 9)
corresponds to the “flux” coupling fields, and the third (from L28 to L39 in Fig. 9) corresponds to two specific coupling
fields “t_atm_3D” and “ghs_atm_3D" that should be 3-D “state” fields. Specific to the remapping configuration of these two
fields, the vertical remapping configuration is determined by the third remapping setting and the horizontal remapping
configuration is determined by the first remapping setting. Both the first and second remapping settings specify an online
horizontal remapping algorithm (corresponding to the XML node of “H2D_algorithm”) and offline horizontal remapping
weight files (corresponding to the XML node of “H2D_weights”). Note that offline remapping weight files have higher
priority than the online remapping algorithm. To generate the coupling procedures for data remapping, a remapping weight
file in the corresponding remapping configuration (if present) will be used if it matches both the source grid and the target

grid of this data remapping.
4.1.2.4 Coupling connection configuration files

A coupling connection configuration file can be used to specify coupling connections for a component model. The
connections are classified into three types: 1) for import interfaces, 2) for model grids (corresponding to the API
“CCPL_register_H2D_grid_from_another_component™), and 3) sets of component model full names used for external
couphing-generatiencoupling procedure generation (corresponding to the APl “CCPL_do_external_coupling_generation®).
The coupling connections for an import interface specify the providers (a provider is a component model as well as its export
interface) of imported coupling fields, while a distinct subset of imported coupling fields can have a distinct provider. When
the coupling generator tries to generate coupling procedures for an imported field of an import interface, it will first check
the corresponding coupling connection configuration file. If the configuration file contains a coupling connection for the
imported field, the coupling generator will only use the corresponding provider in ceuphing-generationcoupling procedure
generation; otherwise, it will try to detect a provider and will report an error when no provider or multiple providers are
detected.

4.2 MoedeleCoupling within one executable or a subset of MPI processes

As mentioned in Section 4.1, to support medel-coupling within one executable or a subset of MPI processes, C-
Coupler2 allows a component model to run on any subset of MP1 processes and can generate coupling connections between
the export and import interfaces of the same component model. Each component model registered to C-Coupler2 can have

its own model coupling resources, including time step, timers, model grids, parallel decompositions, coupling field instances,
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and coupling interfaces. In other words, a model coupling resource must be associated with a unique component model.
Most model coupling resources, including the time step, model grids, parallel decompositions, coupling field instances, and
coupling interfaces, are public to a component model and shared by all its MPI processes. When registering a public model
coupling resource of a component model, all MPI processes of the component model are required to call the corresponding
API simultaneously, with consistent parameters. To manage different component models and model coupling resources
effectively, each component model, as well as each model coupling resource, has a unique ID.

Note that the latest coupler OASIS3-MCT_3.0 can also achieve model-coupling within one executable or a subset of
MPI processes, while its implementation is different from C-Coupler2. . while In OASIS3-MCT_3.0, different component

—CESM allows any two different

component models to run on non-overlapping, overlapping, or partially overlapping MPI processes.; In both C-Coupler2 and

CESM, a component model is defined by the separation of scientific models. Therefore, and-sheuld-be-treated-as-a-unigue

~each component model

of CESM can be treated as a component model of C-Coupler2, and coupling between different component models of CESM
can still be treated as coupling between different component models. |n OASIS3-MCT 3.0, a component model, is defined

by the separation of MPI tasks, -while model grids and parallel decompositions can exist across non-overlapping, partially

overlapping, or overlapping MPI processes. Therefore, CESM can be treated as a unique component model of OASIS3-

MCT_3.0, while any coupling between CESM component models can be treated as a coupling between different grids of
OASIS3-MCT _3.0. Direct comparisons betweenef these implementation OASIS3-MCT 3.0 and C-Coupler? are difficult,

whilebut the implementation in C-Coupler2 provides essential help to manage model coupling resources effectively, achieve
flexible model-coupling_generation, improve parallel debugging, and facilitate model nesting and increment coupling.
Similar with OASIS3-MCT_3.0, C-Coupler2 also works as a library without a driver layer and js driven by calls from the

models or coupling layers,such as CESM.

4.3 Flexible and automatic coupling-generationcoupling procedure generation

As mentioned in Section 4.1.1.7, C-Coupler2 can achieve partial ceupling-generationcoupling procedure generation for

any subset of component models at any time. Given a subset of component models that participate in a partial coupling
generationcoupling procedure generation, the first challenge is to make a component model know the MPI processes of each
other component model, because the partial coupling—generationcoupling procedure generation will introduce MPI
communications within the MPI processes of the subset of component models, and should not introduce communication with

the remaining MPI processes of the whole coupled model. As the registration or initialization of root component models

generally involves all MPI processes of the whole coupled model, each root component model can easily know the MPI
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processes of any other root component model through MP1 communications such as global synchronizations. This may not
present a challenge to C-Couplerl or OASIS3-MCT_3.0, because there are only root component models in the whole
coupled model. However, it causes a problem for C-Coupler2, because there are non-root component models (e.g., comp4—
comp8 in Fig. 6). As the registration of a non-root component model only involves a subset of MPI processes (the MPI
processes of itself in general and the MPI processes of its parent component model at most), it is almost impossible to
guarantee that a component model knows the information of all other existing component models through MPI
communications. To overcome this challenge, C-Coupler2 writes information about the MPI processes of a component
model into an internal XML file when registering the component model. Thus, when a component model wantsean- know

the MPI processes of any other-existing- component model, all its MP1 processes will wait to read -threugh-the corresponding
XML file. Only one MPI process of a component model will write or read the XML file, to minimize the overhead of this
implementation.

The coupling generator will generate a coupling procedure for each coupling connection that couples a subset of fields
from an export interface to an import interface. As introduced in Section 4.1.1.6, the API for registering an import/export
interface takes as an input parameter a timer, which specifies when a component model must import/export coupling fields.
The second challenge during couphing-generatiencoupling procedure generation is achieving effective coupling when the
timers of the import and export interfaces, which can be set independently, are different or even do not “match” in periods.
For example, how to achieve effective coupling when the periods of the import and export timers are 900 and 200 seconds
respectively (assumed that no lags are specified in the two timers)? At the model time of 0 s, both timers are activated, and
the import interface will obtain the coupling fields from the export interface. Before the second activation of the import timer
(at 900 s), the export timer will have been on four times (i.e., at 200, 400, 600, and 800 s). The import interface at 900 s can
obtain either the average values of the coupling fields from the four times at which the export timer was on, or the
instantaneous coupling fields at its last activation (i.e., at 800 s). Similarly, before the third activation of the import timer (at
1800 s), the export timer will have been on a further five times, at model times of 1000, 1200, 1400, 1600, and 1800 s. Thus,
the import interface (at 1800 s) will obtain from the export interface either the average values of the coupling fields at its five
intervening occasions or the instantaneous coupling fields at its last activation (at 1800 s). As an additional example, suppose
swapping the periods of the import and export timers (i.e., 200 and 900 s, respectively), still with no lags specified in the
timers. As before, the import interface will obtain the coupling fields from the export interface at the model time of 0 s when
both timers are on. Although the import timer will be further activated at model times of 200, 400, 600 and 800 s, the import
interface will not obtain new coupling fields from the export interface, but will use those previously obtained at 0 s, because
the export interface will not export coupling fields again until a model time of 900 s. In summary, regardless of the
difference in periods between the import and export timers, C-Coupler2 can adapt to conduct model coupling in a suitable
manner.

As introduced in Sections 4.1.1.2-and-4.1.1.6, C-Coupler2-enables-to-specify-a coupling lag can be specified through the

input parameter of-in-medel-coupling-via-the timer when registeringef an import interface. Given a lag of m seconds (m # 0),
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the coupling fields obtained by an impert-compeonent-rmedelreceiver component model at its model time of N + m seconds
are exported by an export-component-medelsender component model at its model time of N seconds. To support lags,
existing coupled models such as CCSM3 (Collins et al., 2006) or FGOALS-g2 essentially extend the simulation stop time of

some component models, so that component models have different simulation periods. However, C-Coupler2 only supports a
uniform simulation period among all component models. To support lags in C-Coupler2 effectively, an import interface is
not executed if it would request coupling fields produced after the simulation stop time, and an export interface is not
executed if its coupling fields would be used after the simulation stop time. Such an implementation may introduce errors
into the model states at the last steps of simulation. We therefore propose to extend the simulation period to guarantee

correct simulation of the model states in the concerned simulation period.

The coupling-generationcoupling procedure generation for a subset of component models follows the steps outlined
below.

1) No matter which APl is used to start the coupling-generationcoupling procedure generation (Section 4.1.1.7), the

coupling generator first confirms the subset of component models participating in the csupling-generatiencoupling
procedure generation and confirms their MP1 processes.

2) Determine all coupling connections. An export interface and an import interface will be connected for model coupling
only when they have common coupling fields (with the same field names). As a component model manages its own
coupling interfaces as well as coupling fields, an MPI communicator that includes all MPI processes in the subset of
component models will be generated for aggregating the information of all coupling interfaces among different
component models. As the user can also specify coupling connections through configuration files, file reading is
required for analyzing possible coupling connections. To minimize the cost of reading, only one MPI process analyzes
possible coupling connections, while other MP1 processes await its results. An error will be reported if a coupling field

in an import interface has multiple providers in this coupling-generationcoupling procedure generation.

3) Generate a coupling procedure for each coupling connection. A coupling connection aims to couple a set of fields from
an export interface to an import interface. When these interfaces belong to different component models, their models
will exchange information about the corresponding timers, model grids, parallel decompositions, remapping
configurations, data types, etc. If a coupling field has different data types in the two coupling interfaces, an operation of
data type transformation will be generated. The coupling generator adaptively selects a component model to execute the
data type transformation for improved model coupling. For example, given that the data type in the export/import
interface is double/float, the export-component-modelsender component model will transform the data type from double
(8 bytes) to float (4 bytes), so that float values but not double values will be transferred from the export interface to the

import interface. If a coupling field has different grids in the two coupling interfaces, a runtime algorithm for parallel
data interpolation will be generated following the corresponding remapping configuration, where existing remapping
weights will be used or new remapping weights will be read from an external data file or calculated by C-Coupler2

online and in parallel. Currently, only the import-compenent-modelreceiver component model executes the parallel data
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interpolation. In the future, the coupling generator will adaptively select a component model to process data
interpolation calculation for better coupling performance. When the import interface has been specified to import time-
averaged coupling fields, operations for data averaging will be generated. To transfer the coupling fields from the export
interface to the import interface, a runtime algorithm of non-block data transfer will be generated. In summary, a
coupling procedure can include as necessary a runtime algorithm for data transfer, a runtime algorithm for data
interpolation, operations for data type transformation, and operations for data averaging.

As a coupling-generationcoupling procedure generation can be performed at any time for any subset of component

models, a component model can participate in multiple ceupling-generationcoupling procedure generations. In other words,

the coupling procedures of a component model or even an import/export interface can be incrementally generated through

multiple ceuphing—generationcoupling procedure generations. For an import interface in a couphing—generatiencoupling

procedure generation, only the import fields whose coupling procedures have not been generated will be considered in the

coupling-generationcoupling procedure generation, while the import fields whose coupling procedures have already been

generated will be neglected.
4.4 Dynamic 3-D coupling capability

Given a 3-D grid that consists of a horizontal grid and a vertical grid with SIGMA or HYBRID coordinates, the vertical
coordinate values at each horizontal grid point are determined by a unique surface field on the horizontal grid. For example,
the 3-D grid of an atmosphere model with SIGMA or HYBRID coordinates will have constant vertical coordinate values
when the surface field is terrain height, but the values will be variable and change in time integration when the surface field
is surface pressure, because the terrain height generally remains constant while the surface pressure changes in time
integration.  C-Coupler2  therefore  provides two APls, “CCPL_set 3D_grid_constant_surface_field” and
“CCPL_set_3D_grid_variable_surface_field” (Section 4.1.1.3), for specifying constant and variable surface fields,
respectively. Given a 3-D grid of an atmospheric chemistry model, the API “CCPL_set_3D_grid_variable_surface_field™
can be used to specify the surface pressure as the surface field. As an atmospheric chemistry model generally does not
produce the surface pressure, additional implementation will be required to enable an atmospheric chemistry model to obtain
external surface pressure (e.g., from an atmosphere model in online model coupling). To facilitate coupling implementation
for such a case, C-Coupler2 provides the APl “CCPL_set_3D_grid_external_surface_field”, which, rather than specifying a
surface field, states that the surface field of a 3-D grid is externally determined by the surface field of another 3-D grid.
Moreover, the external surface field of a 3-D grid will be obtained automatically and implicitly by C-Coupler2 in model
coupling.

As mentioned above, the 3-D interpolation involved in 3-D coupling is still performed in the “2-D + 1-D” manner in C-
Coupler2, where 2-D interpolation between the horizontal sub grids is performed first, followed by 1-D coupling between

the vertical sub grids. Given a 3-D interpolation from a source 3-D grid (expressed as H2Ds + V1Ds) to a target grid
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(H2D: + V1Dy), the 2-D interpolation between the horizontal sub grids H2Ds and H2D; eventually interpolates coupling fields
from the source 3-D grid to an intermediate 3-D grid consisting of H2D; and V1Ds, and thus the 1-D interpolation between
the vertical sub grids V1Ds and V1D, eventually interpolates coupling fields from the intermediate 3-D grid to the target 3-D
grid. Specifically, the 2-D interpolation will be performed a number of times, each of which corresponds to a horizontal level
of the source and intermediate 3-D grids, and the 1-D interpolation will also be performed for a number of times, each
corresponding to a column in the intermediate and target 3-D grids. For dynamic 3-D coupling, 2-D interpolation can use

pre-calculated remapping weights, because the horizontal sub grids do not change throughout a simulation, while 1-D

interpolation cannot use pre-calculated remapping weights, and instead must dynamically calculate the remapping weights

according to the changes of vertical coordinate values in the source or target 3-D grid in time integration. To achieve

dynamic 3-D interpolation based on the implementation of static 3-D interpolation in C-Couplerl, dynamic calculation for 1-

D remapping weights is implemented with the following steps in C-Coupler2.

1) If the source 3-D grid has a variable surface field, the import interface first receives the source surface field transferred
from the export interface, and next uses the pre-calculated horizontal remapping weights to interpolate the source
surface field from the source horizontal grid (the horizontal sub grid of the source 3-D grid) to the target horizontal grid
(data interpolation will be bypassed if the two horizontal grids are the same). The source surface field on the target
horizontal grid will be used as the surface field of the intermediate 3-D grid, and will be further used as the target
surface field when the target 3-D grid has an external surface field.

2) If the source 3-D grid has an external surface field, the import interface uses the target surface field as the surface field
of the intermediate 3-D grid (the target 3-D grid must have a non-external surface field in this case).

3) The import interface calculates the vertical coordinate values of the intermediate/target 3-D grid when the 3-D grid has a
surface field (the import interface can obtain all constant information of the source 3-D grid in

before the first execution of the corresponding export and import interfaces).

4) For each column in the intermediate or target 3-D grid, the import interface calculates the 1-D remapping weights.

As dynamic 3-D interpolation cannot fully utilize pre-calculated remapping weights and must update 1-D remapping
weights at almost all coupling steps, it has a higher computational cost than static 3-D interpolation. To minimize the impact
of the increased computation cost, all of the above steps, including data transfer for the source surface field, 2-D
interpolation for the source surface field, calculation of vertical coordinates of the intermediate/target 3-D grid, and
calculation of 1-D remapping weights, are parallelized based on the MPI processes and parallel decompositions in the
corresponding component models. Moreover, the implementations of static 3-D interpolation and dynamic 3-D interpolation
are unified. In detail, static 3-D interpolation will be treated as dynamic 3-D interpolation at the first step of coupling; the 1-
D remapping weights will thus be calculated online during the first step of coupling; and they will be treated as static 3-D

interpolation and use the existing remapping weights in the subsequent coupling steps.
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4.5  Non-blocking data transfer

moede-MPlIdsend MPI-lreev)-to-transfer data-Non-blocking data transfer is a necessary function of OASIS3-MCT, because

it also-can achieve-medel coupling within one executable or a subset of MPI processes. Two-sided MPI communication (e.d.,

MPI_Send, MPI_Recv, and their non-blocking mode MPI_lsend, MPI_lrecv) has been widely used in existing couplers for
data transfer. To achieve non-blocking data transfer based on }-still-uses-two-sided MPI communication in OASIS3-MCT,

the gets of coupling fields (corresponding to the import interfaces of C-Coupler?2) are still blocking, while -where-the non-

blocking mode is used to make the puts of coupling fields (correspondlng to the export interfaces of C-Coupler2)-generally
non-blocking-A
later blocks non-blocking puts data-transfer-is Mﬁeﬁeessawlnvolved to guarantee successful and correct completion of each

y.: and_a mechanism that

gdata—transferput::

bloeking; and-a put will wait for the completion of the last put of the same coupling field. Fwe-sided-MPl-communicationis

easily-achieved-through-the- MPHfunetion- MP-WaitTwo-sided MPI communication is also used in :C-Coupler2 as a default

option of data transfer, and the corresponding non-blocking implementation is similar as OASIS3-MCT.

Unpredictable “deadlocks” in non-blocking two-sided MPI-communication-based data transfer can occur when an
excessive number of messages sent to a single MPI process exhaust the message passing buffer space allocated by the MPI
library (Dennis et al., 2012) We therefore implemented an additional option of non-blocking data transfer based -Ceupler2

one-sided MPI communication (i.e., MPI_Put and

MPI Get)i%da&&tﬁansﬁepwmrnen‘bleekwnamer thuswhich enablinges the-couplerC-Coupler2 to manage the message
passing buffer space, so as towhile ensureing a “safe” implementation of non-blocking data transfer. If unpredictable

“deadlocks™ happen when using the default two-sided MPI-communication-based data transfer, users will be advised to try

the one-sided MPI-communication-based implementation. In fact, we have encountered such a case when using our sample

coupled model for software testing (Section 5).
The wait of two-sided MPI communication is easily achieved through the MPI function MPI_Wait. M&he%h#ew

ianc ara nat hinclad nf\'\mr\%el\l a h

MPILWak_However, there is no corresponding MPI function available for one-sided MPI communication, and thus extra

effort is required to implement such a mechanism. In detail, non-blocking data transfer based on one-sided MPI

communication is implemented as follows in C-Coupler2.

1) The export interface calls MPI_Put to send coupling fields to the message passing buffer managed by the import
interface, while the import interface obtains coupling fields from its message passing buffer.
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2) Before sending coupling fields, the export interface examines whether the message passing buffer of the import interface
is available. The message passing buffer remains unavailable until the import interface has received coupling fields from
the last data transfer. Before obtaining coupling fields, the import interface checks whether the data in the message
passing buffer have been fully updated. After obtaining coupling fields, the message passing buffer is set as available. A
time tag identifies the status of the message passing buffer (i.e., available or unavailable and data fully updated or not).
The export interface uses MPI_Get/MPI_Put to query/update the status of the message passing buffer.

3) he data receive command issued by the C-Coupler2 API calls of executing import
interfaces is blocking. Beyond the API calls, C-Coupler2 issues additional non-blocking data receives for local import
interfaces, in order to make the data receive finish and the data send execute as early as possible. In a non-blocking data
receive, C-Coupler2 will obtain the coupling fields and set the message passing buffer as available if the buffer has been
fully updated; otherwise, it will do nothing.

As noted above, C-Coupler2 provides flexibility in setting a lag on a coupling connection via the “remote_lag_count” in
the timer of the import interface. One challenge associated with this function is that a deadlock can occur if the lag is greater
than the corresponding coupling period. For example, Fig. 10 includes two component models (compl and comp2) coupled
with two connections. The first coupling connection is from the export interface expl of compl to the import interface imp2
of comp2, while the second is from the export interface exp2 of comp2 to the import interface impl of compl. Both
connections have equal coupling periods of 600 s. At each coupling step of each model, the export interface is executed
before the import interface. In Fig. 10(a), there is no lag on each coupling connection, and thus compl and comp2 can run
concurrently. In Fig. 10(b), there is no lag on the second coupling connection, while the first coupling connection has a lag
of 600 s, which means that imp2 at the current coupling step wants the coupling fields from expl at the previous coupling
step. At the first coupling step, expl_1 (meaning expl executed at the first coupling step) tries to send coupling fields to
imp2_2. As no-blocking data transfer is used, exp1_1 can successfully put the coupling fields into the message passing buffer
of imp2, and thus comp1 can finish imp1_1, and so finish the first coupling step. At the same time, comp2 can finish the first
coupling step (it is unnecessary to execute imp2_1). At the second coupling step, expl_2 will first await the message passing
buffer of imp2 that still keeps the coupling fields from expl_1. After comp2 finishes exp2_2, imp2_2 is executed, and the
message passing buffer of imp2 will be set as available. Next, expl_2 can successfully put the coupling fields into the
message passing buffer of imp2. Although the lag of 600 s on the second coupling connection does not introduce a deadlock,
a problem in the sequencing of compl and comp2 is introduced: expl in compl must await the completion of imp2 in comp2
at the same coupling step. In Fig. 10(c), there is no lag on the second coupling connection, while the first has a lag of 1200 s.
Similarly to Fig. 10(b), both compl and comp2 can finish the first coupling step. At the second coupling step, expl_2 first
awaits the message passing buffer of imp2 that will not be set as available before comp2 finishes imp2_3 at the third
coupling step, while exp2_2 can successfully put the coupling fields into the message passing buffer of imp1, which has been

set as available by imp1_1 at the first coupling step. At the third coupling step of comp2 (exp1_2 in compl is still waiting at
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the second coupling step), exp2_3 first awaits the message passing buffer of impl that will not be set as available before
compl finishes imp1_2. As a result, both compl and comp2 wait for each other, causing a deadlock.
The sequencing problem in Fig. 10(b) and Fthe deadlock in Fig. 10(c)-isnot-unbreakable—as-it results from the

unavailability of message passing buffers. They are almost unbreakable regarding to two-sided MP1 communication, because

the message passing buffer space is allocated by the MPI library. However, they are not unbreakable regarding to one-sided

MPI communication, ;-and +-can be avoided by increasing the corresponding message passing buffers-of-the-corresponding

impert-interfaces. In C-Coupler2, the message passing buffers for one-sided MPI-communication-based data transfer ef-an

import-interface-can be increased adaptively. At each time step of a component model, C-Coupler2 checks each import
interface and will increase the message passing buffers ef-an-impertinterface-when all existing message passing buffers are

unavailable. As a result, a positive lag on a coupling connection will never result in a sequencing problem or a deadlock e+

sequencing-problem-between component models, when the one-sided MP1 communication based non-blocking data transfer

is used. The extra memory usage due to the increased message passing buffers would be affordable in most cases, because

generally only a small proportion of model fields are involved in model coupling.

A negative lag can also be specified for a coupling connection, but can result in sequencing problems between
component models or even an unbreakable deadlock. For example, Fig. 10(d) shows no lag on the second coupling
connection and a lag of —600 s on the first, which means that imp2 at the current coupling step wants the coupling fields
from expl at the next coupling step. This lag setting will not introduce a deadlock, but will introduce a sequencing problem
between compl and comp2: impl is coupled with exp2 at the same step, while imp2 at the current coupling step waits for
expl at the next coupling step. In Fig. 10(e), there is no lag on the second coupling connection, while the first has a lag of
—1200 s, which introduces an unbreakable deadlock corresponding to the red arrows in the figure, where import interfaces
are awaiting the export interfaces that cannot be executed until the import interfaces return.
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4.6

Facilitation for model nesting

For a regional model without self-nesting capability (i.e., it can only manage a unique grid domain), C-Coupler2 can it

help achieve self-nesting capability as follows.

&y

2)

3)

The code of the regional model can still only manage a unique grid domain, but multiple grid domains for self-nesting
can be achieved through running multiple copies of the executable of the regional model, each of which can have
separate input parameters and input data files for a unique grid domain and can be registered as a separate component
model of C-Coupler2. The different grid domains should have different component model names, but they can use the
same names for the model grids, parallel decompositions, coupling fields, coupling interfaces, etc. Therefore, C-
Coupler2 only requires the regional model to obtain a few additional input parameters. In other words, slight
modification of the namelist file and the corresponding model code of the regional model can enable C-Coupler2 to
recognize multiple grid domains.

Given that a small grid domain is nested in a larger grid domain, C-Coupler2 can recognize the relationship between the
two grid domains through the coupling connection configuration files. As all grid domains can correspond to identical
code in the regional model, the coupling connection configuration files of different grid domains can be similar,
differing only in terms of the full names of component models in the file contents. Thus, the coupling connection
configuration files of all grid domains can be generated easily or even automatically by a script.

Self-nesting capability requires the exchange of model fields that are generally 3-D between grid domains.
Implementation of this exchanging can benefit from the 3-D coupling capability, especially the dynamic 3-D coupling
capability, of C-Coupler2. Moreover, given that a small grid domain is nested in a larger grid domain, the coupling
procedures for exchanging model fields between them can be automatically generated in their partial

C-Coupler2 does not provide any lateral boundary condition scheme. This is not a problem, because a regional model

generally includes lateral boundary condition schemes that can also be used in self-nesting. To achieve two-way self-nesting,

schemes for using the feedback from smaller grid domains should be added to the regional model.

As each grid domain corresponds to a separate copy of the executable, each grid domain can easily use a distinct subset

of MPI processes, which allows simultaneous integration of grid domains for better parallel performance. Scientists may

want to integrate a grid domain earlier than its nested grid domains. For example, after a grid domain finishes integration

from 0 to 90s, its nested grid domains can start the integration from 0s. This can be achieved by adjusting coupling

latencies among grid domains based on the timers of the corresponding import interfaces. In one-way nesting, the coupling

latencies generally do not affect the parallelism among grid domains. In other words, different grid domains can always be

integrated simultaneously in one-way nesting, regardless of the coupling latencies. In two-way nesting, even when a specific
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setting of coupling latencies forces sequential running between a grid domain and its nested grid domains, multiple nested
grid domains of the same grid domain can also run simultaneously, so that C-Coupler can also help improve the parallel
performance of self-nesting. One challenge resulting from sequential running is that the corresponding processors will be
essentially idle, and therefore wasted, when a grid domain is waiting for another grid domain. In the future, we will
investigate technical solutions to overcome this inefficiency. Moreover, it may be an interesting topic to investigate the
scientific impact of different settings of coupling latencies in model nesting.

Similarly, it can also benefit from C-Coupler2 to nest a regional model into a different model. For a-+egional model that
already has self-nesting capability (such as WRF), all grid domains and the field instances on each grid domain are allocated

and managed by the regional model itself, while each grid domain as well as the field instances on it can be registered to C-

Coupler2 E-Ceupler2-can-identity-each-grid-domain-as a component model. Therefore, a grid domain in a self-nesting model!
can be further coupled with another kind of grid domain or component model through C-Coupler?2.

4.7  Facilitation for incremental coupling

Incremental coupling can be viewed as coupling external component models with an existing coupled model. A
straightforward implementation is to treat the external component models as internal component models of the existing
coupled model, and use the coupler of the existing coupled model to handle the corresponding incremental coupling. For
example, regarding the work of nesting WRF into CESM done by He et al. (2013) that has been introduced in Section 3.7,
WREF is treated as an internal component model of CESM, and the incremental coupling for its nesting is handled by CPL7,
the coupler of CESM. A major challenge in this kind of implementation is that the independence might need to be broken
between external component models and the existing coupled model that may have been developed independently by
different groups for a number of years. This introduces significant code changes to the models (even including the coupler),
and results in inconsistent code versions of the same model among different model groups. For example, all component
models of CESM share the same driver and are compiled into a unique executable, while WRF has its own driver, different
from the others. When treating WRF as an internal component model of CESM, WRF will have to use the driver of CESM,
and will also be compiled into the unique executable. Thus, WRF’s original driver and compiling scripts as well as CESM
need to be modified. Moreover, as the original driver and coupler of CESM do not consider the existence of a regional
atmosphere model, the driver and coupler codes of CESM also need to be modified.

Incremental coupling faces the fundamental problem of guaranteeing independence between external component
models and the existing coupled model, so as to minimize code changes to the models or the coupler. To help in this regard,
C-Coupler2 should minimize the constraints on using external component models and existing coupled models that are
already coupled with other couples; it should also work as an additional coupler specifically for incremental coupling as part
of coupling in a new coupled model, thus letting developers focus only on the coupling between external component models
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and the corresponding component models in the existing coupled model. In response to these requirements, C-Coupler2

includes the following implementations for incremental coupling.

1) An existing coupled model can be registered to C-Coupler2 as a component model, and its component models involved
in incremental coupling can be further registered as its children, while other component models that are irrelevant to
incremental coupling can be neglected. Generally, several API calls are enough for the model registration, which only
introduces slight code changes to the existing coupled model. As C-Coupler2 can support almost any MPI process
layout among component models, a component model in any existing coupled model can be easily registered to C-
Coupler2. Similarly, an external component model can be easily registered to C-Coupler2.

2) As C-Coupler2 allows ceupling-generationcoupling procedure generation to be performed at any time for any subset of
component models, partial coupling-generationcoupling procedure generations for only the component models relevant

to incremental coupling can be performed flexibly. Similarly, several API calls are enough for partial coupling
generationcoupling procedure generations, which only introduces a slight code change to the external component

models and the existing coupled model.

4.8 Adaptive restart capability

In a coupled model, all component models generally share a unique restart timer that notifies all component models to

prepare restart data corresponding to the same model time (called restart write model time hereafter). It does not mean that

the restart data files should only include the data values at the restart write model time. Here, we’d like to set the first

example based on the coupled model setting in Fig. 11(a), where the coupling connection from the component model compl

to comp2 has a lag of 600 s. Given that the whole coupled model has already produced restart data files corresponding to the

model time of 600 s in a previous run, immediately after the coupled model run has been restarted at the model time of 600 s,

comp2 will enter the third iteration with the model time of 1200 s and will import the coupling field instance values exported

by comp1 at its model time of 600 s. However, compl will also enter the third iteration with the model time of 1200 s and

will never export the coupling field instance values at the model time of 600 s again. Therefore, the restart data files

corresponding to the model time of 600 s should include the data values for recovering the coupled field instance values

imported by comp2 at the second and third iterations. This example indicates that the restart data files corresponding to a

restart write model time should include the coupling field instance values at different model time corresponding to a positive

lag on a coupling connection.

We’d like to set the second example based on the coupled model setting in Fig. 11(b). There are no coupling lags on the

coupling connections between the two component models, and the only difference between the two component models is

that, they have different orders for writing restart data files and advancing model time in each iteration of the main loop.

Given that the whole coupled model should prepare restart data corresponding to the model time of 600 s, the component

model compl should start to produce restart data files at the second iteration, while comp2 should start to produce restart
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data files at the first iteration because its model time has already been advanced to 600 s. Immediately after the coupled

model run has been restarted at the model time of 600 s, comp2 will enter the second iteration with the model time of 600 s

and will import the coupling field instance values exported by comp1 at its model time of 600 s. However, compl will enter

the third iteration with the model time of 1200 s and will never export the coupling field instance values at its model time of

600 s again. Therefore, the restart data files corresponding to the restart write model time of 600 s should include the data

values for recovering the coupled field instance values imported by comp2 at the first and second iterations. This example

indicates that the restart data files corresponding to a restart write model time may need to include the coupling field instance

values at different model time even when there is no lag on any coupling connection.

We’d like to set the third example based on the coupled model setting in Fig. 11(c), where the coupling connection from

the component model compl to comp2 has a lag of -600 s. Given that the whole coupled model has already produced the

restart data files corresponding to the model time of 600 s in a previous run, immediately after the coupled model run has

been restarted at the model time of 600 s, compl will enter the third iteration with the model time of 1200 s and will try to

export the coupling field instance values that should be imported by comp2 at its model time of 600 s. However, comp2 will

enter the third iteration with the model time of 1200 s and will never import the coupling field instance values at its model

time of 600 s again. Therefore, it is unnecessary for comp1 to export the coupling field instance values at the model time of

1200 s, or even compl should be disabled to export at the model time of 1200 s, to avoid deadlocks. This example indicates

that it may need to disable the execution of some export interfaces at some model time after restarting the coupled model run.

To conveniently achieve exact restart for coupling fields under any setting of coupling lags and any order between

writing restart data files and advancing model time, the restart manager of C-Coupler2 provides an adaptive restart capability.

»__The restart manager conducts restart writing as follows:, -

1) The restart data corresponding to a component model are classified into two categories: management information that

will be written into a binary formatted data file at once, and field instance values that will be written into a NetCDF
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formatted data file incrementally.
2) Each active component model that has been registered to C-Coupler2 should call the API CCPL_do_restart_write_10

almost at each time step.
3) Generally, if the unique restart timer is not on at the current model time, CCPL_do_restart_write 10 will be bypassed.

Otherwise, it will be truly executed: it will set the restart writing model time to the current model time, write the current

values of all imported field instances into the NetCDF restart data file in default (Users can disable this through an input

parameter of the API. Please refer to the user guide for details), and prepare the restart management information that

will be written into the binary restart data file later.

4) When a receiver component model is importing the values of a coupling field instance from a sender component model,

if the model time at the sender or receiver component model is not later than the restart writing model time, the values

obtained by the receiver component model will be written into the corresponding NetCDF restart data file automatically
and incrementally.
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5) When a component model is advancing its model time, the restart manager will check whether it should write the restart

management information into the corresponding binary restart data file. If the latest sender’s model time corresponding

to an import coupling field instance is earlier than the restart writing model time, the corresponding binary restart data

file will not be produced.

»__The restart manager conducts restart reading as follows: -

6) When users want to restart a coupled model run, each active component model should firstly call the API

restart data file, and the model time corresponding to the restart management information is marked as restarted model

time.

7) Users can call the API CCPL_restart read fields_all or CCPL _restart read fields_interface to read in the values of

(R ek gl

some field instances at the restarted model time from the corresponding NetCDF restart data file, if required.,
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8) When a sender component model tries to export a coupling field instance to a receiver component model, if the

corresponding model time at the sender or receiver component model is not later than the restarted model time, the

sender will bypass the field instance exporting. When a receiver component model tries to import a coupling field

instance from a sender component model, if the corresponding model time at the sender or receiver component model is

not later than the restarted model time, the values of the import field instance will be read from the corresponding

NetCDF restart data file but not imported from the sender component model.

Here, we’d like to give an example about the above implementation based on the coupled model setting in Fig. 11(a),

Given that the unique restart timer will be on at the model time of 600 s, the API CCPL_do_restart_write_10 will write the

coupling field instance values imported by comp?2 at the model time of 600 s into the corresponding NetCDF restart data file

and mark 600 s as the restart writing model time. At the third iteration with the model time of 1200 s, comp2 will obtain the

coupling field instance values that are exported by comp1 at its model time of 600 s. As 600 s is the same with but not later

than the restart writing model time, according to the above step 4, the coupling field instance values obtained by comp?2 at its

model time of 1200 s will be written into the corresponding NetCDF restart data file. According to the above step 5, compl

will produce the corresponding binary restart data file at the third iteration with the model time of 1200 s, while comp2 will

produce the corresponding binary restart data file at the fourth iteration with the model time of 1800 s. When trying to restart

the coupled model run from the model time of 600 s, both compl and comp2 should call the API

CCPL_start_restart read 10, which will read in the restart management information and set the restarted model time to 600

s. After entering the main loop, comp2 will first execute the third iteration (with the model time of 1200 s), where the

coupling field instance values obtained at the second iteration (with the model time of 600 s) may be used and can be

recovered through calling the API CCPL_restart read_fields_all or CCPL _restart read_fields_interface in advance. As the

coupling field instance values that will be obtained by comp?2 at its model time of 1200 s are exported by comp1 at its model

time of 600 s, and 600 s is the same with but not later than the restarted model time, according to the above step 8, C-
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Coupler2 will read in the corresponding coupling field instance values from the corresponding NetCDF restart data file

automatically. Similar examples can be derived from the coupled model settings in Fig. 11(b) and 11(c) respectively.

For a component model, the API CCPL_start restart read 10 can be called at most once, while

CCPL _restart_read fields all or CCPL _restart read_fields_interface can be called multiple times. For a field instance

whose values have been recovered in a restart run and have not been changed since the last recovery, the latter two APIs will

not read in its values from the corresponding NetCDF restart data file again, to avoid redundant overhead. In addition to

coupling field instances, C-Coupler2 also provides supports for exact restart capability of model field instances. When
registering a field instance to C-Coupler through the API, CCPL _register_field_instance, it can be specified as restart related [ﬁ?#&ﬁﬁﬁ: A iRt ]

through an input parameter of this API (Please refer to the user guide for details). The values of a restart related model field

instance will be written into the corresponding NetCDF restart data file automatically and can be recovered through the API

CCPL _restart_read fields all in a restart run.

As mentioned before, C-Coupler2 supports four types of model run: “initial”, “continue”, “branch™ and “hybrid”

where the latter three types are restart reading related. All APIs related to restart reading can be called and will be bypassed

in a “initial” run. A “hybrid” run does not target to achieve exact restart: the AP1 CCPL_restart read_fields_interface or

CCPL _restart_read fields all can be used to recover the values of some field instances at the restarted model time, while

the above step 8 will not be conducted. Both “branch™ and “continue” run will target to achieve exact restart. A “branch”

run will restart the coupled model run from the model time explicitly specified by users, while a “continue” run will restart
the coupled model run from the latest restart write model time. Similar with most of existing coupled models, C-Coupler2

also records the latest restart write model time of each component model in an implicit file called “rpointer” file. A “rpointer”

file will be updated only when the corresponding binary restart data file has been produced. It may fail to start a “continue”

run because the latest restart write model time is determined by each component model separately and may be not the same

among all component models. We have encountered such kind of failures before when using existing coupled models. To

avoid such kind of failure, besides the latest restart write model time, C-Coupler2 will also implicitly record the previous

restart write model time before the latest restart write model time for each component model. When starting a “continue” run, [%%EB‘J: ERISEEEE ]

C-Coupler2 will first adaptively determine the right restarted model time. A component model can also get the right restarted
model time, determined by C-Coupler2, through the AP1 CCPL_get restart setting (Please refer to the user guide for details). | R s St (Psr) +HSCIESC CRAK), JENL () e
. . . . . ) X X \ [#)
A coupling lag can be adaptively achieved through setting the remote lag count in the timer of an import interface when

{ HREA 2 T4 (30 + o SCIESC (GRAK), AL (130) ek }

the import interface is executed without bypassing its timer. However, even when constantly bypassing the timer of an )

import interface, a coupling lag can also be achieved through adjusting the execution of the import interface and the { @gﬂ%ﬁ;‘l TR (P0) +HSCIESC CRAK), A, ik, (EP)t)EP}

corresponding export interfaces. Please note that, C-Coupler2 currently does not guarantee exact restart capability under

such kind of coupling lag specification. We therefore highly propose users to enable the timer when executing a coupling

interface as possible, especially in the main loop of the time integration. [ HRRB: Sk (150 + LIRS (GRFR), (130 h3eCt ) )
2 o | TSR gk Ao 0 K, BEEARIE: 3.57 FAF, AR
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4.84.9 Debugging capability

1

2)

3)

The following aspects enhance the debugging capability of C-Coupler2.

C-Coupler2 performs a series of checks for almost all API calls. For example, when registering a component model,
model grid, parallel decomposition, coupling field, or coupling interface, when setting the time step of a component
model, and when executing a coupling interface, C-Coupler2 can check whether all MPI processes of the component
model call the API at the same time and with consistent parameters. For example, when registering a horizontal grid
with global grid data or registering a vertical grid, C-Coupler2 can check whether the grid data are the same among MPI
processes, and when registering a coupling interface, C-Coupler2 can check whether the timer, coupling field instances,
and other parameters are consistent among MPI processes. When an API call includes an array as a parameter, C-
Coupler2 can check the size of the array. For example, when registering a coupling field instance, C-Coupler2 can check
whether the array size of the memory buffer of the coupling field instance matches that required. When an API call
includes the 1D of a coupling resource as a parameter, C-Coupler2 can check whether the ID is legal. When an API call
will read information in configuration files, C-Coupler2 can check whether the files are in the correct XML format and
check the correctness of the required information. Given the additional overheads in computation and communication
introduced by performing such checks, most of them can be disabled in a model run. We strongly recommend that the
user enables the checks fully when developing a coupled model.

When an error or a warning is detected, it will be reported, including a suggestion for fixing the relevant model codes or
configuration files. Almost all APIs include an optional input parameter “annotation”, which is a string giving a hint for
locating the model code of the API call corresponding to an error or warning. There are around 1000 error reports
throughout the code of C-Coupler2.

C-Coupler2 can report many kinds of log information, about coupling configurations, progress in handling coupling
configurations, s, coupling run, and the values of coupling field
instances. Each process in a coupled model can have a separate log file for reporting log information, errors, and
warnings, which can facilitate parallel debugging. Moreover, C-Coupler2 also enables the internal code of a component
model to report log information through the C-Coupler2 log files. The user can enable or disable the reporting of log
information.

Evaluation

This section evaluates C-Coupler2 in several aspects, including software testing, scaling of initialization, data transfer,

memory use
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5.1  Software testing

To improve the reliability of C-Coupler2 in various areas of application, we first designed a sample coupled model that
includes coupling between several sample component models and self-nesting component models. Next, we developed
hundreds of use cases based on the sample coupled model, to evaluate whether C-Coupler2 properly detects and reports
errors in various cases of incorrect use, and-properly generates coupling procedures and handles model coupling and nesting
in correct cases.

Besides the sample coupled model, existing real coupled models were used to test C-Coupler2, including FIO-AOW,
BCC_CSM (Beijing Climate Center Climate System Model) (Xin et al., 2013), and CESM. For each coupled model, we
used-C-Coupler2 was used to replace some coupling functions from other couplers, while trying to keep exactly the same
(bitwise identical) simulation results. Specifically, we-sed-C-Coupler2 was used to replace C-Couplerl employed in FIO-
AOW, MCT (Larson et al., 2005) based data transfer and interpolation functions of the CPL5 coupler (the version
immediately prior to CPL6) employed in BCC_CSM, and MCT based data transfer and interpolation functions of the CPL7
coupler employed in CESM. Various MPI process numbers of component models and various run types (i.e., “initial”,
“continue”, “branch”, and “hybrid” run) of each real coupled model were used for testing using nearly 2000 processor cores.
As CESM enables the user to flexibly set MPI process layouts among component models, the tests considered non-
overlapping, partially overlapping, and overlapping MP1 processes among component models of CESM.

We further coupled an atmosphere model GAMIL2 (Grid-point Atmospheric Model of JAP LASG version 2) (Li et al.,

2013) and the CESM version with C-Coupler2 (the original atmosphere model was disabled) via incremental coupling,
which generatese the executables of both GAMIL2 and CESM, while GAMIL2 keepspt its original driver unchanged. C-
Coupler2 thus successfully demonstrated incremental coupling. The dynamic 3-D coupling capability of C-Coupler2 was

Prediction Across Scales) (https://mpas-dev.github.io/) and a wave model WaveWatch

(polar.ncep.noaa.gov/waves/wavewatch/) has been newly developed, which also contributes to software testing of C-
Coupler2.

Moreover, various processors (i.e., Intel X86, IBM Power, and the SW26010 processors employed in the Sunway
TaihuLight system), various operating systems (i.e., Linux and IBM AIX), various compilers (i.e., Intel compilers, GNU
compilers and IBM compilers), and various MPI libraries (Intel MPI, MPICH, Open MPI, and IBM MPI) were involved in
testing C-Coupler2.

5.2  Initialization cost

The evaluation of initialization cost considered coupling 10 2-D fields between two toy component models that define
horizontal grids but do not have real model initialization. The component models’ horizontal grids were a regular longitude—
latitude grid with 1440 <720 grid points and a tripolar grid with 1440 <1021 grid points. Therefore, model coupling
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required data remapping, and we used the corresponding remapping weights file generated by CoR1. The two component
models ran concurrently on a supercomputer, with the same number of processor cores (MPI processes). Each computing
node on the supercomputer included two Intel Xeon CPUs, with 20 processor cores in total, and all computing nodes were
connected with an InfiniBand network. The codes were compiled by an Intel Fortran and C++ compiler at the optimization
level 02, using an Intel MPI library.

Figure-11Figure 12 shows the initialization cost of C-Coupler2 when scaling the number of processor cores of each
component model from 15 to 960. It increases with increasing core number. C-Coupler2 initialization consists of several
steps, including registering component models, setting time steps, registering model grids, registering parallel
decompositions, registering coupling field instances, registering coupling interfaces, generating coupling procedures, reading
and then distributing the remapping weights from a file, and computing routing information for data transfer between
component models. Most of these steps include non-scalable operations; i.e., MPI collective communications or 1/0.
Increasing the core number increases the overhead of the non-scalable operations, and thus increases initialization cost. The
results in Fig—11Fig. 12 indicate that the initialization cost of C-Coupler2 may be not negligible, but it would be affordable
in most cases, especially for long-term climate simulations.

5.3 Data transfer

As introduced above, C-Coupler2 can employs asynchronous-data-transfer-via-one-sided MP1 communication_in data
transfer, while other existing couplers only use two-sided MPI communication inte transfer data. We evaluated the
performance of our one-sided communication in comparison to a two-sided implementation, based on a ping-pong coupling
for the same configuration used in Section 5.2. Figure-12Figure 13 shows the cost of the two implementations when scaling
the number of processor cores of each component model from 15 to 960. The times are per 100 ping-pong couplings. Overall,
the one-sided communication achieves similar performance to the two-sided communication-used-in-C-Coeuplert. In other

words, the option of one-sided MPI communication does not obviouslycempared-with-C-Couplert,-C-Coupler2-achieves

out degradinge the performance of data transfer.

5.4  Memory usage

Figure-13Figure 14 shows the memory use per core for the configuration used in Section 5.2, as measured using the gptl
(http://jmrosinski.github.io/GPTL/) interface (similar to Craig et al., 2017). The memory usage remained around 360—

380 MB regardless of core number. Lacking computing resources, we were unable to evaluate the memory usage at a much
higher number of processor cores. However, we can speculate based on the assessment of OASIS3-MCT (Craig et al., 2017):
owing to the MPI memory footprint (Balaji et al., 2008), the memory use per core might be around 1300-1400 MB at 16000
cores for each component model. The memory use is relatively high, but would be acceptable for many applications and

hardware configurations.
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5.5 Dynamic 3-D coupling

The capability of dynamic 3-D coupling was tested based on the coupled model consisting of GAMIL2 and GEOS-
Chem that has been mentioned before. In this coupled model, the 3-D grids of GAMIL2 and GEOS-Chem are different in

both horizontal direction and vertical direction. Specifically, GAMIL2 includes a 2.8 horizontal grid with the uniform grid

in the low and middle latitudes region and a weighted even area grid in the high latitudes and polar region, and 26-SIGMA

vertical levels (pressure normalized by surface pressure) with the model top at 2.194hPa, while GEOS-Chem uses a 4 k5°

uniform horizontal grid and 72-HYBRID vertical levels with the model top at 0.01hPa. As GEOS-Chem does not calculate

the atmospheric pressure, the surface pressure corresponding to its 3-D grid is declared as an external surface field through
the AP1 CCPL_set_3D_grid_external_surface_field and will be determined by the surface field of the 3-D grid of GAMIL in

dynamic 3-D coupling. For the first step of the evaluation, we examined the vertical coordination values of the two 3-D grids

and the corresponding vertical remapping weights that change in time integration. Next, we examined each coupling field

from one component model to the other. For example, Fig. 15 and 16 show the values of the coupling fields of atmospheric

temperature (T) and the zonal wind speed (U) from GAMIL2 and GEOS-Chem, which reveal that C-Coupler2 achieves

consistent results between the source grid and the target grid in dynamic 3-D coupling.

To evaluate the parallel scalability of dynamic 3-D coupling, we derived a new configuration from the configuration

used in Section 5.2, where the 2-D grid corresponding to the 2-D coupling fields in each component model is extended to be

a 3-D grid with a 50-level vertical sub-grid of SIGMA coordinate. The SIGMA coordinate values are different between the

two component models, and the surface field corresponding to the 3-D grid of one component model changes at every time

step, while the surface field corresponding to the other component model has been set to be external. Therefore, the vertical

coordinate values of all 3-D grids and the corresponding vertical remapping weights are updated in each time of 3-D

coupling. Figure 17 shows the parallel speedup of dynamic 3-D coupling when scaling the number of processor cores of each

component model from 15 to 960, measured from 100 ping-pong couplings. The results in Fig. 17 reveal that C-Coupler2

can achieve acceptable parallel scalability in dynamic 3-D coupling.

JE— -«

6 Discussion and conclusion

As a new version of C-Coupler, C-Coupler2 follows the family’s targets and the main designs, but is significantly
different from C-Couplerl in many aspects, as summarized in Table 2106. Here we further discuss its capability in integrating
external coupling algorithms. In C-Couplerl, a private subroutine of a component model or a common algorithm such as a
flux calculation algorithm can be registered as an external coupling algorithm. An external coupling algorithm cannot have

any explicit argument while its inputs and outputs are implicitly specified through the corresponding configuration files. The
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integration of a Fortran external coupling algorithm generally requires an additional C interface. An external coupling
algorithm can be further used as a runtime algorithm in a coupling procedure by specifying it in the corresponding
configuration files. C-Coupler2 does not inherit this capability from C-Couplerl, because configuration files for implicitly
specifying the inputs and outputs of an external coupling algorithm and for specifying the runtime algorithms in a coupling
procedure do not exist in C-Coupler2. We intend to recover this capability in future versions of C-Coupler. As C-Couplerl’s
coupling configuration interface has been significantly changed in C-Coupler2, C-Coupler2 does not achieve backwards
compatibility. However, we will-guarantee try our best to achieve backwards compatibility in future C-Coupler versions.

3-D coupling capability is still a focus of C-Coupler development, and the static 3-D coupling capability in C-Couplerl
has been upgraded to dynamic 3-D coupling capability in C-Coupler2. Conserving model coupling is a fundamental
requirement of a coupler, as it is critical to the stability of a long-time simulation of a coupled model. Most existing couplers
can achieve conservative 2-D coupling based on a conservative remapping algorithm on horizontal grids. C-Coupler2 does
not guarantee conservation in 3-D coupling, while we are not aware of any 3-D conservative remapping algorithm available
for model coupling. Previous works have demonstrated that it is practical to develop a common horizontal conservative
remapping algorithm. In our opinion, the most significant reason is that a common approach, which can be described as area
mapping, can guarantee conservation of coupling between horizontal grids. We are not sure whether a volume-mapping-
based approach can be used to develop a common 3-D conservative remapping algorithm, because a component model that
can achieve 3-D conservation in time integration may have its own specific way to diagnose 3-D conservation, which is
generally determined by the dynamic core and may be not a volume-based approach. Moreover, it will be much more
difficult to calculate volume mapping between 3-D grids, compared with the calculation of area mapping. Our future
development of C-Coupler will involve investigations of 3-D conservative remapping schemes.

Although the results in Section 5 indicate that the initialization cost and memory use of C-Coupler2 may be affordable
in most cases, a problem might arise when the model resolution or the number of processor cores is extremely high. When
developing future C-Coupler versions, we will investigate ways to decrease initialization cost and memory use.

Code availability. C-Coupler2 is an open-source coupler that is always free for non-commercial activities. The latest version

and future updates of the source code, user quide and examples can be downloaded from https://github.com/C-Coupler-

Group/c-coupler-lib. We highly recommend users to watch this project, so as to be notified with the future updates of C-

Coupler2. We also applied a DOI (10.5281/zenodo.1283512) for a specific code version of C-Coupler2, that can be accessed
via https://doi.org/10.5281/zenodo.1283512

The C-Coupler2 source code can-be obtained from- the authors on reguest during the review process-of this paper-and will-be

publicly available (e.g., through Gitlab, or GitHub_or gnother, public repository) if this paper is accepted for publication no
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Table 12 Model types currently supported by C-Coupler2

Model type Description Remark

cpl Coupler Active component model
atm Atmosphere model Active component model
glc Glacier model Active component model
atm_chem Atmospheric chemistry model Active component model
ocn Ocean model Active component model
Ind Land surface model Active component model
sea_ice Sea ice model Active component model
wave Wave model Active component model
roff Runoff model Active component model

active_coupled_system

Coupled model that consists of a set of
component models

Active component model

pseudo_coupled_system

Coupled model that consists of a set of

component models

Pseudo component model
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1 CCPL_set_time_step Set—the —unique—time —step—of —the —given
component-model

2 CCPL_gettime—step Get—the—time—step—of the—given—compenent
meéel—%e%—by—f-he—A—P]—e@P—L—Se{—Hme—S(epfA < = — i - 2
compenent-model-by-a-time-step

4 CCPL_get_number_of_current_step Get the number of the current time step of the
given-component model

5 CCPL_get_number_of total_steps Get-the-total-number-of time-steps-during-the
model

6 CCPL_get current date Get the current date of the given component
rmodel

7 CCPL_get—ecurrent—year Get-the—eurrent-year—of-the—given—compenent
rmodel

8 CCPL_get—current—hum—days—in—year Get-the—current-rumber-of-days—in-the-current
year-of the-given-component-model

9 CCPL_get—eurrent—second Get-the-current-second-of the-given-component
model

10 | CCPL get start time Get the start time of the model run of the given
component model
component-model
given-compenentmodel
rmodel

14 | COPL—isfirst-step Cheek-whether-the-current-timestep-is-the-first
step in a model run
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of the-given-compenent-model
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Table 210 Differences between C-Couplerl and C-Coupler2

C-Couplerl

C-Coupler2

Coupling configuration

Strongly dependent on ASCII formatted
configuration files

Properly combines APIs and XML formatted
configuration files

MPI process layout

Only root component models are
supported; cannot handle  model
coupling within a subset of MPI
processes or the same component model

Can support almost any kind of MPI process
layout among component models (including
existing coupled models); can handle model
coupling within a subset of MPI processes or
the same component model

3-D coupling capability

Static 3-D coupling only

Both static and dynamic 3-D coupling

Coupling No coupling——generationcoupling | Automatic  and  incremental  coupling
generationCoupling procedure generation function generationcoupling procedure generation for
procedure generation any subset of component models at any time
Data transfer Blocking data transfer based on | Non-blocking data transfer based on

MPI_Send/MPI_lsend and
MPI_Recv/MPI_lrecv

MPI_Put/MPI_Get

Support  for  model
nesting

No specific support

Can facilitate to nest a regional model into
itself or into another model

Support for incremental

coupling

No specific support

Can facilitate to couple external component
models with an existing coupled model

Debugging capability

Not prioritized; little support

Implemented, with support provided

Coupling lags

Supported, but lag cannot be greater
than the corresponding coupling period

Supported, with lag able to be greater than
the corresponding coupling period

Coupling procedures

Runtime algorithms in a coupling
procedure are explicitly specified in a
configuration file

Runtime algorithms in a coupling procedure
are implicitly generated by the coupling
generator

Restart capability,

Can achieve exact restart for model field

Can_achieve exact restart for model field

instances and coupling field instances,

instances and coupling field instances, no

without supporting the case with a
coupling lag  greater than the

corresponding coupling period,

matter the setting of coupling lag. Can
automatically determine a right model time

for restarting a “continug’ run

Capability ——of
integrating—Integration
of external coupling

algorithms

Can integrate an external coupling
algorithm as a runtime algorithm and
then further use it in a coupling
procedure

Cannot integrate an external coupling

algorithm
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ICE

LND OCN

Figure 1 General architecture of models coupled with C-Coupler. “ATM” means an atmosphere model, “OCN” means an

ocean model, “ICE” means a sea ice model and “LND” means a land surface model. (from Liu et al., 2014).
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d component models

apping MGR

Pping
orithms
Extel

=

Figure 2 General software structure of C-Coupler (from Liu et al., 2014).
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Figure 3 C-Couplerl software structure.
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3 =N 4 N

" Acoupling interface A coupling interface

with data send | with data send
[ Acoupling interface A coupling interface

with data receive | with data receive

Figure 4 Example of model coupling between two component models: deadlocks occur when blocking data send/receive

operations are used.
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C-Coupler2

Figure 5 C-Coupler2 software structure.
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MPI processes

1 2 3 4 5 6 7 B 9% 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3z 33 M

Compl (root) Comp2 (root) Comp3 (root)
Comp4 (Level 2 Comp5 (Level 2) Comp8 (Level 2]
Comp6 Comp7|

(Level 3) (Level 3)

Figure 6 Sample process layout of component models (compl-comp8).
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MPI processes
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“omp (Level 2
3 (}evel ) Compd (Level 2 suntar |-Conpterd moehae| wi Conppdy
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T -\
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Figure 7 An example of hybrid coupling configuration and model coupling in the initialization stage of a coupled model
constructed with C-Coupler2. Compl-comp4 are the four component models. Labels and boxes of the same color correspond

to the same component model.
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Figure 8 An example of model coupling in the kernel (time integration) stage of a coupled model constructed with C-
Coupler2. Compl-comp4 are the four component models. Labels and boxes of the same color correspond to the same

component model.
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<root>

L1: <remapping_setting status="on">

12: <remapping_algorithms status="on">

L3: <H2D_algorithm status="on" name="bilinear">

L4: <parameter name="enable_extrapolate" value="true" />
LS: </H2D_algorithm>

Lé6: <V1D_algorithm status="on" name="linear">

L7: <parameter name="enable_extrapolate" value="true" />
L8: </V1D_algorithm>

L9: <H2D_weights status="on">

L10: <file name="map_to_global gridl default.nc" />

L1l: <file name="map_to_regional gridl_default.nc" />
L12: </H2D_weights>

L13: </remapping_algorithms>
L14:  <fields status="on" specification="default" />
L15: </remapping_setting>

L16: <remapping_setting status="on">

L17: <remapping_algorithms status="on">

L18: <H2D_algorithm status="on" name="conserv_2D" />
L19: <H2D_weights status="on">

120: <file name="map_to_global gridl_conserv.nc" />
L21: <file name="map_to_regional_gridl_conserv.nc" />
L22: </H2D_weights>

123: </remapping_algorithms>

1L24: <fields status="on" specification="type">
L25: <entry value="flux" />

L26:  </fields>

L27: </remapping_setting>

_n

L28: <remapping_setting status="on">

L29: <remapping_algorithms status="on">

L30: <VI1D_algorithm status="on" name="linear">

L31: <parameter name="enable_extrapolate" value="true" />

L32: <parameter name="use_logarithmic_coordinate" value="true" />
L33: </V1D_algorithm>

L34: </remapping_algorithms>

L35: <fields status="on" specification="name">

L36: <entry value="t_atm_3D" />

L37: <entry value="ghs_atm_3D" />

L38:  </fields>
L39: </remapping_setting>
</root>

Figure 9 Sample of a remapping configuration file
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(c) Two-way coupling with a lag of 1200 s from
compl to comp2

(b) Two-way coupling with a lag of 600 s from

compl to comp2

69



(d) Two-way coupling with a lag of =600 s from (€) Two-way coupling with a lag of ~1200 s
compl to comp2 from comp1 to comp2

Figure 10 Sample two-way couplings with different lag settings
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Figure-1iFigure 12 Initialization cost for coupling two toy models with C-Coupler2 on a supercomputer with Intel Xeon
CPUs and an InfiniBand network.
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Figure-12Figure 13 Comparison of data transfer times (for 100 ping-pong couplings) between a one-sided and a two-sided
implementation, with the same configuration as Fig-—21Fig. 12.
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Figure-13Figure 14 Memory use of C-Coupler2 for the toy coupled model considered in Section 5.2.
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Figure 15 The temperature (a) and zonal wind speed (U) from GAMIL2 to GEOS-Chem (GC) at the 500 hPa level at two
different model time.
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Figure 16 The global vertical profile of the temperature (a) and zonal wind speed (U) from GAMIL2 to GEOS-Chem (GC)

at the 500 hPa level at two different model time.
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Figure 17 The parallel speedup of dynamic 3-D coupling (for 100 ping-pong couplings) between the two component models,

with a new configuration derived from the configuration used in Fig. 12. The speedup is normalized to the time at 15 cores

per component model (1583 s).
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