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Abstract. In Coupled Groundwater and Surface-Water Flow (GSFLOW) model, the three-dimensional finite-difference ground-

water model (MODFLOW) plays a critical role of groundwater flow simulation, together with which the Precipitation-Runoff

Modeling System (PRMS) simulates the surface hydrologic processes. While the model development of each individual PRMS

and MODFLOW model requires tremendous time and efforts, further integration development of these two models exerts addi-

tional concerns and issues due to different simulation realm, data communication, and computation algorithms. To address these5

concerns and issues in GSFLOW, the present paper proposes a conceptual framework from perspectives of: Model Conceptu-

alization, Data Linkages and Transference, Model Calibration, and Sensitivity Analysis. As a demonstration, a MODFLOW

groundwater flow system was developed and coupled with the PRMS model in the Lehman Creek watershed, eastern Nevada,

resulting in a smooth and efficient integration as the hydrogeologic features were captured and represented. The proposed

conceptual integration framework with techniques and concerns identified substantially improves GSFLOW model develop-10

ment efficiency and help better model result interpretations. This may also find applications in other integrated hydrologic

modelings.

1 Introduction

Interactions between surface water and subsurface water occur in most rivers. Depending on the hydraulic connectivity and

geologic features, the water interaction usually is complex (Scanlon et al., 2002; Winter, 2007) and affects variations in15

baseflow and streamflow (Ghasemizade and Schirmer, 2013; Kalra et al., 2013; Sagarika et al., 2015). This interaction may be

influenced by climate, environmental factors, and human activities, resulting in spatial and temporal changes in water resources

(Sophocleous, 2002; Kampf and Burges, 2007; Furman, 2008; Pathak et al., 2016; Tamaddun et al., 2016).

Integrated hydrologic models usually are used to better understand the exchange of water between surface and subsurface

sources, interpret the water flow path, and predict water-system behavior (Kim et al., 2008; Xu et al., 2012). This type of20

models results from integration of a surface water system and a groundwater flow system (Prudic et al., 2015), and the coupling

between surface water and subsurface flow is the core of the model (Ghasemizade and Schirmer, 2013; Carrier et al., 2016).

Various algorithms and techniques are used to describe the groundwater-surface water interactions (Furman, 2008; Pathak et al.,
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2016), from conceptual models (Arnold et al., 1993; Ponce et al., 1999; Osman and Bruen, 2002) to physical-based models

of varying complexity (Abbott et al., 1986; Moussa et al., 2002). In recent years, more rigorous physically-based integrated

models have been developed that couple one-dimensional or two-dimensional surface flow with a three-dimensional subsurface

flow (Moussa et al., 2002; Kollet and Maxwell, 2006; Weill et al., 2009). For the groundwater simulation component, a three-

dimensional finite differential groundwater model developed by the U.S. Geological Survey (USGS), known as MODFLOW,5

has been widely used in such integrated models as SWAT-MODFLOW (Kim et al., 2008), HSPF-MODFLOW (Davis, 2001),

SWAP-MODFLOW (Xu et al., 2012), TOPNET-MODFLOW (Guzha, 2008), MODHMS (Yubin Tang and Min, 2014), and

GSFLOW (Markstrom et al., 2005).

The Coupled Groundwater and Surface-Water Flow (GSFLOW) model integrates the Precipitation-Runoff Modeling System

(PRMS) with MODFLOW (Harbaugh, 2005; Markstrom et al., 2005, 2015) (Fig.1), simulating both the surface hydrology and10

groundwater flow systems. It has been widely used in a variety of studies, such as snowmelt, surface hydrologic responses to

climate change, and the effects of mining (Huntington and Niswonger, 2012; Hunt et al., 2013; Allander et al., 2014; Essaid

and Hill, 2014; Hassan et al., 2014; Albano et al., 2016). Depending on the study objectives, an integrated model can operate

at various temporal scales (e.g., hours, days, or months) and spatial scales (e.g., hillslope or watershed) (Goderniaux et al.,

2009; Gauthier et al., 2009; Sulis et al., 2011). This adds complexities to model development, calibration, and especially inte-15

gration. Thus, it is common to simplify the model development processes by starting with decoupled surface and groundwater

models. However, developing separate models without coupling concerns could result in integration challenges down the road.

Extensive research efforts have focused on the coupling processes (Panday and Huyakorn, 2004), such as linking the channel

flow regime with groundwater domain (Prudic, 1989; Swain and Wexler, 1996; Walton et al., 1999); linking the overland flow

with the unsaturated and saturated subsurface flow (Akan and Yen, 1981; Pinder and Sauer, 1971; Singh and Bhallamudi,20

1998); and linking overland flow, channel flow, and subsurface flow to examine interactions between them (Govindaraju and

Kavvas, 1991; Refsgaard and Storm, 1995). The different modeling focuses and computation algorithms in the to-be coupled

models make uniqueness in the coupling procedures. However, there is very few studies are available focusing on the model

development procedures of integration processes of these integrated models, such as GSFLOW model.

To fill this research gap, as the paper structure diagram shows (Fig.1), the current study proposed a conceptual model25

integration framework with principal concerns and issues addressed, from perspectives of: Model Conceptualization, Data

Linkages and Role Transference, Model Calibration, and Sensitivity Analysis. The framework was tested and demonstrated

through the development of a GSFLOW model in the Lehman Creek watershed. The subsequent modeling results were not

the focus of this paper; thus no further analyses were presented beyond the model calibration and sensitivity analysis results.

While some might be interested in the performance comparisons between the PRMS model and the GSFLOW model with the30

MODFLOW as a component, the comparisons will be presented in authors’ coming paper.

The need for this study mainly was driven by two factors. First, to develop a GSFLOW model as a coupling effort of two

models, there was a need to devise techniques for a smooth and efficient transition from a stand-alone model to a component-

composition model, with special attention to the interactions between two composed models, i.e., surface water and ground-

water. Second, climate change can affect local water resources; hence, an integrated understanding of the groundwater flow35
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Figure 1. Study diagram of Conceptual Model Integration Framework with case study demonstration: couple MODFLOW with PRMS to

develop GSFLOW model.

system is important in response to climate change. On the basis of available geologic conditions and hydraulic connectiv-

ity, the objective of this study was to provide techniques addressing the concerns in model integration from a perspective of

MODFLOW development as a groundwater component in the GSFLOW model. The findings from this study are anticipated

to provide useful information to modelers/end users regarding the integration of groundwater systems to a surface hydrologic

modeling system using GSFLOW model.5

The current paper is constructed by four compartments. Firstly, the basic components and modeling scope of GSFLOW

model are briefly reviewed in Section 2, and it is followed by the description of proposed conceptual framework, in Section

3, where potential concerns and issues during the development of integrated processes in GSFLOW model are identified and

addressed. Then, the proposed framework is implemented and demonstrated, in Section 4, through developing a MODFLOW

model and integrating it as a groundwater model component for an fully integrated GSFLOW model. Lastly, the discussion10

and conclusions over the current study were made in Section5.

2 Overview of GSFLOW Model

GSFLOW, a Coupled Groundwater and Surface-water FLOW model, was developed by USGS (Markstrom et al., 2005), based

on the integration of the Precipitation-Runoff Modeling System (PRMS) and the USGS Modular Groundwater Flow System

(MODFLOW 2005 and MODFLOW-NWT). The PRMS was developed primarily for precipitation and snowmelt runoff on15
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spatial-distributed physical bases, simulating processes from top of vegetative canopy to the bedrock. Based on water balance

and energy balance, it particularly focuses on the surface hydrologic processes including canopy interception, snow accumula-

tion/melt, evapotranspiration, surface runoff, and soil-water fluxes. While its groundwater flow is simplified as a stock-and-flow

system, a sophisticated groundwater model would improve the modeling performance of integrated water system. MODFLOW

is a three-dimensional finite-difference groundwater flow system developed by the USGS (Markstrom et al., 2005). The finite-5

difference method was used to describe the spatial heterogeneity to solve groundwater flow (and contaminants) through porous

mediums in three dimensions, by area (e.g., infiltration or evapotranspiration), by line (e.g., streambed infiltration and its water

exchange with groundwater), or by point (e.g., water pumping and recharge). It is the most widely used simulation program

for groundwater systems throughout the world (Markstrom et al., 2005). By coupling these two models, the major limitation

of each model is overcome, as the GSFLOW simulates both surface water and groundwater/subsurface-water simultaneously10

with dynamic water interacting through saturated and unsaturated subsurface media and through streams and lakes.

3 A Conceptual Framework for GSFLOW Model Integration Development

In GSFLOW, the integration script was completed by USGS, who developed both PRMS and MODFLOW model. The concep-

tual framework proposed herein aims to facilitate the model development of GSFLOW from a modeler perspective. Generally,

to develop a coupled GSFLOW model, the two models to be integrated are developed separately and have a pre-calibration15

respectively before the coupling processes (Huntington and Niswonger, 2012; Markstrom et al., 2005). Traditional model devel-

opment procedures, e.g., model calibration, validation, and initialization, are applicable and required for both individual model.

During these processes, different from an independent model development for non-integration purposes, there are concerns or

potential issues that should be aware of or dressed, which would help modelers to better understand the GSFLOW integrated

hydrologic model, improve the efficiency of model development, and have better interpretation of simulation results. In the20

following sections, the main concerns or issues are addressed in the proposed framework: Model Conceptualization (section

3.1), Data Linkages and Function Role Change (section 3.2), and Model Calibration and Sensitivity Analysis (section 3.3).

3.1 Model Conceptualization

While two models, PRMS and MODFLOW, could have two independent approaches of model conceptualization when for

separate studies, aiming for a smooth and successful coupling development for a GSFLOW model, these two ways of model25

conceptualization require consistency and compatibility. It is particularly critical in terms of time and space, as they are running

basics of models. During the model conceptualization, boundary definition and spatial discretization are among the most of

the concerns. While the boundary of groundwater watershed is usually not as the same as surface-water watershed boundary,

as the surface-water watershed is defined by topographic divides (Anderson et al., 2015) and the groundwater watershed is

not, the consistency of defined boundaries of two models should be ensured, considering the data transference between two30

models. During the coupling process, the groundwater simulation module in PRMS is disabled and replaced by the groundwater

component MODFLOW, and the MODFLOW receives data inputs from PRMS. Any areal none-overlapped regions would be
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structurally deficient with none driving inputs/forces. Especially on the level of spatially-discretized hydrologic response unit,

a structure connection is required for data communication to assure vertical flows (e.g., gravity drainage) between PRMS soil

zone and MODFLOW groundwater system; or else, such structure connection needs to be externally defined (Markstrom et al.,

2015). Also, as temporal unit of model simulation, time step is another concern of importance. Due to different study interests,

surface water and groundwater may have different time steps in terms of hours, days, or months, depending on varied study5

purposes. Nevertheless, PRMS model only supports daily time step for a PRMS-IV simulation (Markstrom et al., 2015). This

limits GSFLOW model simulation to a daily basis and so does the MODFLOW model component for the compatibility reason.

3.2 Data Linkages and Function Role Change

Leveraging the future data transferences during the model development facilitates the efficiency and effectiveness of the in-

tegrated modeling. As the groundwater component in GSFLOW model, MODFLOW interacts with the surface water system10

mainly through three data linkages, including:

– 1) Water percolation, resulting from the surface-water system and driving the groundwater system;

– 2) Evapotranspiration, composed by shallow ET and deep-root ET simulated by two sub-model respectively;

– 3) Streamflow, contributed by both surface runoff and dynamic water interacted with groundwater system.

1. Water percolation - use PRMS percolation outputs as the MODFLOW driving forces for model initialization15

As driving input of groundwater model, water percolation determines groundwater system behavior and model performance.

The gravity drainage, resulting from PRMS model simulation, is a portion of infiltration, after the fulfillment of shallow soil-

water flow, vertically percolates into and recharges the groundwater system. The spatial distribution and value scale of magni-

tude of long-term percolation is determinately correlated with those of hydraulic properties in subsurface medium. As results

of PRMS surface hydrologic simulation, the value scale and spatial distribution of the gravity drainage make a well correlation20

between the flow rate and soil type. This well-suited correlation reflects as the driving inputs and hydraulic propertied of MOD-

FLOW. Inherently, scale and use PRMS simulation gravity drainage to saves considerable efforts and time resulting a speed

up for the model development in terms of initialization. Typical groundwater MODFLOW model simulation requires an initial

condition set up for purposes of accurate simulation performance and a successful numerical solution (Bear, 2012; Franke

et al., 1987). Instead of initiating an independent groundwater model using numerically expensive approaches, i.e., draining25

test/spin-up test (Ajami et al., 2014a, b; Seck et al., 2015), directly using the PRMS model output to drive MODFLOW model

initiates the data communication between models and leads a heads-up of a GSFLOW model simulation.

2. ET – leveraging ET simulation in both PRMS and MODFLOW

As one of the most important processes in integrated hydrologic system, ET is considered both in the soil zone of PRMS

model and the unsaturated zone of MODFLOW model. In the integrated GSFLOW model, the ET simulated in MODFLOW30

component represents its potential capability within the reach of deeper root depth that could not be satisfied from the soil zone

simulated by the PRMS. Depending on the study purposes and hydrogeologic conditions, this could be especially important
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in areas where the deep ET is active and has great influences on the seasonal variation of the water cycle. In cases while total

ET were considered during the initial PRMS model development, the deep ET portion should be split out during the coupling

process as to capture active variabilities. In both PRMS and MODFLOW model simulation, high variation of deep ET raises

great influences in water dynamics within each sub-system, e.g., soil infiltration, soil water thresholds, soil water discharges to

or absorbed from unsaturated zone, groundwater-level, and GW storage.5

3. Streamflow – the Role of Streamflow Routing Switches from PRMS to MODFLOW

While for both of PRMS model and MODFLOW model, the streamflow routing process is an unexclusive component regard-

ing watershed studies. When coupling surface process with groundwater system, the function of streamflow routing process

switches from by PRMS to MODFLOW, to facilitate the dynamic water interactions between streamflow and groundwater

within MODFLOW. During this switching process, concerns are from two perspectives: the routing process algorithm and10

the corresponding linking data. While the streamflow routing process in PRMS is simulated by Muskingum, no routing, or

lake-contained algorithm, the replacing algorithms in MODFLOW require a corresponding representation of functions as was

simulated in PRMS. For example, lake simulation in PRMS is part of streamflow routing process, while it is functioned by an

independent module in MODFLOW. Second, stream water balance suggests data linkages between PRMS and MODFLOW:

1) the streamflow receives from /discharges to the groundwater system; 2) the overland flow that enters each stream segment.15

Understanding these two sources as the most critical determinant elements in the streamflow would of great help during the

model calibration, which is discussed in the following section. As listed above, these three data linkages summarize the keys

of simulating dynamic water interactions across the two sub-systems occurred in two critical realms: soil and stream. The

smooth data communication is companied by algorithm changes with different module/packages used in both PRMS model

and MODFLOW model (Table A1,A2). Especially, the critical integration process is determined by two modules in GSFLOW20

(Markstrom et al., 2005; Regan et al., 2016): gsflow_prms2mf and gsflow_mf2prms. The gsflow_prms2mf module is used to

direct PRMS outputs to MODFLOW model, which includes distributing gravity drainage and unsatisfied ET to MODFLOW

and allocating surface runoff (i.e., overland flow, Dunnian runoff, and Hortonian runoff) and subsurface interflow to stream

segments (Related and Tables, 2015). The gsflow_mf2prms module is used to distribute groundwater discharges from MOD-

FLOW cells to PRMS hydrologic response units (HRUs) when condition met. Additional parameters, which were required for25

these two modules, were summarized in Table A2.

3.3 Model Calibration and Sensitivity Analysis

Typical groundwater MODFLOW model simulation requires an initial condition set up for purposes of accurate simulation

performance and a successful numerical solution (Bear, 2012; Franke et al., 1987). Instead of initiating an independent ground-

water model using numerically expensive approaches, i.e., draining test/spin-up test (Ajami et al., 2014a, b; Seck et al., 2015),30

directly using the PRMS model output to drive MODFLOW model initiates the data communication between models and

leads a heads-up of a GSFLOW model simulation. The gravity drainage, defined in PRMS, a portion of infiltration after the

fulfillment shallow soil-water flow, vertically recharges the groundwater system. As results of PRMS model simulation, the

value scale and spatial distribution of the gravity drainage make a well correlation between the flow rate and soil type. This
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well-suited correlation reflects as the driving inputs and hydraulic propertied of MODFLOW and considerably saves efforts and

time resulting a speed up for the model development in terms of initialization. GW model calibration is a parameterization pro-

cess, which involves determining magnitude and spatial distribution of model parameters that reproduce the observed system

with hydraulic heads and groundwater flows (Kim et al., 2008). Two modeling status, steady state and transient state, are both

described with MODFLOW development in the GFLOW model coupling procedure. The steady-state simulation was applied5

in the MODFLOW model as to set up a water balance with valid groundwater flow property, e.g., the hydraulic conductivi-

ties. The gravity drainage, deriving from the surface process model PRMS, retains valid hydraulic features of the groundwater

system in terms of value scale and distribution. Such validation promotes MODFLOW simulation reaching to a steady state

in the most efficient and effective way. Furthermore, by driving MODFLOW model with the gravity drainage, it initiates a

compatible communication as it will do in the eventual GSFLOW model. Any fundamental error would be easier to detect at10

earlier stage of a GSFLOW model development. The transient-state simulation performed in GSFLOW is with varying water

flux occurring between surface-water system and groundwater system. This results parameters, engaging in the algorithms

determining the rates and timing of water flux exchanges, have great influences on the integrated hydrologic system. Among

all, water balance and storativities are the most concerns. While soil water changes from one-way flow simulation to two-way

flow simulation, with additional alterations in the evapotranspiration and gravity drainage computation mentioned above in15

Data Linkage section, the calibrated soil parameters in preliminary PRMS model requires further adjustments to reach a new

soil-water balance with dynamic water flux of recharges and discharges. On the other hand, the storativity is important to the

groundwater-flow simulation and may leverage the stock-featured parameters in the preliminary PRMS model to better facil-

itate the compatibility of two sub systems. The sensitivity analysis is an effective mean of identifying the influences of tested

parameters on the modeled system. During the transitioning from a groundwater system into an integrated hydrologic system,20

the influences it brings to the system changes. The highly sensitive parameters in the groundwater flow system may or may

not have the similar sensitivities in the integrated system. For both stand-alone MODFLOW model and integrated GSFLOW

model, the sensitivity analysis should be always performed to better understand data linkages and model behaviors, especially

regarding the influences of the dynamic surface - subsurface water interactions on the integrated system.

4 Case Study in Lehman Creek Watershed25

As in the previous studies (Chen et al., 2015, 2016), a PRMS model has been developed with detailed procedures described,

aiming to evaluate the surface hydrologic responses to climate change. For a smooth and efficient transition from independent

model to the integrated model, the proposed framework was applied in the following case study, with specific focuses on the

development of coupling procedures in the MODFLOW.

4.1 Study Area30

Lehman Creek watershed is located in east-central Nevada close to Nevada-Utah boundary and encompasses the Great Basin

National Park (Fig.2). Defined by the surface topographical conditions, it covers an area of 23.6 km2, elevating from 2040

7

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-268
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 30 November 2018
c© Author(s) 2018. CC BY 4.0 License.



m (east) to 3980 m (west). The variable topographic reliefs and dominant coverage of evergreen forest (70.7%; (Homer

et al., 2015)) make the climate dry hot at the lower plain area and the humid cool in high-elevation regions. More than 60%

of the precipitation falls as snow in the mountainous areas (Volk, 2014). The Lehman Creek initiates at the glacial deposits

that overlay older undifferentiated argillite, quartzite, and shale (Unp). In the cross-section shown in Fig.2, the granite and

shale intrusion separate the quartzite upstream and the limestone formation downstream, where the groundwater discharges as5

Cave Springs (Elliott et al., 2006). The groundwater outflows the watershed boundary, passing through the dissolute limestone

formation, joining the adjacent Baker Creek (Halladay and Peacock, 1972; Elliott et al., 2006).

4.2 Modeling of the Groundwater Flow System

4.2.1 GW System Conceptualization

According to Prudic et al. (2015), in the study area where the geology is dominated by quartzite and glacial deposits (Fig.2),10

most of precipitation forms into surface runoff, with minor groundwater flow occurring. Groundwater flow receives a recharge

from macrofractures as well as coarse sediment in the glacial deposits and alluvium with small storativities. Impervious

quartzite and granite impede the groundwater flow and force it into the spring discharge (Fig.2). In the area between the

intrusion and the downstream watershed boundary, the losing-stream recharges the groundwater through both glacial and al-

luvial deposits as well as the underlying karst limestone. Also, the groundwater interacts with the neighboring Baker Creek15

watershed at southeastern boundary (Prudic et al., 2015). To couple the MODFLOW with surface hydrologic PRMS model

in a simple and straightforward approach, the identical modeling area and grid mash as used in the PRMS model were ap-

plied in the MODFLOW model to ensure the data communication between two sub-systems on both region level and grid

level. Yet, it resulted in adjustments in boundary conditions to compensate the imbalanced water cut-off due to the different

“watershed” definitions in surface water and groundwater system. Herein, the spring discharges and the groundwater outflows20

were considered on the basis of water balance estimation, as the boundary conditions. As the Table 1 shows, the water balance

estimation includes vertical infiltration as inflow (1010 m3/d), derived from the PRMS model; the system outflows of baseflow

(450 m3/d; (Prudic et al., 2011, 2015)), spring discharge (245 m3/d; (Halladay and Peacock, 1972; Prudic and Glancy, 2009)),

and groundwater outflows at an estimation of 315 m3/d. Fig. 3 shows the position where the boundary flux occurred. A two-

layer groundwater flow system was defined, based on hydrogeologic features (Maxey, 1964; Seaber, 1988). Layer 1 consisted25

of glacial and alluvial deposits and Layer 2 consisted of fractured quartzite at the upstream, limestone at the downstream, split

by granite and shale intrusions (Fig.3). The granite and shale that underlie the fractured quartzite only was represented at the

intrusion as model bottom was considered as no-flow boundaries in this model (Fig.3).

4.2.2 Model Development

Apart from the fundamental MODFLOW model development, e.g., model package setup and parameterization (Chen et al.,30

2017), concerns from Data Linkages and Function Role Change were addressed specifically. While in the previous Lehman

Creek PRMS model development (Chen et al., 2015), the evapotranspiration is over-estimated as to represent the groundwater

8
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(a)

(b)

Figure 2. (a) The surface geology map in the Lehman Creek watershed, Great Basin National Park, Nevada and (b) an interpretive geologic

cross-section with location indications for Cave Springs and Lehman Caves (adapted from (Prudic et al., 2015)).
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Figure 3. (a) The surface geology map in the Lehman Creek watershed, Great Basin National Park, Nevada and (b) an interpretive geologic

cross-section with location indications for Cave Springs and Lehman Caves (adapted from (Prudic et al., 2015)).
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Table 1. Water Budget Estimations of the Conceptualized Groundwater Flow System in the Lehman Creek Watershed under Steady-State

Simulation.

Inflow Vertical infiltration 1010 Water balance estimation
Streamflow baseflow 450 Measurements and Prudic et al. (2015)
Spring discharge 245 Prudic and Glancy (2009)
Groundwater flow 315 Estimation from Prudic et al. (2015) 

Water Budget Component Estimation Source

Outflow

Flow Rate
(m3/d)

Table 2. Hydraulic conductivity of each hydrostrategraphic unit in the MODFLOW model (unit: m/d).

Hydrostrategraphic Unit Horizontal Vertical
Glacial deposits 5.00E-02 2.20E-04 Glacial Till 1E-7 to 3E-1
Alluvial deposits 5.00E-02 1 Silty, Loess, Silty Sand, Clean Sand, Gravel 1E-3 to 5E3
Quartzite 5.00E-07 5.00E-07 Igneous and Metamorphic Rock 1E-8 to 5
Limestone 1.00E-04 2.50E-01 Carbonate Rocks 1E-4 to 5E3
Granite and Pioche shale 1.00E-07 1.00E-07 Shale 1E-8 to 1E-4

Value Ranges of selected rocks  (Heath 1983)

loss in the water balance, which includes the Cave Spring and groundwater outflows to the adjacent Baker Creek drainage (Volk,

2014). The parameter (jh_coef ) determining the potential evapotranspiration in the soil was adjusted with a reduction, and the

compensation was made by deep-root evapotranspiration simulated by the MODFLOW. Secondly, the gravity drainage from

PRMS was the MODFLOW model-driving inflow and was in balance with groundwater outflows that were not considered in

the PRMS model, including spring discharges and boundary outflows, by adjusting the parameter (ssr2gw_rate, ssr2gw_exp) to5

modify the exponential curve that determining the gravity drainage rate. In terms of role exchange, all the routing processes and

related parameters in the previous PRMS model were forfeited, and a new module, as a role replacement in the integrated GS-

FLOW model, StreamFlow Routing packages (SFR) was used to present the streamflow routing process from stream originate

to the outlet of the watershed and to account for the streamflow-groundwater interactions. Streambed thickness and hydraulic

conductivity were estimated for each specified featured hydrogeologic formation, according to piezometer measurements and10

literature studies (Prudic and Glancy, 2009; Allander and Berger, 2009) Detailed changes in modules and related parameters

can be found in appendix.

4.2.3 Model Calibration and Sensitivity Analysis

The calibration procedure for MODFLOW, as a component of an integrated hydrologic model GSFLOW, includes steady-state

and transient-state model calibration, which were performed for both MODFLOW_only simulation and integrated GSFLOW15

simulation separately. In this study, the model was calibrated using a trial-and-error technique for both simulations, to esti-
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mate the hydraulic conductivity and the storativity of each hydrostratigraphic unit by fitting the water budget results with the

estimations within a ±10% range (Table 1). Due to the observation shortage as there were no drill holes or well observations

within the region of the study area, hydrogeologic features and components in water balance were used for the steady-state

model calibration; the streamflow observations were used for the transient-state model calibration. The sensitivity analysis was

carried out to estimate hydraulic conductivity of each hydrostrategraphic unit to assess the influences on the water-balance5

estimation. The model simulations were conducted for 14 different values of hydraulic conductivity, ranging from 0.2 to 10

times the estimated value. For each run, the Root Mean Square Error (RMSE) was calculated, which measures the error of

fitness of the estimation to the data (Kenney John, 1939). The lower value of RMSE meant a better model simulation with

fewer errors. Accordingly, the sensitivity of the hydraulic conductivity values could be estimated by corresponding changes in

the model errors.10

4.3 Modeling Results

By applying the conceptual framework and having potential concerns addressed, the MODFLOW development playing a com-

ponential role in the integrated system turns out successful, as the transition from an independent model to a system component

was smooth, efficiently, and effectively. Apart from continuous converging computation in MODFLOW and GSFLOW, the re-

sulting hydraulic property estimations and their influences on the integrated system well represent the geophysical conditions15

and hydrogeophysical features in the study area. The coarse glacial deposits sitting in the central valley and along the streams

has a relative high hydraulic conductivity (5E-2 m/d horizontally and 3E-2 m/d vertically); they had the most influences on the

modeling performance, as the greatest increase was found in the water balance RMSE results when they varied. Around the

downstream side, the alluvial deposits had a higher vertical hydraulic conductivity (1 m/d) than horizontal (5E-2 m/d), which

fits with the losing-stream feature observed. Underneath them, the fractured Prospect mountain quartzite and the granite (and20

Pioche shale) intrusion had a low hydraulic conductivity of 5E-7 m/d and 1E-7 m/d, respectively, with the least effects on the

integrated system as the RMSEs did not response much when the parameters changed; the limestone unit where forms the

Lehman Cave had high as hydraulic conductivities of 4E-4 m/d vertically and 1E-2 m/d horizontally. The model simulation

showed groundwater discharged where the glacial deposits meet the Granite and Pioche shale as springs. Overall, as RMSE is

an absolute measure of fitness, the current model error was 31 m3/d with calibrated parameters (Table 2).25

5 Discussion and Conclusion

The primary objective of the current study is to propose a conceptual integration framework with techniques and concerns

identified and addressed that can improve GSFLOW model development efficiency and help better simulation interpreta-

tions. Focusing on the main elements in modeling procedures, Model Conceptualization, Data Linkage and Function Role

Change, and Calibration and Sensitivity Analysis, the proposed conceptual framework identified the keys for a successful30

model communication between two sub-models, i.e., PRMS and MODFLOW, within GSFLOW model. The tackling strategies

and techniques were proposed correspondingly. As a demonstration, the proposed framework was applied to a study in the
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Lehman Creek watershed. As the example demonstrates how to implement the conceptual framework from the perspective of

the MODFLOW model development, it also showed how to initialize and modify the model, together with the PRMS model,

using the proposed techniques for being a model component in GSFLOW model. After model calibration, the modeling results

well estimated the hydraulic conductivities and storativities of the defined stratigraphic units, which kept the water balance

estimation and captured the hydrogeologic features with spring discharges and groundwater outflows. In this study, the main5

conclusions drawn from this study are:

– Keeping a consistency in spatial and temporal discretization of two sub systems is important to the GSFLOW model

development, while such consistency restrains the implementation of GSFLOW model due to temporal scale and raises

extra requirements for boundary conditions due to spatial definition differences;

– Leveraging three active data linkages, vertical percolation, deep-root ET uptake, and streamflow-aquifer interactions, in10

the integrated model development is critical for successful data communication and subsequent dynamics within two sub

system and inherently the integrated system;

– Using the Gravity Drainage result of PRMS model to drive MODFLOW model is an efficient technique to: 1) fast

converge the groundwater modeling as it keeps the soil texture in surface hydrologic simulation align with hydraulic

properties in groundwater system simulation; 2) debug the initialized GSFLOW at its early-stage;15

– Applying the proposed conceptual framework is practically useful for an effective and efficient GSFLOW model devel-

opment.

This research sets up the fundamentals of GSFLOW model development, focusing on the transitioning processes devel-

oping a stand-along model into a model component. Based on current documented literatures and authors’ knowledge, this

is the first study providing modeling efficiency strategies of GSFLOW model development with better understanding of the20

model integration structure and algorithms, as it identified the key concerns and issues regarding modeling scopes in and data

communication between the two sub-models. Although authors just present the basic model development outcomes, in terms

of model calibration and sensitivity analysis, there is already a substantial body of studies with detailed results and research

findings while missing illustrations of procedures and techniques in the model development. To know such missing procedures

is appealing: it offers a view of data communication between two sub-models from a perspective other than a vague concept25

of integrated system, and thus, when reconciled with model development perspective, can help obtain a more coherent image.

The proposed framework inherently provides additional hands-on guidance of a GSFLOW model development apart from its

manual. Additionally, to other integrated hydrologic modelers, this study also provides valuable experiences where common

concepts are shared.

Code and data availability. The GSFLOW (v1.2.2) is open sourced program and its code and related documentation are available on USGS30

web page: https://water.usgs.gov/ogw/gsflow/. While being compositions of GSFLOW program, both PRMS and MODFLOW are indepen-
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dent open-sourced program. The code and related documentation can be found through: https://wwwbrr.cr.usgs.gov/projects/SW_MoWS/

PRMS.html and https://water.usgs.gov/ogw/modflow-nwt/
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Abbreviation The following abbreviations are used for hydrologic models mentioned in this manuscript.

– GSFLOW Coupled groundwater and surface-water flow model10

– PRMS Precipitation-Runoff Modeling System

– MODFLOW Modular three-dimensional (3D) finite-difference groundwater model

– MODFLOW-NWT A model that uses the Newton-Rapshon formulation for MODFLOW-2005

– HSPF Hydrological simulation program - Fortran

– MODHMS A comprehensive MODFLOW-based hydrologic modeling system15

– SWAP Soil Water Atmosphere Plant

– SWAT Soil and Water Assessment Tool

– TOPNET Networked version of a topographic model
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