
Reviewer #1,  

We would like to extend our thanks to the reviewer for taking time to review the revised 

manuscript. We have tried to provide our response to the comments (shown in bold) below, to 

improve the paper. 

 

Suggestions for revision  
The authors conscientiously responded to the referees’ comments, especially that they have 
strengthened the focus of the manuscript on the implementation of the shrub PFT and the 
more local application.  
 
We would like to thank the reviewer for this comment. 
 
However, I still do not understand why the brute force method is used because it is the 
most computational expensive method, particularly as the authors argue that due to 
computational limitation further optimization is not feasible for this study. 
 
We agree that brute-force approach is computational expensive. We tried to reduce the candidate 
solutions to bring the computational cost to a manageable size by exploring only five most 
sensitive parameters and by limiting their ranges. Please see a more detailed response below 
(Answer to Reviewer 2) regarding some of the alternative methods and our justification for 
using the brute-force method. Also note that we have added more discussion of this approach in 
the methods (P.9.l.26-P.10.l.6), and discussion (P.20.l.19-23).  
 
For the broader scale, I miss a suggestion which parameter should be used and how this 
would affect the different sites. This would at least ensure that the new sagebrush PFT can 
be used at the regional scale.  
 
We identified ten best parameter combinations that estimated GPP closest to the observation for 
each of the two EC sites. With regards to recommending appropriate parameters for regional 
analysis, we think we still need to cover more study sites and adopt advanced sensitivity and 
optimization tests before we can recommend the best parameters for large scale regional analysis 
(Please refer to Conclusions in the manuscript). However, if we have prior (supporting) 
information about the dominant sagebrush type in a particular area of interest, we can choose the 
most suitable parameters from among our list of identified parameter combinations for 
parameterization (P.21.l.5-7).  
 
Only for a better understanding: The ten best simulations seem to change fairly linearly 
and differ not much (Figure S2). The parameter used for the optimization does not appear 
to change the dynamics of the GPP that might be due to the limited choice of parameters 
and the measure to rank the parameter used for the optimization.  
 
We selected eleven different parameters closely related to GPP based on several previous studies 
dealing with parameterization of process-based models. We agree that we may have lost 



 

  

considerable amount of information when we selected the top five most sensitive parameters and 
excluded others. We have touched upon this limitation and as a potential area of further 
improvement in the discussion section (P.19.l.18).  
Process-based models like EDv2.2 are ill-posed where we can obtain almost the same results 
with different sets of model parameterizations (P.10.l.24-29), which may be the reason we did 
not see much variation among the top ten ensemble members in Figure S2. Also, the results in 
Figure S2 are only for the top ten simulations and do not completely reveal the effect of 
parameters throughout the ranges of investigation. As discussed in the manuscript, our current 
study was focused mostly on developing the sagebrush PFT parameters,  and preliminary 
sensitivity and optimization tools for the analysis.   
 
Minor comment: Figure S1 - To which site does this data belong to? 
 
The data in this graph (Figure S1) is from Sierra Nevada Mountains, California in the Great 
Basin (Qi et al., 2018) which represents the southern extent of sagebrush communities in the 
region (p.7.l10-12). 



Reviewer # 2:  

We would like to thank the reviewer for the time to provide a thorough review on the revised 

manuscript. We have tried to provide our response for each of the comments (shown in bold) 

below, to improve the paper. 

 

Review of: Developing and optimizing shrub parameters representing sagebrush 
(Artemisia spp.) ecosystems in the Northern Great Basin using the Ecosystem Demography 
(EDv2.2) model By:Karun Pandit et al.  

 General comments This article is about the development and the parameterization 
(through the optimization) of shrubs in the EDv2.2 model. It focuses on two sites in the 
Northern Great Basin and on the sagebrush. The introduction of new vegetation 
descriptions in models is a key step to improve and simulate ecosystems more precisely. 
This article presents at least one first step of the introduction of shrubs in EDv2.2, 
necessary to represent some ecosystems (present in Great Basin but also throughout the 
world).  

There is an undeniable improvement compared to the first version submitted a few months 
ago, both in form and content. The title is in accordance with the article, the figures are 
clearly more readable, more coherent tests were provided and discussion/conclusions are 
more relevant. However, it seems to me that this could have been the first version 
submitted. And despite the deep work provided in this version, some comments were 
quickly replied to and sometimes without real justification (e.g. for the references).  

We would like to apologize for our lack of attention to previous comments and thank you for the 
more favorable assessment of this version of manuscript. 

Nevertheless, the paper can still be improved in precision and quality, by adding some 
coherence to the study with a (relatively) small amount of work. I listed below my 
comments.  

Comments  

There is an important improvement with the use of more yearly data forcing, removing 
some biases due to random year forcing used between optimisation simulations. The 
discussion was also clearly improved, taking into account the methodological limits.  

Thanks! 

Nevertheless, the choices of the methods used still have to be better justified in some case. 
Indeed, as it stands, it is not obvious that all tools are well considered. The main point is 
the justification of the use of “brute force” for the optimization due to computing 
limitation (p.9 l.11), while other methods are available especially in order not to try every 
configuration of the parameter set but to chose a new set of parameters depending the 



previous sets tested. But for this purpose some assumptions with the variables (mostly the 
independence between parameters) have to be made (like for your sensitivity test). You 
can therefore justify you method and discuss about other possibilities and your hypothesis 
for the sensitivity test in the discussion.  

The brute-force method was chosen because while it has limitations, it also provides robust 
estimates of global optimums. The brute-force method tries to explore all possible combinations 
within pre-defined parameter domains, allowing outcomes for all types of interactions among 
uniformly distributed parameters. This method can also be computationally expensive, however, 
if we can limit our search range and run through coarser search steps, the computational time is 
reduced significantly. This method can provide better estimates of global optimums with less 
uncertainties compared to emulators or other sample-based methods like Genetic Algorithms.  

Alternatives to the brute-force approach include Bayesian methods, which are mostly based on 
Markov Chain Monte Carlo (MCMC) and require 104  to 107 model runs. These analyses 
demand a huge amount of computational costs (Dietze et al., 2018; Fer et al., 2018). Emulator 
methods (surrogate methods) use statistical approaches to build relationships between input 
parameters and output variables, and reduce the time of running complex models. Similar to the 
brute-force method, these approaches also have limitations. For example, they may fail to 
converge in situations where the relationship between parameters and model outputs is highly 
nonlinear. 

We have added these statements in the manuscript in the methods section (P.9.l.26-P.10.l.6), and 
added text in discussion (P.20.l.19-23) to state the limitations in the method adopted. 

 

Another point is the choice of using an ensemble mean parameter and best cases. Why have 
you done this choice? For/with which hypotheses? Also in the discussion it could be 
interesting to compare and discuss the two sets of parameters (differences, results…).  

With the ensemble parameters, basically, we were trying to capture the non-linearity and high 
variability in parameter combinations observed from the models runs. Since the process-based 
models like EDv2.2 are ill-posed they do not necessarily have a unique solution for parameters, 
so we tried to explore multiple possible values close to the best ones. We updated the text 
accordingly (please refer p.10.l.24-28). We also modified the meaning for the ensemble mean in 
this version (p.13.l.19-p.14.l.2). Earlier, we presented a new simulation that used mean parameter 
combinations, but this approach is likely not applicable for non-linear parameters. In addition, it 
did not produce better results when compared to the best case. In this new version of 
interpretation, we compared the best case scenario with ensemble mean (mean estimates from ten 
best simulations), where we found the results more comparable to the best case. In fact, for the 
calibration, the ensemble mean performed similar to best cases (even marginally better) in both 
study sites. We also stated standard deviation associated with each of the mean ensemble 
parameters (Table 6) to understand the variation.  



We updated Figure 3 and Figure 4 to include the mean of ten best simulations, one standard 
deviation, and range of minimum and maximum, along with best case simulation and 
observation. This update is also consistent to the comment below regarding Figure S2. We also 
added monthly mean comparisons for calibration (Figure 3) to make it consistent with the 
validation figures (Figure 4). 

In connection to the application of the parameters, if we were to run EDv2.2 for a certain area, 
where we have better knowledge on some parameter estimates (eg. Vm0, or SLA) we can choose 
those (from best ten sets) that are most suited with the local conditions (please refer p.21.l.5-7).  

From Table 7 it is obvious that both the best solution and the ensemble of the 10 best solutions 
leads to almost similar results in terms of errors. However, the estimated parameters for each 
approach is slightly different (Table 6). Choosing the 10 best solutions gave us higher probability 
of getting close to global optimization.  

Per the comment, we have added more discussion regarding the comparison of different sets of 
parameters in the Discussion (p.19.l.7-14).  

 

2) As proposed before, it seems to me that the discussion could go a little further. For 
instance, you could compare the two sites and the two sets of parameters to introduce the 
following idea: which set of parameters will you use if you need to use your model in 
another situation or to start another optimisation? It could be interesting also to discuss 
about the choice to change only the parameters and allometry to discriminate shrubs from 
trees. Can the important differences with the observations shown be due to a missing 
process?  

We added text in the discussion section to compare and interpret two sets of parameters (ie. Best-
case and ensemble mean case), within and among two different study sites (p.19.l.7-14). We also 
tried to suggest potential parameters that can be used to initialize other optimization studies. 

We have stated our assumptions while simulating shrubs with EDv2.2 (please refer to p.4.l.7-10) 
and also discussed the shortcomings of our assumptions and possible future work to improve our 
results (please see p.19.l.19-25). 

 

3) It was a good idea to introduce a table (Table 1.) to present the parameters used in the 
equations, for the sensitivity test and the optimization. The text would be more readable if 
you add inside the table the abbreviations used in the text/equations. Moreover, there is 
still inconsistency in the use of italics for parameter abbreviations (some in italics and other 
without) and it is still not indicated what the Cs parameter is (equation 2). Note that in the 
table for the units the exponents disappeared and it could be important to indicate what the 
“a” unit stands for.  

Thank you for noting these inconsistencies. As per the comment, we have included abbreviations 
used in the texts/equations in Table 1. We also added equation 2 which elaborates how Vm0 is 



related to Vm(Tv) in equation 1. We have also added missing definition of Cs in the equation 3 
(previously equation 2), and clearly stated in the Table 1 that a-1 stands for per annum. 

 4) In this new version, you have changed the number of steps for Vm0 (Table 5.) and so the 
number of simulations (p.12 l.13) but with the same justification as in the previous version. 
How is it possible? In regards to the substantial changes in the simulations, it is not 
surprising to change the configurations but the scientific approach can be questioned. This 
new choice has to be indicated (at least in the authors response).  

Thank you for the comment. In this revised version, we decreased the upper range of Vm0 to 14 
instead of 11.5 which we adopted earlier, thus reducing the total number of steps from 5 to 4. 
This was done to lower our computational burden based on our previous optimization analysis 
where we did not find simulations with 11.5 coming closer to the observed data we used for 
calibration. Since, we performed simulations (optimization) for both EC sites, by excluding a 
total of 180 simulations from each of the EC site stations significantly reduced our computational 
time. However, we did not make any changes to our approach or method of optimization. 

 Specific comments  

p.2 l.5. Need for a reference for this sentence.  

We have included reference for the sentence (p.2.l.4-6). 

p.2. l.28. It is important to indicate that Great Basin is in the USA.  

We added “of the United States” in the sentence to indicate Great Basin in in USA (p.2. l.28). 

p.3 l.13-21. Now better introduced. Do not hesitate to explain why it could be interesting to 
work with cohort (to insist about the advantages of the ED2 model type).  

We added text to highlight use of cohort based model like EDv2.2 (p.3.l.22-24) 

p.5 Figure 1. It is difficult to read the name of the EC towers inside the figure.   

We have updated the Figure 1 by increasing the size of fonts for the names of EC towers.  

p.13 l.2-3. To be consistent, the SD values have to be indicated in Table S2.  

We have included SD values along with other indicators in Table S2. We also added goodness-
of-fit results for validation data for both the study sites in Table S2. 

p.13 l.7-8. It could be interesting to compare both cases, and so the simulation with the 
mean parameters can be added in Figure 3 (which was present in the previous version).  

We included mean and ±SD for the 10 best (ensemble) simulations along with the best-case 
scenario. We also updated the comparisons between best-case and ensemble mean in the text.  

p.15 l.6. Suggested change: remove ‘also’.  

We removed ‘also’ from the text. 



p.16 l.27. There is no Figure 5. (Fig 3 and 4?).  

We corrected it to “(Fig 3 and Fig 4)” p. 19.l.33. 

Fig. S2. The figure is a lot more readable than before. However, it could be probably better 
if you highlight the best parameters. Another possibility is to show instead of the other 9 
curves the mean of the 10 curves with the SD (+ curve of the ensemble parameters).  

We changed the figure to show simulation with best parameters, mean of 10 simulations, and 
±SD from the mean.  

Fig. S3. It could be very interesting (to support your sentence p.13 l.6) to add in the same 
type of graph the fraction of shrubs and grasses. 

We agree that it would be interesting to produce a graph showing standard deviation of mean 
separately for shrub and grass fractions. However, we observed grasses in only a couple of 
simulations (including best case) in very limited amount compared to shrubs. There would not be 
much information to add with rest of the nine simulations in terms of mean and variation, so we 
suggest keeping the current version.  

 



 

1 
 

Developing and optimizing shrub parameters representing sagebrush 

(Artemisia spp.) ecosystems in the Northern Great Basin using the 

Ecosystem Demography (EDv2.2) model 
Karun Pandit1, Hamid Dashti1, Nancy F. Glenn1, Alejandro N. Flores1, Kaitlin C. Maguire2, Douglas J. 
Shinneman2, Gerald N. Flerchinger3, Aaron W. Fellows3 5 

1Department of Geosciences, Boise State University, 1910 University Dr.,, Boise, ID 83725-1535 USA  
2United States Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk St., Boise, ID 83706 
3United States Department of Agriculture, Agricultural Research Service, 800 Park Blvd., Suite 105, Boise, ID 83712 

Correspondence to: Karun Pandit (karunpandit@gmail.com) 

Abstract. Ecosystem dynamic models are useful for understanding ecosystem characteristics over time and space because 10 

of their efficiency over direct field measurements and applicability to broad spatial extents. Their application, however, is 

challenging due to internal model uncertainties and complexities arising from distinct qualities of the ecosystems being 

analyzed. The sagebrush-steppe in western North America, for example, has substantial spatial and temporal heterogeneity as 

well as variability due to anthropogenic disturbance, invasive species, climate change, and altered fire regimes, which 

collectively make modelling dynamic ecosystem processes difficult. Ecosystem Demography (EDv2.2) is a robust ecosystem 15 

dynamic model, initially developed for tropical forests, that simulates energy, water, and carbon fluxes at fine scales.  Although 

EDv2.2 has since been tested on different ecosystems via development of different Plant Function Types (PFT), it still lacks a 

shrub PFT. In this study, we developed and parameterized a shrub PFT representative of sagebrush (Artemisia spp.) ecosystems 

in order to initialize and test it within EDv2.2, and to promote future broad-scale analysis of restoration activities, climate 

change, and fire regimes in the sagebrush-steppe. Specifically, we parameterized the sagebrush PFT within EDv2.2 to estimate 20 

gross primary production (GPP), using data from two sagebrush study sites in the northern Great Basin. To accomplish this, 

we employed a three-tier approach: 1) To initially parameterize the sagebrush PFT, we fitted allometric relationships for 

sagebrush using field-collected data, information from existing sagebrush literature, and parameters from other land models. 

2) To determine influential parameters in GPP prediction, we used a sensitivity analysis to identify the five most sensitive 

parameters. 3) To improve model performance and validate results, we optimized these five parameters using an exhaustive 25 

search method to estimate GPP, and compared results with observations from two Eddy Covariance (EC) sites in the study 

area. Our modeledmodelled results were encouraging, with reasonable fidelity to observed values, although some negative 

biases (i.e., seasonal underestimates of GPP) were apparent. Our finding on preliminary parameterization of the sagebrush 

shrub PFT is an important step towards subsequent studies on shrubland ecosystems using EDv2.2 or any other process-based 

ecosystem models. 30 
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1 Introduction 

Ecosystem dynamic models have been widely used to estimate terrestrial carbon flux and to project ecosystem 

characteristics over time and space (Dietze et al., 2014; Fisher et al., 20172018), largely due to their efficiency over direct field 

measurements and their applicability to broad spatial scales. However, these models have also been associated with high levels 

of internal uncertainty and questions regarding their applicability to distinct and often complex ecosystems at large scale. 5 

(Kwon et al., 2008). Sagebrush (Artemisia spp.) ecosystems in Western North America provide a good example of these types 

of modelling challenges, as these ecosystems are spatially heterogeneous and shaped by complex dynamics over time. 

Sagebrush ecosystems hold both high ecological and socio-economic value, but they have been reduced to nearly half of their 

historical range and are declining at an alarming rate (Knick et al., 2003; Schroeder et al., 2004). Various factors have 

contributed to this decline, including land clearing, invasion of nonnative species such as cheatgrass (Bromus tectorum), and 10 

climate change, that have collectively altered vegetation composition, hydrological function, and wildfire frequency (Bradley, 

2010; Connelly et al., 2004; McArthur and Plummer, 1978; Schlaepfer et al., 2014). In an attempt to restore portions of the 

sagebrush ecosystem, land managers have focused on reducing flammable vegetation, controlling invasive species, and seeding 

native plant species (Chambers et al., 2014; McIver and Brunson, 2014). There are relatively few studies that have evaluated 

carbon flux in sagebrush ecosystems in response to prescribed fire or restoration activities, and most of them used observational 15 

data from Eddy Covariance (EC) stations. However, given the large spatial extent of the sagebrush biome (>500,000 km2; 

Miller et al. 2011) and the paucity of EC station sites in sagebrush landscapes, the function of this ecosystem remains poorly 

understood, especially when coupled with the collective effects of restorationas management activities, fire, climate change, 

and invasive species oncontinue to alter ecosystem structure, composition, and spatiotemporal dynamics.  

Ecosystem Demography (EDv2.2), is a process-based ecosystem dynamic model that approximates the behaviour of 20 

ensembles of size and age-structured individual plants to capture sub-grid level ecosystem heterogeneity using partial 

differential equations (Medvigy et al., 2009; Moorcroft et al., 2001). This model was originally developed to study tropical 

ecosystems with trees as a primary component, but it has since been modified and applied to several different ecosystems, 

including boreal forests (Trugman et al., 2016), and temperate forests (Antonarakis et al., 2014; Medvigy et al., 2009; Medvigy 

et al., 2013). However, its application to semi-arid shrubland ecosystems has not been explored and it lacks a shrub Plant 25 

Function Type (PFT) to study these ecosystems. Thus, we developed and parameterized a sagebrush PFT for EDv2.2, and used 

it to estimate gross primary production (GPP) for the sagebrush ecosystems in the Reynolds Creek Experimental Watershed 

(RCEW) located in the Northern Great Basin of the United States, a cold-desert region dominated by expansive, shrub-steppe 

ecosystems.  

In this study, our primary objective was to develop preliminary sagebrush PFT parameters in EDv2.2 and to constrain 30 

uncertainties through optimization of selected PFT parameters. To accomplish this, we employed a three-tiered approach.  

First, we parameterized the sagebrush PFT, by fitting allometric relationships for sagebrush using field-collected data, 

information from existing sagebrush literature, and borrowing parameters from other land models. Second, to identify the most 
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influential parameters in GPP prediction, we used a sensitivity analysis and identified the five most-sensitive parameters 

affecting changes in GPP estimates. Third, to improve upon and assess model performance, we optimized the five most 

sensitive parameters using an exhaustive search method to estimate GPP, and then compared the results with observations 

from two Eddy Covariance (EC) sites in the study areas.  Our preliminary parameterization of the sagebrush shrub PFT is an 

important first step towards further study of shrubland ecosystem function using EDv2.2 or similar process-based ecosystem 5 

models. 

2 Material and methods 

2.1 Ecosystem Demography (EDv2.2) model 

EDv2.2 is a process-based terrestrial biosphere model that occupies a mid-point on the continuum of individual-based (or gap) 

to area-based (or big-leaf) models (Fisher, 2010; Smith et al., 2001). Area-based models like LPJ-DGVM (Lund-Potsman-10 

Jena Dynamic Vegetation Model) (Sitch et al., 2003), and BIOME BGC (Running and Hunt, 1993 as cited in Bond-Lamberty 

et al., 2014) represent plant communities with area-averaged representation of a PFT for each grid cell. The simplification and 

computational efficiency of these models make them widely applicable for regional ecosystem analysis,; however, this 

advantage often comes with their limitationa limited ability to properly to capture light competition and competitive exclusion 

(Fisher, 2010; Bond-Lamberty et al., 2014; Smith et al, 2001). On the other handIn contrast, individual-based models, (IBMs) 15 

such as JABOWA (Botkin et al., 1972) and SORTIE (Pacala et al., 1993)), represent vegetation at the individual plant level, 

thus making it possible to incorporate community processes like growth, mortality, recruitment, and disturbances. Lately, there 

have been drasticRecent improvements in computation computational efficiency, traditionally have permitted the use of IBMs 

would often bebeyond traditional applications confined to limited spatial and temporal scales due to their computational 

burden. EDv2.2 is a cohort based model where individual plants with similar properties, in terms of size, age, and function, 20 

are grouped together to reduce the computational cost while retaining most of the dynamics of IBMs. Each cohort is defined 

by a PFT, number of plants per unit area, and dimensions of a single representative plant like diameter, height, structural 

biomass, and live biomass (Fisher et al., 2010). The cohort based modelling approach in EDv2.2 has been applied to capture 

detailed ecological processes in studies investigating the effects of fire, drought, insect infestations, and climate effects on 

ecosystems at broad spatial scales (Fisher et al, 2018). 25 

The land surface in EDv2.2 is composed of a series of gridded cells, which experience meteorological forcing from 

corresponding gridded data or from a coupled atmospheric model (Medvigy, 2006). The mechanistic scaling from individual 

to the region is achieved through size and age structured partial differential equations that closely approximate mean behaviour 

of a stochastic gap model (Medvigy et al., 2009; Moorcroft et al., 2001). Each grid cell is subdivided into a series of dynamic 

horizontal tiles, which represent locations that experience similar disturbance history and have an explicit vertical canopy 30 

structure. This mechanism helps capture both vertical and horizontal distributions of vegetation structure and compositional 

heterogeneity compared to area-based models (Kim et al., 2012; Moorcroft et al., 2001; Moorcroft et al., 2003; Sellers et al., 
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1992). EDv2.2 consists of multiple sub-models for plant growth and mortality, phenology, disturbance, biodiversity, 

hydrology, land surface biophysics, and soil biogeochemistry, to predict short-term and long-term ecosystem flux and to 

represent natural and anthropogenic disturbances (Kim et al., 2012; Medvigy et al., 2009; Zhang et al., 2015). Sub-models in 

EDv2.2 rely mostly on many PFT-specific parameters, representing unique attributes of that particular group of species, to 

resolvedefine the stated biological processes (Knox et al., 2015). Studies on shrub parameterization hashave been 5 

doneperformed in LPJ-GUESS for the tundra region (Miller and Smith, 2012; Wolf, 2008), however, itparameterization for 

shrub PFT is clearly limitedlacking for semi-arid shrubland ecosystems. EDv2.2 has parameters defined for 17 different PFTs 

including grasses (C3 & C4), conifers, deciduous trees (temperate & tropical), and agricultural crops. In this study, we 

identified parameters for the sagebrush (shrub) ecosystem to simulate it in the model as a new PFT. Furthermore, since we 

tried to exploreWe limited the scope of this study to sagebrush PFT parameterization using model structures and processes 10 

adopted in EDv2.2 for trees (e.g. seed dispersal, competition, mortality, and phenology), which we assumed would be generally 

applicable to shrubs (Wolf et al., 2008). Because we explored model performance based on GPP estimates, we selected eleven 

different parameters related to plant ecophysiology and biomass allocation to conduct sensitivity and optimization assessments 

(Table 1). We mainly relied on similar studies (Dietze et al., 2014; Fisher et al., 2010; LeBauer et al., 2013; Medvigy et al., 

2009; Mo et al., 2008; Pereira et al., 2017), our preliminary sensitivity analyses, and consultation with other developers and 15 

users of the EDv2.2 model to select the parameters.  

Table 1. Parameters used to explore model performance for sagebrush PFT. 

Parameter Description Unit 

Vm0 Maximum carboxylation rate 

(𝑉) 

Maximum carboxylation rate at 15⁰C  (µmolm-2s-1) 

Stomatal slope (M) Slope of stomatal conductance-photosynthesis relationship  - 

Cuticular conductance (b)  Intercept of stomatal conductance-photosynthesis relationship  (µmolm-2s-1) 

Water conductance (Kw) Supply coefficient for plant water uptake  (ms-1kgCroot-1) 

Leaf width (Wleaf) Controls leaf boundary layer conductance (m) (m) 

SLA Specific leaf area  (m2kg-1) 

GRF (rg) Growth respiration factor - 

Q-ratio (q) Ratio of fine roots to leaves - 

Leaf turnover rate (αleaf) Inverse of leaf life span  Per annum (a-1) 

Fine root turnover rate (αroot) Inverse of fine root life span  Per annum (a-1) 

Storage turnover rate (αstorage) Turnover rate of plant storage pools  Per annum (a-1) 

 

Detailed descriptions of sub-models of EDv2.2 are available in existing literature (Medvigy et al., 2009; Moorcroft et al., 

2001); thus, here we describe the ones related to the parameters used in this study. The ecophysiological sub-model has a 20 

coupled photosynthesis and stomatal conductance scheme developed by Farquhar and Sharkey (1982) and Leuning (1995), 
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respectively, and which estimates leaf-level carbon and water fluxes. Leaf-level carbon demand of C3 plants is determined by 

the minimum of light-limited rate (Je) and Rubisco-limited rate (Jc), and Vm0𝑉 controls the laterlatter as given by Eq.(1) 

after being scaled to a given temperature. 

𝐽 =
( ೡ்)(ೝି Г)

ೝା భ(ଵାమ)
                                   (1) 

 5 

where, 𝑉(𝑇௩) is the maximum capacity of Rubisco to perform carboxylase function at a given temperature Tv scaled from 

Vm0𝑉 using an exponential function (Medvigy et al., 2009) given below (Eq. 2), 𝐶௧is the intercellular CO2 concentration, 

Г is the compensation point for gross photosynthesis, K1 is the Michaelis-Menten coefficient for CO2, and K2 is proportional 

to the Michaelis-Menten coefficient for O2.  

 10 

𝑉(𝑇௩) = 𝑉
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                                                                (2) 

where, 𝑇௩ is any given temperature for which the scaling is being done and 𝑇௩ , 𝑙𝑜 is the lower cut off temperature. 

   

Stomatal conductance which is modeledmodelled using Leuning (1995), a variant of Ball Berry model (Eq. 23), is influenced 

by stomatal slope and cuticular conductance. 15 

𝑔௦௪ =
ெ

(ೞିГ) (ଵା
ವೞ
ವబ

)
+ 𝑏                    

(2)3) 

 

where, 𝑔௦௪ is stomatal conductance for water, 𝐴𝑜 is photosynthetic rate,  𝑀 is stomatal slope, 𝑏 is cuticular conductance, 𝐷 is 

empirical constant, 𝐷௦ is water vapour deficit, and 𝐶௦ is CO2 concentration within leaf boundary, and Г is as described above. 20 

Stomatal control is also affected by soil moisture supply term, which is a function of soil moisture, fine root biomass, and 

water conductance. When the available water supply is less than the demand predicted by photosynthesis-conductance model, 

then photosynthesis, transpiration, and stomatal conductance are all linearly weighted down to match the supply (Dietze et al., 

2014).  

 25 

Water and CO2 concentrations within the leaf boundary layer are influenced by leaf width along with other factors like wind 

speed, leaf area index, and molecular diffusivity of heat. Specific leaf area (SLA) has units of leaf area per unit leaf carbon 

and is used to scale up leaf-level to canopy-level fluxes. Relationships between growth respiration and net photosynthesis are 

controlled by the growth respiration factor. In EDv2.2, while leaf biomass is determined by PFT specific allometric equation 

(as shown in Table 2 for sagebrush) based on diameter, fine root biomass is defined by a ratio of leaves to fine roots. Leaf 30 
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turnover and fine root turnover rates together influence overall litter turnover rate, even though in deciduous trees dropping of 

leaves also affects this rate. Turnover rate of stored leaf pool and storage respiration depends on storage turnover rate, size of 

stored leaf pool, and storage biomass. 

2.2 Study area 

While the PFT was developed broadly for sagebrush, we focuseddeveloped the EDv2.2 model runs atfocused on the Reynolds 5 

Creek Experimental Watershed (RCEW site,), located in the Northern Great Basin region of Western United States (Fig. 1). 

This siteThe RCEW is operated by the USDA Agricultural Research Service and is also a Critical Zone Observatory (CZO) 

(referred to as RC-CZO). We used two 200 m x 200 m polygons centered at two EC sites within RC-CZO to closely represent 

the footprint area of these sites. The AmeriFlux US-Rls EC station, located at 43.1439 N and 116.7356 W and at an elevation 

of 1583 m, is within the Lower Sheep Creek drainage in RCEW. The footprint of this site is dominated by low sagebrush 10 

(Artemisia arbuscula) and Sandberg bluegrass (Poa secunda) (Stephenson, 1970; Seyfried et al., 2000) and is characterized as 

having light cattle grazing (AmeriFlux, 2018). The second AmeriFlux tower, US-Rws, is located at 43.1675 N and 116.7132 

W in the Nancy Gulch drainage, within about 2 km distance to the northeast of the US-Rls site. This area is dominated by 

Wyoming big sagebrush (A. tridentata ssp. wyomingensis) and bluebunch wheatgrass (Pseudoroegneria spicata) (Stephenson, 

1970). Hereafter, these two sites are designated as LS (for low sagebrush) and WBS (for Wyoming big sagebrush), 15 

respectively.   
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Figure 1. Location of EC flux sites where studies were performed.in the RCEW study area: designated as LS (for low 

sagebrush) and WBS (for Wyoming big sagebrush). Field plots depicted were used to develop the allometric equations. The 

inset map shows the location of the RCEW study area within the Northern Great Basin (LCC, 2018).   

2.3 Inventory and EC tower data 5 

A field inventory dataset of sagebrush shrubs from RCEW recorded in 2014 (Glenn et al., 2017) was used to fit the allometric 

equations (for temperate PFTs) in EDv2.2, and to initialize the ecosystem structure for the model simulations. Variables used 

to fit allometric equations for the sagebrush included volume, crown diameter, height, and stem diameter. EDv2.2 was 

originally developed for tropical forests, and thus typically specifies allometric relationships in terms of diameter at breast 

height (DBH). However, this length-scale variable has limited application to shrubs of the sagebrush-steppe ecosystem, which 10 

rarely exceed 1.5 m in height. Thus, we developed a substitute length-scale variable for DBH that effectively corresponds to 

shrub volume. To accomplish this, shrub volume was first calculated using crown area (characterized as an ellipse, and 

approximated with semi-major and semi-minor axis lengths) and height, and the cube root of this volume was then used as the 

characteristic length-scale variable required to parameterize allometric relationships in EDv2.2. To test this relationship, we 

compared height predicted from cube root volume with observed sagebrush height using a different set of data from the eastern 15 
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side of the Sierra Nevada Mountains, CA in the Great Basin (Qi et al., 2018). We found a good fit for the data (r2 = 0.71) with 

a small negative bias of -1.88 cm, and a random residual distribution (Fig. S1). Using our field inventory from RCEW, we 

identified the coefficients in allometric equations (Table 2) for shrub height, leaf biomass, structural biomass, canopy area, 

and wood area index as a function of this cube-root of volume measure (used as DBH in the equation).  

GPP data from 2015 to 2017 water years were derived from the LS and WBS EC stations (Fellows et al., 2017) using 5 

the REddyProc software in R (Reichstein et al., 2005) to fill and partition net ecosystem exchange (NEE) into ecosystem 

respiration and GPP.  

 

Table 2. Coefficients for sagebrush (shrub) PFT to allometric equations in EDv2.2 (temperate PFTs). 

Relationship Equation Coefficients 

DBH (cm) to Height (m) 𝐻𝑡 = 𝑎(1 − 𝑒 × ு)  a = 4.7562, b = -0.002594 

DBH (cm) to Woody Biomass (kg) 𝑊𝐵 =


ଶ
 × 𝐷𝐵𝐻   a =5.709 x 10-8, b=4.149 

DBH (cm) to Leaf Biomass (kg) 𝐿𝐵 =


ଶ
 × 𝐷𝐵𝐻   a=2.582 x 10-6, b=2.746 

DBH (cm) to Canopy Area (m2) 𝐶𝐴 = 𝑎 × 𝐷𝐵𝐻   a=6.35 x 10-5, b=2.18 

DBH (cm) to Volume (m3)  𝑉 = 𝑎 × 𝐻𝑡  ×  𝐷𝐵𝐻    a=2.035 x 10-5, b=2.314 

Volume (m3) to Root Depth (m), 𝐷 = 𝑎 ×  𝑉   a = -3.0, b = 0.15 

DBH (cm) to Wood Area Index, 𝑊𝐴𝐼 = 𝑛𝑝𝑙𝑎𝑛𝑡  ×  𝑎 × 𝐷𝐵𝐻   a= 0.0096, b =2.0947 

DBH = diameter at breast height; Ht = height; WB=woody biomass; C2B=carbon to biomass ratio; LB=leaf biomass; 10 

CA=canopy area; V=volume; D=root depth; WAI=wood area index. 

2.4 Meteorological forcing data 

Outputs from a long-term, high resolution climate reanalysis obtained from the Weather Research and Forecast (WRF) model 

(Skamarock et al., 2008) were used to provide meteorological forcing data for the EDv2.2 model (Table 3). The WRF outputs 

correspond to atmospheric temperature and specific humidity at 2 m height, wind speed at 10 m height, downward shortwave 15 

radiation and long-wave radiation at ground surface, surface pressure and accumulated precipitation (Flores, et al., 2016). The 

spatial and temporal resolutions of the data are 1 km and 1 hour, respectively. The EDv2.2 model then partitions shortwave 

radiation into direct and diffuse, visible and near-infrared components as summarized by Weiss and Norman (1985). We 

obtained these forcing data from 2001 to 2017 for two WRF pixels corresponding and boundingthat spatially bound the LS 

and WBS sites (Fig. 1).  20 

 

Table 3. Meteorological forcing data from WRF model used for simulation. 

Variable WRF name Unit 

Temperature at 2 m T2 K 

Surface pressure PSFC Pa 
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Accumulated precipitation RAINNC mm 

Terrain height HGT m 

U wind (zonal) component at 10 m U10 m/s 

V wind (meridional) component at 10 m V10 m/s 

Specific humidity at 2 m Q2 kg/kg 

Downward longwave flux at ground surface  GLW w/m2 

Downward shortwave flux at ground surface SWDOWN w/m2 

2.5 Initial parameterization and sensitivity analysis 

We identified initial sagebrush shrub PFT parameters based on field allometric equations, previous research studies on the 

sagebrush ecosystem (Ahrends et al., 2009; Cleary et al., 2010; Comstock and Ehleringer, 1992; Gill and Jackson, 2000; Li et 

al., 2009; Olsoy et al., 2016; Qi et al., 2014; Sturges, 1977; Tabler, 1964), and information from other general PFT parameters 

in EDv2.2 (Table S1 in the Supplement). The initial ecosystem states for the model run for the LS and WBS sites were 5 

designated to be a single sagebrush with 1 plant/m2 representing average spacing from the 2014 field inventory data. For the 

LS site, we used 0.57 m of cube root volume (diameter) and 0.56 m for height and for WBS we used 0.62 m of cube root 

volume and 0.63 m for height. The soil column was configured to be 2.3 m deep with 9 vertical layers and a free-drainage 

lower boundary. Corresponding to a gravelly loam soil in the study site (USDA, 2018a), we used a soil texture with 55% sand, 

25% silt, and 20% clay, for both sites. Initial soil moisture was set to near saturation with no temperature offset, and the initial 10 

atmospheric carbon dioxide level matching the year 2001 (370 ppm), when we initialized the simulation. We ran the EDv2.2 

model with these initial settings and initial shrub PFT parameters for the sensitivity analysis at the LS site for a fifteen-year 

simulation period. We selected this simulation period based on our pre-sensitivity trial runs, previous studies (Medvigy and 

Moorcroft, 2012; Antonarakis, et al., 2014) where authors had initialized model using inventory data, and taking into account 

that there have been no major disturbances in recent history in these sites. We used only one of our sites (LS site) for the 15 

sensitivity analysis because we assumed both the sites are quite similar in terms of meteorological forcing (given their 

proximity) and ecosystem conditions, and particularly as we used a range of maximum and minimum values of parameters in 

the analysis.  

Since our study was more focused on preliminary parameterization of the sagebrush PFT, we limited the sensitivity analysis 

to explore linear dependence of selected parameters over target variable, assuming minimum non-linear dependence among 20 

these parameters. We used a sensitivity index (SI) suggested by Hoffman and Gardner (1983) (Eq. 34) to perform a one at a 

time sensitivity analysis and rank the parameters. Because this index is highly affected by the extreme values of parameters 

being studied, it is recommended that the parameter range cover the entire range of possible values. SI has been used in different 

areas of studiesstudy including ecology (Waring et al., 2016) and hydrology (Wambura et al., 2015), mostly to assess the effect 

of parameters on target variables, and sometimes to reduce the number of variables for further analysis. 25 
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𝑆𝐼 =
ீ௫ିீ

ீ௫
,           (3                           

          (4) 

 

where, 𝑆𝐼 is sensitivity index, 𝐺𝑃𝑃𝑚𝑎𝑥 is the value of GPP corresponding to the simulation with the maximum value of a 

parameter, and 𝐺𝑃𝑚𝑖𝑛 is the value of GPP corresponding to the simulation with the minimum value of a parameter. We 5 

identified minimum and maximum possible values for each of the selected parameters based on previous sensitivity and 

optimization studies, the range of parameters for other PFTs in EDv2.2, and our preliminary sensitivity analyses (Table 4). 

EDv2.2 was then run for a fifteen-year period with both minimum and maximum values of each parameter while keeping all 

other parameters constant. The average daily GPP outputs throughout the simulation years for maximum and minimum values 

of parameters were used to derive 𝐺𝑃𝑃𝑚𝑎𝑥 and 𝐺𝑃𝑚𝑖𝑛 respectively. We limited the optimization to the five most sensitive 10 

parameters to keep time and computing performance manageable.  

2.6 Optimization and validation 

In the third step, optimization of the five selected parameters was performed for both the LS and WBS sites using an exhaustive 

search (brute force) method within the specified range of values. This process was performed to identify the best values for 

the five selected parameters for each EC station in predicting GPP. A Bayesian method is often preferred in parameter 15 

optimization as it can assimilate multiple input data with a single model run and provide separate uncertainties for parameters, 

processes, and data. However, for a model like EDv2.2, it is nearly computationally prohibitive as we would need 104 to 107 

model runs to perform associated Markov Chain Monte Carlo processes (Dietze et al., 2018; Fer et al., 2018). Likewise, there 

are model emulators (surrogate models) where statistical models are created to mimic full models by fitting parameters and 

response variables using distributions such as Gaussian. Experiments done with these model emulators are later transferred 20 

into the full model thus making this method computationally efficient. One of the drawbacks of this method is that it frequently 

fails to converge with non-linear parameters (Fer et al., 2018; Keating et al., 2010). An alternative to these approaches is the 

brute-force method where all possible combinations of parameters from a uniform distribution within a pre-defined range are 

examined to get the best result. Advantages of the brute-force method are a higher possibility of identifying global optimums 

or fine tuning of posterior parameter ranges and assessing non-linearity among parameters. The major disadvantage of this 25 

method is the computational cost but this can be reduced significantly by limiting the range of parameter domain (Fer et al., 

2018; Schmidtlein et al, 2010).         

 

For each site, we ran 720 simulations with a unique combination of parameter values for fifteen years (2001-2016), at which 

point it was assumed to reach an equilibrium with climate.  EDv2.2 simulations were configured to allow for growth of the C3 30 

grass, northern pines, and late conifers together with the shrub PFT. This was done because although the vegetation 

assemblages in the flux site footprints are primarily composed of sagebrush and grasses, conifers are present in some parts of 
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the experimental watershed (Seyfried et al., 2000). For each simulation, we calculated a skill score, Nash-Sutcliffe efficiency 

(NSE) (Nash and Sutcliffe, 1970), to compare the simulated GPP from 2015 and 2016 with those derived from LS and WBS 

EC stations for respective years. Although, NSE is closely related to root mean square error (RMSE) (or mean square error, 

MSE), the skill score from it can be interpreted as comparative ability of the model over a baseline model, which is the mean 

of site observations in this case. While the RMSE value depends on the unit of predicted variables, which can vary from 0 to 5 

infinity, the NSE is dimensionless and varies from negative infinity to 1 (Krause et al, 2005; Gupta et al, 2009). NSE is 

calculated using Eq. (45): 

 

𝑁𝑆𝐸 = 1 −
∑

సభ (ைି)మ

∑
సభ ൫ைିை൯

మ ,          (4          (5) 

 10 

where, 𝑂  is observation, 𝑃  is predicted value, 𝑂 is mean of observation, and n is number of observations. For both EC stations, 

we selected the 10ten best simulations based on NSE scores and, computed ensemble means of all five parameter values. We 

then ran the , and estimated mean GPP. Outputs from process-based models like EDv2.2 model using the ensemble mean are 

often ill-posed, meaning that there may not be a unique solution of parameter values andcombinations but rather several 

combinations of parameters produce the same solution. One way to solve the ill-posed problem is by selecting more than one 15 

of the best case (highest NSE) parameter values for both EC sites.combinations, from which we can either explore average 

outputs or select one of the ensemble members that would better match any prior information such as any correlation among 

parameters, available data, vegetation characteristics or ecosystem conditions (Combal et al., 2002; Quan et al., 2015). The 

simulated GPP from these runs were then compared against respective EC site data from 2017, which was withheld from the 

optimization as a means of providing an independent validation.  20 

3 Results 

3.1 Initial parameterization and sensitivity analysis 

For the model run based on the initial values of parameters (Table S1 of Supplement), the fifteen-year simulations produced 

an annual cycle in GPP that decreases in amplitude during the initial 1-3 years, and remains at a level of approximately 0.07 

kgC/m2/yr in the remaining years (Fig. 2a). Observed GPP in 2016 were 0.51 kgC/m2/yr and 0.38 kgC/m2/yr for the LS and 25 

WBS sites, respectively. This result was significantly lower than the observed GPP from either of the EC sites, and thus we 

followed up with sensitivity and optimization analysis to constrain some of the influential parameters.  

Based on the SI ranking, SLA, stomatal slope, 𝑉, fine root turnover rate, and Q-ratio were identified as the top five 

sensitive parameters compared to the other parameters explored (Fig. 2; Table 4). Related studies (Dietze et al., 2014; Medvigy 

et al., 2009; Pereira et al., 2017; Zaehle et al., 2005) have also identified similar model parameters being important in estimating 30 

GPP. In our study, higher parameter values of SLA, stomatal slope, and 𝑉, resulted in higher GPP estimates (Fig. 2b, c, and 
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d), whereas for Q-ratio and fine root turnover rate, higher parameter values produced lower GPP (Fig. 2e and f). The impact 

of shifts in SLA, 𝑉, and stomatal slope values are observed from the very beginning of the simulations, while changes in 

fine root turnover rate and Q-ratio parameters start to show differences from roughly 3-4 years after the initial model run. 

Although not ranked in the top five, cuticular conductance, leaf turnover rate, and growth respiration factor also had 

considerable influences over GPP (Table 4).   5 

 

 

Figure 2. Simulated daily GPP outputs from 1-15 years for the study location with (a) initial values of all five parameters, and 
(b-f) maximum (green), minimum (blue), and initial (red) parameter values for SLA, stomatal slope, 𝑉, Q-ratio, and fine 
root turnover rate. 10 
 

 

Table 4. Summary of sensitivity analysis of studied PFT parameters ranked by Sensitivity Index (SI). 
Parameters Initial Min Max SI Reference 

SLA (m2kg-1) 4.5 2 15 0.988 Lambrecht et al., (2007); 

Brabec (2014); Olsoy et al., (2016) 
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Stomatal slope 7 2 15 0.983 Dietze et al., (2014); Bonan et al., 

(2014) 

 𝑉 (µmolm-2s-1) 16.5 4 30 0.982 Comstock & Ehlenger (1992); 

Oleson et al., (2013)  

Q-ratio 3.2 0.4 12 0.898 Dietze et al., (2014) 

FinerootFine root turnover rate (a-1) 0.33 0.1 2 0.895 Gill and Jackson, (2000) 

Cuticular conductance (µmolm-2s-1) 103 102 107 0.813 Barnard and Bauerle (2013): 

Duursma et al., (2018) 

Leaf turnover rate (a-1) 1 0.1 2 0.779 * 

GRF 0.33 0.11 0.66 0.694 Wang et al., (2013) 

Water Conductance (ms-1kgCroot-1) 1.9 × 10-5 1.9 × 10-6 1.9 × 10-4 0.168 * 

Storage turnover rate (a-1)   0.624 0.33 0.95 0.004 * 

Leaf width (m) 0.05 0.01 0.10 0.002 * 

* Information about the range comes from range of values for other PFTs in EDv2.2, and our preliminary sensitivity analysis 

3.2 Optimization and validation 

For our exhaustive search of parameter values, we limited search domains for parameters based on previous studies and the 

result of our sensitivity analysis. SLA search limits were largely based on Olsoy et al. (2016), who suggested a range of 3 to 6 

m2/Kg for sagebrush SLA, with regional and seasonal variations. Similarly, limits for 𝑉 were extended slightly beyond 5 

Comstock and Ehleringer’s (1992) recommendations for Great Basin shrubs, and the upper limit for stomatal slope was 

extended slightly beyond that used by Oleson et al. (2013) for a shrub PFT in the Community Land Model (CLMv4.5). We 

set search domains for Q-ratio based on a leaf and root biomass study of sagebrush by Cleary et al. (2010), and fine root 

turnover ratio was based on results from a study on Artemisia ordosica in a semi-arid region of China (Li et al, 2009). Interval 

distances (or ‘steps’) were calculated to equally space out the range between the maximum and minimum of each parameter 10 

for a given number of intervals (Table 5). Parameters identified as exerting more control on GPP prediction were assigned 

higher number of steps, resulting in the following: five steps of SLA, four steps for 𝑉, stomatal slope, and three steps for Q-

ratio and fine root turnover rate. Among 720 possible simulations for unique parameter value combinations for each site, 92 

cases from LS and 116 cases from WBS which did not provide model optimization results because of numerical instabilities 

(with GPP approaching zero) were excluded from subsequent analysis.    15 

Table 5. Minimum value, maximum value, interval size, and number of steps for each parameter used in optimization. 

Parameter Min Max Interval Number of steps 

SLA (m2kg-1) 3.00 9.00 1.50 5 

𝑉 (µmolm-2s-1) 14.00 21.50 2.50 4 
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Stomatal slope 7.00 10.00 1.00 4 

Fine root turnover (a-1) 0.11 0.33 0.11 3 

Q-ratio 0.40 3.20 1.40 3 

 

We selected ten simulations with the best NSE scores for both the LS and WBS sites (Table S2 and Fig. S1 in the 

Supplement) and determined ensemble means of parameter values for these sites (Table 6). To perform validation of these ten 

best simulations from each EC station, we extended the model runs to obtain GPP estimates for the year 2017. We then ran 

EDv2.2 from 2001 to 2017 using parameterscompared the biases and skill scores associated with the highest NSE scoretop 5 

performing simulation (hereafter, the ‘best case’) and ensemblethe mean parametersfrom all ten simulations (hereafter, the 

‘ensemble case’) for each of the EC stations.mean’). Among the ten best simulations selected for each EC site, four of them 

were common to both sites (Table S2 in the Supplement). We observed that the variation in parameter values was more 

pronounced for the LS site, especially with regard to 𝑉 and stomatal slope. Likewise, we observedidentified more variation 

in GPP estimates among ten best simulations for LS site than for WBS site, especially during the peak and trough periods in 10 

the plots (Fig. S2 in the Supplement). The best case for WBS site showed traces of C3 grass growth through some intermediate 

simulation years even though we initialized the model with only the shrub PFT (Fig. S3 in the Supplement). Optimized 

parameter values were only slightly different between the best case and ensemble casesmeans for both sites, possibly 

suggesting little interaction effects among the parameters (Table 6). In the best case, parameter values for  𝑉, SLA and 

stomatal slope were the same for both the sites, whereas Q-ratio and fine root turnover rate were different. We also observed 15 

that fine root turnover rate and Q-ratio had higher variability among the ten best simulations compared to the rest of the 

parameters for both sites. Our comparison of variation between the two sites among ensemble members showed the WBS site 

had overall lower variation than the LS site (Table 6), and  𝑉 had noticeably lower variation for the WBS site.    
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Figure 3. Observed and simulated GPP for the optimization period (water years 2015 and 2016) for both EC towers. a-b. 
Simulated daily GPP (kgC/m2/yr) withfrom best case (highest NSE), one standard deviation of ensembles, and range of 
ensemble simulations compared with EC station observation data from water years 2015 and 2016 for a) LS and b) WBS EC 
towers.sites. c-d. Simulated mean monthly GPP (kgC/m2/yr) from best case and ensemble mean compared against observation 
data for c) LS and d) WBS sites. Note that observation data from December 11, 2014 to February 17, 2015 was missing for 5 
LS site. 

 

Figure 3 comparespresents simulated daily GPP from the best simulation incase, variation among ten best ensemble 

members, and ensemble mean for the final two model years (October 2014 to September 2016) along with the dailyobserved 

GPP from the same period from each EC station.  Optimization results for the LS site in Fig. 3a show that simulated GPP 10 

matches well with observed data for most days, except during the spring season, during which strong peaks in observed GPP 

were not captured by the simulation results. In contrast, the lower GPP spring peaks for the WBS site (Fig. 3b) were far more 

comparable to the simulation results. This spring mismatch in the LS site, resulted in higher Bias and lower NSE when 

compared to the WBS site (Table 7). MoreoverAverage monthly comparisons (Fig. 3c) show that simulated GPPs are close to 

the observations for most of the months except for April, May and June, during when the model is clearly underestimating 15 

GPP. We observed a small variation (Fig. 3a) among ten ensemble simulations with an average standard deviation of 0.057 

kgC/m2/yr where most of the variations were observed during fall and early spring. Variations during fall months are evident 

in the monthly average GPP, in which there was often considerable difference between ensemble mean and best case 

estimations for September and October (Fig. 3c and 3d). Despite GPP estimation from ensemble mean (-0.17 kgC/m2/yr) 

having higher negative bias compared to the best case (-0.14 kgC/m2/yr), its skill score (NSE) was marginally higher (Table 20 

7). In comparison to the LS site, the WBS site had lower spring peaks in GPP, which were also limited to fewer months (Fig. 

3b and 3d) and were far more comparable to the simulation results. The average standard deviation among ensemble 

simulations (0.037 kgC/m2/yr) was lower for WBS than for LS, resulting in little difference between best case and ensemble 

mean estimations for that site. Both the WBS and LS ensemble mean simulations produced only a marginally higher NSE than 

the best case results.  However, the spring mismatch in the LS site resulted in higher Bias and lower NSE when compared to 25 

the WBS site (Table 7). Yet, despite negative biases during spring, positive NSE scores for both sites suggest that the 

parameters were generally functioning to allow the model to track observed daily GPP over time.     

  
 
 30 
 
Table 6. Optimized parameter values from best cases (highest NSEs) and ensemble meanstop ten ensembles (mean of top 10 
simulations)and standard deviation (SD)) for LS and WBS EC stations.  
Parameters LS EC station  WBS EC station 

Best case Ensemble mean and SD  Best case Ensemble mean and SD 

𝑉 (µmolm-2s-1) 19.00 19.00 ± 1.66 19.00 18.25 ± 1.21 

SLA (m2kg-1) 7.50 8.10 ± 0.77 7.50 8.10 ± 0.77 
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Stomatal slope 9.00 8.70 ± 0.94 9.00 9.10 ± 0.32 

Fine root turnover (a-1) 0.22 0.19 ± 0.09 0.33 0.23 ± 0.08 

Q-ratio 3.20 2.08 ± 1.29 1.80 1.80 ± 1.14 

 

For validation of the parameter estimates, we ran the EDv2.2 model with (i) thefor all ten best case parameters, and (ii) the 

ensemble case parameters,simulations with corresponding parameter values from 2016 to 2017 for both the LS and WBS sites 

for a total of 16 years (2001-2017), and compared the simulated GPPs from the final year (i.e., 2017 water year) with observed 

GPP from the respective locations in the same year. Results from the model validation showed highergreater negative biases 5 

and lower NSEs for both sites compared to the optimization results (Table 7). We had Moreover, there were substantial 

differencedifferences in mean GPP observationobservations from EC sites for both LS and WBS sites, between optimization 

(LS = 0.61 kgC/m2/yr, WBS = 0.3935 kgC/m2/yr) and validation (LS = 0.55 kgC/m2/yr, WBS = 0.3546 kgC/m2/yr) years. 

Validation results were slightly better for the WBS than the LS site, however, itthe difference in validation performance among 

the two sites was not as distinct as with the optimization results. Overall, positive NSE values for both cases (best-case and 10 

ensemble mean) for both sites suggest the simulated estimates provided better GPP predictions than the observed means. Poor 

validation results could be attributed to inter-annual variability in observed GPPs and to the inability of the model to adequately 

capture peak spring growth.   

 

 15 

 

 

Table 7. Bias, NSE, and RMSE for optimization and validation of GPP using parameter values fromfor the best case and the 

top ten ensemble casemean for both EC stations.  

Simulations 

Optimization   Validation 

Bias 
(kgC/m2/yr) 

NSE 
RMSE 

(kgC/m2/yr) 
  

Bias 
(kgC/m2/yr) 

NSE 
RMSE 

(kgC/m2/yr) 

LS        

Best case -0.137 0.277 0.456  -0.257 0.069 0.554 

Ensemble 
casemean 

-0.185172 0.265281 0.460455  -0.301278 0.046053 0.562559 

WBS         

Best case -0.028 0.452 0.213  -0.257252 0.079 0.411 

Ensemble 
casemean 

-0.038030 0.440456 0.216212   -0.268265 0.034036 0.421420 

 20 
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Validation results shown in Fig. 4 also indicate that the simulated daily GPPs for both sites matched observed values 

relatively well infrom late fall until early spring months (October to April)), but did not do wellperformed poorly in the late 

spring and summer months (May to September),) when compared with observedobservation data infrom 2017. Daily 

patternpatterns of simulated GPP were almost identical for both sites, with GPP falling down sharply through late summer 

months and remaining close to zero. We observedObserved GPP data values at both sites showed similar patterns of decline 5 

in the 2017 GPP data during late summer months (July and August) at both sites,), though not as sharply as the simulated 

results (Fig. 4). The observed increase in GPP at the beginning of fall (September) was also not well captured by the simulated 

outputs. for either site. Monthly averages also clearly show differences between simulated and observed GPP for May through 

September (Fig. 4 c & d). Ensemble case Variation among ensemble simulations was higher for the LS site compared to the 

WBS site, with standard deviation of 0.056 kgC/m2/yr and 0.02 kgC/m2/yr, respectively. When validation and optimization 10 

results are compared, the variation between the ensemble simulations of the LS site were relatively similar, whereas ensemble 

variation was generally lower in the validation output for the WBS site. Ensemble means for both sites for validation exhibited 

almost identical patterns as the best case simulation, howeversimulations, though at slightly lower levels for most of the 

months. 
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Figure 4. Validation of GPP Observed and simulated GPP for validation period (water year 2017) for both EC towers. a -b. 
Simulated daily GPP (kgC/m2/yr) usingfrom best case and , one standard deviation of ensembles, and range of ensemble case 
against respective EC stationsimulations compared with observation for a) LS and b) WBS sites. c-d. Simulated mean monthly 
GPP (kgC/m2/yr) from best case and ensemble mean compared against observation data from water year 2017. a) daily GPP 5 
for LS, b) daily GPP for WBS, c) monthly GPP for LS, and d) monthly GPP for c) LS and d) WBS. sites.   

4 Discussion 

Using our newly developed sagebrush shrub PFT, we were able to effectively simulate sagebrush ecosystem productivity in 

EDv2.2 as represented by the two study sites. Simulated results, after about four modeledmodelled years, clearly maintained 

annual shrub GPP over time, although at a lower level than the observed data from these sites. To improve GPP estimates and 10 

reduce uncertainty, we assessed sensitivity of eleven different parameters closely associated with biomass growth. Results 

from this preliminary analysis were similar to previous studies (Dietze et al., 2014; LeBauer et al., 2013; Medvigy et al., 2009), 

wherein parameters 𝑉, SLA, fine root turnover rate, and stomatal slope were found to be the most influential in determining 



 

22 
 

carbon flux or primary productivity. We observed variation in these parameter values was obtained among the for ten best 

simulations that resulted in the ten best selected based on NSE values (Table S2 in the Supplement).) for both sites where the 

LS site had higher variation in 𝑉 and stomatal slope than the WBS site. The effects of some parameters (stomatal slope, fine 

root turnover rate, and Q-ratio) on GPP prediction differed when they were altered individually versus simultaneously with 

other parameters. For instance, sensitivity analysis suggested GPP increases when fine root turnover ratio and Q-ratio are 5 

lowered individually, yet the best results for each site did not improve (i.e., still under-predicted GPP) with the lowest values 

of these parameters. Indeed, in addition to first order effects of the studied parameters, the top ten best parameter combinations 

exhibited variation in parameter values for both EC sites, suggesting interacting effects and potential nonlinear dependence 

among parameters. Regardless, the The best case parameters identified from the optimization suggested some difference in 

fine root turnover rate and Q-ratio between the LS and WBS sites. We found a similar pattern of marginally higher fine root 10 

turnover rate and lower Q-ratio at WBS with the ensemble mean, despite substantial variation among the ten ensemble 

members. We can potentially relate these differences in parameters between the LS and WBS sites with differences in the root 

systems and vegetation height of low sagebrush and Wyoming big sagebrush species which are the dominant vegetation types 

of the respective sites. Low sagebrush is smaller plant with primarily a shallow fibrous root system whereas Wyoming big 

sagebrush is taller with a dual tap root and shallow root system (Steinberg, 2002; USDA, 2018b).  15 

Negative bias in estimated GPP for the best simulations resulted from an inability of the model to correctly produce daily 

GPPs for late spring and summer months. Although a higher annual GPP could be obtained to compensate for negative bias 

by changing parameters values, the highest GPP was not necessarily the one with the best NSE, since NSE was calculated 

based on daily GPP values. Limiting optimization to five of the eleven parameters initially identified may have also contributed 

to the error and bias observed in our modelled estimates. Our generalization of shrubland ecosystem processes (as trees in the 20 

EDv2.2 model structure) may also be one of the limiting factors. Open and scattered shrubland ecosystems as in our study area 

(Mitchell et al., 2011) do not follow the same pattern of recruitment and competition as we would expect for a closed canopy 

ecosystem (Schwantes et al., 2016; Wolf et al., 2008). In addition, future studies should give special consideration to 

phenology, seed dispersal, and mortality that are unique to these shrubland ecosystems. Even though the PFT parameters and 

allometric coefficients that we developed for shrub PFT influence the above-mentioned ecosystem processes, we suggest 25 

modification of some of these model structures in future studies to test their influence and potentially improve GPP estimates.      

GPP simulations for the WBS site had better optimization scores than for the LS site, and also a slight edge over the latter 

for validation results.  This could be due to differences in soils and hydraulic conditions between the sites as we used similar 

setups for our simulation. Moreover, variation between morphological characteristics of the vegetation at the LS and WBS EC 

towers (characterized by low sagebrush and Wyoming big sagebrush, respectively), including growing seasons and flowering 30 

seasons, may also have resulted in the observed differences in GPP (Howard, 1999; USDA, 2018b). Since Wyoming big 

sagebrush is the dominant species in the Reynold Creek Watershed area (Seyfried et al., 2000), the allometric equations fitted 

for sagebrush (representing most areas of RCEW), could favor the more realistic growth pattern of this species in the model 

(e.g., Fig. 43 and 54).  
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Additionally, differences in the phenology of the associated grass species between the two sites could result in differences 

in seasonal and annual productivity (Cleary et al., 2015). For instance, the perennial grass at the LS site is Sandberg bluegrass, 

which is photosynthetically active in early spring and senesces by early summer (USDA, 2016), and thus may have contributed 

to the observed higher spring GPP peak at the LS site. Although, we observed small amounts of simulated GPP growth for C3 

grasses for certain intermediate years, these levels were not sustained. However, current parameters for C3 grasses were 5 

unlikely to adequately produce co-existence of grasses in the area, and we could not validate results in terms of the actual 

species composition and ecosystem dynamics of the EC sites, as we did not have GPP observations for unique PFTs. We also 

observed high inter-annual variation in observed GPP for both sites, leading to poor results in validation of simulation outputs. 

In summary, site-specific variability, model complexity, and optimizing for only five parameters likely contributed to, or were 

responsible for, the differences between modeledmodelled and observed GPP estimates.  10 

While the emphasis of this study was to develop and optimize the shrub PFT parameters, we expect that simultaneous 

optimization of both grass and shrub PFTs would result in improved representation of the vegetation composition in the study 

area. Such an effort would also increase the number of parameters required, potentially complicating the process of 

optimization and validation unique to each PFT. Moreover, several studies suggest that the parameters 𝑉 and SLA vary 

considerably across seasons (Groenendijk et al., 2011; Kwon et al., 2016; Olsoy et al., 2016; Zhang et al., 2014). The mismatch 15 

in daily GPP patterns between simulated and flux tower data for specific seasons could be partly attributed to the lack of the 

model’s ability to address these seasonal deviations correctly. Like most other terrestrial biosphere models, EDv2.2 does not 

incorporate seasonal variation in 𝑉, SLA, or other model parameters (Medvigy et al., 2009). Finally, 

The optimization scheme implemented in our study has some limitations. For example, we assumed the distribution of all 

parameters of interest to be uniform while this may not be true. Similarly, to keep computational time practical, we excluded 20 

some of the sensitive parameters such as cuticular conductance, leaf turnover rate, and GRF from the optimization analysis. 

We may achieve better results in parameter optimization and GPP estimates by making advances in our methods in future 

studies. For example, we can utilize additional sensitivity (including variance decomposition, first order and second order 

analysis) (Zhang et al., 2017) and optimization (including cost function, gradient descent, and uncertainty analysis) 

(Richardson et al., 2010) methods to fine tune the sagebrush PFT parameters. Similarly, if we include additional years of 25 

observation data, we may better capture inter annualinterannual variability normally observed in ecosystem fluxes, and 

potentially improve validation outcomes.  

5 Conclusions 

This study demonstrates that despite the complexity of the sagebrush-steppe ecosystem, estimating GPP using the newly 

developed sagebrush PFT is comparable, although with seasonal-bias, to observations obtained from EC station sites. Since 30 

our primary focus here was to develop initial parameters (including allometric relationships) for the shrub (sagebrush) PFT in 

EDv2.2, we focused our efforts on utilizing simple sensitivity and optimization tools to constrain errors associated with 
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simulated GPP. Our identification of coefficients for allometric equations coupled with the other parameters for the semiarid 

shrub PFT for EDv2.2 will permit exploration of additional research questions. For instance, EDv2.2 could be run at regional 

scales with optimized parameters to model the spatiotemporal dynamics of the sagebrush community composition and 

ecosystem flux, under different climate and ecological restoration scenarios. PFT parameters identified and constrained from 

this study can be used as preliminary prior information in future studies related to sagebrush. We can either use the best case 5 

parameter sets from one of the study sites, depending upon the dominant sagebrush type, or we can use any one of the ten 

ensemble parameters if we have reliable information on the studied parameters. With additional time and computing resources 

(to facilitate large numbers of simulations), we can further refine sagebrush parameters to explore variance decomposition and 

non-linear dependencies using different sensitivity and optimization methods. Optimization of associated or co-occurring PFTs 

(C3 grass and conifers) in the region spanning out to include additional study sites, would also help to better understand and 10 

constrain uncertainties in estimating the complex dynamics of the sagebrush-steppe ecosystem.  

 

Code & data availability. Original EDv2.2 is available at Github (https://github.com/EDmodel/ED22), which is maintained 
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