
Response to reviewer #1: 

We would like to thank the reviewer for the time to provide a thorough review. We have 

provided our response for each of the comments (shown in bold) below, to improve the paper. 

 

The manuscript tries to provide a new parameter set for the representation of shrubs in the 

ED2 – DGVM. The implementation aims to improve GPP estimation in shrublands. Yes, 

shrublands are under-represent in DGVMs and need more consideration, but I think the 

present manuscript need an extensive revision to show that shrublands work well within 

the ED2 model. For two sites a simple methods is used to optimise the parameter values, 

but the study provide no cross-validation and no further application is given. 

 

This initial study had 2 years of data available from the flux towers (2015-2016), and thus we 

maximized this available data. Since submittal of the paper, an additional year of flux tower data 

became available (2017) and we have now included this for subsequent validation in our 

revision.  Additional revisions (please see below) have also been made.  

 

As I have general caveats about the methods used in this study I will list them here and will 

not go into much detail.  

 

1. Most importantly, the method used here to optimise parameters is not state of the art. 

There are a lot of methods usually applied to solve the problem of parameter 

optimization as the Monte Carlo Analysis or genetic optimisation algorithms. Then it 

would be possible to include all important parameter for the optimisation procedure.  

 

We agree that additional optimizations (and sensitivity) should be performed; for this analysis 

we used the exhaustive (brute force) method due to computational and study limitations. We 

spent extensive time on developing the shrub (representing sagebrush) PFT for the EDv2.2 

model (e.g. establishing allometric relationships) and several preliminary model run-ups to 

match with the ecosystem conditions. We’ve modified the paper to highlight this intent and the 

conclusions we may draw from the existing work. Again, this research is intended to introduce 

the sagebrush PFT and its implementation in EDv2.2. Additional robust optimization and 

sensitivity analyses, and broad spatial scale analysis are the next steps. And we have suggested 

these in the Discussion and Conclusion sections. 



 

2. Secondly, the same as for the parameter optimisation, the parameter sensitivity 

measure should be performed with a more comprehensive method (e.g. using partial 

rank correlation coefficient (PRCC) or Fourier Amplitude Sensitivity Test (FAST)). A 

freely available paper (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570191/ ) gives 

a overview of the methods, which can be used to conduct parameter optimisation and 

sensitivity tests.  

 

We used the Sensitivity Index (SI) which is a straightforward linear (and thus efficient) 

approach. Again, our intent here was to perform preliminary analyses to demonstrate the 

sagebrush PFT and more robust analyses will need to take place to demonstrate the value of 

using ED within sagebrush-steppe. Please also see above responses. 

 

3. Another point is that the authors should use both sites to optimise the parameter set, if 

they want to apply the model on a broader scale. Furthermore, I didn’t understand why 

the study provides the 10 best ensemble means, these can’t be better than the best 

estimate. But anyhow the authors don’t provide a cross-validation. Hence it is 

impossible to evaluate the performance of the optimised parameters as these are used 

for the optimisation already.  

 

We agree, and we have optimized the second site (WBS, see section 2.6 and Figure 4) similar to 

LS and modified the relevant text accordingly. In addition, we calibrated the model using two 

years of flux tower observation (2015 and 2016) and used 2017 observation for validation, which 

we did not have at the time of submittal.  We agree that we need to perform validation with 

additional observation sites, in order to evaluate the model performance at the regional scale. 

However, the two additional observation sites in the region are very different from our 

calibration sites in terms of vegetation composition and morphology.  Our intent here is to 

present the 10 best simulations for each site to document our results, about the range of 

parameter combinations and potential reference to further studies on sagebrush PFT.  

 

Some other important points are striking: 

 



Metrological data are used for a different time period as the GPP data to which parameters 

are optimised. If you perform a parameter optimisation specifically for a site, you should 

use the metrological data of this site, which are normally provided by the EC tower data. 

But at least the same time period needs to be used.  

 

During submittal, we used random years of the meteorological forcing data (WRF) (from 2005-

2015) because the data were not available beyond 2015 for the domain we used (at 3 km).  

We agree with your comments and, in the revision, used meteorological forcing data (WRF) for 

the same years as the model simulation years which ranged from 2001 to 2017, using 1 km 

resolution data.  

 

The authors state that the equilibrium is reached after 15 years, which seems to be very 

short. Figure 2 gives a hint that equilibrium is maybe not reached.  

 

For the previous version of the manuscript, we used eight years for sensitivity analysis which 

was shown in Figure 2. In this version, we have revised the sensitivity analysis with a 15 year 

run. A strength of this study is that we are able to initialize the EDv2.2 model using the current 

state of the ecosystem. In our study we initialized the model with the mean cohort figures based 

on inventory data (section 2.3. main manuscript) from each of the study sites following 

approaches similar to other studies (Medvigy and Moorcroft, 2012; Antonarakis et al., 2014). To 

clarify, we modified the manuscript accordingly (P.8.l.13).  

 

It is not clear to me if the ED2 model used here includes the nitrogen cycle or if the fire 

dynamics is turned off for the optimisation procedure.  

 

We ran the optimization by turning off the fire dynamics in the model. But, it includes the 

nitrogen and other biogeochemical processes in a DGVM. Please note that in recent years the 

two sites have not been disturbed by fire.  

 

It is strongly stated in the introduction that fire dynamics plays an important role in the 

global carbon balance, but isn’t treated in the study!  

 



Correct, but again this study is focused on developing the shrub PFT and initial ED modeling 

runs for sagebrush ecosystems. Our study lays the foundation for future studies that can 

incorporate fire dynamics and other disturbance effects. We have emphasized this in the 

introduction and conclusions in the revised manuscript.  

 

Authors mentioned that they have changed the allometric equations, but it is never written 

how, please add that to your manuscript as it is an important information. But also how the 

used parameter are applied in the model would be a nice additional information. This 

would help the reader to understand why parameters are sensitive or maybe not.  

 

Thank you for the comment - we provided the shrub allometric equations in P.7.l.7 and 

additional information here P.6.l.13 to P.7.l.3. We used these coefficients as some of the 

sagebrush PFT parameters as shown in supplement Table S1.  

 

Why do you use a different parameter range for optimisation and sensitivity test, or did I 

get it wrong?  

 

We used a broader range (based on literature and other land models) in our sensitivity analysis in 

order to cover the entire range of possible values of the sagebrush parameters. We used these 

findings to be more efficient and realistic in our optimization. We clarified this in the manuscript 

section 3.2.  

 

And how did you define the parameter range? I missed some references here. The TRY 

database is an extensive source to determine the parameter range.  

 

We used existing literature for defining sagebrush (or common shrub) parameters, and also a 

range of parameters for shrub PFTs adopted by other land models (like CLM) to define the 

parameter ranges (Please see reference column in Table 4). We reviewed the TRY database and 

they have limited information (eg. sla, shrub height and leaf width) for sagebrush. 

  

You have not shown any measures in the figures.  

The Bias, RMSE, NSE are in the tables and we have now added the measures (NSE, RMSE) for 

the best case to the figures, as well. 



 

And I do not agree that it is a good match for a site-specific optimisation as stated in the 

manuscript.  

 

In this revision, we optimized both sites with meteorological data and using representative 

vegetation conditions from the respective locations trying to match the site conditions (P.8.l.5). 

Given the complexity of these sites, we feel that the representation of the optimization is 

sufficient for an initial demonstration.  

 

Lastly, there are a lot of statements in the abstract and in the introduction about the global 

importance of shrublands for the global carbon cycle, but authors don’t show an 

application.  

 

We have revised the manuscript to focus more on the sagebrush PFT development and 

preliminary performance evaluation of the ED model runs. We have also discussed that with this 

first step in sagebrush parameterization we could scale up the model performance to regional 

scales with further refinement in parameterizations (see Conclusions). 

  



Response to reviewer #2 

We would like to thank the reviewer for the time in doing a thorough review of the manuscript. 

Our response to each of the comments (shown in bold) is as given below. 

 

General comments This article is about the optimization of sagebrush parameters based on 

GPP in the EDv2.2 model and in Great Basin.  

 

The development and optimization of specific vegetation - here a specific shrub – are 

currently a key research area to increase model adequacy with observations and enable the 

simulation of the future development of our ecosystems. However, contrary to that 

suggested by the actual title, in this article there is no presentation of GPP results 

estimation but rather only some “optimization and validation” of parameters. Moreover, 

the article does not present some general case but more a specific situation: a very small 

zone (200m2 simulated, 2 years of observation in 2 points). I suggest to change the title to 

make it more explicit. The model used here is EDv2.2, which seems interesting for medium 

scale simulation. But the methods used limit the scope (and so the interest) of this study. 

The two differents sites of observation are located close to each other but differ in the type 

of sagebrush present (a small specie and a big specie). However, only one allometry 

parameterization is proposed. Your choice to have a dynamic vegetation is curious 

considering you work on two very specific and well documented sites for one unique year 

(one for optimization and one for validation). Some of the methods used (as the use of 

sensitivity index) rely on strong hypotheses, that have been presented only in the 

discussion. Some deeper bibliography could have made it possible to anticipate errors. The 

purpose of the article to estimate GPP is thus more a local application of the optimization 

of parameters in order to simulate (not here) the GPP. Due to the small data set and the 

validation performed without any statistical test (and one of the two cases that seems not so 

adequate), there is no insurance that the method could be applied for other years (to 

predict) or in other sites. As no specific development was presented here, except an 

adaptation of parameters for sagebrush allometry, the relevance of this article for 

publication in GMD can be questioned.  

 

We have revised the title of the manuscript to better match the content. The study is primarily 

focused on the development of shrub (sagebrush) PFT parameters to use in EDv2.2, and to 



observe the performance of the model for the newly developed sagebrush PFT (and wherein we 

used GPP as variable to conduct these comparisons). We agree that allometric relationships for 

different sites could not properly capture the fine scale heterogeneity in the ecosystem. For this 

study, we limited our objective in developing general sagebrush parameters, without trying to 

separate uniqueness of different sagebrush species. We used simple sensitivity and optimization 

analysis methods, to constrain the selected parameters. In further studies, we intend to capture 

the non-linear dependencies among these parameters to better constrain them for model 

estimates; however this is outside the scope of the present study. 

   

Globally, considering the 14 detailed comments presented below, the editorial and figure 

quality of the present manuscript, I consider that in this state this article lacks of 

consistency and does not reach the standard quality expected for GMD. 

 

Please see our responses below. 

 

Specific comments 

1) Not only simulations or field observations can be used to quantify GPP (p.1 l.6). A third 

essential data set comes from satellites and remote sensing, providing continuous values 

(spatially and over time). There is for example the GPP from the FLUXCOM project  

Tramontada et al., 2016 https://doi.org/10.5194/bg- 13-4291-2016 and Jung et al, 2017 

https://doi.org/10.1038/nature20780) or from a linear relationship with the Sun-Induced 

Fluorescence (Su et al., 2017 http://resolver.caltech.edu/CaltechAUTHORS:20171016-

145548969). Of course the problem of isolating the GPP for a PFT remains …  as is the 

case for the observations used in this study. Moreover, this GPP data can be used (if 

you know the vegetation distribution) to do more efficiency optimization and/or 

validation (largest temporal and/or spatial scale).  

 

Thank you for the suggestions - we agree that additional data are ideal to quantify GPP. 

Given the context of this paper (please see comments above), we are limiting our analysis to 

the flux towers and future work will incorporate the remotely sensed data products and 

should be useful to assess GPP in broader spatial terms.  

 

https://doi.org/10.5194/bg-


2) As indicated in the article (p.2 l.19), it could be difficult in models to represent and 

parameterize specific ecosystems and they are historically not well simulated. But this is 

currently a major point of development in land surface models, as for tundra (mosses, 

shrubs,…) which are now more and more represented. The sentence “Semi-arid, 

nonforest ecosystems provide an excellent example of this limitation” (p.2 l.20) has to be 

more documented. More generally, a short review of the current state of what is done in 

different models would be necessary in this article. Nevertheless, it is probable that 

these models are not yet sufficient to reproduce specifically the sagebrush.  

 

Thank you, we agree and have additional references cited P.4.l.1. 

 

3) Globally all the references of the article have to be checked. There are wrong dates in 

the reference list (e.g. for Bradley and Chambers), some references are missing (e.g. 

Skamarock et al, 2008 and Wright et al., 2004), others are never used in the text (e.g. 

Brabec et al,2001 and NPS, 2018) and one seems wrong (Davidson et al., 2011 about 

amazon forest to illustrate tundra). You also have two undifferentiated “USDA, 2018”. 

 

   Thank you for pointing this out and we have updated the references throughout the manuscript. 

 

4) In the introduction (as suggested in the title) you say that you are going to predict the 

GPP (p.3 l.4). This seems a little ambitious compared to what is actually done in the 

result section: an optimisation and validation. In my sense, prediction consists in 

running the model in the future and simulating the future evolution of GPP. 

 

We have changed the title and agree that we are not predicting GPP but estimating GPP to 

evaluate the model performance with a sagebrush PFT. 

 

5) At the beginning of the methods (p.3 l.16 to 23), you are doing a distinction between two 

types of model: “gap” or “big leaf”. If the general differentiation between both is 

clearly understandable, some inaccuracies have to be checked and the references have 

to be improved / updated. (a) p.3 l.20 and l.22 you indicate that in individual based 

models you can have competition, coexistence and disturbance, and that it is a limit for 

the big leaf model. But you have also big leaf models (DGVM) with competition, 



disturbance,... (b) p.3 l.23 you indicate that individual-based models have problems due 

to computing cost, but this is becoming less and less of a problem and currently many 

large-scale models (initially big leaf) have developed individual based version. 

Moreover, in this article the small spatial and temporal scale clearly does not seem to be 

a limit, and following your distinction would seem in this case most appropriate?  

 

Thank you for pointing this out. We agree with the reviewer that there are some “big leaf” 

models with competition. The challenge with these models, however, is they do not capture the 

demographic processes such as vertical light competition, competitive exclusion, and 

successional recovery from disturbance. To make it more clear, we changed the word 

“competition” in the manuscript to “demographic processes”. Considering comments on the 

IBMs, we agree with the reviewer that computation time is becoming less important in these 

models. However ED2 is not purely an IBM, as we mentioned in the manuscript (P.3.l.18) its a 

cohort based model which incorporate different processes.  

 

6) In the parameter description and associated equations (p.4 l.13 to p.5 l.11), you 

need to be clearer: it is difficult to follow. Directly when you list the eleven parameters I 

suggest that you use the same order that you use after and that you indicate directly the 

name of the variables used in the equations (1) and (2). For clarity, these abbreviations 

have to be everywhere in italics (p. 4 l.22, l.27, 28,…) and called back each time that they 

are used (e.g. p.5 l.4 for “CO2 concentration within the leaf boundary (Ds)”). Moreover, it 

is not indicated what the Cs parameter is (equation 2). I suggest also that you indicate how 

the “stomatal control is affected by soil moisture” (p. 5 l.3).  

 

Thank you for pointing this out. We have added a table (P.4.l.10) to describe parameters we have 

used for the analysis and put it in a sequential order to match the writing in the test. We also 

added text to clarify how ‘stomatal control is affected by soil moisture’ in P.5.l.10. Additionally, 

we have provided reference (mainly Moorcroft et al., 2001; and Medvigy et al., 2009) for 

detailed information on equations and processes. 

 

 

6) You have to take care about the quality of the figures and tables, and the associated 

legends (even in the supplementary). The figures have to be clearly understandable. (a) 



in Figure 1, the WRF grid does not make it possible to see the vegetation around the 

simulated polygon. I suggest that you indicate in the legend the general location (at least 

“USA”) and the signification of “LS” and “WBS”. (b) in table 1 you indicate for the 

“DBH to Height” an equation with negative “b” value with a negative term “-b x DBH”, 

so the Ht is negative. Moreover you have to give the units of variables (in cm?). (c) in 

table 3 you use “*” for optimized parameters and for value ranges from EDv2.2. (d) in 

Figure 3 and 4 you give the number of “days” in “2016”. However, it seems not to 

correspond exactly to a year and it is never explicit: in the text “spring” is for the 

days“200 to 250” and in the figure 4 “2016” starts from October (2015?). Please revise 

the x-axis labelling. (e) in Table S1 you have to indicate clearly the dimensions for each 

parameter and in a consistent manner (eg “[m]”). (f) in table S2 I suggest that you 

indicate how the rank is done (by NSE) and that you give the dimension of the 

parameters. (g) in figure S1 it is not possible to see clearly the differences between 

simulations. Maybe you could use monthly means?  

 

Thank you for pointing this out. We have updated these figures / tables. (a) we updated figure 1 

related to study area which now shows location of LS and WBS sites in Reynold Creek 

Experimental Watershed (RCEW) area, (b) We removed -ve in the coefficient and provided unit 

for DBH, (c) in table 4 (earlier 3) we adjusted the confusion with regards to the use of ‘*’ 

symbol, (d) we have updated the figures to make it more readable (e) we provided information 

about NSE score equation used in the ranking (Supplement P.6.l.9). (f) we have provide unit for 

applicable parameters (Supplement Table S1), (g) we updated the figure (Supplement Fig S2) to 

show average monthly GPPs to make different simulations more discernible.   

 

7) The 2.3 section is called “Inventory and EC tower data” but is mainly about allometric 

equations. Moreover the approach method to describe shrub allometry can be 

improved. You suggest that the problem comes from the fact that the model is 

“originally developed for tropical forest” (p.6 l.9), when it seems to be more precisely 

due to allometric equations developed for trees and not for shrubs. Then, it could be 

appropriate to explicitly indicate that from the allometric data available, you 

transformed them (if I understand well) to a theoretical height considering that the 

shrub is a cube (?). But more importantly, it could be beneficial if you evaluate the 

impact of this hypothesis, for example by showing the adequacy between “DBH to 



Height” results or the height simulated compared to observed height. There is also 

another solution: to change the allometric equation for shrubs, as is used in other 

models (e.g. Druel et al., 2017 https://doi.org/10.5194/gmd-10-4693-2017). 

 

This is a good idea and we compared the predicted height from the cube root volume with 

observed sagebrush height using a new set of data from the Great Basin (see Supplement FigS1). 

We observed a good match between observed and predicted heights for sagebrush.  

 

8) There is no overlapping between the period of station data (2015-2016) and the years 

used for the forecast, 2006 to 2014 (p.7 l.12). If it can be understandable to use random 

years for long term “spinup”, using “random years” for all simulations and 

optimization/validation can introduce a new bias superimposed on the parameter set. 

Even more important, if you use a random forecast year to simulate specifically 2015 

and 2016 (validation and simulation), that means the difference between both 

simulations is a random year? 

 

We used corresponding years of meteorological data for simulation in the revised manuscript. 

We used 1 km WRF data from 2001 to 2017 for both the sites studied. This will help reduce the 

interannual uncertainty that may arise from using meteorological data from a random year.  

 

9) For the initial parameterisation of the 11 parameters, you choose a sensitivity index. 

But there are two fundamental hypotheses to use such index: you expect that the 

responses to the parameters are linear and that there is no interaction between 

parameters. Unfortunately, you never indicate those hypotheses! It is true that at the 

next step (for optimization) you use a more adapted method (not requiring such 

hypotheses) and that in the discussion you put two related sentences, but the method is 

not consistent with the optimization and the hypotheses are required from the 

beginning. The test of the mean of the best sets of 10 parameters shows that the 

hypotheses were not well considered.  

 

We agree that the chosen method assumes linear dependencies of selected parameters with 

the target variable. We spent extensive time on developing the shrub (representing 

sagebrush) PFT for the EDv2.2 model (e.g. establishing allometric relationships) and several 

https://doi.org/10.5194/gmd-10-4693-2017


preliminary model run-ups to match with the ecosystem conditions. We used the exhaustive 

(brute force) method due to computational limitations. This study was mainly intended to 

introduce the sagebrush PFT and its implementation in EDv2.2.  

We agree that additional robust optimizations (and sensitivity) should be performed. We’ve 

modified the paper to highlight this intent and the conclusions we may draw from the 

existing work. We have added lines to state the limitation of the applied SI method and our 

assumption on parameters under methods section (P.8.l.18). 

 

 

10) You indicate that your “simulations were configured to allow” that other plants than 

shrubs can grow in the model (p.9 l.1). That means that you specifically activated the 

competition between species and so other plants can grow? If this is the case, you 

introduce new uncertainties and so probably directly biases to the optimization and 

comparison with GPP observations! I really do not understand why you do not use the 

observed fraction of vegetation in your two (well documented) stations. On the one side 

you work on very few observations and simulated points (in time and space), but you do 

not limit the variability induced by the model configuration. Why?  

 

The study site is heterogeneous and thus we need to allow additional PFTs to grow to capture 

total GPP.  We do not understand the question here but to clarify we used density 

information for initialization that has been collected at the sites.  

 

12) The results section suffers from the limitation of the method: only one polygon is 

simulated, two observation sites considered, with heterogeneous vegetation inside 

each site (grasses and shrubs) but also between sites (Low Sagebrush /W. Big Sagebrush), 

and only two years of data (with one not complete for one site), one for simulation and one 

for validation. Thus, it is not possible to represent inter-annual or spatial variability. 

Likewise, no statistical tools are used to validate the optimization. We can just observe that 

one is coherent (WBS) and the other is bad (LS) (the value of the differences are also 

missing, e.g. p.14 l.5 to 8). In conclusion it is not obvious that the values obtained for the 

parameters can be used for other years or sites.  

 



As stated above, we have simulated both sites with respective ecosystem and atmospheric 

conditions to address variation between the sites. In our revised analysis, we could use two years 

of data for calibration and another year for validation. We agree that these are not sufficient to 

capture inter annual variability but we were mostly limited with the available observation data 

from the sites. We agree that the values cannot be used for other years and sites until further  

optimization is performed. We have stated this in the Conclusion (P.17.l.18).  

 

13) Not being a specialist of optimization, I cannot say something precisely on this part. 

But, the choice of the optimization method is not justified or discussed. There exists 

currently other methods less computationally costly (such as genetic algorithms) and it is 

possible to extract statistic values to evaluate the efficiency (such as the variability fraction 

explained before and after the optimization).  

 

We agree there additional optimization tools could improve the results and provide robust 

information on sagebrush PFT parameters (Please refer to answers to Q.9 for more).   

 

14) The discussion allows to go further, but showing mostly the limits of the methods used 

for the study, which should have been stated earlier in the methods (e.g. the nonlinear 

dependence among parameters). This shows also the gap between the objective indicated 

(to predict the GPP of sagebrush) and the results (not really validated, even in very 

restrictive conditions).  

 

Good point, we have tried to clarify the objectives and the results and how our study has 

contributed to the overall modeling of shrub-steppe (P.2.l.30). We have stated limitation of our 

tools (P.8.l.18) and potential improvements we would achieve with different methods (P.17.l.2)  

 

Specific comments  

 

p.1 l.10. Suggested change: “one of the most critical” to “one critical”  

The text has been changed. 

p.1 l.28-31. Suggested change. Remove from “we expect that. . . ” (to put in the conclusion?)  

As suggested, the lines were removed. 

p.2 l.3. Need for a reference for “anthropogenic CO2 emissions”  



The text has been removed. 

p.2 l.4. Suggested change: Add a small definition for “photosynthesis”  

We have updated the text. 

p.2 l.10. Suggested change: “distinct ecosystems” to “distinct ecosystems at large scale”  

We changed the texts 

p.2 l.20. There are currently two spaces after “ecosystems”.  

We corrected. 

p.2 l.27. How do they suppress fire?  

Removed the text ‘suppress fire’ 

p.2 l. 34. After “Great Basin”, indicate the density of station (or indicate if there are only 

two stations. . .)  

The text is revised. 

p.3 l.13. This section (2.1) could gain in clarity if you distinguish (a) the general model 

presentation (p.3.14 to p.4 l.8) and (b) the presentation of parameters used in this study and 

their related equation(s).  

We tried to differentiate the information in the section through different paragraphs . We added a 

table showing parameters used in the study followed by brief descriptions and controls of the 

parameters. 

p.3. l.18 “plant function type” abbreviation is already defined just above (p. 3 l.6).  

We updated the text accordingly. 

p.3 l.23. You use acronym “IBMs” which is not defined. Please define it l.21.  

We corrected as per your suggestion. 

p.4 l.13. Suggested change:  parameters. These included” to “parameters:”  

The text has been revised. 

p.4. l.18-19. Suggested change: “here we are trying to describe the ones related tothe 

parameters we have use in this study” to “here describe the ones related to the parameters 

used in this study”  

We made suggested change. 

p.5 l.8. It could be important to state from where the “allometric allocation” comes from, 

and maybe indicate that they are in Table 1 ? 

We referred Table 1 for the allometric equation referred in the text P.5.l.18 

p.5 l.16. Please clearly indicate where it is (country, state).  

We updated with region and Country. 



p.5 l.16 to 18. If I understood well, you have to indicate that the “200 m x 200 m polygon” is 

the simulated area in this study (using the 3km resolution WRF forecast). Likewise, in the 

legend of Figure 1 (p.6 l.2) change “study polygon” to “simulated polygon”.  

We updated the Figure 1 showing study area. 

p.6 l.16. Suggested change: Add a line break before the “GPP data. . .”  

We updated with a line break to separate two types of data sources. 

p.8. l.4. If the sagebrush parameters come only from bibliography, put the citation l.2. 

We updated the text to appropriately represent the procedure P.8.l.3. We also updated 

supplement Table S1 with all PFT parameters to clearly state the source/reference of different 

parameters.  

p.8 l.10. Indicate why “370 ppm” or to which year that corresponds (2000?).  

we updated the text as suggested (P.8.l.11) 

p.9 l.29. Change “Fig. 2b and d” by “Fig. 2b, c and d”.  

We made necessary edits as suggested. 

p.12 l.21. Change “Table 5” to “Table 6”.  

We made necessary corrections. 

p.15 l.4. Suggested change: “was observed” to “was obtained”  

Changed the text P.16.l.10. 

p.16 l.16. Suggested change: Add a line break after the “GPP.”  

We made the edits as suggested. 

p.16 l.20. I am not sure that you can say “quite well”.  

Text has been updated. 
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Abstract. Ecosystem dynamic models are useful for understanding ecosystem characteristicsGross primary production (GPP) 

is one of the most critical processes in the global carbon cycle, but is difficult to quantify in part because of its high 

spatiotemporal variability. Direct techniques to quantify GPP are lacking, thus, researchers rely on data inferred from eddy 

covariance (EC) towers and/or ecosystem dynamic models. The latter are useful to quantify GPP over time and space because 

of their efficiency over direct field measurements and applicability to broad spatial extents. Their application, however, is 15 

challenging due to However, such models have also been associated with internal model uncertainties and complexities arising 

from distinct qualities of the ecosystemsecosystem being analyzed. TheWidely distributed sagebrush-steppe ecosystems in 

western North America, for example, has substantial spatial and temporal heterogeneity as well as variability due to are 

threatened by anthropogenic disturbance, invasive species, climate change, and altered fire regimes, which collectively make 

modelling dynamic ecosystem processes difficult. Ecosystem Demography (EDv2.2) is a robust ecosystem dynamic model, 20 

initially developed for tropical forests, that simulates energy, water, and carbon fluxes at fine scales. . Although EDv2.2 has 

since been testedland managers have focused on different ecosystems via development of different Plant Function Types 

(PFT), it still lacks a shrub PFT. In this study, we developed and parameterized a shrub PFT representative of sagebrush 

(Artemisia spp.) ecosystems in order to initialize and test it within EDv2.2, and to promote future broad-scale analysis of 

restoration techniques, the effects of these activities and their interactions with fire, climate change, and fire regimes in the 25 

invasive species on ecosystem dynamics are poorly understood. In this study, we applied an ecosystem dynamic model, 

Ecosystem Demography (EDv2.2), to parameterize and predict GPP for sagebrush-steppe. Specifically, we parameterized  

ecosystems in the sagebrush PFT within EDv2.2 to estimate gross primary production (GPP), using data from two sagebrush 

study sitesReynolds Creek Experimental Watershed (RCEW), located in the northern Great Basin. Our primary objective was 

to develop and parameterize a sagebrush (Artemisia spp.) shrubland Plant Functional Type (PFT) for use in the EDv2.2 model, 30 

which will support future studies to model estimates of GPP under different climate and management scenarios. To accomplish 
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this, we employed a three-tiertiered approach: 1) To initially. First, to parameterize the sagebrush PFT, we fitted allometric 

relationships for sagebrush using field-collected data, gathered information from existing sagebrush literature, and 

parametersborrowed values from other land models. 2) To determine influential parametersPFTs in GPP predictionEDv2.2. 

Second, we used a sensitivity analysis to identifyidentified the five most sensitive parameters. 3) To improve model 

performance and validate results out of eleven that were found to be influential in GPP prediction based on previous studies. 5 

Third, we optimized thesethe five parameters using an exhaustive search method to estimatepredict GPP, and compared results 

withperformed validation using observations from two Eddy Covariance (EC) sites in the study area. Our modeled results were 

encouraging, with reasonable fidelity to observed values, although some negative biases (i.e., seasonal underestimates of GPP) 

were apparent. We expect that, with further refinement, the resulting sagebrush PFT will permit explicit scenario testing of 

potential anthropogenic modifications of GPP in sagebrush ecosystems, and will contribute to a better understanding of the 10 

role of sagebrush ecosystems in shaping global carbon cycles. 

1 Introduction 

Ecosystem dynamic models have been widely used to estimate terrestrial carbon flux and to project ecosystem 

characteristicsTerrestrial gross primary production (GPP) is a major driver of the global carbon cycle as it plays an important 

role in regulation of atmospheric CO2 by offsetting anthropogenic CO2 emissions. GPP quantifies the rate of carbon uptake 15 

from the atmosphere through photosynthesis and is often presented as one of the most critical elements in global carbon 

research because of its high spatiotemporal variability (Chen, 2012; Zhao and Running, 2010). Since direct techniques to 

quantify GPP are lacking, researchers derive estimates using observations from eddy covariance (EC) towers or using 

ecosystem dynamic models (Dong et al., 2017; Turner et al., 2006; Zhao et al., 2005).  Ecosystem models have been widely 

used to estimate terrestrial carbon flux and to project ecosystem dynamics over time and space (Dietze et al., 2014; Fisher et 20 

al., 2017), largely due to their efficiency over direct field measurements and their applicability to broadbroader spatial scales. 

However, these models have also been associated with high levels of internal uncertainty and questions regardingcomplexity 

associated with their applicability to distinct and often complex ecosystems. Mainly, three different types of errors have been 

associated with these models: (1) process error arising from formulations in the model and associated parameters, (2) forcing 

error related to the quality of meteorological data, and (3) the initial ecosystem state at large scale. Sagebrushthe start of the 25 

simulation (Antonarakis et al., 2014; Huntzinger et al., 2012). Initialization error is generally not an issue for long-term 

simulations, and researchers can minimize both forcing and initialization errors by using observational data rather than 

reanalysis data (Antonorakis et al., 2014; Medvigy et al., 2009). Indeed, process error is the most problematic, as it can mask 

uncertainties caused by forcing errors and can create potential bias in predictions. Fortunately, process error can be quantified 

and minimized by systematically comparing model predictions with observable ecosystem metrics (Braswell et al., 2005; 30 

Dietze et al., 2014; Medvigy et al., 2009).  
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Another critical limitation to widely applying ecosystem dynamic models is their suitability for a unique ecosystem 

for which they have not been parametrized. Semi-arid, non-forest ecosystems   provide an excellent example of this limitation, 

including sagebrush (Artemisia spp.) ecosystems, one of the most widespread community types in Western North America 

provide a good example of these types of modelling challenges, as these ecosystems are spatially heterogeneous and shaped 

by complex dynamics over time.. Sagebrush ecosystems hold both high ecological and socio-economicsocial value, but they 5 

have been reduced to nearly half of their historical range and are declining at an alarming rate (Knick et al., 2003; Schroeder 

et al., 2004). Various factors have contributed to this decline, including land clearing, invasion of nonnative species such as 

cheatgrass (Bromus tectorum), and climate change, that have collectively altered vegetation composition, hydrological 

function, and wildfire frequency (Bradley, 2010; Connelly et al., 2004; McArthur and Plummer, 1978; Schlaepfer et al., 2014). 

In an attemptorder to restore portions of the sagebrush ecosystem, land managers have focused on suppressing fire, reducing 10 

flammable vegetation, controlling invasive species, and seeding native species (Chambers et al., 2014; McIver and Brunson, 

2014). There are relatively few studies that have evaluated carbon flux in sagebrush ecosystems in response to prescribed fire 

or restoration activities, and most of them used observational data from Eddy Covariance (EC) stations. However, 

givenPrevious studies identified temporal variation in net carbon exchange rates after restoration treatments, including 

documenting increases in carbon uptake in the large spatial extent of the sagebrush biome (>500,000 km2; Millerearly years 15 

after prescribed fire (caused by re-sprouting shrubs and fast growing grasses), followed by an eventual levelling off to pre-fire 

conditions (Cleary et al., 2010; Fellows et al., 2018). . 2011) and the However, because of the paucity ofin EC station sites in 

sagebrush landscapes, the function of this ecosystem remains poorly understood, especially when, coupled with the large 

spatial extent of the sagebrush ecosystems in the Great Basin, the collective effects of restoration activities, fire, climate 

change, and invasive species on ecosystem the spatiotemporal dynamics of structure, composition, and spatiotemporal 20 

dynamicsfunction of ecosystem are poorly understood.  

In this study, we applied an ecosystem dynamic model, Ecosystem Demography (EDv2.2), is a process-based ecosystem 

dynamic model that approximates the behaviour of ensembles of size and age-structured individual plants to capture sub-grid 

level ecosystem heterogeneity using partial differential equations) (Medvigy et al., 2009; Moorcroft et al., 2001). This), to 

parameterize and predict GPP for sagebrush ecosystems in an experimental watershed located in the northern Great Basin. The 25 

Great Basin is a ~500,000 km2 cold-desert region dominated by expansive, shrub-steppe ecosystems. Our primary objective 

was to develop preliminary sagebrush Plant Functional Type (PFT) parameters in the EDv2.2 model , based on sensitivity 

analysis and optimization, with respect to GPP prediction. EDv2.2 was originally developed to studyfor tropical forest 

ecosystems with trees as a primary component, but(Moorcroft et al., 2001), and it has since been modified and applied to 

several different ecosystems, including tested in boreal forests (Trugman et al., 2016), and temperate forests (Antonarakis et 30 

al., 2014; Medvigy et al., 2009; Medvigy et al., 2013). However), and tundra (Davidson et al., 2011), however, its application 

to semi-arid shrubland ecosystems has not been explored and it lacks a shrub Plant Function Type (PFT) to study these 

ecosystems. Thus, we developed and parameterized a sagebrush PFT for EDv2.2, and used it to estimate gross primary 
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production (GPP) for the sagebrush ecosystems in the Reynolds Creek Experimental Watershed (RCEW) located in the 

Northern Great Basin, a cold-desert region dominated by expansive, shrub-steppe ecosystems.  

In this study, our primary objective was to develop preliminary sagebrush PFT parameters in EDv2.2 and to constrain 

uncertainties through optimization of selected PFT parameters. To accomplish this, we employed a three-tiered approach.  

First, we parameterized the sagebrush PFT, by fitting allometric relationships for sagebrush using field-collected data, 5 

information from existing sagebrush literature, and borrowing parameters from other land models. Second, to identify the most 

influential parameters in GPP prediction, we used a sensitivity analysis and identified the five most-sensitive parameters 

affecting changes in GPP estimates. Third, to improve upon and assess model performance, we optimized the five most 

sensitive parameters using an exhaustive search method to estimate GPP, and then compared the results with observations 

from two Eddy Covariance (EC) sites in the study areas.  Our preliminary. Preliminary parameterization of the sagebrush shrub 10 

PFT is an important, from this study, will be a first step towards further study ofstudies on shrubland ecosystem function using 

EDv2.2 or similar process-based ecosystemany other terrestrial models. 

2 MaterialMaterials and methods 

2.1 Ecosystem Demography (EDv2.2) model 

The Ecosystem Demography (EDv2.2) is a process-based terrestrial biosphere model that, which occupies a mid-point on the 15 

continuum of models from individual-based (or gap) models to area-based (or big-leaf) models (Fisher, 2010; Smith et al., 

2001). Area- based models like LPJ-DGVM (Lund-Potsman-Jena Dynamic Vegetation Model) (Sitch et al., 2003), and 

BIOME BGC (Running and Hunt, 1993 as cited in Bond-Lamberty et al., 2014) represent plant communities with area-

averaged representation of a plant function type (PFT) for each grid cell. The simplification and computational efficiency of 

these models make them widely applicable for regional ecosystem analysis, however, this advantage often comes in trade-off 20 

with their limitation to properlyfailure to capture light competition and, competitive exclusion, and disturbances (Fisher, 2010; 

Bond-Lamberty et al., 2014; Smith et al, 2001). On the other hand, individual-based models (IBMs) such as JABOWA (Botkin 

et al., 1972)), and SORTIE (Pacala et al., 1993) represent vegetation at the individual plant level thus making it possible to 

incorporate community processes like growth, mortality, recruitmentcompetition, coexistence, and disturbances. Lately, there 

have been drastic improvements in computation efficiency, traditionally IBMs wouldThe disadvantage of IBMs is that they 25 

are often be confined to limited spatial and temporal scales due to theiradded computational burden. EDv2.2 is a cohort based 

model where individual plants with similar properties, in terms of size, age, and function, are grouped together to reduce the 

computational cost while retaining most of the dynamics of IBMs. Each cohort is defined by a PFT, number of plants per unit 

area, and dimensions of a single representative plant like diameter, height, structural biomass, and live biomass (Fisher et al., 

2010).  30 

TheIn EDv2.2, land surface in EDv2.2 is composed of a series of gridded cells, which experience meteorological forcing 

from a corresponding gridded data or from a coupled atmospheric model (Medvigy, 2006). The mechanistic scaling from 
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individual to the region is achieved through size and age structured partial differential equations that closely approximate mean 

behaviour of a stochastic gap model (Medvigy et al., 2009; Moorcroft et al., 2001). Each grid cell is subdivided into a series 

of dynamic horizontal tiles, which represent locations that experiencehad experienced similar disturbance history and havehas 

an explicit vertical canopy structure. This mechanism helps capture both vertical and horizontal distributionsdistribution of 

vegetation structure and compositional heterogeneity compared to area-based models (Kim et al., 2012; Moorcroft et al., 2001; 5 

Moorcroft et al., 2003; Sellers et al., 1992). EDv2.2 consists of multiple sub-models for plant growth and mortality, phenology, 

disturbance, biodiversity, hydrology, land surface biophysics, and soil biogeochemistry, to predict short-term and long-term 

ecosystem flux and to represent natural and anthropogenic disturbances (Kim et al., 2012; Medvigy et al., 2009; Zhang et al., 

2015). Sub-models in EDv2.2 rely mostly on many PFT-specific parameters, representing unique attributes of that particular 

group of species, to resolve the stated biological processes (Knox et al., 2015). Studies on shrub parameterization has been 10 

done in LPJ-GUESS for tundra region (Miller and Smith, 2012; Wolf, 2008), however, it is clearly limited for semi-arid 

shrubland ecosystems. EDv2.2 has parameters defined for 17 different PFTs including grasses (C3 & C4), conifers, and 

deciduous trees (temperate & tropical), and agricultural crops. In this study, we identified parameters for the sagebrush (shrub) 

ecosystem to simulate it in the model as a new PFT. Furthermore, since we tried to explore model performance basedfocussed 

on GPP estimatesprediction, we selected eleven different parameters related to plant ecophysiology and biomass allocation 15 

from overall to conduct sensitivity and optimization (Table 1).study. We mainly relied onused similar studies (Dietze et al., 

2014; Fisher et al., 2010; LeBauer et al., 2013; Medvigy et al., 2009; Mo et al., 2008; Pereira et al., 2017), our preliminary 

sensitivity analyses, and consultation with other developers and users of the EDv2.2 model to select the parametersthese 

parameters. These included maximum photosynthetic capacity at 15⁰C (Vm0), specific leaf area (SLA), fine root turnover rate, 

leaf turnover rate, storage turnover rate, slope of stomatal conductance-photosynthesis relationship (stomatal slope), ratio of 20 

fine roots to leaves (Q), water conductance, cuticular conductance, growth respiration factor (GRF), and leaf width.  

Table 1. Parameters used to explore model performance for sagebrush PFT. 

Parameter Description Unit 

Vm0  Maximum carboxylation rate at 15⁰C  (µmolm-2s-1) 

Stomatal slope Slope of stomatal conductance-photosynthesis relationship  - 

Cuticular conductance  Intercept of stomatal conductance-photosynthesis 

relationship  

(µmolm-2s-1) 

Water conductance  Supply coefficient for plant water uptake  (ms-1kgCroot-1) 

Leaf width  Controls leaf boundary layer conductance (m) (m) 

SLA Specific leaf area  (m2kg-1) 

GRF Growth respiration factor - 

Q-ratio Ratio of fine roots to leaves - 
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Leaf turnover rate Inverse of leaf life span  (a-1) 

Fine root turnover rate Inverse of fine root life span  (a-1) 

Storage turnover rate Turnover rate of plant storage pools  (a-1) 

 

Detailed 

As we can find detailed descriptions of sub-models of EDv2.2 are available in the existing literature (Medvigy et al., 

2009; Moorcroft et al., 2001); thus,), here we are trying to describe the ones related to the parameters we have used in this 

study. The ecophysiological sub-model has a coupled photosynthesis and stomatal conductance scheme developed by Farquhar 5 

and Sharkey (1982) and Leuning (1995),) respectively, and which estimates takes care of leaf-level carbon and water fluxes. 

Leaf-level carbon demand of C3 plants is determined by the minimum of light-limited rate (Je) and Rubisco-limited rate (Jc), 

and Vm0 controls the later as given by Eq.(1) after being scaled to a given temperature. 

𝐽𝑐 =
𝑉𝑚(𝑇𝑣)(𝐶𝑖𝑛𝑡𝑒𝑟− Г)

𝐶𝑖𝑛𝑡𝑒𝑟+ 𝐾1(1+𝐾2)
                                   (1) 

 10 

where, 𝑉𝑚(𝑇𝑣) is the maximum capacity of Rubisco to perform carboxylase function at a given temperature Tv scaled from Vm0 

(Medvigy et al., 2009),, 𝐶𝑖𝑛𝑡𝑒𝑟is the intercellular CO2 concentration, Г is the compensation point for gross photosynthesis, K1 

is the Michaelis-Menten coefficient for CO2, and K2 is proportional to the Michaelis-Menten coefficient for O2. Stomatal 

conductance which is modeled using Leuning (1995), a variant of Ball Berry model (Eq. 2), is influenced by stomatal slope 

and cuticular conductance. 15 

𝑔𝑠𝑤 =
𝑀𝐴𝑜

(𝐶𝑠−Г) (1+
𝐷𝑠
𝐷0

)
+ 𝑏                    (2) 

where,  𝐴𝑜 is photosynthetic rate, 𝑔𝑠𝑤 is stomatal conductance for water, 𝐴𝑜 is photosynthetic rate,  𝑀 is stomatal slope, 𝑏 is 

cuticular conductance, 𝐷0 is empirical constant, 𝐷𝑠 is water vapour deficit and CO2 concentration within leaf boundary, and 

Г is as described above. Stomatal control is also affected by soil moisture supply term, which is a function of soil moisture, 

fine root biomass, and water conductance. When the available water supply is less than the demand predicted by 20 

photosynthesis-conductance model, then photosynthesis, transpiration, and stomatal conductance are all linearly weighted 

down to match the supply (Dietze et al., 2014).  

 

Water and CO2 concentrations within the leaf boundary layer areis influenced by leaf width along with other factors like wind 

speed, leaf area index, and molecular diffusivity of heat. Specific leaf area (SLA) has units of leaf areaare per unit leaf carbon 25 

and is used to scale up leaf-level fluxes to canopy-level fluxes. RelationshipsRelationship between growth respiration and net 

photosynthesis areis controlled by the growth respiration factor. In EDv2.2, while leaf biomass is determined by PFT specific 
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allometric equation (as shown in Table 2 for sagebrush)equations based on diameter, fine root biomass is defined by a ratio of 

leaves to fine roots. Leaf turnover and fine root turnover rates together influence overall litter turnover rate, even though in 

deciduous trees dropping of leaves also affects this rate. Turnover rate of stored leaf pool and storage respiration depends on 

storage turnover rate, size of stored leaf pool, and storage biomass. 

 5 

2.2 Study area 

While the PFT was developed broadlyWe initialized and performed parameter optimization for sagebrush, we focused 

ecosystems in the EDv2.2 model runs at the RCEW site, using field data and two EC station sites located in the Northern Great 

Basin region of Western United States (Fig. 1). This site isReynolds Creek Experimental Watershed (RCEW) and Critical 

Zone Observatory (CZO), operated by the USDA Agricultural Research Service and is also a Critical Zone Observatory (CZO) 10 

(referred to as RC-CZO). (Fig. 1). We used twoa 200 m x 200 m polygons centered at two EC sites within RC-CZO to closely 

represent the footprint area of these sites.polygon with center location of 43.15 N and 116.72 W and a mean elevation of 1583 

m. The AmeriFlux US-Rls EC station, located at 43.1439 N and 116.7356 W and at an elevation of 1583 m, is within the 

Lower Sheep Creek drainage in RCEW.is approximately 0.7 km from the center of our study site. The area within the footprint 

of this sitetower is dominated by low sagebrush (Artemisia arbuscula) and Sandberg bluegrass (Poa secunda) (Stephenson, 15 

1970; Seyfried et al., 2000) and is characterized as having light cattle grazing (AmeriFlux, 2018). The secondAnother 

AmeriFlux tower, US-Rws, is located at 43.1675 N and 116.7132 W in the Nancy Gulch drainage, within about 2.5 km distance 

to the northeast offrom the US-Rls sitestudy polygon. This area is dominated by Wyoming big sagebrush (A. tridentata ssp. 

wyomingensis) and bluebunch wheatgrass (Pseudoroegneria spicata) (Stephenson, 1970). Hereafter, these two sites are 

designated as LS (for low sagebrush) and WBS (for Wyoming big sagebrush), respectively.   20 
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Figure 1. Location of the 200 m x 200 m study polygon used in the EDv2.2 model; the Weather Research and Forecast (WRF) 

grid (3 km resolution); and the eddy covariance (EC) flux sites where studies were performed. Field plots depicted were used 

to develop the allometric equations.tower locations; with 2011 land cover (Homer, et al., 2015) in the background. The inset 

map shows the location of the study area within the Northern Great Basin (LCC, 2018).   

2.3 Inventory and EC tower data 5 

A field inventory dataset of sagebrush shrubs from RCEW recorded in 2014 (Glenn et al., 2017) was used to fit the allometric 

equations (in EDv2.2, which were developed for temperate PFTs) in EDv2.2, and to initialize the ecosystem structure for the 

model simulationssimulation. Variables used to fit allometric equations for the sagebrush shrub included volume, crown 

diameter, height, and stem diameter. EDv2.2 was originally developed for tropical forests, and thus typically specifies 

allometric relationships in terms of diameter at breast height (dbh). However, this length-scale variable has limited application 10 

to shrubs of the sagebrush-steppe ecosystem, which rarely exceed 1.5 m in height. Thus, we developed a substitute length-

scale variable for dbh that effectively corresponds to shrub volume. To accomplish this, shrub volume was first calculated 

using crown area (characterized as an ellipse, and approximated with semi-major and semi-minor axis lengths) and height, and 

the cube root of this volume was then used as the characteristic length-scale variable required to parameterize allometric 

relationships in EDv2.2. To test this relationship, we compared height predicted from cube root volume with observed 15 

sagebrush height using a different set of data from the Great Basin (Qi et al., 2018). We found a good fit for the data (r2 = 0.71) 

with a small negative bias of -1.88 cm, and a random residual distribution (Fig. S1). We identified the coefficients in allometric 

equations (Table 21) for shrub height, leaf biomass, structural biomass, canopy area, and wood area index as a function of this 

cube-root of volume (used as DBH in the equation).  

GPP data fromfor 2015 to 2017and 2016 water years were derived from the LS and WBS EC stations (Fellows et al., 20 

2017) using the REddyProc software in R (Reichstein et al., 2005) to fill and partition net ecosystem exchange (NEE) into 

ecosystem respiration and GPP.  

 

 

Table 21. Coefficients for sagebrush (shrub) PFT to allometric equations in EDv2.2 (temperate PFTs).) 25 

Relationship Equation Coefficients 

DBH (cm) to Height (m) 𝐻𝑡 = 𝑎(1 − 𝑒𝑏 × 𝐷𝐵𝐻1 − 𝑒−𝑏 × 𝐷𝐵𝐻)  a = 4.7562, b = -0.002594 

DBH (cm) to Woody Biomass (kg) 𝑊𝐵 =
𝑎

𝐶2𝐵
 × 𝐷𝐵𝐻𝑏   a =5.709 x 10-8 , b=4.149 

DBH (cm) to Leaf Biomass (kg) 𝐿𝐵 =
𝑎

𝐶2𝐵
 × 𝐷𝐵𝐻𝑏   a=2.582 x 10-6 , b=2.746 

DBH (cm) to Canopy Area (m2) 𝐶𝐴 = 𝑎 × 𝐷𝐵𝐻𝑏   a=6.35 x 10-5 , b=2.18 

DBH (cm) to Volume (m3)  𝑉 = 𝑎 × 𝐻𝑡  ×  𝐷𝐵𝐻𝑏    a=2.035 x 10-5 , b=2.314 

Volume (m3) to Root Depth (m),, 𝐷 = 𝑎 ×  𝑉𝑏   a = -3.0, b = 0.15 
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DBH (cm) to Wood Area Index, 𝑊𝐴𝐼 = 𝑛𝑝𝑙𝑎𝑛𝑡  ×  𝑎 × 𝐷𝐵𝐻𝑏   a= 0.0096, b =2.0947 

DBH = diameter at breast height; Ht = height; WB=woody biomass; C2B=carbonCarbon to biomassBiomass ratio; LB=leaf 

biomassLeaf Biomass; CA=canopy area; V=volume; D=root depth; WAI=wood area index. 

2.4 Meteorological forcing data 

Outputs from a long-term, high resolution climate reanalysis obtained from the Weather Research and Forecast (WRF) model 

(Skamarock et al., 2008) were used to provide meteorological forcing data for the EDv2.2 model (Table 32). The WRF outputs 5 

correspond to atmospheric temperature and specific humidity at 2 m height, wind speed at 10 m height, downward shortwave 

radiation and long-wave radiation at ground surface, surface pressure and accumulated precipitation (Flores, et al., 2016). The 

spatial and temporal resolutions of the data are 13 km and 1 hour3 hours, respectively. The EDv2.2 model then partitions 

shortwave radiation into direct and diffuse, visible and near-infrared components as summarized by Weiss and Norman (1985). 

We obtained these forcing data for nine years from 20012006 to 2017 for two2014 at the WRF pixelspixel corresponding to 10 

the polygon study area and bounding the LS and WBS sites (Fig. 1).EC site location. For each year of EDv2.2 simulation, a 

random year of meteorological forcing data was chosen from the available range of data.  

 

Table 32. Meteorological forcing data from WRF model used for simulation. 

Variable WRF name Unit 

Temperature at 2 m T2 K 

Surface pressure PSFC Pa 

Accumulated precipitation RAINNC mm 

Terrain height HGT m 

U wind (zonal) component at 10 m U10 m/s 

V wind (meridional) component at 10 m V10 m/s 

Specific humidity at 2 m Q2 Kg/kg 

Downward longwave flux at ground surface  GLW w/m2 

Downward shortwave flux at ground surface SWDOWN w/m2 

2.5 Initial parameterization and sensitivity analysis 15 

We identified initial sagebrush shrub PFT parameters based on field allometric equations, previous research studies on the 

sagebrush ecosystem (Ahrends et al., 2009; Cleary et al., 2010; Comstock and Ehleringer, 1992; Gill and Jackson, 2000; Li et 

al., 2009; Olsoy et al., 2016; Qi et al., 2014; Sturges, 1977; Tabler, 1964), and information from other generalexisting PFT 

parameters in the EDv2.2 model for C3 grass, northern pines, and late conifers (Table S1 in the Supplement). The initial 

ecosystem statesstate for the model run for the LS and WBS sites werewas designated to be a single sagebrush cohort with an 20 

average cube root volume (diameter) of 0.6 m, average height of 0.52 m, and density of 1 plant/m2 representing average spacing 

from the 2014 field inventory data. For the LS site, we used 0.57 m of cube root volume (diameter) and 0.56 m for height and 
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for WBS we used 0.62 m of cube root volume and 0.63 m for height. The soil column was configured to be 2.3 m deep with 9 

vertical layers and a free-drainage lower boundary. Corresponding to a gravelly loam soil in the study site (USDA, 2018a2018), 

we used a soil texture with 55% sand, 25% silt, and 20% clay, for both sites. Initial soil moisture was set to near saturation 

with no temperature offset, and the initial atmospheric carbon dioxide level matching the year 2001 (370 ppm), when we 

initialized the simulation. We ran the EDv2.2 model with these initial settings and initial shrub PFT parameters for the 5 

sensitivity analysis at the LS site for a fifteen-year simulation period. We selected this simulation period based on our pre-

sensitivity trial runs, previous studies (Medvigy and Moorcroft, 2012; Antonarakis, et al., 2014) where authors had initialized 

model using inventory data, and taking into account that there have been no major disturbances in recent history in these sites. 

We used only one of our sites (LS site) for the sensitivity analysis because we assumed both the sites are quite similar in terms 

of meteorological forcing (given their proximity) and ecosystem conditions, and particularly as we used a range of maximum 10 

and minimum values of parameters in the analysis. was set at 370 ppm. The EDv2.2 model was then run with these initial 

settings and initial shrub PFT parameters values for an 8-year simulation period. 

Since our study was more focused on preliminary parameterization of sagebrush PFT, we limited the sensitivity analysis to 

explore linear dependence of selected parameters over target variable, assuming minimum non-linear dependence among these 

parameters.  15 

We used a sensitivity index (SI) suggested by Hoffman and Gardner (1983) (Eq. 3) to perform apreliminary one at a time 

sensitivity analysis and rank the parameters. BecauseSince, this index is highly affected by the extreme values of parameters 

being studied, it is recommended that the parameter range cover the entire range of possible values. SI has been used in different 

areas of studies including ecology (Waring et al., 2016) and hydrology (Wambura et al., 2015), mostly to assess the effect of 

parameters on target variables, and sometimes to reduce the number of variables for further analysis. 20 

 

𝑆𝐼 =
𝐺𝑃𝑃𝑚𝑎𝑥−𝐺𝑃𝑃𝑚𝑖𝑛

𝐺𝑃𝑃𝑚𝑎𝑥
,           (3) 

 

where, 𝑆𝐼 is sensitivity index, 𝐺𝑃𝑃𝑚𝑎𝑥 is the value of GPP corresponding to the simulation with the maximum value of a 

parameter, and 𝐺𝑃𝑚𝑖𝑛𝐺𝑃𝑃𝑚𝑖𝑛 is the value of GPP corresponding to the simulation with the minimum value of a parameter. 25 

We identified minimum and maximum possible values for each of the selected parameters based on previous sensitivity and 

optimization studies, the range of parameters for other PFTs in EDv2.2, and our preliminary sensitivity analyses (Table 43). 

EDv2.2 was then run for a fifteen-an eight year period with both minimum and maximum values of each parameter while 

keeping all other parameters constant. The average daily GPP outputs throughout the simulation years for maximum and 

minimum values of parameters were used to deriveget 𝐺𝑃𝑃𝑚𝑎𝑥 and 𝐺𝑃𝑚𝑖𝑛𝐺𝑃𝑃𝑚𝑖𝑛 respectively. WeBased on SI, we limited 30 

the optimization and validation to the five most sensitive parameters from the list of eleven, to keep time and computing 

performance manageable.  
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2.6 Optimization and validation 

In the third step, an optimization of the five selected parameters was performed for both the LS and WBS sites using an 

exhaustive search (brute force) method within the specified range of values. This process was performed to identify the best 

values for the five selected parameters for each EC station in predicting GPP. For each site, weWe ran 720900 simulations 

with a unique combination of parameter values for fifteen15 years (2001-2016),, at which point it was assumed to reach an 5 

equilibrium with climate.  EDv2.2 simulations were configured to allow for growth of the C3 grass, northern pines, and late 

conifers together with the shrub PFT. This was done because although the vegetation assemblagesassemblage in the flux site 

footprints areof flux sites is primarily composed of sagebrush and grasses, conifers are present in some parts of the 

experimental watershed (Seyfried et al., 2000). For each simulation, we calculated a skill score, Nash-Sutcliffe efficiency 

(NSE) (Nash and Sutcliffe, 1970), to compare the final year simulated GPP from 2015 and 2016 with those derived from both 10 

the LS and WBS EC stations for respective years2016. Although, NSE is closely related to root mean square error (RMSE) 

(or mean square error, MSE), the skill score from it can be interpreted as comparative ability of the model over a baseline 

model, which is the mean of site observations in this case. While the RMSE value depends on the unit of predicted variables, 

which can vary from 0 to infinity, the NSE is dimensionless and varies from negative infinity to 1 (Krause et al, 2005; Gupta 

et al, 2009). NSE is calculated using Eq. (4): 15 

 

𝑁𝑆𝐸 = 1 −
∑𝑛

𝑖=1 (𝑂𝑖−𝑃𝑖)2

∑𝑛
𝑖=1 (𝑂𝑖−𝑂)

2 ,
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

,          (4) 

 

where, 𝑂𝑖  is observation, 𝑃𝑖  is predicted value, 𝑂𝑂̅ is mean of observation, and n is number of observations. For both EC 

stations, we selected the 10 best simulations based on NSE scores and computed ensemble means of all five parameter values. 20 

We then ran the EDv2.2 model using the ensemble mean parameter values and best case (highest NSE) parameter values for 

both EC sites. The simulated GPP from these runs ensemble mean parameter values and the best case (highest NSE) were then 

compared against respective EC site data from 20172015, which was withheld from the optimization as a means of providing 

an independent validation.  

3 Results 25 

3.1 Initial parameterization and sensitivity analysis 

For the model run based on the initial values of parameters (Table S1 of Supplement), the fifteen8-year simulations produced 

an annual cycle in GPP that decreases in amplitude during the initial 1-3 years, and remains at a level of  approximately 0.07 

kgCKgC/m2/yr in the remaining years (Fig. 2a). Observed GPP in 2016 were 0.51 kgCKgC/m2/yr and 0.38 kgCKgC/m2/yr for 

the LS and WBS sites, respectively. This result was significantly lower than the observed GPP from either of the EC sites, and 30 
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thus we followed up with sensitivity and optimization analysis to constrain some of the influentialwarranted changes in initial 

values for one or more parameters.  

Based on the SI ranking, SLA, stomatal slope, 𝑉𝑚0, 𝑆𝐿𝐴, stomatal slope, fine root turnover rate, and Q-ratio were identified 

as the top five sensitive parameters compared to the other parameters explored (Fig. 2; Table 43). Related studies (Dietze et 

al., 2014; Medvigy et al., 2009; Pereira et al., 2017; Zaehle et al., 2005) have also identified similar model parameters being 5 

important in estimating GPP. In our study, higher parameter values of SLA, 𝑉𝑚0, and stomatal slope, and 𝑉𝑚0, resulted in 

higher GPP estimates (Fig. 2b, c, and d), whereas for Q-ratio and fine root turnover rate and Q-ratio, higher parameter values 

produced lower GPP (Fig. 2e and f). The impact of shifts in SLA, 𝑉𝑚0, and stomatal slope values are observed from the very 

beginning of the simulations, while changes in fine root turnover rate and Q-ratio parameters start to show differences from 

roughly 3-4 years after the initial model run. Although not ranked in the top five, leaf turnover rate, cuticular conductance, leaf 10 

turnover rate, and growth respiration factor also had considerable influences over GPP (Table 43).   
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Figure 2. Simulated daily GPP outputs from 1-158 years for the study location with (a) initial values of all five parameters, 

and (b-f) maximum (green), minimum (blue), and initial (red) parameter values for SLA, 𝑉𝑚0, stomatal slope, 𝑉𝑚0, Q-ratio, 

and fine root turnover rate. 

 5 

 

Table 4. Summary of3. PFT parameters in EDv2.2 used for the sensitivity analysis of studied PFT parameters ranked 

byaccording to Sensitivity Index (SI). Top five parameters denoted by * were selected for optimization. 

Parameters Initial Min Max SI Reference 

SLA (m2kg-1) 4.5 2 15 0.988973* LambrechtBarbec (2014); 

Wright et al., (2007); 

Brabec (2014); Olsoy et al., (2016) 

2004) 

 𝑉𝑚0 (µmolm-2s-1)Stomatal Slope 16.57 24 1530 0.983962* DietzeComstock & Ehlenger 

(1992); Oleson et al., (2014); 

Bonan et al., (2014)(2013)  

Stomatal Slope 𝑉𝑚0 (µmolm-2s-1) 716.5 42 3015 0.982951* Comstock & Ehlenger (1992); 

OlesonDietze et al., (2013) 2014) 

Ratio of fine roots to leaves/ Q-ratio 3.2 0.4 12 0.898801* Dietze et al., (2014) 
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Fineroot Turnover rate (a-1) 0.33 0.1 2 0.895787* Gill and Jackson, (2000) 

Cuticular conductance (µmolm-2s-

1)Leaf Turnover rate (a-1) 

1031 1020.1 1072 0.813728 Barnard and Bauerle (2013): 

Duursma et al., (2018)* 

Leaf Turnover rate (a-1)Growth 

respiration factor 

0.331 0.111 20.66 0.779718 *Wang et al., (2013) 

GRFCuticular conductance (µmolm-

2s-1) 

1030.33 0.11102 0.66107 0.694501 WangBarnard and Bauerle (2013): 

Duursma et al., (20132018) 

Water Conductance (ms-1kgCroot-1) 1.9 × 10-5 1.9 × 10-6 1.9 × 10-4 0.168227 * 

Storage turnover rate (a-1)   0.624 0.33 0.95 0.004 * 

Leaf width (m) 0.05 0.01 0.10 0.002 * 

* Information about the range comes from range of values for other PFTs in EDv2.2, and our preliminary sensitivity analysis 

3.2 Optimization and validation 

For our exhaustive search of parameter values, we limited search domains for parameters based on previous studies and the 

result of our sensitivity analysis. SLA search limits were largely based on Olsoy et al. (2016), who suggested a range of 3 to 6 

m2/Kg for sagebrush SLA, withbut who also hinted at variation due to regional and seasonal variationsvariation. Similarly, 5 

limits for  

𝑉𝑚0 were extended slightly beyond Comstock and Ehleringer’s (1992) recommendations for Great Basin shrubs, and the upper 

limit for stomatal slope was extended slightly beyond that used by Oleson et al. (2013) for a shrub PFT in the Community 

Land Model (CLMv4.5). We set search domains for Q-ratio based on a leaf and root biomass study of sagebrush by Cleary et 

al. (2010), and fine root turnover ratio was based on results from a study on Artemisia ordosica in a semi-arid region of China 10 

(Li et al, 2009). Interval distances (or ‘steps’) were calculated to equally space out the range between the maximum and 

minimum of each parameter for a given number of intervals (Table 54). Parameters identified as exerting more control on GPP 

prediction were assigned higher number of steps, resulting in the following: five steps of SLA,  and 𝑉𝑚0, four steps for 𝑉𝑚0, 

stomatal slope, and three steps for Q-ratio and fine root turnover rate. Among 720 possible900 simulations for unique parameter 

value combinations for each site, 92, 180 cases from LS and 116 cases from WBS which did not provide model optimization 15 

results because of numerical instabilities (with GPP approaching zero)), were excluded from subsequent analysis.    

 

Table 54. Minimum value, maximum value, interval size, and number of steps for each parameter used in optimization. 

Parameter Min Max Interval Number of steps 

SLA (m2kg-1) 3.00 9.00 1.50 5 

𝑉𝑚0 (µmolm-2s-1) 14.0011.50 21.50 2.50 45 

Stomatal slope 7.00 10.00 1.00 4 
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Fine root turnover (a-1) 0.11 0.33 0.11 3 

Q-ratio 0.40 3.20 1.40 3 

 

We selected ten simulations with the best NSE scores for both the LS and WBS sites (Table S2 and Fig. S1 in the 

Supplement) and determined ensemble means of parameter values for these sites (Table 65). We then ran EDv2.2 from 2001 

to 2017predict GPP using parameters with the highest NSE score (hereafter, the ‘best case’) and ensemble mean parameters 

parameter values for each of the EC stations (hereafter, the ‘ensemble case’) for each of the EC stations.). Among the ten best 5 

simulations selected for each EC site, foursites, two of them were common to commonly selected in both sites (Table S2 in 

the Supplement). We observed that the variation in parameter values . One of them was more pronouncedranked top with 

highest NSE score (hereafter, the ‘best case’) and the other one was ranked as top fifth for the LS site, especially with regard 

to 𝑉𝑚0 and stomatal slope. Likewise, we observed more variation in GPP estimates among ten best simulations for LS site than 

top second for WBS site, especially during the peak and trough periods in the plots (Fig. . Both of these common simulations,S2 10 

in the Supplement). The best case for WBS site showed tracesgradual growth of C3 grass growth through some intermediatethe 

simulation years even though we initialized the model with only the shrub PFT. In the final year of simulation, the ‘best case’ 

had about 51% of total GPP coming from C3 grass and the other one had about 43% from it (Table S2 and Fig. S2 in the 

Supplement).  (Fig. S3 in the Supplement). Optimized parameter values were only slightlyconsiderably different between the 

best case and ensemble cases for both sitesstations, possibly suggesting little interaction effects among the parameters (Table 15 

6). In the best case,5). When parameters from ensemble means between two stations were compared, mean 𝑉𝑚0 for LS was 

higher by 3 µmolm-2s-1 than that for WBS. Mean parameter values for  𝑉𝑚0, SLA and stomatal slope were the samewas lower 

by 1 for both the sites, whereasLS than for WBS site. Another clear difference was with ensemble mean for Q-ratio and which 

was higher by 0.70 for LS than for WBS. But, we did not find such differences for SLA and fine root turnover rate were 

different. . 20 
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Figure 3. SimulatedOptimization of daily GPP (kgCKgC/m2/yr) with best case (highest NSE) compared withfor water year 

2016 based on EC station observation data from water years 2015 and 2016 for a) LS and b) WBS EC towers. Note that 

observation data from December 11, 2014 to February 17, 2015 was missing for LS siteSpring is shown as roughly 170-255 

DOY. 5 

 

Figure 3 compares simulated daily GPP from best simulation in the final two model years (October 2014 to September 

2016) with modeled year (from the daily ten best simulations and the ensemble case) with the observed GPP from the same 

periodin 2016 from each EC station.  Optimization results for the LS site in Fig. 3a show that simulated GPP matches well 

with observed data for most days, except during the spring season, during which strong peaksa clear peak in observed GPP 10 

werewas not captured by the simulation results. In contrast, theA lower GPP spring peaks for peak in GPP was observed at the 

WBS site (Fig. 3b) wereand was far more comparable to simulation results. The impact of the simulation results. This spring 

mismatch in the LS site, resulted in higher Bias and lower NSE when compared to the WBS site (Table 7). Moreover was such 

that, despite negative biasessome over-prediction during spring, positive NSE scoresthe fall season for WBS simulations, Bias 

and NSE were better for WBS than for LS data (Table 5). However, for both sites suggest thatEC site comparisons, most 15 

simulations resulted in a negative bias, and optimization NSEs for the parametersensemble cases were generally functioning 

to allownot as good as for the model to track observed daily GPP over time.  best cases.   

  

 

 20 

 

Table 65. Optimized parameter values from best cases (highest NSEs) and ensemble means (mean of top 10 simulations) for 

LS and WBS EC stations.  

Parameters LS EC station  WBS EC station 

Best case Ensemble mean  Best case Ensemble mean 
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𝑉𝑚0 (µmolm-2s-1) 1914.00 19.0018.50  1914.00 18.2515.80 

SLA (m2kg-1) 7.506.00 8.107.95  6.007.50 7.508.10 

Stomatal slope 910.00 8.707.60  910.00 9.108.60 

Fine root turnover (a-1) 0.2233 0.1922  0.33 0.2324 

Q-ratio 3.20 2.0864  1.803.20 1.8094 

 

For validation of the parameter estimates, we ran the model with (i) the best case parameters, and (ii) the ensemble case 

parameters, for both the LS and WBS sites for a total of 16 years (2001-2017), and compared the simulated GPPs produced 

from the final year (i.e., 2017 water year); (i) the best case, and (ii) the ensemble case, for both LS and WBS sites, with 

observed GPP from the respective locations in the same year. Results2015. When comparing Bias and NSE derived from the 5 

model validation showed higher Biases and lower NSEs for both sites compared to the with that from optimization results 

(Table 7). We had substantial difference in mean GPP observation for both LS and , we found that simulations for the WBS 

sites, between optimization (LS = 0.61 kgC/m2/yr, WBS = 0.39 kgC/m2/yr) and validation (LS = 0.55 kgC/m2/yr, WBS = 0.35 

kgC/m2/yr) years. Validation results were slightly better for the WBS than the LS site, however, it was not as distinct as site 

data performed well and with the optimization results. Overall, positiverelative parity, while those for the LS site performed 10 

poorly, especially given the negative NSE values for both best case (-0.193) and ensemble mean case (-0.183) for validation 

(Table 6). In contrast, validation results for the WBS site showed the model performed well for both cases for both sites suggest 

the simulated estimates provided better GPP predictions than the observed means., although the NSE from the best case (0.408) 

was higher than that from ensemble case (0.260). Poor validation results for the LS site could be attributeddue to missing data 

(69 days) from the 2015 observations (i.e., the validation dataset), or possibly due to inter-the higher difference in observed 15 

mean annual variability in observed GPPsGPP values between 2015 and to2016 for the inability ofLS site than for the model 

to adequately capture peak spring growth. WBS site.  

 

Table 76. Bias, NSE, and RMSENSE for optimization and validation of GPP using parameter values from the best case and 

the ensemble case for both EC stations.  20 

Simulations 

Optimization   Validation 

Bias 

(kgC/m2/yr)

𝐾𝑔𝐶𝑚2−1
𝑦𝑟−1) 

NSE 
RMSE 

(kgC/m2/yr) 
  

Bias 

(kgC/m2/yr)

𝐾𝑔𝐶𝑚2−1
𝑦𝑟−1) 

NSE 
RMSE 

(kgC/m2/yr) 

LS             

Best case -0.137203 0.277251 0.456  -0.257394 -0.069193 0.554 

Ensemble case -0.185161 0.265203 0.460  -0.301354 -0.046183 0.562 

WBS         

Best case -0.028066 0.452417 0.213  -0.257004 0.079408 0.411 
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Ensemble case -0.038076 0.440306 0.216 

 -

0

.

0

1

4 

-0.268260 0.034 0.421 

 

Results shown in Fig. 4 also indicate that the simulated daily GPPs for both sites matched well in late fall until early spring 

months (October to April) but did not do well in the late spring and summer months (May to September), when compared with 

observed data in 2017. Daily pattern of simulated GPP were almost identical for both sites with GPP falling down sharply 

through late summer months and remaining close to zero. We observed similar patterns of decline in the 2017 GPP data during 5 

late summer months (July and August) at both sites, though not as sharply as the simulated results (Fig. 4). The observed 

increase in GPP at the beginning of fall (September) was also not well captured by the simulated outputs. Monthly averages 

clearly show differences between simulated and observed GPP for May through September (Fig. 4 c & d). Ensemble case 

simulations for both sites exhibited almost identical patterns as the best case simulation, however at slightly lower levels for 

most of the months. 10 
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Results shown in Fig. 4 also indicate that the simulated daily GPP matched well with the validation data for the WBS site, 

but was a relatively poor match for the LS site. In particular, for the LS site, predicted GPP was significantly lower than 

observed for most of the spring and summer months (Fig. 4c). The validation data (from 2015) for the LS site had clearly 5 

higher GPP values for late summer days (Fig. 4a and c), thus resulting in higher negative Bias and negative NSE compared to 

the optimization results. Predicted daily GPP for this site during the remaining months, however, is comparable with observed 

values. In contrast, predicted daily GPP for the WBS site matched well with the validation GPP data through most of the year 

(Fig. 4b and d), with slight inconsistencies during September (under estimation) and October (over estimation). Compared to 

the best case, the ensemble case simulation for the LS site performed slightly better for most months, much better for July and 10 

August, but worse for October and November (Fig. 4c). For the WBC site (Fig. 4d), the clearest differences between the two 

cases were for April, May, July, and August, during which the best case simulation strongly outperformed the ensemble case.  
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Figure 4. Validation of GPP (kgCKgC/m2/yr) using best case and ensemble case against respective EC station observation 

data from water year 20172015. a) daily GPP for LS, b) daily GPP for WBS, c) monthly GPP for LS, and d) monthly GPP for 

WBS.  

4 Discussion 5 

Using our newly developed sagebrush shrub PFT, we were able to effectively simulate sagebrush ecosystem productivity in 

EDv2.2 as represented by the two study sites. Simulated results, after about four modeled years, clearly maintained annual 

shrub GPP over time, although at a lower level than the observed data from these sites. To improve GPP estimates and reduce 

uncertainty, we assessedOur sensitivity of eleven different parameters closely associated with biomass growth. Results from 

this preliminary analysisanalysis results were similar to previous studies (Dietze et al., 2014; LeBauer et al., 2013; Medvigy 10 

et al., 2009), wherein parameters  𝑉𝑚0, SLA, fine root turnover rate, and stomatal slope were found to be the most influential 
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in determining carbon flux or primary productivity. VariationA high variation in parameter values was obtainedobserved 

among the simulations that resulted in the ten best NSE values (Table S2 in the Supplement). The effects of some parameters 

(stomatal slope, fine root turnover rate, and Q-ratio) on GPP prediction differedwere not the same when they were altered 

individually versusor simultaneously with other parameters. For instance, the sensitivity analysis suggested GPP increases 

when fine root turnover ratio and Q-ratio are lowered individually, yet the best results for each site did not improve (i.e., still 5 

under-predicted GPP) with the lowest values of these parameters. Indeed,showed an increase in GPP with an increase in 

addition to first order effects of the studied parameters, the𝑉𝑚0 (Fig. 2) and, since our initial GPP prediction was very low, we 

would expect higher 𝑉𝑚0 for better prediction. However, when all five parameters were optimized simultaneously, a generally 

lower value of 𝑉𝑚0 produced the best NSE (Table 5). Likewise, despite the sensitivity analysis suggesting higher GPP with 

lower fine root turnover ratio and Q-ratio, the best results were obtained with the same initial values (maximum values in the 10 

search domain) for these parameters, Nonetheless, top ten best parameter combinations exhibited variation in parameter values 

for both EC sites, suggesting interacting effects and potentialgreater variation of these parameters for either EC site, and 

resulted in slightly lower mean values than the initial ones. This suggests interaction effects are dominant over first order 

effects of the studied parameters, and there is likely nonlinear dependence among parameters. Regardless, the negative bias in 

estimated GPP for the bestthem. 15 

GPP simulations resulted from an inability of the model to correctly produce daily GPPs for late spring and summer months. 

Althoughfrom this study demonstrated a higher annual GPP could be obtained to compensate for negative bias by changing 

parameters values, the highest GPP was not necessarily the one with the best NSE, since NSE was calculated based on daily 

GPP values. Limiting optimization to five of the eleven parameters initially identified may have also contributed to the error 

and bias observed in our modelled estimates.  20 

GPP simulations for closer similarity with observations from the WBS site had better optimization scores than for compared 

to the LS site, and also a slight edge over the latter for validation results.even though the WBS EC station is outside of the 

WRF pixel used in this analysis.  This could be due to slight differences in soils and hydraulic conditions betweenin the sites 

as wefield compared to those conditions used similar setups for our simulationinitialization. Moreover, variation between 

morphological characteristics of the vegetation at the LS and WBS EC towers (characterized by low sagebrush and Wyoming 25 

big sagebrush, respectively), including growing seasonssuch as differences in common plant heights and flowering seasons, 

may also have resulted in the observed differences in GPP (Howard, 1999; USDA, 2018b2018). Since Wyoming big sagebrush 

is the dominant species in the Reynold Creek Watershed area (Seyfried et al., 2000),2000), meteorological forcing data used 

in this simulation, as well as the allometric equations fitted for sagebrush (representing most areas of RCEW), could favorbe 

favoring the more realistic growth pattern of this species in the model (e.g., Fig. 43 and 54).  30 

Additionally, differences in the phenology of the associated grass species between the two sites could result in differences 

in seasonal and annual productivity (Cleary et al., 2015). For instance, the perennial grass at the LS site is Sandberg bluegrass, 

which is photosynthetically active in early spring and senesces by early summer (USDA, 2016), and thus may have contributed 
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to the observed higher spring GPP peak at the LS site. Although, we observed small amounts of simulated GPP growth for C3 

grasses for certain intermediate years, these levels wereIn contrast, the associated grass at the WBS site, bluebunch wheatgrass, 

does not sustained. However, current parameters for C3 grasses were unlikely to adequately produce co-existence of 

grassestypically senesce by early summer. Indeed, the best optimization result from this study showed a gradual increase in 

the area, and weC3 grass through the years along with the shrubs, with about 51% of GPP coming from the former by the final 5 

year. We could not validate resultshow close this result was in terms of the actual species composition and ecosystem dynamics 

of the EC sites, as we did not have GPP observations for unique PFTs. We also observed high inter-annual variation in observed 

GPP for both sites, leading to poor results in validation of simulation outputs. In summary, site-specific variability, model 

complexity, and optimizing for only five parameters likely contributed to, or were responsible forHowever, the differences 

between modeled and observed GPP estimates.  10 

While the emphasis of this study was to develop and optimize the shrub PFT parameters, rather than C3 grass PFT 

parameters for the study area. Although we would expect that simultaneous optimization of both grass and shrub PFTs would 

result in improved representation of the vegetation composition in the study area. Such an effort, it would also increaseincreases 

the number of parameters required, potentially complicating the process of optimization and validation unique to each PFT. 

Moreover, several studies suggest that the parameters 𝑉𝑚0 and SLA vary considerably across seasons (Groenendijk et al., 15 

2011; Kwon et al., 2016; Olsoy et al., 2016; Zhang et al., 2014). The mismatch in daily GPP patternspattern between simulated 

and flux tower data for specific seasons could be partly attributed to the lack of the model’s ability to address these seasonal 

deviations correctly. Like most other terrestrial biosphere models, EDv2.2 does not incorporate seasonal variation in 𝑉𝑚0, 

SLA, or other model parameters (Medvigy et al., 2009). Finally, we maycan achieve better results in parameter optimization 

and GPP estimatesprediction of sagebrush ecosystem, by making some advances in our methods in future studies. For example 20 

we can utilize additional. We can adopt some robust sensitivity (including variance decomposition, first order and second order 

analysis) (Zhang et al., 2017) and optimization (including cost function, gradient descent, and uncertainty analysis) 

(Richardson et al., 2010) methods to fine tune the sagebrush PFT parameters. Similarly, if we include additional years of 

instead of relying on a single year of observation data, we may better capture for optimization and/or validation, we can use 

multiple years of data that would take into account the inter annual variability normally observed in ecosystem fluxes, and 25 

potentially improve validation outcomes.  

5 Conclusions 

This study demonstrates that despite the complexity of the sagebrush-steppe ecosystem, estimating GPP using the newly 

developed sagebrush PFT is comparable, although with seasonal-bias, to observations obtained from EC station sites. Since 

our primary focus here was to develop initial parameters (including allometric relationships) for the shrub (sagebrush) PFT in 30 

EDv2.2, we focused our efforts on utilizing simple sensitivity and optimization tools to constrain errors associated with 

simulated GPP. Our identification of coefficients for allometric equations coupled with the other parameters for theIn this 
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study, the Ecosystem Demography (EDv2.2) model was used to parameterize shrub PFT parameters and predict GPP for a 

sagebrush ecosystem in the Great Basin. Initial shrub PFT parameters were identified based on allometric equations fitted with 

field data, previous studies on sagebrush and shrubs in the sagebrush-steppe, and other PFTs (C3 grass, northern pines, and 

late conifers) in EDv2.2. The WRF model was used to acquire and force simulation with meteorological inputs to predict GPP. 

The simulation with initial shrub PFT parameters showed annual decline in GPP for 1-3 years and remained at a low level 5 

(compared to observed GPP data) for the remaining simulation period. Sensitivity analysis suggested Vm0, SLA, stomatal 

slope, fine root turnover rate, and Q-ratio ranked top five in influencing GPP prediction, which agrees with previous studies. 

An exhaustive search was performed over constrained domains to explore the optimum combination of parameters to predict 

GPP. This led to identification of parameter values for best case and ensemble mean (of the ten best cases) cases optimized for 

the LS and WBS EC sites, using the NSE. Even though the model predicted daily GPP quite well, mostly negative bias was 10 

observed in predictions, and there was mismatch during the spring months. Validation results showed better performance by 

parameters optimized for WBS site than those done for LS site in GPP prediction. The difference in the local site vegetation 

community and the overall dominance of Wyoming big sagebrush in the study area and in the Great Basin may explain why 

the GPP predictions were closest to the WBS site. Similarly, the limitation of EDv2.2 in incorporating seasonal variation of 

parameters like Vm0 and SLA, could also be attributed to its poor predictions for spring seasons.  15 

Our identification of coefficients for allometric equations coupled with the other parametrization of a semiarid shrub PFT 

for EDv2.2 will permit exploration of additional research questions. For instance, we can run EDv2.2 could be run at regional 

scales with optimized parameters to model the spatiotemporal dynamics of the sagebrush community composition and 

ecosystem flux, under different climate and ecological restoration scenarios. With additional time and computing resources (to 

facilitate large numbers of simulations), we can further refine sagebrush parameters to explore variance decomposition and 20 

non-linear dependencies using different sensitivity and optimization methods. Optimization of associated or co-occurring PFTs 

(C3 grass and conifers) in the region spanning out to include additional study sites, would also help to better understand and 

constrain uncertainties in estimating the complex dynamics of the sagebrush-steppe ecosystem. Another direction is to optimize 

C3 grass PFT parameters in EDv2.2, simultaneously with shrub PFT parameters, by using multiple years of observation data 

to characterize inter annual variation. 25 

 

Code & data availability. Original EDv2.2 is available at Github (https://github.com/EDmodel/ED22), which is maintained 

and continuously updated by the owners of the repository. Modified source codes for EDv2.2 with shrub PFT parameters used 

in this paper and input data are available at https://doi.org/10.5281/zenodo.2631988 (Last access: 08 April, 

2019https://doi.org/10.5281/zenodo.2144044 (Last access: 12 December, 2018). 30 
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