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Abstract. The turbulent fluxes of momentum, heat and water vapour link the Earth’s surface with the atmosphere. The correct

modelling of the flux interactions between these two systems with very different time scales is therefore vital for climate and

weather forecast models. Conventionally, these fluxes are modelled using Monin-Obukhov similarity theory (MOST) with

stability functions derived from a small number of field experiments; this results in a range of formulations of these functions

and thus also in differences in the flux calculations; furthermore, the underlying equations are nonlinear and have to be solved5

iteratively at each time step of the model. We tried here a different and more flexible approach, namely using an artificial

neural network (ANN) to calculate the fluxes resp. the scaling quantities u∗ and θ∗, thus avoiding function fitting and iteration.

The network was trained and validated with multi-year datasets from seven grassland, forest and wetland sites worldwide

using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton backpropagation algorithm and six-fold cross validation.

Extensive sensitivity tests showed that an ANN with six input variables and one hidden layer gave results comparable to10

(and in some cases even slightly better than) the standard method; moreover, this ANN performed considerably better than

a multivariate linear regression model. Similar satisfying results were obtained when the ANN routine was implemented in

a one-dimensional stand alone land surface model (LSM), opening the way to implementation in three-dimensional climate

models. In case of the one-dimensional LSM, no CPU time was saved when using the ANN version, since the small time step

of the standard version required only one iteration in most cases. This could be different in models with longer time steps, e.g.15

global climate models.

1 Introduction

The turbulent fluxes of momentum, heat, water vapour and trace gases link the atmosphere with the Earth’s surface. The

faithful representation of these fluxes is therefore essential for a proper functioning of climate and weather forecast models.

In these models, the fluxes are parameterised using a velocity scale u∗ and a (potential) temperature scale θ∗ as momentum20

flux τ = ρu2
∗ and heat flux H =−ρcpu∗θ∗ (ρ is air density, cp is air heat capacity). u∗ and θ∗ depend on near surface wind

and temperature, their gradients, surface roughness and atmospheric stability. In the framework of the almost exclusively

used Monin-Obukhov similarity theory (MOST; Monin and Obukhov, 1954), one has to determine stability functions for

momentum and heat which depend on a single stability parameter (for details, see e.g. Arya, 2001). These stability functions
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must be determined empirically and were obtained by different authors from regressions on observations from a small number

of field experiments. As shown in Högström (1996), the results vary considerably, especially in the very stable and the very

unstable regimes, due to a lack and/or a large scatter of the observations and possibly violations of the assumptions of MOST.

Furthermore, the underlying nonlinear equations must be solved iteratively at each time step of a model run which can be time

consuming.5

In the present study, artificial neural networks (ANN) and their ability to simulate a wide range of relationships between

input and output variables as a universal approximator (Hornik et al., 1989) are used to model the stability functions. Our

goals in this study are a) to see how well ANNs can approximate the stability relationships, b) possibly increase accuracy

through using larger data sets, c) using the more flexible ANN approach instead of function fitting, and d) possibly speed up

the calculations. With positive outcomes, we ultimately want to replace the relevant subroutines in a climate model by ANNs10

in order to improve overall model performance.

A good overview of various applications of ANNs in different disciplines can be found in Zhang (2008). Several studies (e.g.

Gardner and Dorling, 1999; Elkamel et al., 2001; Kolehmainen et al., 2001) describe applications of ANNs to meteorological

and air quality problems. In these studies, long time series of observational data are available for ANN training and only

one station is involved in the training and validation process. Comrie (1997) compares ozone forecasts using ANNs with15

forecasts using standard linear regression models and find that ANNs are “somewhat, but not overwhelmingly“ better than

the regression models. Best performance is obtained with an ANN incorporating time lagged data. Gomez-Sanchis et al.

(2006) use a multi-layer perceptron (MLP) to predict ozone concentrations near Valencia based on meteorological and traffic

information. Different model architectures are tested and good agreement with observations is found. However, for different

years different model architectures for optimal results are required, which they attribute to varying relative importance of the20

input variables. Elkamel et al. (2001) use a one hidden layer ANN and meteorological and precursor concentrations to predict

ozone levels in Kuwait. They find that the ANN gives consistently better predictions than both linear and nonlinear (log output)

multivariate regression models. Kolehmainen et al. (2001) compare the ability of self-organising maps and MLP to predict

NO2 concentrations when combined with different methods to preprocess the data. They find that direct application of the

MLP give best results. In all these studies just one hidden layer is sufficient and it is pointed out that careful selection of the25

input data is crucial.

Some papers deal with the idea of replacing whole models or model components by ANNs. For example, Knutti et al. (2003)

teach a neural network to simulate certain output variables of a global climate model and use the result to establish probability

density functions as well as to enlarge a global climate model ensemble considerably. Gentine et al. (2018) use an ANN to

parameterise the effects of subgrid scale convection in a global climate model. The ANN learns the combined effects of turbu-30

lence, radiation and cloud microphysics from a convection resolving submodel. They find that using the ANN, many of these

processes can be predicted skilfully, but spatial variability is reduced compared to the original climate model; they attribute

this to chaotic dynamics accounted for in the original model, but not in the version using the ANN which is deterministic by

construction. Sarghini et al. (2003) and Vollant et al. (2017) use an ANN trained with direct numerical simulation data as a

subgrid scale model in a large eddy simulation model. Sarghini et al. (2003) find that the ANN is able to reproduce the nonlin-35
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ear behaviour of the turbulent flows, whereas Vollant et al. (2017) find that the ANN performs well for the flow cases the ANN

was trained for, but that it can fail for other flow configurations.

This paper is structured as follows: in Sect. 2, we give a short overview over Monin-Obuhkov similarity theory and artificial

neural networks, introduce cross-validation, present the data used (including important quality checks) and describe our strategy5

to find the best network. Thereafter, trained ANNs (which are in fact MLPs, but we will stick to the generic name ANN here)

are validated and results are discussed (Sect. 3). In Sect. 4, the best performing ANN is implemented in a one-dimensional land

surface model (LSM) and results are compared with the ones of the standard version. A summary is given in Sect. 5.

2 Methods and data

2.1 Monin-Obukhov similarity theory (MOST)10

In weather forecast and climate models, the turbulent fluxes of momentum, heat, water vapour and trace gases between the

Earth’s (land and water) surface and the atmosphere are usually calculated on the basis of Monin-Obukhov similarity theory

(MOST, Monin and Obukhov (1954)). We give here a very brief survey over MOST, focussing on momentum and heat fluxes;

details can be found in Arya (2001). The main assumptions of MOST are: horizontally homogeneous terrain (in particular, flow

characteristics are independent of wind direction), stationarity, fair (i.e. dry) weather conditions and small terrain roughness,15

i.e. no or low vegetation; for tall vegetation, the last assumption is usually circumvented by introducing the concept of displace-

ment height d≈ 0.67z. MOST postulates that turbulence in the surface (also called Prandtl or constant flux) layer depends only

on four quantities: the height above ground z resp. (tall) canopy z− d, a velocity scale u∗, a temperature scale θ∗ and a buoy-

ancy term g/θ, where g is gravitational acceleration and θ denotes potential temperature. The velocity and temperature scales

depend on velocity resp. temperature gradients and on atmospheric stability, and this dependence will be used later to build the20

neural networks. According to the Buckingham Pi-Theorem, these four quantities based on length, time and temperature can

be combined to a single non-dimensional quantity ζ = z/L, where L= u2
∗θ/(κgθ∗) is the Obukhov length and κ≈ 0.40 is the

von Kármán constant; other dimensionless quantities like dimensionless wind and temperature gradients can be expressed as

functions of ζ. The Obukhov length L measures the stratification of the surface layer: large (positive or negative) values (i.e.

ζ ≈±0) indicate neutral stratification, positive values indicate stable stratification, negative values indicate unstable stratifica-25

tion. Since momentum flux is expressed as τ = ρu2
∗, and heat flux as H =−ρcpu∗θ∗ (ρ is air density, cp is air heat capacity),

our goal is to determine u∗ and θ∗ from known quantities, which are in our case modelled or observed wind and temperature

gradients in the surface layer.

Non-dimensional wind shear φm and the non-dimensional gradient of the potential temperature φh (also called stability func-

tions) can be written as30

φm(ζ) =
κz

u∗

∂u

∂z
, φh(ζ) =

κz

θ∗

∂θ

∂z
(1)

respectively, where u is the mean wind speed at height z.
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The "‘universal"’ functions φm and φh can be obtained from simultaneously measured values of the wind speed and tem-

perature gradients and the momentum and heat fluxes (providing u∗ and θ∗). Conversely, u∗ and θ∗ can be calculated from

these universal functions, given the wind speed and temperature gradients; this is how these functions are used in weather and

climate models. Data from field experiments have been used to derive these universal functions, notably the Kansas experiment

in 1968 by Businger et al. (1971). Generally, the stability functions thus obtained have the form5

φm,h(ζ) = (αm,h +βm,hζ)γm,h (2)

with the coefficients depending on ζ > 0 or ζ ≤ 0. An overview of these functions can be found in Högström (1988); it is

shown there that there is considerable scatter in the data (especially under very stable and very unstable conditions) and, as

a result, also in the derived universal functions. In applications, differences are known rather than gradients. Integrating the

functions (1) between a reference height zr and z yields10

κ(u(z)−u(zr))/u∗ = ln(z/zr)−Ψm(z/L), κ(θ(z)− θ(zr))/θ∗ = ln(z/zr)−Ψh(z/L) (3)

where

Ψm,h(z/L) =

z/L∫
zr/L

(1−φm,h(u))du/u (4)

For the purpose of climate modelling, i.e. obtaining fluxes from simulated wind and temperature profiles, u∗ and θ∗ need to

be derived from wind resp. temperature data at two heights and Eq. (1) or Eq. (3). Since ζ itself depends on u∗ and θ∗, this15

amounts to solving a system of two nonlinear equations; we will call this traditional method the MOST method.

2.2 Neural networks

We describe here only those aspects of neural networks which are relevant to our study; for more information on neural

networks, the reader is referred the literature, e.g. (Rojas, 2013; Kruse et al., 2016). Neural networks, or more precisely

artificial neural networks (ANN), are a widely used technique to solve classification and regression problems as well as to20

analyse time series (Zhang, 2008). The building blocks of an ANN are the so-called neurons, arranged in different layers. An

ANN has at least an input and an output layer; between these, there can be so-called hidden layers. The neurons in successive

layers (but not within the same layer) are connected through weights (see Fig. 7). A neuron processes input data as follows:

oj = f

(
N∑
i

oi ·wij

)
, (5)

where oj is the output of the neuron j,N is the number of neurons in the preceding layer (including the bias neuron, see below),25

oi is the output of the ith neuron in the preceding layer and wij is corresponding weight. Nonlinear behavior of the network

is induced by using nonlinear activation functions f . Each neuron belongs to a unique layer in a directed graph. Here, we

use so-called multi-layer perceptrons (MLP), also known as feed-forward networks due to the unidirectional information flow.
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Each MLP consists of an input, an output and at least one hidden layer with an arbitrary number of neurons. The input layer

takes (normalised) input data and the output data returns the (also normalised) results of the MLP. Normalisation is essential

for equal weighting of the input and for consistency with the domain and range of the activation functions. Input information

is propagated from layer to layer while each neuron responds to the signal. Bias neurons are used to adjust the activation level.

All free parameters (i.e. weights) of a MLP need to be determined by a training process. In the case of supervised learning, the5

MLP knows its deviation from target values at every time and an error can be calculated using this deviation (Zhang, 2008).

The aim of the training is to minimise an error metric by adjusting the network’s weights. Here we use the mean squared error

(MSE)

MSE =
1

|P |
∑
p∈P

1

NΩ

NΩ∑
j

(
tj,p− oj,p

)2
(6)

P is the total number of data points, NΩ is the number of neurons in the output layer, tj,p is the target value of data point10

p and oj,p is the output of the MLP for data point p. In the study described here, we use a MLP with tangens hyperbolicus

as activation functions in the hidden layer(s) (here one or two) and linear functions in the output layer trained by the Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton backpropagation algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb,

1970; Shanno, 1970).

2.3 Regression model15

To compare the performance of neural networks described in Sect. 2.2 with a standard regression model, we used the multi-

variate linear regression (MLR) model as implemented in the mvregress MATLAB routine

yj =
∑
i

βij ·xi + εj (7)

where the βij are the regression coefficients and the εj are the residual errors with a multivariate normal distribution. The

model uses a multivariate normal maximum likelihood estimation. The resulting values for βij maximize the log-likelihood20

function logL(β,ε|y,x) . We used the same six element input vector and two element target vector as for the ANN (both

described in Sect. 2.6), as well as the same "‘training"’ and independent test data (DE-Keh) sets (see Sect. 2.4 and Sect. 2.5).

2.4 Data

To train and validate the neural network, data from 20 meteorological towers in Europe, Brazil and Russia over different land

use types including forest, grassland and crop fields were collected. All data were measured after 2000 and observation periods25

range from a few months to several years. Figure 1 shows a map of the sites which provided data. Stations varied widely

in environmental surrounding, instrumental set-up and measurement heights. The tower configuration of the sites is shown

schematically in Fig. 2. For our purposes, we required temperatures and wind speed in two measurement heights as well as the

momentum and sensible heat fluxes to calculate the scaling quantities u∗ and θ∗ (see Sect. 2.6). The fluxes at the sites used were
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all measured by the eddy covariance method. If not available, density was calculated from the ideal gas equation using virtual

temperature in case of available humidity data, otherwise we used the temperature of dry air. For forests, all observations had

to be above the canopy, and all vertical distances were reduced by the displacement height, assumed to be two-thirds of the

vegetation height. The original temporal resolution of the data was either 10 minutes or 30 minutes; these were aggregated to

1-hour averages.5

An important step before using data as input for the ANN was to check if the data were compatible with Monin-Obuhkov

theory, i.e. if an (at least approximate) functional relationship between ζ and the right-hand sides of Eq. (1) was present and if

yes, how well they were represented by the universal stability functions Eq. (1). It turned out that for some sites, no relationship

existed. Reasons for this could be a violation of the assumptions of the Monin-Obuhkov theory like inhomogeneous terrain10

around the site or wind direction dependence of the roughness length. Data from these sites were not used further, except for

the DE-Tha site (see Sect. 4). The remaining stations (see Table 1) with about 113,500 hourly averaged data points in total (see

Table 2) were used to train and validate the networks. For these, agreement generally was better for temperature than for wind;

also, agreement was better for unstable than for stable stratification, which is often mentioned in the literature.

Data were preprocessed before they were presented to the ANN. Input and output data were normalised according to their15

extrema to the interval [0,1] (see Table 3). Furthermore, weak wind situations with wind speeds below 0.3 ms−1 were filtered

out. Because of large scatter of wind and temperature gradients under atmospheric conditions with absolute heat fluxes below

10 Wm−2 or small scaling wind speeds (u∗ < 0.1 ms−1), such data were excluded. Finally, the signs of the temperature scale

θ∗ and of the potential temperature gradient had to be the same, thus excluding counter-gradient fluxes which can be observed

over forest (Denmead and Bradley, 1985) and ice (Sodemann and Foken, 2005), but violate the assumptions of MOST (Foken,20

2017a, b).

2.5 Cross-validation and generalization

Trained networks were validated using k-fold cross-validation (Kohavi, 1995; Andersen and Martinez, 1999) to prevent over-

fitting (Domingos, 2012). Overfitting originates from the trade-off to minimise the error on given data and to maximise perfor-

mance on new unknown data (Chicco, 2017). In a first experiment, the full data set is divided into k = 6 subsets by a random25

data split with approximately equal size first. Cyclically, one subset is kept for independent testing, the remaining k−1 subsets

are used for training and validation. With this experiment, we can show that ANNs are able to learn from the data and to

represent their characteristics. In a second experiment, we go one step further and check if the found ANNs can handle not

only unknown data but also completely new stations not used previously, i.e. if they are able to generalize. For this experiment,

we decided to validate trained models with the station NL-Cab and to test the best ANNs finally on the station DE-Keh which30

had been left out in the training and validation phases of this experiment (see details on stations in Sect. 2.4). For these two

stations, the traditional MOST method performed best; thus, they present a strong challenge for the ANNs to achieve similar

quality.
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2.6 ANN setup and selection of best ANN

Neural networks are very flexible in terms of number of layers, number of nodes, error metrics, training method, activation

function etc.; thus, a series of sensitivity runs was performed, which always consisted of a training and a validation phase. To

find an optimal network architecture, we varied the following parameters:

– The number and type of input variables5

– The number of hidden layers (one or two)

– The total number of nodes in the hidden layer(s) (between 1 and 14)

To avoid an excessive number of sensitivity runs, the parameters listed in Table 3 were kept fixed based on recommendations

in the literature (Zhang, 2008; Kruse et al., 2016). Training is done in batch mode, therefore the network’s weights are adjusted

after each epoch. Training ended at most after 1000 epochs or if the error on the validation data increased for 50 successive10

epochs (early stopping). In the latter case, the state of the trained network with the lowest error on the validation data (and

not the early stopping state) was set as final state. We tested network architectures with six and seven element input vectors.

The six element input vector consisted of the wind speed and potential temperature averages over the two heights, the vertical

gradients of wind and potential temperature and their ratio and a classifier to distinguish between low (cveg = 0) and tall

(cveg = 1) vegetation. For the seven element input vector, we replaced the temperature gradient by its absolute value and15

added an additional input node describing the sign of potential temperature gradient. The target vector remained in both cases

a two element vector consisting of the wind scale u∗ and the temperature scale θ∗. As mentioned above, we experimented with

ANNs having one and two hidden layers. For the ANNs with one hidden layer, we varied the number of neurons in the hidden

layer from one to twice the size of the input layer. For ANNs with two hidden layers, the number of neurons in each layer is

increased up to the number of input neurons.20

All networks were trained to minimise the overall (sum of u∗ and θ∗) MSE on normalised data from Eq. (6). To compare the

different ANNs, we used: the root mean squared error (RMSE) RMSE =
√
MSE, the mean absolute error (MAE)

MAE =
1

|P |
∑
p∈P

1

NΩ

NΩ∑
j=1

∣∣tj,p− yj,p∣∣ (8)

and Pearson’s correlation coefficient r

r =
1

NΩ

NΩ∑
j=1

∑
p (yj,p− ȳj)(tj,p− t̄k)√∑

p (yj,p− ȳj)2 ·
√∑

p (tj,p− t̄j)2
∈ [−1,1] , (9)25

where ȳj and t̄j are the averages of the jth net output and the target value with ȳj = 1
|P |
∑
p yj,p and t̄j = 1

|P |
∑
p tj,p.

When ANNs are to be used in climate models, one has to find a trade-off between two aspects: on the one hand, the model

should perform well according to the quality metrics described above; on the other hand, a superior model in terms of small

errors but with higher computational demands may not be the best choice to use in climate models where saving computing
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time is a very high priority criterion. For ANNs, computing time normally increases with complexity of a network, i.e. with its

size. We therefore tested also ANNs with smaller-than-optimal numbers of neurons in view of this trade-off. To find smaller

networks requiring possibly less computing time, we looked at networks that meet the requirement that the size of each hidden

layer nhi is less or equal to the size of the input layer nI minus 1.

nI − 1≥ nh1

(
≥ nh2

)
(10)5

This condition was found after some experimenting and is somewhat arbitrary, but there is no hard rule defining the simplicity

of a model. Here, we call ANNs that satisfy this condition simple networks.

3 Results

As described in Sect. 2.5, ANNs are always trained on the training data set only and validated on a disjoint validation data set.

If the MSE on the validation set rises continuously, training is stopped to prevent overfitting (early stopping). After this training10

and validation stage, the ability of the thus found ANNs to generalise is tested on data completely new to the ANNs. All in all,

more than 100000 nets were trained and tested this way.

3.1 Effect of data splitting

The validation results from ANNs with six inputs and one single hidden layer trained under six-fold cross-validation with

random data splitting are shown in the box-and-whiskers plot in Fig. 3 as a function of the number of hidden neurons. One15

can see that the validation MSE decreases with increasing number of hidden neurons and reaches an asymptotic value of about

0.008 already with 6 to 7 neurons. Furthermore, the scatter of MSE is quite small, meaning that the quality of the results of

ANNs trained on different sets varies only slightly.

If the training data are not split randomly but station-wise, a larger MSE and a considerably larger scatter of MSE results.

Comparing Fig. 4 with Fig. 3 shows that MSE is roughly doubling, whereas scatter increases by about a factor of ten, almost20

independent of the network architecture. On the other hand, increasing the network size doesn’t necessarily imply a lower MSE.

Using two hidden layers reduces slightly the median and error minimum, but increases the MSE spread, too. Comparison of

Fig. 3 with Fig. 4 also shows that the station-wise error minima are comparable to the ones obtained from random data split.

In both types of validation, ANNs with one and two hidden layers are not significantly different.

All in all, comparing Fig. 3 with Fig. 4 shows that the station-wise data split reduces the ANN performance substantially.25

This implies that using not enough stations as well as station-wise training impairs the generalization of learned relationships

between inputs and target values. Among the reasons for this could be the tendency of the ANNs to overfit training data by

memorising relationships and local effects contaminating the validity of MOST like not ideal positioning of sites or not ideal

atmospheric conditions. These findings support the need for independent testing with data yet unknown to the ANN in order to

estimate the ANNs real ability to generalize. This will be discussed in the next section.30
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3.2 Generalization to unknown data

After having shown that ANNs are able to extract u∗ and θ∗ from training data successfully, our next step is to assess how the

ANNs found in the previous section can handle input from stations which weren’t used neither for training nor for validation,

i.e. data completely unknown to them; this simulates the situations where ANNs are used in climate models (where grid points

play the role of stations). To test this, we choose the station NL-Cab for validation and DE-Keh as the unknown station.5

We selected these two stations because the standard MOST method performed best for these stations and it is therefore a

strong challenge for the ANNs to produce equivalent results. The results of the nets performing best on the validation set

are summarised in Table 4, where we compare the ANNs according to increasing complexity of their net architecture. For

comparison and in view of reducing computation time, we show in this table also the results of the best simple networks (as

defined in Sect. 2.6). Table 4 shows that in terms of MSE and correlation coefficient r, all ANNs perform better than the10

traditional MOST method on the validation data set (NL-Cab). Applying these ANNs to the test data set DE-Keh results in

an increased MSE and lower correlation coefficient, whereas the traditional MOST method performs better on the test data

set. Among the ANNs, the 6-5-3-2 ANN reached the best test performance with an MSE of 0.68 · 10−2, but the simpler 6-3-2

ANN is second best (also in terms of MSE); it is interesting to see that simple nets can be almost as good as larger nets.

Networks with seven inputs have in our case no substantial advantage over networks with six inputs. ANNs with two hidden15

layers perform slightly better on the test data than ANNs with a single hidden layer. The overall correlation between network

outputs and target values is in all cases quite high (r ≥ 0.85).

We also did a comparison for the turbulent momentum and heat fluxes τ = ρu2
∗ andH =−ρcpu∗θ∗, which are the quantities

ultimately needed in climate simulations. Results for the momentum and heat fluxes of three well-performing networks as well

as for the standard MOST method are shown in Fig. 5 and Fig. 6 and in Table 5 and Table 6 respectively. In the tables we also20

show the results of the multivariate linear regression (MLR) described in Sect. 2.3. Both ANNs, MLR and the standard method

tend to underestimate larger momentum fluxes, but differences among ANNs are quite small. Best agreement is achieved with

the 6-5-3-2 ANN which is almost as good as the standard method.

Regarding the heat flux, the differences between the ANNs are again relatively small, but the ANNs as well as the standard

method tend to overestimate the heat fluxes, whereas MLR understimates them (not shown). Best results are obtained with the25

6-3-2-ANN. For heat flux, the 7-5-2-2 ANN behaves markedly different than the other ANNs. It produces two distinct states,

one around -30 Wm−2 and the other from 50 Wm−2 to 200 Wm−2; as a result, r is reduced but MAE is lowest for this 7-5-2-2

ANN. Thus, the 7-5-2-2 ANN works more like a discrete classifier of stability rather than the continuous regression we are

looking for. As for the momentum fluxes, the ANNs perform considerably better than the regression model. These results show

again that smaller nets can be as good or even better than larger ones.30

All ANNs perform considerably better than the multivariate linear regression model. This is not really surprising, since

the scaling quantities to be approximated are nonlinear functions of stability (Arya, 2001), so that an ANN with a nonlinear

activation function can be expected to perform better than any linear model; as Table 5 and Table 6 show, this is the case even

for the small 6-3-2 ANN with one hidden layer.

9
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A comparison of the computation time required by the different ANNs relative to the 6-3-2 ANN is shown in Table 7. The

table shows that the increase of computational demand is approximately proportional to the number of weights (as could be

expected), and therefore increases considerably when two layer networks are used. As the discussion above shows, these costs

are not reflected in a markedly higher quality of results. We can conclude that generalisation entails a reduced performance of

the ANNs with quite small differences between the various ANNs. The performance of the ANNs is comparable to the standard5

MOST method, and the simplest 6-3-2 network has the best score in terms of accuracy and computational efficiency.

4 Implementation of an ANN in a land surface model

As already mentioned, our goal is to replace the standard MOST method to calculate fluxes by an ANN in the land surface

component of climate models, expecting more flexibility, accuracy and possibly saving of CPU time. The results presented in

the previous section indicate that from the accuracy as well as computational efficiency point of view, the 6-3-2 ANN seems to10

be most suitable for implementation into a land surface model (LSM). This ANN is shown in Fig. 7.

We implemented the 6-3-2 ANN with weights as found in the previous sections in a stand-alone version of the one-

dimensional LSM Veg3d (Braun and Schädler, 2005); this replaced the implemented routine using the standard MOST method

to calculate the scaling quantities u∗ and θ∗. We will call here the LSM version with the original standard MOST version the

reference version. Input data for the ANN and data normalisation was the same as described in Sect. 2.4 and output was anal-15

ogously de-normalised. Since the LSM requires apart from momentum and heat fluxes also the moisture flux, we calculated

the scaling specific humidity q∗ as proportional to θ∗ following the standard procedure in boundary layer meteorology (Arya,

2001). Meteorological input for the LSM was 30 min values of short- and long-wave radiation, wind speed, temperature, spe-

cific humidity and air pressure at two heights; additionally soil type and land use were prescribed; in the present study, these

data were only available for the DE-Fal site for the year 2011 and for the DE-Tha site for the year 1998. For comparison with20

observations, time series of heat and moisture fluxes as well as soil temperature and soil moisture in the upper soil layers were

available, so that the effect of the ANN on the soil component could also be assessed. We performed the comparison with data

from the DE-Fal (grassland, year 2011) and DE-Tha (evergreen needleleaf forest, year 1998) stations for years which had not

yet been used neither for training nor for validation; thus, the data were new to the ANN in the sense that time periods were

used which had not been used previously for training and validation. The DE-Tha site had not been used at all before, because25

the other sites selected in Sect. 2.4 were more consistent with MO than DE-Tha and because the DE-Tha time series covered

only one year. We compared the RMSE and the correlation coefficient of the calculated values with the observed ones for the

reference version and the ANN version. Additionally, we compared the required CPU times. The results of the comparison are

shown in Table 8 and 9.

Especially for grassland, results of the standard version are very good in terms of RMSE and correlation coefficients and it30

is difficult for the ANN version to outperform this. However, the results show that the ANN version is able to produce results

of similar quality as the standard version for the fluxes as well as for soil temperature and soil moisture. For tall vegetation,

RMSEs are larger and correlation is less; but the differences between the ANN version and the reference version are even

10



smaller than for grassland and for soil moisture the ANN version even outperforms the standard version. In terms of fluxes, the

standard version is generally slightly better. Regarding CPU time, there are only minor differences, although we had expected

the ANN version to be faster. However, due to the small prognostic time step used, once initialised, the standard version does

in most cases not need to do more than one iteration to find a solution to the nonlinear equation and to update the scaling

quantities, so that the expensive iteration is reduced considerably. In summary, as a result of this first comparison one can say5

that the ANN version works equally well as the reference version.

5 Summary

We have used an ANN (more precisely, a MLP) to obtain the scaling quantities u∗ and θ∗ as defined in MOST; these are used

in weather and climate models to calculate the turbulent fluxes of heat and momentum in the atmospheric surface layer. To

train, validate and test the neural network, a large set of worldwide observations was used, representing tall vegetation (forests)10

and low vegetation (grassland, agricultural terrain). A quality assessment of the data sets showed that not all of them were

compatible with MOST, so only 7 of the initially 20 data sets could be used.

Sensitivity studies were performed with different sets of input parameters, data sampling methods and network architectures;

validation was done with 6-fold cross validation. An important part of the overall network validation was to check the ability of

the network to generalise, i.e. to produce acceptable output if input is data from stations completely unknown to the network.15

These studies showed that even a relatively small 6-3-2 network with six input parameters and one hidden layer yields satisfying

results in terms of RMSE and correlation coefficient. With respect to the trade-off between quality of results and computational

efficiency, this network performed best.

We could show that results of the ANN were equivalent to the standard method in all tests we performed. A final validation

with the heat and momentum fluxes instead of the scaling quantities showed that the traditional MOST method and the ANN20

approach were also in this case almost equal in terms of quality, with the 6-3-2 ANN performing best. Furthermore, we could

show that the ANNs outperform a multivariate linear regression model with the same input and output variables and training

and test data. This could be expected, since the stability functions are nonlinear functions, so that even a small ANN with one

hidden layer and a nonlinear activation function can be expected to perform better than any linear model. An implementation

of the 6-3-2 ANN into an existing LSM showed that the ANN version gives results equivalent to the standard implementation25

with sometimes even higher correlations. However, no saving of computation time was found.

In summary, it could be shown that even in this stage, an ANN gives results comparable in quality to the standard MOST

method. Some obvious improvements will include more and better differentiated land use classes (e.g. water, urban areas) and

including more situations of strong stratification. Next steps will include more experiments with the input parameters (e.g.

including a time lag) and some fine tuning to improve the computational efficiency (e.g. using different activation functions).30

We intend to implement and test the neural network routine in a three-dimensional regional climate model (RCM). We expect

to save about five percent of CPU time, taking account of parallelisation. This may not seem much, but RCMs in particular are

very expensive to run (climatologically relevant multidecadal simulations at high resolution can take several tens of weeks on a

11

ke7796
Hervorheben



high performance system), so every saving counts. The implementation will require the ANN to learn some additional land use

types like urban areas or water surfaces. If these tests are positive, this would open the possibility to replace other “uncertain”

components of climate models (e.g. cloud microphysics, sea ice) by neural network subroutines, similar to the work described

in Sarghini et al. (2003) and Vollant et al. (2017), thus gaining flexibility and saving CPU time. The main hindrance to do that is

presently the lack of suitable training and validation data. An alternative to “real” data could be to use data from more detailed5

models like LES or urban climate models.

Code availability. A MATLAB script (run.m) running the 6-3-2-net with a sample dataset (DE-KaN.dat) can be found under http://doi.org/

10.23728/b2share.36ef510c515c4a00bb963113647e44a9.

Data availability. The data for this study have been obtained from the sources mentioned in the acknowledgements.
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Figure 1. Location of the stations which provided data for this study. Station symbols are according to low (red square; grasslands, croplands,

wetlands) and tall (yellow circle; forest) vegetation. HDCP2 includes stations DE-Nie07, DE-Nie13 and DE-Was06, HYMEX includes

stations FR-CorX and FR-GiuX. Further information can be found in Table A1.

Figure 2. Schematic setup of the meteorological towers used for this study. Available measurements for wind velocity (black, left side arm)

and temperature (black, right side arm) are shown as well as the finally used measurement height for wind (blue), temperature (yellow) and

turbulent fluxes (red). Vegetation height is illustrated in green and towers with a total height above 80m are clipped.
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Figure 3. Network with six inputs and one hidden layer under six-fold cross-validation: MSE of the trained network on validation data set

using random data split as a function of hidden layer size. Whiskers indicate interquartile range. Each box summarises results from 750

single networks.

Table 1. Station information for the meteorological towers selected for training and validation (see Sect. 2.4); a list of all stations is given

in Table A1. Land usage classification follows the International Geosphere-Biosphere Programme (IGBP) standards: evergreen needleleaf

forests (ENF), grasslands (GRA), permanent wetlands (WET) and croplands (CRO).

station complete station name lat [◦] lon [◦] height m a.s.l. IGBP tower height [m]

BR-San Santarem Pasture Tower Site (Para, Brazil) -3.02 -54.89 100 GRA/CRO 20

DE-Fal Grenzschichtmessfeld Falkenberg 52.17 14.12 73 GRA 10

DE-KaN KIT CN Messmast 49.09 8.43 110 ENF 200

DE-Keh Messstation Forst Kehrigk 52.18 13.95 49 ENF 30

NL-Cab CESAR observatory 51.97 4.93 -0.7 GRA 213

RU-Che Cherksii Tower 68.61 161.34 6 WET 5

SE-Svb Svartberget ICOS Sweden 64.25 19.77 270 ENF 150
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(a) six inputs and one hidden layer

(b) seven inputs and two hidden layers

Figure 4. Validation MSE of trained networks using station-wise data split as a function of hidden layer size for (a) the network with six

inputs and one hidden layer, (b) the network with seven inputs and two hidden layers. Numbers at the bottom axis indicate the number of

neurons in the first (top row) and second (bottom row) hidden layer. Values for the other networks considered are similar. Whiskers indicate

the length of interquartile range and each box summarises results from 750 single networks.
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(a) 6-5-3-2 ANN (b) 7-5-2-2 ANN

(c) 6-3-2 ANN (d) traditional method

Figure 5. Plots of network output versus target values for momentum flux on unknown test data (DE-Keh). Contoured are kernel density

estimates of two-dimensional probability density distribution with the 95th, 75th, 25th and 5th percentiles (yellow line) starting outside and

the 50th percentile (green).

Table 2. Time series information for the meteorological towers selected for training and validation. Count and availability are measured on

an hourly interval and not on the original resolution of each time series.

station from to availability count

BR-San 2001-01-01 2005-09-22 61.59 % 25,503

DE-Fal 2008-01-01 2009-12-21 70.06 % 12,118

DE-KaN 2015-03-01 2016-12-30 77.90 % 12,541

DE-Keh 2008-01-01 2009-12-29 69.85 % 12,207

NL-Cab 2014-01-01 2017-11-30 94.22 % 32,337

RU-Che 2014-05-26 2016-10-14 39.55 % 8,283

SE-Svb 2015-01-18 2016-11-01 68.42 % 10,707

total 113,696
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(a) 6-5-3-2 ANN (b) 7-5-2-2 ANN

(c) 6-3-2 ANN (d) traditional method

Figure 6. Plots of network output versus target values for heat flux on unknown test data (DE-Keh). Contoured are kernel density estimates

of two-dimensional probability density distribution with the 95th, 75th, 25th and 5th percentiles (yellow line) starting outside and the 50th

percentile (green). The vertical gap is due to the exclusion of heat fluxes between ±10Wm−2.

Table 3. Fixed network parameters for training (after Zhang (2008); Kruse et al. (2016)).

normalisation x̃i = (xi − min
Data

(xi))/(max
Data

(xi)− min
Data

(xi))

activation function tangens hyperbolicus

activation function output linear

training algorithm BFGS quasi-Newton backpropagation

error metric MSE

early stopping after ... epochs 50

maximum number of epochs 1000

training mode batch
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Figure 7. The architecture of the 6-3-2 ANN implemented in the land surface model. Input is described in Sect. 2.6. Purple points are bias

neurons.

Table 4. Performance results of overall best and best simple networks. MSE and r are measured on normalised data and are non-dimensional.

MSEv and rv are calculated on validation data and MSEt and rt on test data. Also, performance of traditional MOST method (benchmark)

is shown.

condition net structure # weights MSEv[10
−2] rv MSEt[10

−2] rt

overall best net 6-5-2 47 0.17 0.94 0.90 0.89

7-11-2 112 0.18 0.92 0.96 0.86

6-5-3-2 61 0.20 0.93 0.68 0.88

7-5-2-2 58 0.19 0.92 0.79 0.88

best simple net 6-3-2 29 0.38 0.92 0.74 0.87

7-4-2 42 0.21 0.92 1.36 0.87

6-3-3-2 41 0.27 0.91 0.84 0.85

7-4-2-2 48 0.22 0.90 1.01 0.86

benchmark - - 0.92 0.85 0.58 0.92
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Table 5. Performance of networks vs. multivariate linear regression (MLR) and standard MOST method (benchmark) for momentum flux at

the DE-Keh site.

net structure MSE[10−2N2m−4] RMSE[Nm−2] MAE[Nm−2] r

6-5-3-2 2.11 0.15 0.09 0.90

7-5-2-2 2.44 0.16 0.10 0.89

6-3-2 2.56 0.16 0.09 0.87

MLR 5.81 0.24 0.17 0.89

benchmark 1.72 0.13 0.08 0.90

Table 6. Performance of networks vs. multivariate linear regression (MLR) and standard MOST method (benchmark) for heat flux at the

DE-Keh site.

net structure MSE[W2m−4] RMSE[Wm−2] MAE[Wm−2] r

6-5-3-2 2461 49.6 37.6 0.85

7-5-2-2 2329 48.3 31.4 0.82

6-3-2 2092 45.8 35.1 0.88

MLR 4447 66.7 53.3 0.65

benchmark 1915 43.8 34.4 0.90

Table 7. Relative computational demand of the ANNs discussed in the text.

net structure no. of weights CPU time (relative to 6-3-2 ANN)

6-3-2 29 1

6-5-2 47 1.6

7-11-2 112 3.7

6-5-3-2 61 2.5

7-5-2-2 58 2.4
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Table 8. Comparison of the reference version with the ANN version of Veg3d for the DE-Fal grassland station. H denotes the heat flux, M

is moisture flux, Ts is soil temperature, ws is soil moisture.

Ref ANN

CPU time 10.83 10.65

RMSE H [Wm−2] 16.8 27.3

rH 0.87 0.81

RMSE M [Wm−2] 15.1 20.5

rM 0.91 0.86

RMSE Ts [
◦C] 0.8 1.3

rTs .99 .99

RMSE ws [%] 4.8 5.5

rws 0.87 0.89

Table 9. Same as above, but for forest station DE-Tha

Ref ANN

CPU time 95.47 97.74

RMSE H [Wm−2] 39.0 40.9

rH 0.52 0.57

RMSE M [Wm−2] 27.9 33.1

rM 0.78 0.71

RMSE Ts [
◦C] 2.4 2.2

rTs 0.98 0.98

RMSE ws [%] 5.3 3.7

rws 0.53 0.75

22



Table A1. Station information for all collected meteorological towers. Land use classification follows the International Geosphere-Biosphere

Programme (IGBP) standards: evergreen needleleaf forests (ENF), evergreen broadleaf forests (EBF), grasslands (GRA), permanent wetlands

(WET) and croplands (CRO).

station complete station name lat [◦] lon [◦] height m a.s.l. IGBP tower height [m]

BR-San Santarem Pasture Tower Site (Para, Brazil) -3.02 -54.89 100 GRA/CRO 20

BR-Tap Tapajos National Forest (Santarem, Para, Brazil) -3.01 -54.58 100 EBF 67

DE-Fal Grenzschichtmessfeld Falkenberg 52.17 14.12 73 GRA 10

DE-Ham Wettermast Hamburg 53.52 10.10 0.3 GRA 300

DE-KaN KIT CN Messmast 49.09 8.43 110 ENF 200

DE-Keh Messstation Forst Kehrigk 52.18 13.95 49 ENF 30

DE-Lkb Lackenberg Messstation 49.10 13.30 1300 GRA 9

DE-Nie07 HDCP2 Flux Station 07 Hambach Niederzier 50.90 6.46 110 GRA 5

DE-Nie13 HDCP2 Tower 13 Hambach Niederzier 50.90 6.46 110 GRA 30

DE-RuW Wüstebach 50.50 6.33 621 ENF 38

DE-Tha Anchor Station Tharandt 50.96 13.57 380 ENF 42

DE-Was06 HDCP2 Flux Station 06 Wasserwerk 50.89 6.43 96 CRO 5

FR-Cor02 HYMEX Flux Station 02 Corte 43.30 9.17 369 GRA 5

FR-Cor13 HYMEX Tower 13 Corte 43.30 9.17 369 GRA 20

FR-Giu04 HYMEX Flux Station 04 San-Giuliano 42.27 9.52 39 GRA 5

FR-Giu07 HYMEX Flux Station 07 San-Giuliano 42.27 9.52 39 GRA 5

NL-Cab CESAR observatory 51.97 4.93 -0.7 GRA 213

RU-Che Cherksii Tower 68.61 161.34 6 WET 5

SE-Htm Hyltemossa ICOS Sweden 56.10 13.42 115 ENF 150

SE-Svb Svartberget ICOS Sweden 64.25 19.77 270 ENF 150
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