
General response  

 

We were happy to see that the reviewers found the proposed test case useful for model developers. We 

appreciate the reviewers’ comments and found their suggestions helpful in making our proposed test 

case even more useful. We address all their comments below and have already implemented most of 

their suggestions in a revised manuscript. Having said that, we are unable to meet the journal’s 

standards with regard to the supplied codes (e.g. “reference implementation”) at this time. Our original 

intent in submitting the codes for computing the initial conditions was to provide a “first aid” rather 

than a “commercial grade” software package. The code essentially evaluates algebraic relations that 

describe the initial (u, v, Φ) fields and requires about 150 lines of code to do so. Evidently, the 

developers can write the required code better than us and do it in a way that better suits their particular 

needs, e.g. unstructured meshes. Therefore, we will not include the Fortran and Python codes in the 

assets of the paper and leave the Matlab code only for the sake of reproducibility. We will accept the 

editor’s decision on this matter. In light of the referees’ overall favorable reviews, and our efforts to 

accommodate their suggestions, we hope that manuscript is accepted for publication in GMD. 

 

Following the reviewers’ suggestions (see below), we have implemented the changes summarized 

below in the revised manuscript. 

 

Added subsections in the Results section:  

1. A demonstration of the applicability of the test case to a global-scale model (GFDL, RSW model). 

2. An examination of the stability of the waves along the lines used in Thuburn and Li (2000). 

3. A demonstration of the use of the proposed test case a linear convergence test (Ref. 1). 

 

Removed items:  

1. The H=0.5 m waves were removed. The results of the simulations with this value were less robust. 

In addition, adhering to a single value of H simplifies the test case. 

 

Replaced items: 

1. The spectral analyses were found to be too sensitive to be used for assessment purposes and were 

therefore replaced with the difference between the global means, which unlike the L2 norm employed 

by Williamson et al (1992) is insensitive to phase speed errors. 

 

Response (in blue) to the referees’ comments (in black)   

 

Anonymous referee #1  

 

General comments: 



The Rossby-Haurwitz wave described in test case 6 of Williamson et. al. (1992) is known to be 

problematic. Thuburn and Li (2000) describes these issues and I think that paper should be referenced 

here, as it was in the previous paper (Shamir and Paldor, 2016). 

 

The findings of Thuburn and Li (2000) on the Rossby-Haurwitz wave are discussed in the revised 

Introduction. In addition, we added a new subsection to the Results section, where we examine the 

generation of small-scale features and the stability of the proposed test case, similar to the way it is 

done in Thuburn and Li (2000). 

 

One issue is that the original initial conditions as specified in Williamson et. al. (1992) lead to 

wrapping up of potential vorticity contours and the associated generation of small scale features and 

potential enstrophy cascade. A figure showing the potential vorticity at several times throughout the 

simulations would be appreciated here to show that this does not happen for this test case. 

 

For the small wave amplitude, A=1e-5 ms-1, used in our test case the potential vorticity is dominated by 

the planetary vorticity. Therefore, we added Hovmöller diagrams of the relative vorticity, instead of the 

potential vorticity, which show that there is no generation of small-scale features during the last wave-

period of the simulation. See new section 4.3 and 4th columns in new Figs 1,2,4,5,7 and 8. 

 

The other issue with the original test case is that it is unstable. This is demonstrated numerically in 

Thuburn and Li (2000) by adding some small noise to the initial conditions after they noticed that the 

solution they computed using a finite volume model on a grid of hexagons and pentagons (i.e. their 

only non latitude-longitude model) broke down. The errors related to the structure of the underlying 

grid triggered the dynamical instability. The solutions in this paper have been computed using a regular 

latitude-longitude grid so I wonder if a similar issue could occur with this test case. I suggest that the 

authors could check this by either adding some noise to the initial conditions, as in Thuburn and Li 

(2000), or by running their code on a rotated grid (i.e. with the poles in the midlatitudes). 

 

Similar to Thuburn and Li (2000) we added a small (5% in our MS) uniformly distributed random 

noise (perturbation) to the initial conditions (IC). The simulations with the perturbed IC demonstrate 

that after 100 wave-periods the simulated solutions preserve the initial wave structure. In particular, the 

small-scale features in the initial u, v, Φ and ξ fields smooth out and do not generate smaller-scale 

features. See new section 4.3.  

 

some papers use the Rossby wave test as a convergence test, using a reference solution from either a 

higher resolution run or from a different model. Could the analytical solution here be used to test the 

convergence of a linear shallow water model? This would provide a useful test in between the steady 

state test case 2 and the other tests that require a reference solution from a higher resolution run. 

 

We added a convergence test of the linear shallow water model, which demonstrates that the “error” 

decreases “exponentially” as the resolution increases. Following one of the other comments by the 



reviewer on the sensitivity of the spectral analyses we adopted a different assessment criterion which is 

also used to estimate the error here. See the revised section 3.2 and new section 4.4. 

 

Also, if the wave is indeed stable it would be a fantastic replacement for test case 6, especially for 

unstructured grid models, or models that use adaptive mesh refinement, since truncation errors related 

to mesh topology will have no dynamic instability to trigger. 

 

We hope that the revised version of the manuscript, and, in particular, the addition of noise in section 

4.3, is more convincing than the previous version. We, too, view the proposed Matsuno test case as a 

substitute for test case 6 and hope it is adopted by the community.   

 

 

Specific comments: 

 

1. pg 4, lines 14-15: I am concerned that different pre-factors lead to less stable solutions - it makes me 

wonder if the version chosen in this paper is indeed stable to differences in grid alignment. 

 

This is a subtle question. There is no reason why Matsuno’s expressions should be more stable. We 

imagine that the most optimal choice of pre-factors can depend on considerations e.g. the prognostic 

variables used. For example, it is quite possible that different choices are more optimal for models that 

use vorticity-divergence. Note also that the different pre-factors originate from the use of the 

normalized Hermite functions whose amplitudes are bounded (Cramér’s inequality), as oppose to the 

amplitudes of the non-normalized Hermite functions that grow indefinitely as n increases. Thus, for 

large n we expect Matsuno’s expressions to be less stable numerically. On the other hand, for the 

chosen n=1 it is unclear whether the difference between the two forms has any effect on there dtability. 

Finally, while the present choice might not be the most optimal, the simulated solutions seem to be 

stable for 100 wave-periods.  

 

2. Figure 2: 

 

Is there any reason why the Rossby wave with H=0.5 is less regular than the other solutions?  

 

We are unsure but the wave modes of H=0.5 m were deleted altogether from the revised manuscript. 

 

Why do some of the contour plots have white regions when the values have been normalised so should 

lie in the range [-1, 1]? 

 

As is stated in the figure caption, the fields are normalized on the global maximum at t=0. Therefore, 

the white regions correspond to times when the field’s global extrema temporarily exceed the [-1,1] 

contour range. In our opinion normalizing on the global maximum at t=0 and keeping the contour range 

fixed is the better option. We added a clarification in the text in the paragraph discussing Figure 1.  



 

3. Power spectra: Are these at all sensitive to the sampling frequency? My experience is that the spectra 

can be very sensitive to this but maybe that is for more turbulent simulations. 

 

The reviewer is right. By sub-sampling our results by factors of 2 or 4 (so as to insure there are at least 

2.5 samples per wave-period) it was evident that while the power spectra were generally similar, the 

results can be too sensitive to be used for assessment purposes. Therefore, we adopted a different 

assessment criterion, which is also simpler than the spectral analyses. See the revised section 3.2. 

 

4. Supplement: The code provided to compute the initial conditions, while appreciated, could be 

improved. The authors state that the code will compute the analytic fields on arbitrary latitude-

longitude grids but they have assumed that these grids are structured. These codes will not work as 

written for unstructured meshes, which are becoming more common in the community. The test case is 

much more likely to be used if these codes could be amended (i.e. they return values given a list of 

latitude-longitude values). In addition to this, there are some unnecessarily confusing aspects of the 

code. For example, there is no need to capitalise variable names so the radius of the Earth, which is 

called 

a in the paper could be a rather than A in the code. The is especially confusing since there is also an A 

in the equations described in the paper. It would also make sense to have H as an input parameter, since 

this can be varied. 

 

Thank you, but we have decided to leave the computation of the initial conditions to the developers that 

can do it better than us and do it in a way that suits their particular needs, e.g. unstructured meshes. 

 

Technical corrections: 

 

1. Equation 3b: This is different to that in the code matsuno.py (and I think the code is correct). 

 

Equation 3b and the code are consistent and both are correct! Note that, in the Fortran code for 

example, in addition to the different pre-factor in line 200, the expressions in lines 193-194 are also 

different from the text. The expressions in the code are obtained from the ones in the text by taking 

another (gH)0.5 factor outside of the square brackets, so that the pre-factors of 𝑢̂ and   Φ̂ both have (gH) 

in the numerator, but ɷ in 3b is divided by (gH)0.5. This was also flagged by Referee #2. Clearly, the 

difference between the code and the text is confusing. In the revised manuscript we change 3b to match 

the expressions in the codes.  

 

2. Equation 3c: I think this is missing a sqrt around the gH.  

 

Again, Equation 3c is correct! Dimensional consideration suggests that the referee’s suggestion cannot 

be correct.  

 



With regard to the last two comments, we have repeated the derivation of the expressions in Equation 3 

from scratch and derived the same expressions as in the previous version. Also, we encourage the 

community to implement the test, including different pre-factors and/or different powers of (gH).  

 

Anonymous referee #2 

 

General comments: 

 

1. The manuscript claims (e.g. at the bottom of page 4) that this test case can be used for tropical-

channel shallow water models (as presented in this manuscript) and global-scale models. From the 

manuscript it is not entirely clear that the test will work for global models due to the use of the 

equatorial beta-plane approximation in the derivation for e.g. the transformations of (x,y) and the 

wavenumber k. The modeling community (as a ‘customer’ of this test case) generally works with 

global shallow water models and tropical-channel model in spherical geometry are extremely rare. It 

therefore would have been more valuable (or convincing) to present example solutions for a global 

shallow water model instead of a tropical-channel model. Can the tropical-channel shallow water 

model also be configured as a global model to demonstrate that the test case works for the whole 

sphere? Please provide extended explanations or ideally results from a global model. 

 

We added a new subsection to the Results section where we repeat the simulations using a global-scale 

model (the GFDL, RSW Model). The equatorial channel model cannot be easily adopted to the entire 

sphere due to the convergence of longitudinal lines at the poles. Therefore, we used GFDL’s global-

scale model which is spectral. Please see the new section 4.2. 

 

2. Model developments with regular latitude-longitude grids have become very rare over the last 

decade. More typical grids are now cubed-sphere, hexagonal or icosahedral grid with built-in grid 

irregularities. The manuscript states that the solutions of this test case are very stable for at least 10 

wave periods, which is demonstrated on a regular lat-lon grid. This triggers the question whether this 

statement will hold for today’s models with non-latitude-longitude grids. Another question is whether 

small perturbations of the initial conditions will disrupt or shorten the stability of the test case. Please 

provide information on these aspects. 

 

Unfortunately, we are unable to provide results with a non-latitude-longitude grid model. We hope the 

community will employ the Matsuno test case with such models and comment on the subject.  

 

With regard to the perturbations, we added a new subsection to the Results section where we examine 

the stability of the chosen waves. As in Thuburn and Li (2000) we added a small (5% in our MS) 

uniformly distributed random noise (perturbation) to the initial conditions (IC). The simulations with 

the perturbed IC demonstrate that after 100 wave-periods the simulated solutions preserve the initial 

wave structure. In particular, the small-scale features in the initial u, v, Φ and ξ fields smooth out and 

do not generate smaller-scale features. See new section 4.3.  



 

3. As detailed below (points 5-7), the description of the initial conditions is incomplete. In 

addition, the analytic equations (Eq.(3)) differ slightly from the implementation in the Fortran, 

Matlab and Python codes. The test is therefore not usable by others in its current form, and the 

manuscript/codes need to be corrected. 

 

All the required information can be found in the original manuscript, and Equation (3) and the code are 

consistent and are both correct! Evidently, the original version was not clear/organized enough. We 

hope that the revised version does a better job at conveying the information. Please see detailed 

response to points 5-7 below. 

 

Technical comments: 

 

1. Page 1, line 9, also page 2, line 32: Please describe the model as an ‘equatorial channel’ 

model. 

 

We now refer to the model as an ‘equatorial channel’ model as requested. 

 

2. Page 1 line 12, page 2 line 2, page 5 lines 3&7: Generalize the description of the grids. A test case 

for only ‘latitude-longitude’ grids will have rather limited use. I think you meant to say that given the 

location of a latitude and longitude, the initial conditions and analytic solutions can be computed on 

any grid. 

 

Fixed 

 

3. Page 2, line 24: It is incorrect to say that the term ‘baroclinic’ is associated with density variations in 

the vertical directions. A flow with identical density and pressure variations (e.g. for isothermal 

conditions) is still barotropic. Density and pressure variations need to vary 

independently of each other. 

 

Rephrased in the revised version 

 

4. Page 3, line 15: What is meant by ‘reduced gravity’. The initialization of the test case uses the 

regular Earth’s gravity. Modify. 

 

The reviewer is right. As stated in page 5, line 24 of the original manuscript, we control the speed of 

gravity waves (gH)0.5 by holding g fixed and equal to the Earth gravitational acceleration and varying 

H. The use of the term ‘reduced gravity’ originates from the fact that the linearized shallow water 

equations can also be derived as the horizontal structure equations in a stratified layer (in the linear 

case with a motionless mean flow), in which case Earth gravity is replaced by the reduced gravity and 



the layer depth by the equivalent height. In order to avoid confusion, we removed these two terms and 

in the revised manuscript we now adhere to a “single layer” fluid.   

 

5. Page 3, line 17, also page 5&6 section 3.1: The wave mode n=1 is selected which leads to 

three distinct real roots in Eq. (2). Two of these roots are selected for the example results, but no 

equations are given for the Rossby wave root and EIG root. Without this information, the 

description of the initial conditions is incomplete. Add this information to Section 3.1. 

 

This information was provided in Appendix A of the original manuscript. In the revised version this 

information is moved to the main text after Equation (2) in Section 2, which is more suitable than sec. 

3.1.  

 

6. Page 4, Eq. (3) and text: The manuscript fails to explain the meaning and definition of ψ n . 

What is the relationship between ψ n and the normalized Hermite polynomials H n ? Without the 

definition of ψ n the description of the initial conditions is incomplete. 

 

ψn equals 𝑣𝑛. Thus, in the revised manuscript we have decided to remove ψn altogether and adhere to 

𝑣𝑛, which is just the latitude-dependent amplitude of the meridional velocity.    

 

7. Page 4, Eq. (3): Eq. (3) seems to be correct, but the Fortran/Matlab.Python scripts use a wrong u_hat 

calculation. E.g. the Fortran code in line 200 needs to read sqrt(g*H0) instead of just ‘g*H0’. 

 

Equation 3 and the code are consistent and both are correct! Note that, in the Fortran code for example, 

in addition to the different pre-factor in line 200, the expressions in lines 193-194 are also different 

from the text. The expressions in the code are obtained from the ones in the text by taking another 

(gH)0.5 factor outside of the square brackets, so that the pre-factors of 𝑢̂ and   Φ̂ both have (gH) in the 

numerator, but ɷ in 3b is divided by (gH)0.5. This was also flagged by Referee #1. Clearly, the 

difference between the code and the text is confusing. In the revised manuscript we change 3b to match 

the expressions in the codes.  

We have repeated the derivation of the expressions in Equation 3 from scratch and derived the same 

expressions as in the previous version. Also, we encourage the community to implement the test, 

including different pre-factors and/or different powers of (gH). 

 

8. Page 4, line 10: State that the amplitude A needs to have units of m/s. 

 

Added – Thank you 

 

9. Page 4, line 25: you imply that the planar wavenumber k is unitless, so that that spherical 

wavenumber k/(a cosφ 0 ) has units of 1/m. Please comment and clarify.  

 



The planar wave-number has units of 1/length, while the spherical wave-number is dimensionless. To 

avoid any confusion we added a subscript ‘s’ for spherical variable and a comment in the text.  

 

Correct typo, should be ‘replaced’. Corrected. Thank you 

 

10. Page 8, line 1: What is meant by the ‘transport form’ of the SWEs? This seems to imply the 

‘advective form’. However, the provided equations are in ‘conservation form’. 

 

The reviewer is right, the equations are in ‘conservation form’ - corrected. 

 

11. Page 8, line 10: Explicitly state whether the example model uses diffusion or smoothing/filtering 

operations for the computations, and if yes, which ones. Should users of the test case try to omit all 

diffusion/filtering operations in their models when using this test case? E.g. the provided shallow water 

code contains provisions for a temporal Asselin filter. 

 

The equatorial channel model has no diffusion/viscosity terms. It does contain provisions for a Robert-

Asselin filter, but in our implementation the coefficient is set to zero. The global model also contains 

hyperdiffusion terms, but the coefficient was also set to zero. Please see the revised model descriptions. 

As is stated in the first paragraph of section 3.1, we consider the choice of diffusion/viscosity terms a 

modeling choice, but we acknowledge the other approach of specifying them as part of the test case. 

 

12. Page 9, Fig. 2: The value for the symbol φ f is not provided. Add this information. 

 

φf is removed from the text of the revised version. 

 

13. Page 9, Fig. 2: It is highly unusual and confusing to see and interpret the flipped Hovmoeller 

diagrams. Typically, Hovmoeller diagrams list the position along the x-axis and time along the y-axis. I 

recommend flipping the axes in Fig. 2 to make the interpretation of the Hovmoeller diagrams easier. 

 

To conform to common practice we changed the longitude-time diagrams into time-longitude 

diagrams. 

 

14. Supplemental material: Please add Fortran/Matlab wrapper codes that will enable the user to 

create/test the initial conditions. In addition, the codes should not expect to receive regular 

longitude and latitude arrays, but should be callable for any longitude and latitude position. 

 

Thank you, but we have decided to leave the computation of the initial conditions to the developers that 

can do it better than us and in a way that suits their particular needs, e.g. unstructured meshes. 
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Abstract. The analytic wave-solutions obtained by Matsuno (1966)
:::::::::::::
Matsuno (1966) in his seminal work on equatorial waves

provide a simple and informative way of assessing atmospheric and oceanic models by measuring the accuracy with which

they simulate these waves. These solutions approximate the solutions of the shallow water equations on the sphere for small

speeds of gravity waves such as those of the baroclinic modes in the atmosphereand ocean. This is in contrast to the solutions

of the non-divergent barotropic vorticity equation, used in the Rossby-Haurwitz test case, which are only accurate for large5

speeds of gravity waves such as those of the barotropic mode. The proposed test case assigns specific values to the wave-

parameters (gravity wave speed, zonal wave-number, meridional wave-mode and amplitude
::::::::::::
wave-amplitude) for both planetary

and inertia gravity waves, and confirms the accuracy of the simulation by employing Hovmöller diagrams and temporal and

spatial spectra. The proposed test case
::::::
suggests

::::::
simple

::::::::::
assessment

::::::
criteria

::::::
suitable

:::
for

::::::
zonally

::::::::::
propagating

:::::
wave

::::::::
solutions.

::::
The

:::
test is successfully applied to a standard finite-difference, equatorial , non-linear,

::::
both

::
an

:::::::::
equatorial

::::::
channel

::::::::
spherical

:
shallow10

water modelin spherical coordinates, which demonstrates that Matsuno’s wave-solutions can be accurately simulated
:
,
:::
and

::
a

::::::::::
global-scale

::::
one.

:::
By

::::::
adding

:
a
:::::

small
:::::::::::

perturbation
::
to

:::
the

:::::
initial

:::::
fields

::
it
::
is
::::::::::::
demonstrated

:::
that

:::
the

:::::::
chosen

:::::
initial

::::::
waves

::::::
remain

:::::
stable for at least 10

:::
100 wave-periods, which for oceanic planetary waves is nearly 1300 days. In order to facilitate the use of

the .
::::
The proposed test case , we provide Matlab, Python and Fortran codes for computing the analytic solutions at any time on

arbitrary latitude-longitude grids
:::
can

::::
also

::
be

::::
used

::
as

::
a
::::::::
resolution

:::::::::::
convergence

:::
test.15

Copyright statement. TEXT

1 Introduction

A cornerstone of global-scale model assessment is the Rossby-Haurwitz test case, originally used by Phillips (1959)
::::::::::::
Phillips (1959)

as a qualitative way of assessing his shallow water model. Phillips initialized his model with an analytic wave-solution of the

non-divergent barotropic vorticity equation obtained by Haurwitz (1940)
:::::::::::::
Haurwitz (1940), and examined the spatio-temporal20

smoothness of the simulated fields at later times. Using this procedure he concluded that the emergent noise in his model was

due to a small but significant
:::::::::::::::::
small-but-significant, divergence field missing from the initial fields. Even though the solutions

of the non-divergent barotropic vorticity equation are not solution of the Shallow Water Equations (SWEs), Phillips’ procedure

was adopted by Williamson et al. (1992)
::::::::::::::::::::
Williamson et al. (1992) as a standard test case for shallow water models and has been

1



extensively used ever since (Jablonowski et al., 2009; Mohammadian and Marshall, 2010; Bosler et al., 2014; Ullrich, 2014;

Li et al., 2015, are only five recent examples).

Recently, Shamir and Paldor (2016)
::::::::
However,

::::
there

:::
are

::::
two

::::::
known

:::::
issues

::::
with

:::
the

:::::::
original

:::::::::::::::
Rossby-Haurwitz

:::
test

::::
case

::::
that

::::
limit

::
its

:::::::::
usefulness

:::::::::::::::::::
(Thuburn and Li, 2000)

:
.
::::
The

:::
first

::
is

:::
the

:::::::::
generation

::
of

::::::::::
small-scale

:::::::
features

:::
via

:::::::
potential

::::::::
enstrophy

::::::::
cascade,

:::::
which

:::::::
requires

:::::::
adequate

:::::::::
dissipation

:::::::::::
mechanisms

::
to

::::::
remove

:::::::::
enstrophy

:
at
:::
the

::::
grid

:::::
scale

::
(in

:::::
order

::
to

:::::
mimic

::
a
:::::::::
continuous

:::::::
cascade5

::
to

:::::::
sub-grid

:::::::
scales).

::::
The

::::::
second

::
is
:::

the
:::::::::

instability
:::

of
:::
the

:::::
initial

::::::::::::
wave-number

::
4
::::
used

:::
in

:::
the

:::::::::::::::
Rossby-Haurwitz

:::
test

:::::
case.

:::
In

::::::
contrast

:::
to

:::::::::::::
Hoskins (1973)

::::
who

:::::
found

::::
that

::::::::::::
wave-numbers

:::::::
smaller

::::
than

:::
or

:::::
equal

::
to

::
5
:::
are

::::::
stable,

::::::::::::::
Thuburn and Li

::::
show

::::
that

::::::::::::::
Rossby-Haurwitz

:::::::::::
wave-number

::
4
::
is

::
in

:::
fact

::::
also

::::::::
unstable.

:::::::
Recently,

::::::::::::::::::::::
Shamir and Paldor (2016) proposed a similar procedure to that of Phillips (1959) where , instead of using the

solutions of the non-divergent barotropic vorticity equation, the initial fields are taken from the analytic wave-solutions of the10

linearized SWEs on the sphere obtained by Paldor et al. (2013)
::::::
derived

::
in

::::::::::::::::
Paldor et al. (2013). These solutions

:::
fully

:
account for

the small but significant divergence field and can be evaluated on arbitrary latitude-longitude grids
::::::::
computed

:::
on

:::
any

::::
grid

:::::
given

::
the

::::::::
locations

::
of

:::
the

::::::::
latitudes

:::
and

:::::::::
longitudes. In particular, they include the fast propagating Inertia

::::::
Inertia- Gravity (IG) waves

, which are completely filtered out by
:::
that

:::
are

::::::::::
completely

::::::
absent

::::
from

:::
the

:
the non-divergent barotropic vorticity equation.

Consequently, the procedure proposed by Shamir and Paldor provides a more quantitative assessment than Phillips’s original15

procedure , and
:::::
though

::
it
:
is just as easy to implement.

Both solutions obtained by Haurwitz (1940)
::::::::::::::
Haurwitz (1940) and Paldor et al. (2013) approximate the solutions of the

SWEs in the asymptotic limit of large speed of gravity waves. For most practical purposes they are sufficiently accurate

for speeds of gravity waves of about 200− 300 ms-1 or higher, which are typical of the barotropic mode in Earth’s at-

mosphere and oceans. However, typical speeds of gravity waves of baroclinic modes are about 20− 30 ms-1 for
:
in
:

the20

(tropical) atmosphere (Wheeler and Kiladis, 1999) and 2− 3 ms-1 for the oceans (Chelton et al., 1998)
:::
are

:::::
about

:::::::
20− 30

::::
ms-1

:::::::::::::::::::::::
(Wheeler and Kiladis, 1999). Thus, the above procedures are only relevant for assessing the accuracy with which the barotropic

wave mode is resolved
::::::::
simulated. In order to assess the accuracy of the baroclinic wave modes we propose, in the present

work, to use the analytic wave-solutions of the linearized SWEs on the equatorial β-plane obtained by Matsuno (1966), which

:::::::::::::
Matsuno (1966)

:::
that

:
approximate the solutions of the SWEs on the sphere in the asymptotic limit of small speed of gravity25

waves (De-Leon and Paldor, 2011; Garfinkel et al., 2017).

In addition to being on two opposite ends of the spectrum in terms of the relevant speeds of gravity wave ,
::::
speed

:
the solutions

obtained by Matsuno (1966)
:::::::::::::
Matsuno (1966) differ from those obtained by both Haurwitz (1940) and Paldor et al. (2013)

::::::::::::::
Haurwitz (1940)

:::
and

::::::::::::::::
Paldor et al. (2013) in their meridional extent. The former become negligible

:::::
While

:::
the

::::::
former

:::::::
become

::::::::
negligibly

:::::
small outside a narrow equatorial band , whereas the latter two have non-negligible amplitudes in the vicinity of the30

poles. Thus, while the Rossby-Haurwitz test case is only relevant to global-scale models, the test case proposed in the present

study is applicable to both global-scale and tropical models.

A homonymous, but unrelated, test case is the baroclinic wave test case developed in Jablonowski (2004) and Jablonowski and Williamson (2006)

::::::::::::::::
Jablonowski (2004)

:::
and

::::::::::::::::::::::::::::::
Jablonowski and Williamson (2006) and independently in Polvani et al. (2004)

::::::::::::::::
Polvani et al. (2004),

and its variants in Lauritzen et al. (2010) and Ullrich et al. (2014)
::::::::::::::::::
Lauritzen et al. (2010)

:::
and

::::::::::::::::
Ullrich et al. (2014). This test case35
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is concerned with the non-linear generation of synoptic-scale eddies in multi-layer models via baroclinic instability. In con-

trast, the proposed test case
:::
test

::::
case

::::::::
proposed

:::::
here is concerned with linear wave propagation in (non-linear) single-layer

models. While the customary use of
::
In

:::::::::
particular,

::::
while

:
the term baroclinic is associated with density variations in the vertical

direction, here the same
::::::
usually

::::::
implies

:::
the

:::
use

:::
of

:::::::::
multi-layer

:::::::
models,

:::
here

::::
this term is used to denote thin layers of fluid

:::::
single

::::
layer

::::::
model of homogeneous density where the gravity waves speeds are similar to those observed in baroclinic modes in the5

atmosphereand oceans.

The idea of using Matsuno’s solutions as a test case in a similar fashion to that of the Rossby-Haurwitz test case is most

likely not original, but has never been standardized. Thus, the purpose of the present work is to standardize the Matsuno test

case in the same spirit that Williamson et al. (1992)
::::::::::::::::::::
Williamson et al. (1992) standardized the Rossby-Haurwitz one. We start

with a short description of the analytic expressions derived by Matsuno (1966)
:::::::::::::
Matsuno (1966) in section 2. The proposed test10

procedure, including the choice of wave-parameters and assessment criteria, is described in Section 3. We then
:
In

::::::
section

::
4
:::
we

demonstrate the usefulness of the proposed test case in section ??, using a standard finite-difference, equatorial , (non-linear)

::::
using

:::::
both

::
an

:::::::::
equatorial

::::::
channel

::::::::
spherical

:
shallow water modelin spherical coordinates,

::::
and

:
a
:::::::::::

global-scale
::::
one.

::
In

::::::::
addition,

::
we

::::::::
examine

:::
the

::::::::::
smoothness

::::
and

:::::::
stability

:::
of

:::
the

:::::
initial

::::::
waves

::
in
::

a
::::::
similar

:::::::
fashion

::
to
::::

that
:::::

used
::
in

::::::::::::::::::::
Thuburn and Li (2000)

:::
and

::::::::::
demonstrate

:::
the

:::::::::
possibility

:::
of

:::::
using

:::
the

::::::::
proposed

:::
test

::::
case

:::
as

:
a
:::::::::
resolution

:::::::::::
convergence

:::
test.

::::
The

:::::
paper

:::::
ends

::::
with

:::::
some15

:::::::::
concluding

:::::::
remarks

::
in

::::::
section

::
5.

2 The analytic solutions

The proposed test case is based on the analytic solutions of the SWEs on the equatorial β-plane obtained by Matsuno (1966)

:::::::::::::
Matsuno (1966). These solutions have the form of zonally propagating waves, i.e.
u(x,y, t)

v(x,y, t)

Φ(x,y, t)

=


û(y)

v̂(y)

Φ̂(y)

ei(kx−ωt) (1)20

where x and y are the local Cartesian coordinates in the zonal and meridional directions, respectively; t is time; u and v are

the velocity components in the zonal and meridional directions, respectively; Φ is the geopotential height; k is the
:::::
planar zonal

wave-number
:::::
(which

:::
has

::::::::::
dimensions

:::
of

::::
m-1); ω is the wave-frequency; and û(y), v̂(y) and Φ̂(y) are the latitude dependent

amplitudes. In accordance with the sign convention used in Matsuno we assume k is non-negative and let ω take any real

value. Note, however, that the sign in front of ω in (1) is opposite to that in Matsuno’s theory. The convention chosen here is25

more intuitive as it implies that positive values of ω correspond to waves that propagate in the positive x direction, i.e. in the

eastwarddirection
:::::::
eastward.

The unknown wave-frequencies and latitude dependent amplitudes are derived from the (well-known) energies and eigen-

functions of the (time-independent) Schödinger equation of the quantum harmonic oscillator. The resulting frequencies are

3



given by the solutions of the following cubic equation

ω3
n,k −

[
gHk2 +

2Ω
√
gH

a
(2n+ 1)

]
ωn,k −

2ΩgHk

a
= 0, (2)

for n=−1,0,1,2, . . . , where Ωand ,
:
a

:::
and

::
g are Earth’s angular frequencyand

:
, mean radius, respectively; g

:::
and

:::::::::::
gravitational

::::::::::
acceleration

::::::::::
respectively;

:
and H are the reduced gravity and equivalent

::
is

:::
the

::::::
layer’s depth.

For n≥ 1 Equation (2) has three distinct real roots corresponding to a slowly westward propagating Rossby wave, a fast5

Eastward propagating Inertia Gravity (EIG) wave, and a fast Westward propagating Inertia Gravity (WIG) wave. For n= 0

one of the three roots, the one corresponding to a westward propagating gravity wave with ω =−
√
gHk, leads to infinite

zonal wind and is thus discarded as a physically reasonable solution. The remaining two roots correspond to the lowest (i.e.

n= 0) EIG wave and the Mixed Rossby-Gravity (MRG) wave. For n=−1 Equation (2) has one real root ω =
√
gHk, which

correspond to the equatorial Kelvin wave (see Matsuno, 1966).
:::
The

::::::::
existence

::
of

:::
the

:::::
latter

:::
two

::::::
waves

::
on

::
a
::::::
sphere

::
is

::::::::
discussed10

::
in

::::::::::::::::::
Garfinkel et al. (2017)

:::
and

:::::::::::::::::
Paldor et al. (2018)

:::
For

:::::
given

::::::
values

::
of

:::
the

:::::
zonal

::::::::::::
wave-number,

:::
k,

:::
and

::::::::::
meridional

::::::::::::
mode-number,

::
n,

::::
the

::::
roots

:::
of

:::
the

:::::
cubic

::::::::
equation

:::
can

:::
be

:::::::
obtained

::
in

:
a
::::::
closed

::::::
analytic

:::::
form

::::
using

:::
the

::::::::
solutions

::
of

:::
the

::::::
general

:::::
cubic

:::::::
equation

::
as

::::::
follows

::::::::::::::::::::::::::::::
(e.g. Abramowitz and Stegun, 1964)

:
:

ωn,k,j =−1

3

(
∆j +

∆0

∆j

)
, for j = 1,2,3

::::::::::::::::::::::::::::::::::::

(3)15

:::::
where

:
j
::::::
stands

:::
for

:::
the

::::
three

:::::
roots,

:::
and

::::::
where

∆0
::

= 3

[
gHk2 +

2Ω
√
gH

a
(2n+ 1)

]
,

:::::::::::::::::::::::::::

(4a)

∆j
::

=

[
∆4 +

√
∆2

4− 4∆3
0

2

]1/3

exp

(
2πj

3
i

)
,

::::::::::::::::::::::::::::::::::

(4b)

∆4
::

=−54ΩgHk

a
.

:::::::::::

(4c)

:::::
Given

:::
the

:::::::::
definitions

::
in (4),

:::
the

:::::::
explicit

:::::::::
expressions

:::
for

:::
the

::::::::::
frequencies

::
of

:::
the

:::::::
Rossby,

::::
WIG

::::
and

:::
EIG

::::::
waves

:::
are

:::::::
obtained

:::
by20

::::::
sorting

::
the

::::::
values

::
in

:
(3)

::
as

:::::::
follows:

:

Rossby :
::::::

ωn,k,R
:::::

=− min
j=1,2,3

|ωn,k,j |,
:::::::::::::::

(5a)

Westward Inertia-Gravity :
:::::::::::::::::::::

ωn,k,WIG
::::::

= min
j=1,2,3

ωn,k,j ,
::::::::::::::

(5b)

Eastward Inertia-Gravity :
::::::::::::::::::::

ωn,k,EIG
::::::

= max
j=1,2,3

ωn,k,j .
::::::::::::::

(5c)
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Having found (one of) the wave-frequencies for a given combination of n and k, the corresponding latitude dependent

amplitudes can be written as5

v̂n = ψAH
:::n

[
ε1/4
:::

(y
a

)]
exp
:::

[
−
:

1

2
ε1/2
:::

(y
a

)
2

]
(6a)

ûn,k =

√
gHε1/4

ia(ω2
n,k − gHk2)

gHε1/4

ia(ω2
n,k − gHk2)

::::::::::::::

−√n+ 1

2

ωn,k ωn,k√
gH

::::

+
√
gHk

ψv̂n+1−
√
n

2

ωn,k −√gHk ωn,k√
gH
− k

::::::::

ψv̂n−1


(6b)

Φ̂n,k =
gHε1/4

ia(ω2
n,k − gHk2)

[
−
√
n+ 1

2

(
ωn,k +

√
gHk

)
ψv̂n+1 +

√
n

2

(
ωn,k −

√
gHk

)
ψv̂n−1

]
, (6c)10

for n= 1,2,3, . . . (the cases n=−1,0 require special treatment), where

ψn =AHn

[
ε1/4

(y
a

)]
exp

[
−1

2
ε1/2

(y
a

)2
]
.

Here ε= (2Ωa)2/gH is Lamb’s parameter, A is an arbitrary amplitude
:::
(that

::::
has

:::::::::
dimensions

:::
of

::
m

:::
s-1), and Ĥn are the nor-

malized Hermite polynomials of degree n. Note: (i) The chosen normalization for the latitude dependent amplitudes in (6)

is different from the one used in Matsuno. We use the above normalization for convenience, as it relates the amplitude of15

:::::::::
guarantees

:::
that

:̂
v to that of ψ in a straight forward way and guarantees that it is independent of both k or ω. (ii) The use of the

normalized version of the Hermite polynomials also leads to slightly different pre-factors in front of ψn+1 and ψn−1 ::::
v̂n+1::::

and

::::
v̂n−1:compared to Matsuno. However, they are generally more stableand more convenient for the spectral analyses employed

in the following sections.

While the solutions obtained by Matsuno (1966)
::::::::::::::
Matsuno (1966) apply for the equatorial β-plane, the proposed test case is20

intended for use in spherical models. As is shown in Garfinkel et al. (2017)
::::::::::::::::::
Garfinkel et al. (2017), the SWEs on the equatorial

β-plane approximate the SWEs on the sphere to zero-order in powers of 1/ε1/4. Thus, the solutions obtained by Matsuno are

only accurate in the asymptotic limit ε→∞. For the fixed values of Earth’s angular frequency and mean radius, this implies

that the solutions obtained by Matsuno are only accurate for sufficiently small speeds of gravity waves
√
gH .

In practice,
:
in

:::::
order

:
to use Matsuno’s solutions in spherical models, the local Cartesian coordinates x and y in the above25

formulae (1) and (6) have to be replaced by the longitude λ and latitude φ of the geographical coordinate system. Recall that

the transformation between the two system
::::
from

:::
the

::::::::
Cartesian

::::::
system

::
to

:::
the

:::::::
spherical

::::
one is (x,y)→ a(cosφ0λ,φ), where φ0

is the central latitude to which the β-plane
:::::
where

:::
the

:::::
planar

:
approximation is applied. Thus, for the equatorial β-plane where

φ0 = 0, the transformation is simply (x,y)→ a(λ,φ). Likewise, the planar wavenumber
:::::::::::
wave-number k in all of the formulae

(1)-(6) has to be replace
::::::
replaced

:
by its spherical counterpart,

:::
ks,:using the transformation k→ k/acosφ0 = k/a.30

For the small gravity wave speeds (i.e. small values of ε) used in the present work, the eigenfunctions in become negligible

outside a narrow equatorial band (see Sections 3.1 and ?? below). Thus, the above expression can be used to test both

5



global-scale and tropical models
::::::::::::::
k→ ks/acosφ0.

:::::
Thus,

:::
for

::
the

:::::::::
equatorial

:::::::
β-plane

:::::
where

:::::::
φ0 = 0,

:::
the

::::::::::::
transformation

::
is

::::::
simply

:::::::::::::
(x,y)→ a(λ,φ)

::::
and

:::::::::
k→ ks/a.

::
In

::::::::
particular,

:::
the

::::::
reader

::::::
should

::::
note

:::
that

:::
the

::::::
planar

:::::::::::
wave-number

::
k

:::
has

::::
units

::
of

::::
m-1

:::::
while

:::
the

:::::::
spherical

::::::::::::
wave-number

::
ks::

is
::::::::::::
dimensionless.

Finally, using the above formulae to calculate the waves’ frequencies and latitude dependent amplitudes requires routines for5

finding the roots of the cubic equation , and for evaluating the normalized Hermite polynomials on arbitrary latitude-longitude

grids. The roots of the cubic equation can be obtained in a closed analytic form using the solutions of the general cubic

equation as detailed in appendix ??. The normalized Hermite polynomials, in turn, can be evaluated using their
:::
any

::::
grid

:::::
given

::
the

::::::::
locations

:::
of

:::
the

::::::::
latitudes.

::::
This

:::
can

:::
be

::::
done

:::::
using

:::
the

:::::::
Hermite

:
three-term recurrence relation, as in Press et al. (2007). In

order to facilitate the application of the proposed test case we provide as part of the online supplementary material Matlab,10

Python and Fortran codes (named matsuno.m, matsuno.py and matsuno.f90, respectively) for computing the analytic fields on

arbitrary latitude-longitude grids
:::::::::::::::
Press et al. (2007).

3 Proposed test procedure

The general procedure of the proposed test case is similar to the Rossby-Haurwitz one in that the model in question is initialized

with velocity and height fields corresponding to a particular wave-solution and the time evolution of that wave is then examined.15

The initial wave fields in this case are taken from the analytic expressions in Section 2. The specific choice of wave-parameters

and assessment criteria in the present work are discussed below, separately. As is often the case, these choices represent

compromises between conflicting factors, e.g. adherence to observations vs. adherence to asymptotic validity of the analytic

solutions or rigorous testing vs. simplicity. In any case, these choices may be the subject of discourse as deemed appropriate

by the community.20

3.1 wave-parameters

The wave-parameters consist of the speed of gravity waves
√
gH , the wave-number and wave-mode k and n, the wave-

amplitude A, and the wave-type. Any given combination of these parameters completely specify
:::::::
specifies

:
a unique wave

using the expressions in (1)-(6). We consider all other parameters, including the spatio-temporal resolution and the form

of diffusion/viscosity terms, to be modeling choices left to the developers. This approach is aimed at testing the models25

in their modus operandi. However, as noted in Polvani et al. (2004)
::::::::::::::::
Polvani et al. (2004), different choices for the form of

diffusion/viscosity terms correspond to different sets of equations and may not converge to the same solutions.

We offer two different choices for
:::
The

::::::
choice

::
of

::::::
gravity

::::
wave

:::::
speed

:

√
gH

:
is
:
inspired by the observed speeds

:::::
speed of gravity

waves of the baroclinic modes in the atmosphereand oceans. In practice we keep g fixed to Earth’s gravitational acceleration,

and vary
::
set the speed of gravity waves by varying H . For atmospheric models we suggest using

:::::
letting H = 30 m, which is30

within the range of observed equivalent depths in the equatorial atmosphere (Wheeler and Kiladis, 1999). For ocean models we

suggest using H = 0.5 m, which corresponds to the observed speed of gravity waves of the first baroclinic mode in the oceans

(Chelton et al., 1998). As mentioned in section 2, the analytic solutions obtained by Matsuno for
::
on the equatorial β-plane are

6



only accurate approximations of the SWEs on the sphere in the asymptotic limit of small speeds of gravity waves. The above

values were
::::
value

::::
was found by trial and error to be sufficiently accurate in the sense that they yield stable integrations

:
it
::::::
yields

:::::
stable

:::::::
solutions

:
for at least 10

:::
100

:
wave-periods in the simulations demonstrated in Section ??

:::::::
described

::
in

:::::::
Section

:
4.

In addition to the speed of gravity waves, the accuracy of Matsuno’s solutions depend
:::::::
depends on the wave-number and

wave-mode as well. For a given value of
√
gH , they

::::
these

::::::::
solutions

:
become asymptotically accurate in the limits k,n→ 05

(but k 6= 0) (De-Leon and Paldor, 2011). In addition, the higher the wave-number or wave-mode are, the greater the spatial

variability and the required spatial resolution are. Both of these considerations suggest that reasonable choices for the wave-

number and wave-mode consist of small to moderate values. The proposed wave-number and wave-mode are k = 5 and n= 1,

which are
::
i.e.

:
within the range of dominant values observed in the equatorial atmosphere (Wheeler and Kiladis, 1999), but

other choices may work just as well provided k and n are not too large.10

The proposed test case is based on the solutions of the linear SWEs but is intended to be used in non-linear models. There-

fore, the waves-amplitude should be sufficiently small so as to satisfy the linearization condition. The proposed amplitude of

Equation isA= 10−8
:̂
v
::
in

::::::::
Equation (6)

:
is

:::::::::
A= 10−5 m s-1, chosen by trial and error so as to enable stable integrations

::::::::
solutions

for at least 10
:::
100

:
wave periods in the simulations in Section ??

::
of

::::::
Section

::
4.

In general, there are two qualitatively different wave types, the Rossby and IG wavetypes, that differ in the magnitude of15

their divergence field
:::
and

:::::::
vorticity

:::::
fields.

::::
The

::::::
former

:
is
:::::
more

:::::::::
solenoidal

:::::::::::::
(non-divergent),

:::::::
whereas

:::
the

:::::
latter

:
is
:::::
more

:::::::::
irrotational.

In order to assess the models’ performances in these two qualitatively different limits we suggest using one of each. Since

Rossby waves are exclusively westward propagating, we choose the EIG wave from
::
of the two IG waves as the second one in

order to eliminate potential longitudinal biases
::
to

:::::
cover

:::
the

:::
two

:::::::::
directions

::
of

::::::::::
longitudinal

:::::::
direction.

The initial u,v,Φ fields of the Rossby (top row) and EIG (bottom row) waves obtained using the analytic expressions20

of Section 2 and the parameters of Section 3.1 with H = 0.5 m. Each field is normalized on its own global maximum.

Contour-levels range from −1.0 to +1.0 by 0.2. White dashed-lines (in b and e): intersects used for the Hovmöller diagrams

in Figure 2.
:::
The

:::::::
resulting

::::::::::::
wave-periods

::
T

::
for

:::
the

::::::
chosen

::::::
values

::
of

::::::

√
gH ,

:
k
::::
and

:
n
:::
are

::::::::
T = 18.5

::::
days

:::
for

:::
the

:::::::
Rossby

::::
wave

::::
and

::::::
T = 1.9

:::::
days

::
for

:::
the

::::
EIG

:::::
wave.

:

3.2 Assessment criteria25

For sufficiently small wave-amplitudes we expect the spatio-temporal structure of the simulated solutions to be that of zonally

propagating waves, i.e. ξ̂(φ)ei(kλ−ωt) (where ξ
::::::::::::::
q = q̂(φ)ei(kλ−ωt)

::::::
(where

::
q
:
stands for any of the dependent variables u, v or

Φ), with frequency and latitude dependent amplitudes corresponding to the initial wave. In this case, it is desirable to assess

the accuracy of the zonal and meridional structures of the waves independently. A fast and simple way of doing so is using

Hovmöller diagrams, where the temporal change in any direction is isolated by intersecting the fields along a fixed value of the30

other direction. This results in the following two diagrams:

(i) A longitude-time
:::::::::::
time-longitude

:
diagram obtained by intersecting the fields at a certain latitude. The contour lines in the

longitude-time
::::::::::::
time-longitude

:
plane are the set of points satisfying kλ−ωt= const (for some real const). Thus, the expected

pattern for this diagram is that of straight lines whose slopes equal the
::::
with

::::::
slopes

:::
that

:::::
equal

:::
the

::::::
inverse

:::
of

:::
the wave’s phase

7



speed k/ω. In order to avoid small fluctuations in the vicinity of latitudinal zero-crossings, we recommend using latitudinal

intersects at or near local extrema.

(ii) A latitude-time diagram obtained by intersecting the fields at a certain longitude. For any two wave-fronts with equal

phase k(λ2−λ1) = ω(t2− t1). Thus, holding λ fixed while varying t from t1 to t2 is equivalent to holding t fixed and varying

λ from λ1 to λ2 = λ1 +ω/k(t2− t1). The resulting pattern is similar to that of a latitude-longitude diagram, but provides a5

testament
::
an

:::::::
estimate

:
of the time evolution as opposed to a momentary snapshot.

For
::::::::
Likewise,

:::
for

::::::
zonally

::::::::::
propagating

::::::
waves

:
it
::
is
::::
also

::::::::
desirable

::
to

:::::
isolate

:::
the

:::::
errors

:::
in

::
the

::::::
phase

:::::
speed

:::
and

::::::
spatial

::::::::
structure.

::
As

::::::::
discussed

:::
in

:::::::::::::::::::::
Shamir and Paldor (2016),

:::
the

:::::::::
frequently

:::::
used

:::::::
spherical

::
l2:::::

error
::::::::
entangles

:::
the

::::
two,

::::
and

::
is

:::::::
therefore

:::
of

:::::
lesser

:::
use

:::
for

::::::::
assessing

:::
the

::::::::
accuracy

:::
of

::::::::::
propagating

:::::
wave

::::::::::
simulations.

:::::
Thus

:::
for

:
a more quantitative assessment we suggest us-

ing a combination of Fourier analyses in longitude and time and a Hermite analysis in latitude to determine the dominant10

wave-numbers and wave-frequencies, and the dominant wave-modes (which determine the dominant meridional structure) of

the simulated solution , respectively.The amplitude of the most dominant wave-component in each case can be compared to

the amplitude of the analytic solution at the corresponding intersect, and the difference between the two provides a quantitative

error-measure. The Fourier analysis can be trivially found using readily available Fast-Fourier-Transform libraries. The Hermite

analysis was found in
::::::
relative

::::::::
difference

::::::::
between

:::
the

::::::::::::::::
Root-Mean-Square

::
of

:::
the

:::::::
analytic

:::::::
solution

:::
and

:::
the

::::::::
simulated

:::::::::
solutions,15

::
i.e.

:√
I[q2]−

√
I[q2

a]√
I[q2

a]
,

:::::::::::::::

(7)

:::::
where

:::
the

::::::::
quantities

:
q
::::
and

::
qa::::::

(which
:::
can

::
be

:::::::
vectors)

::::::::::
correspond

:
to
:::
the

:::::::::
simulated

:::
and

:::::::
analytic

::::::::
solutions,

::::::::::
respectively,

:::
and

::::::
where

I
:
[q]=

1

4π

2π∫
0

π/2∫
−π/2

q(λ,φ)cosφdφdλ,

::::::::::::::::::::::::::

(8)20

:::::::::
Henceforth

:::
we

::::
refer

:::
to

:::
the

:::::::
quantity

::
in
:

(7)
::
as

:::
the

::::::::::::
structure-error

:::::
since,

:::
as

:::::::
opposed

::
to
:

the present work using the procedure

described in Appendix ??.

In order to attain reasonable accuracy in terms of the spectral analysis
:
l2:::::

error, it is recommended to integrate the initial

fields forward in time for at least 10 wave-periods, with a sampling frequency of about 10 samples per period. The proposed

integration and sampling times (denoted by Tf and Ts) for each of the four simulations, along with the wave-period (denoted

by T ), are given in Table ??.

T (days) Tf (days) Ts (hours)Rossby, H = 30 m: 18.5 200 48 EIG, H = 30 m: 1.9 20 4 Rossby, H = 0.5 m: 127.8 1300

312 EIG, H = 0.5 m: 5.7 60 12 The wave-period T , integration time Tf , and sampling spacing Ts. Note, T is derived from5

the chosen test wave-parameters and is a characteristic of the waves, whereas Tf and Ts where chosen to attain reasonable

accuracy in terms of the spectral analysis.
::::::::
unaffected

:::
by

:::::
phase

:::::
speed

:::::
errors

::::
(i.e.

:::::
phase

:::::
shifts

::
in

::
λ).

:

8



4 Demonstration
::::::
Results

In order to
::
In

::::
this

::::::
section

:::
we demonstrate the usefulness of the Matsuno test case we run

::
by

:::::::
applying

:
the proposed procedure

using a simple
:
to

::::
both

:::
an

:::::::::
equatorial

::::::
channel

:
finite-difference shallow water model .

:::::
model

::::
and

:
a
:::::::::::

global-scale
:::::::
spectral

::::
one.10

:::
We

::::
then

:::::::
examine

:::
the

:::::::
stability

::
of

:::
the

:::::::
selected

::::::::::::
waves/modes

::
in

:
a
::::::
similar

:::::::
fashion

::
to

::::
that

::::
used

::
in

:::::::::::::::::::
Thuburn and Li (2000)

:::
for

:::
the

:::::::::::
wave-number

::
4

::::::::::::::
Rossby-Haurwitz

::::::
wave.

::::::
Finally,

:::
we

:::::::::::
demonstrate

:::
the

:::::::::
possibility

::
of

:::::
using

::::
the

:::::::
analytic

:::::::
solutions

::::::::
obtained

:::
by

:::::::
Matsuno

:::
as

::
a

::::::::
resolution

:::::::::::
convergence

:::
test.

:

4.1
::::::::::::
Demonstration

:::::
using

:::
an

:::::::::
equatorial

:::::::
channel

::::::::::::::
finite-difference

::::::
model

The model is a spherical version of the Cartesian model used in Gildor et al. (2016)
:::::::::::::::
Gildor et al. (2016), in which the integration15

forward in time is carried out using the transport
::::::::::
conservation

:
form of the SWEs

∂U

∂t
+

1

acosφ

∂

∂λ

(
U2

h

)
+

1

a

∂

∂φ

(
UV

h

)
− 2UV tanφ

ah
− 2ΩsinφV =− g

2acosφ

∂h2

∂λ
(9a)

∂V

∂t
+

1

acosφ

∂

∂λ

(
UV

h

)
+

1

a

∂

∂φ

(
V 2

h

)
− (U2−V 2)tanφ

ah
+ 2ΩsinφU =− g

2a

∂h2

∂φ
(9b)

20

∂h

∂t
+

1

acosφ

[
∂U

∂λ
+
∂(V cosφ)

∂φ

]
= 0, (9c)

where U = hu, V = hv and h is the total layer thickness. The numerical scheme employs a standard finite difference shallow-

water solver in which the time-differencing follows a leapfrog scheme (centre differencing in both time and space). The

computations were done on an Arakawa C-grid. The original Matlab code used in the following simulations is available as part

of the on-line supporting material.25

The model ‘s application was validated using both atmospheric and oceanic settings, i.e. using both H = 30 m and H = 0.5

m, totaling in four different initial waves (a Rossby wave and an EIG one for each value of H). The initial u,v,Φ fields of

the Rossby (top row) and EIG (bottom row) waves obtained using the analytic expressions of Section 2 and the parameters

of Section 3.1 are shown in Figure 1 for H = 0.5 m. The corresponding fields for H = 30 m differ only by e-folding latitude

which is 11◦, instead of 4◦. Note that under the normalization
:::::
model

::::::::
contains

::::::::
provisions

:::
for

::
a

:::::::
temporal

:::::::::::::
Robert-Asselin

:::::
filter,30

:::
but

:::
the

:::::
filter’s

:::::::::
coefficient

::::
was

:::
set

::
to

::::
zero

::
in

:::
the

::::::::::
simulations of the present paper the initial v field is independent of the wave

type and is therefore identical on both rows, panels (b) and (e).

In all four cases, the computational domain was
::::::
section.

::
In

::::::::
addition,

:::
the

:::::
model

:::::::
includes

:::
no

:::::::::::::::
diffusion/viscosity

:::::
terms.

:

:::
The

::::::::::::
computational

:::::::
domain

::
is

:
−180◦ ≤ λ≤ 180◦ and −30◦ ≤ φ≤ 30◦. The boundary conditions were

::
are

:
periodicity at

the zonal boundaries λ=±180◦ and vanishing meridional velocity at the channel’s boundaries φ=±30◦. For H = 30 m,
:::
the

::::::
chosen

::::::::::::::
wave-parameters

:::
the

::::::::
amplitude

::
of

:
the meridional velocity at φ=±30◦ decays to 4e− 03 of its maximal value, and for

H = 0.5 m it decays to 2e− 24
:̂
v
::
in
:
(6)

::
has

:::
an

::::::::
e-folding

::::::
latitude

::
of

::::
11◦,

:::
and

:::
its

::::::::
amplitude

::
at

:::::::::
φ=±30◦

::::::
decays

::
to

::::::
4e− 03

:
of its5

maximal value, so in both cases the velocity outside the computational domain can be comfortably neglected. The grid-spacing

9



and time step were
::
are ∆λ= ∆φ= 0.5◦ and ∆t= 600 seconds, which were found to yield stable solutions for at least 10

:::
100

wave-periods.

The resulting
:::::
Figure

::
1
:::::
shows

:::
the

::::::
initial

:::
(top

:::::
row)

:::::::::
u,v,Φ, ξ,δ

:::::
fields

::::::
(where

:
ξ
::::
and

:
δ
:::
are

:::
the

::::::
relative

::::::::
vorticity

:::
and

::::::::::
divergence,

::::::::::
respectively)

:::
of

:::
the

::::::
chosen

:::::::
Rossby

:::::
wave

::::::
mode,

::::
and

:::
the

::::::::
resulting

:::::::::::
latitude-time

:::::::
(middle

::::
row)

::::
and

:::::::::::::
time-longitude

:::::::
(bottom10

::::
row) Hovmöller diagrams of the simulated solutions for each of the initial waves are shown in Figure 2. In all cases, the

latitude-time diagrams were obtained by intersecting v at λ=−18◦ (also indicated by vertical dashed white lines in Figure

1). The longitude-time diagrams were obtained by intersecting v at φ= 9◦ for H = 30 m, and φ= 4◦ for H = 0.5 m (the

latter case is indicated by horizontal dashed white lines in Figure 1). Similar results are obtained using u or Φ, provided the

meridional intersects are taken in the vicinity of their local extrema
:::::::
solution.

:::
The

:::::
initial

:::::
fields

:::::
were

:::::::
obtained

:::::
using

:::
the

:::::::
analytic15

:::::::::
expressions

:::
of

::::::
Section

::
2

:::
and

::::::::::::::
wave-parameters

:::
of

::::::
Section

::::
3.1.

:::
The

::::::
chosen

:::::::::
intersects

::::
used

::
in

:::
the

:::::::::
calculation

:::
of

:::
the

:::::
Hovm

:
ö
:::
ller

:::::::
diagrams

:::
are

::::::::
indicated

:::
by

:::::
white

::::::
dashed

::::
lines

::::::::::::
superimposed

::
on

:::
the

:::::
initial

::::::
fields,

:::
and

:::
are

::::
also

::::::::
provided

::
in

:::
the

:::::::
Figure’s

::::::
caption.

For the sake of legibility the shown time domain in each panel is 9T ≤ t≤ 10T
:::
only

:::
the

::::
last

::::
wave

:::::::
periods

::
of

:::
the

::::::::::
simulation,

::
i.e.

::::::::::::::
99T ≤ t≤ 100T , where T is the corresponding wave-periodprovided in Table ??. Note that the

:
.
::::
The

::::
fields

:::
are

::::::::::
normalized

::
on

::::
their

::::::
global

::::::::
maximum

::
at
:::::
t= 0.

:::::
Thus,

:::::
white

:::::::
regions

:::::::::
correspond

::
to

:::::
times

::
at

::::::
which

::
the

:::::::::
simulated

:::::::
solution

:::::::
exceeds

:::
the

:::::
initial20

:::::::::::::
wave-amplitude,

::::::::::::
momentarily.

::::
With

::::
this

::
in
::::::

mind,
:::::
recall

::::
that

:::
the

:::::::
patterns

:::
in

:::
the

:
latitude-time diagrams are similar to that

::::
those

:
of a latitude-longitude diagramand can, therefore ,

:
,
:::
and

::::
can

:::::::
therefore

:
be used to compare with the initial fields. In all

cases
::::::
general,

:
the initial wave-structure is clearly discernible after 10 wave-periods

::::::::
preserved

:
and the dominant slope

::
in

:::
the

::::::::::::
time-longitude

::::::::
diagrams corresponds to the analytic slope indicated with dashed white lines .

::::::
(bottom

:::::
row).

:::::
There

::::
are,

::::::::
however,

:::::
some

:::::::::
noticeable

:::::::::
deviations:

::
A

:::::
slight

::::::::
east-west

:::
tilt

:::
can

:::
be

::::::::
observed

::
in

:::
the

:::::::::::
latitude-time25

:::::::
diagrams

:::::::
(middle

:::::
row),

:::
but

::::
most

::::::::::
egregiously,

:::
the

:::::::::
divergence

::::
field

::
is

:::
less

:::::::
regular

::::
than

::
the

:::::
other

::::
four.

:::
We

::::::
return

::
to

:::
this

:::
last

:::::
point

:
at
:::
the

::::
end

::
of

:::::::
Section

:::
4.3.

::::
The

:::::::
patterns

::
in

:::
the

::::::::::
latitude-time

::::::::
diagrams

::
of
:::

the
::::::::::
meridional

:::::::
velocity

:::::
shown

::
in
:::::
panel

:::
(g)

::
is

::::::::
precisely

::
the

::::::::
expected

::::::
pattern

::::::::::
considering

::
the

:::::::::
westward

:::::::::
propagation

:::
of

::
the

:::::::
Rossby

:::::
mode

:
at
:::::::::
λ=−18◦

::
in

:::
one

::::::::::
wave-period

:::::
after

::
an

::::::
integer

::::::
number

:::
(99

::
in

::::
this

::::
case)

::
of
::::::::::::
wave-periods.

:

::::::::
Similarly,

:::::
Figure

::
2
:::::
shows

:::
the

:::::
initial

::::
(top

::::
row)

:::::::::
u,v,Φ, ξ,δ

:::::
fields

::
of

:::
the

::::::
chosen

::::
EIG

::::
wave

:::::
mode,

::::
and

:::
the

:::::::
resulting

:::::::::::
latitude-time30

::::::
(middle

::::
row)

::::
and

::::::::::::
time-longitude

:::::::
(bottom

::::
row)

:::::
Hovm

:
ö
:::
ller

:::::::
diagrams

::
of

:::
the

::::::::
simulated

::::::::
solution.

::::
Note

:::
that

:::::
under

:::
the

::::::::::::
normalization

::::
used

::
in

::
the

:::::::
present

:::::
paper

::
the

:::::
initial

::
v
::::
field

::
is

::::::::::
independent

::
of

:::
the

::::
wave

::::
type

:::
and

::
is
::::::::
therefore

:::::::
identical

::
in

::::
both

::::::
figures.

:::
As

::
in

::::::
Figure

:
1
:::
the

::::::::
dominant

:::::
slope

::
in
:::

the
:::::::::::::

time-longitude
::::::::
diagrams

:::::::
(bottom

::::
row)

::::::
agrees

::::
well

::::
with

:::
the

:::::::
analytic

::::::
phase

:::::
speed.

:::
In

:::::::
contrast

::
to

:::::
Figure

::
1

::
the

:::::::::::
latitude-time

:::::::
diagram

::
in

:::::
panel

::
(g)

:::::::
appears

::
to

::
be

::::
π/4

:::
out

::
of

:::::
phase

:::
(but

:::
can

:::
be

:::
any

::::::
integer

:::::::
multiple

::
of

::::
π/4)

:::::::::
indicating

:::
that

::
in

:::
this

::::
case

:::::
there

::
is

:
a
:::::
small

:::::::
(perhaps

::::
even

:::::
tiny)

:::::
phase

:::::
speed

::::
error

:::
that

:::::::::::
accumulates

::::
over

::::
time.

::
In

::::::::
addition,

::
in

:::::::
contrast

::
to

:::
the

::::::
Rossby

:::::
wave

::
in

:::::
Figure

::
1,

:::
the

:::::::::
divergence

::::
field

:::
in

:::
this

::::
case

::
is

:::
just

::
as

::::::
regular

:::
as

::
the

:::::
other

::::
four.

:

For a more quantitative assessment we use Fourier and Hermite analyses in order to locate the dominant wave-numbers,

wave-modes, and wave-frequencies, and compare their amplitudes with the initial wave amplitudes. Figure 3 contains
:::
The

::::::::::::
structure-error

::::::
defined

::
in (7)

::
is

:::::
shown

::
in

::::::
Figure

:
3
:::
for

::::
both

:::::::
Rossby

::::
(top)

:::
and

::::
EIG

::::::::
(bottom)

:::::
waves

::
as

::
a
:::::::
function

::
of

:::::
time.

::
In

::::
both

::::
cases

:::
the

::::::::::::
structure-error

::::::::
fluctuates

:::::
about

::
a
:::::
mean

:::::
value

::
of

:::
less

::::
than

::::
1%

:::
and

:::::
there

:
is
:::
no

::::::
visible

::::
trend

::::::::::
throughout

:::
the

:::::::::
simulation5

::::
time

::
of

:::
100

::::::::::::
wave-periods.
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Figure 1.
:::
Top

::::
row:

:::
the

:::::
initial

::::::
u,v,Φ,

::
ξ,
::
δ
::::::
Rossby

:::::
wave

::::
fields

::::
(top

:::::
row),

:::::::
obtained

::::
using

:::
the

:::::::
analytic

:::::::::
expressions

::
of
:::::::

Section
:
2
::::

and

::::::::::::
wave-parameters

::
of

::::::
Section

:::
3.1.

::::::
Middle

::::
row:

:::::::::
latitude-time

:
Hovmöller diagramsof the simulated solutions. (a)–(d) Latitude-time diagrams

:
,

obtained by intersecting v
::
the

::::
fields

:
at λ=−18◦ . (e)–(h

:::
also

:::::::
indicated

::
by

::::
white

::::::
vertical

:::::
dashes

::::
lines

::
in

::
the

:::
top

:::
row)Longitude-time

:
.
::::::
Bottom

:::
row:

:::::::::::
longitude-time

:::::
Hovm

:
ö
:::
ller diagrams, obtained by intersecting v

:
u at φ= 9◦ for H = 30 m,

::::::
φ= 0◦ and φ= 4◦ for H = 0.5 m

::
all

::::
other

::::
fields

::
at

:::::
φ= 9◦

:
(the later case is

:::
also indicated by horizontal dashed white

:::::::
horizontal

::::::
dashes lines in Figure 1). For the sake of legibility the

shown time domain in each panel is 9T ≤ t≤ 10T , where T is the corresponding wave-period provided in Table ??. For comparison, the

analytic (initial) slope in each case is indicated using dashed white line (bottom
::
top row). The amplitude in each panel is

::::
fields

::
are

:
normalized

on the
:::
their

:
global maximum at t= 0, i.e. v/maxλ,φ |v(t= 0)|, which is

:::
The

:::::::::
wave-period

:::
for the same in all cases

:::::
chosen

:::::::::::::
wave-parameters

:
is
::::::::
T = 18.5

:::
days. Contour-levels range from −1.0 to +1.0 by 0.2.

4.2
::::::::::::
Demonstration

:::::
using

::
a
::::::::::
global-scale

::::::::
spectral

:::::
model

11



Figure 2.
:::
Top

:::
row:

:::
the

:::::
initial

:::::
u,v,Φ,

::
ξ,

:
δ
:::
EIG

:::::
wave

::::
fields

:::
(top

::::
row),

:::::::
obtained

::::
using

:::
the

::::::
analytic

::::::::
expressions

::
of

::::::
Section

:
2
:::
and

:::::::::::::
wave-parameters

:
of
:::::::

Section
:::
3.1.

::::::
Middle

::::
row:

:::::::::
latitude-time

::::::
Hovmö

:::
ller

::::::::
diagrams,

::::::
obtained

:::
by

:::::::::
intersecting

:::
the

::::
fields

::
at
::::::::
λ=−18◦

::::
(also

::::::::
indicated

::
by

:::::
white

:::::
vertical

::::::
dashes

:::
lines

::
in
:::
the

:::
top

::::
row).

::::::
Bottom

:::
row:

:::::::::::
longitude-time

:::::
Hovm

:
ö
:::
ller

:::::::
diagrams,

:::::::
obtained

::
by

:::::::::
intersecting

:
v
::
at

::::::
φ= 9◦,

:
δ
::
at

::::::
φ= 0◦

:::
and

::
all

::::
other

::::
fields

::
at

::::::
φ= 15◦

::::
(also

:::::::
indicated

::
by

:::::
white

:::::::
horizontal

::::::
dashes

:::
lines

::
in
:::
the

:::
top

::::
row).

:::
The

::::
fields

:::
are

::::::::
normalized

::
on

::::
their

:::::
global

::::::::
maximum

:
at
:::::
t= 0.

:::
The

::::::::::
wave-period

::
for

:::
the

:::::
chosen

:::::::::::::
wave-parameters

::
is

::::::
T = 1.9

::::
days.

:::::::::::
Contour-levels

:::::
range

::::
from

::::
−1.0

::
to

::::
+1.0

::
by

::::
0.2.

::
To

:::::::::::
demonstrate

:::
the

::::::::::
applicability

:::
of

:::
the

::::::::
Matsuno

:::::
wave

::
as

::
a

:::
test

::::
case

:::
for

:::::::::::
global-scale

:::::
model

::::
we

:::
use

:::
the

:::::::::::
Geophysical

:::::
Fluid

::::::::
Dynamics

:::::::::::
Laboratory’s

::::::::
(GFDL’s)

:::::::
spectral

::::::::::
transformed

:::::::
shallow

:::::
water

::::::
model

:::::
which

::::
uses

:::
the

::::::::
Spherical

:::::::::
Harmonics

:::
as

::
its

:::::
basis

::::::::
functions.

::::
The

::::::
chosen

:::::::
spectral

:::::::::
resolution

::::
was

:::::
T85,

:::
i.e.

::
a

::::::::
triangular

:::::::::
truncation

::::::
where

:::
the

:::::::
highest

::::::::::::
wave-number

:::
and

:::::
total5

:::::::::::
wave-number

:::::::
retained

::::
both

:::::
equal

:::
85.

::::
The

::::::
chosen

::::
time

::::
step

::::
was

::::::::
∆t= 600

::::::::
seconds,

::
as

::
in

:::
the

:::::::::
equatorial

:::::::
channel

::::::
model.

::::
The

:::::
model

:::::::
contains

:::::::::
provisions

:::
for

:::::::::::::
hyper-diffusion

:::::
terms

:::
as

::::
well

::
as

::
a

:::::::
temporal

:::::::::::::
Robert-Asselin

:::::
filter,

:::
but

:::
the

::::::::::
coefficients

:::
of

::::
both

::::
were

:::
set

::
to

::::
zero

::
for

:::
the

::::::::::
simulations

::::::::
described

::::::
below.
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Figure 3.
:::
The

:::::::::::
structure-error

::::::
defined

::
in

:
(7)

:
is
::::::
shown

:
in
::::::

Figure
:
3
:::
for

::::
both

::
the

::::::
Rossby

::::
(top)

:::
and

::::
EIG

:::::::
(bottom)

:::::
waves

::
as

:
a
:::::::
function

::
of

::::
time.

::::
Blue:

::::::::
calculated

::
for

:::
the

::::::
velocity

:::::
vector

::::::::

√
u2 + v2.

::::
Red:

::::::::
calculated

::
for

:::
the

:::::::::
geopotential

:::
Φ.

::::::
Figures

::
4

:::
and

::
5
:::::

show
::::::::::

simulations
:::

of
:::
the

:::::
same

:::::
initial

:::::::
Rossby

::::
and

::::
EIG

::::::
waves

::
as

::
in
:::::::

Figures
::

1
::::
and

::
2,

::::
and the resulting

power-spectra of the simulated solutions obtained using the same latitudinal and longitudinal intersects used for the
::::::::::
latitude-time10

::::::
(middle

::::
row)

::::
and

::::::::::::
time-longitude

:::::::
(bottom

::::
row)

:
Hovmöller diagrams in Figure 2, and t= 10T as the time intersect, where T in

each case is the corresponding
:
of

:::
the

:::::::::
simulated

:::::::
solution,

:::::::
obtained

:::::
using

:::::::
GFDL’s

::::::::::
global-scale

:::::::
spectral

::::::
model.

:::::
Note,

:::
that

::::::
unlike

::::::
Figures

::
1
::::

and
::
2,

:::
the

:::
top

:::
row

:::::::::::
corresponds

::
to

:::
the

::::::::
simulated

::::::::
solutions

::
at

::::
t= 4

::::::
hours,

:::
and

:::
not

:::
the

:::::
initial

:::::
fields

::
at

:::::
t= 0.

:

:::::
Unlike

:::
the

::::
the

::::::::
equatorial

:::::::
channel

::::::
model,

:::
the

:::::::::
simulated

:::::::::
divergence

::::
field

::
of

:::
the

::::::
initial

::::::
Rossby

:::::
wave

::
in

::::::
Figure

:
4
:::::::

remains
:::

as

::::::
regular

::
as

:::
the

::::
four

:::::
other

:::::
fields.

::::
The

:::::::
structure

:::
in

:::
the

::::::::::
latitude-time

::::::::
diagrams

:::::::
(middle

:::::
row)

:::
are

::
at

::::::
slightly

:::
out

:::
of

:::::
phase

::::
after

:::
9915

:::::::::::
wave-periods.

::::
The

::::::::
simulated

::::
EIG

:::::
wave

::
in

::::::
Figure

:
5
::
is

::
at

::::
least

::::
π/4

:::
out

::
of

::::::
phase

::::
after

::
99

::::::::::::
wave-periods.

:::::::
Finally,

::::::::::::
structure-error

::
in

:::::
Figure

::
6

::
is

::::::::
generally

::::::
similar

::
to

:::
the

:::::::::
simulations

::
of

:::
the

:::::::::
equatorial

:::::::
channel

::::::
model,

:
it
::::::::
fluctuates

:::::
about

::
a

::::
mean

:::::
value

::
of

::::
less

::::
than

:::
1%

:::
and

:::::
there

:::
are

::
no

::::::
visible

:::::
trends

::::::::::
throughout

:::
the

:::
100

:
wave-period listed in Table ??. In all cases the dominant wave-number

and wave-mode clearly match the initial values k = 5 and n= 1. Likewise the dominant frequencies match the initial ones

indicated on the figure using black dashed lines
::::::::::
simulations.

:::::
Recall

::::
that

:::
the

::::::::::::
structure-error

::::::
defined

::
in

:
(7)

::
is

:::::::::
insensitive

::
to

:::::
phase

:::::::::
differences.

The first and second most dominant wave components of the simulated solutions are summarized in Table ??, compared to

the wave components of the analytic (initial ) solutions. The errors in the frequencies were derived from the spectral resolution,

which for (about) 10 wave-periods integration is (about)10% of the initial wave’s frequency

4.3
::::::::::

Smoothness
:::
and

::::::::
stability

::
In

:::
this

::::::
section

:::
we

:::::::
examine

:::
the

:::::::::
generation

:::
of

:::::::::
small-scale

:::::::
features

::::
and

:::
the

:::::::
stability

::
of

:::
the

::::::::
proposed

::::
wave

::::::::
solutions

::
in

::
a

::::::
similar5

::::::
fashion

::
to

:::
that

:::::
used

::
in

:::::::::::::::::::
Thuburn and Li (2000)

::
for

:::
the

:::::::
original

::::::::::::::
Rossby-Haurwitz

::::::::::::
wave-number

::
4.
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Figure 4. Power-spectra of the simulated solutions. Left column: Power-spectra in k-space obtained using Fourier analyses of longitudinal

series at (φ,t) = (9◦,10T ) and (φ,t) = (4◦,10T ) for H = 30 m and H = 0.5 m, respectively
::::
Same

:::
as

:::::
Figure

:
1, where T in each case

is the corresponding wave-period provided in Table ??. Middle column: Power-spectra in n-space obtained using Hermite analyses of

latitudinal series at (λ,t) = (−18◦,10T ). Right column: Power-spectra in ω-space obtained
::
but

:
using Fourier analyses of time series at

(λ,φ) = (−18◦,9◦) and (λ,φ) = (−18◦,4◦) for H = 30 m and H = 0.5 m, respectively
::::::
GFDL’s

:::::::::
global-scale

:::::::
spectral

:::::
model. Since the

fields are real, only a one-sided power spectrum is shown
::::
Note, i.e. for |ω|. In order to facilitate the comparison

::::
unlike

:::::
Figure

::
1, the initial

frequencies for the chosen parameters in Section 3.1 are also indicated in the figure using black dashed lines. For
::
top

:::
row

:::::::::
corresponds

::
to

:
the

sake of presentation all power spectra are multiplied by 10−8
:::::::
simulated

:::::::
solutions

::
at

::::
t= 4

:::::
hours.

::
In

::::::::::::::::::
Thuburn and Li (2000)

:
,
:::
the

:::::::::
generation

::
of

:::::::::
small-scale

:::::::
features

:::
and

:::
the

:::::::
potential

::::::::
enstrophy

:::::::
cascade

::
is

:::::::
observed

:::
by

::::::::
examining

::
the

::::::::
potential

:::::::
vorticity

:::::
field,

:::::
which

::::::::
generates

:::::::
tongues

:::
that

:::::
warp

::
up

::::::
around

::::::::::
themselves

:::
and

:::::
break

:::
the

:::::
initial

::::::::
east-west

:::::::::
symmetry.

:::
For

:::
the

:::::
small

:::::::::::::
wave-amplitude

:::::::::
A= 10−5

::
m

::
s-1

:::::
used

::
in

:::
the

::::::
present

:::::
work,

:::
the

::::::::
potential

:::::::
vorticity

::
is

:::::::::
dominated

:::
by

:::
the

::::::::
planetary

14



Figure 5.
::::
Same

::
as
::::::
Figure

:
2,
:::
but

::::
using

:::::::
GFDL’s

:::::::::
global-scale

::::::
spectral

:::::
model.

:::::
Note,

:::::
unlike

:::::
Figure

::
2,

::
the

:::
top

::::
row

:::::::::
corresponds

::
to

::
the

::::::::
simulated

:::::::
solutions

:
at
:::::
t= 4

::::
hours.

:::::::
vorticity

:::::
which

::
is
::::

5-6
:::::
orders

:::
of

::::::::::
magnitudes

:::::::::
(depending

:::
on

:::
the

::::::
wave)

:::::
larger

::::
than

:::
the

:::::::
relative

::::::::
vorticity.

:::::
Thus,

::::::
instead

:::
of

:::
the

:::::::
potential

:::::::
vorticity

:::
we

::::::::
examine

:::
the

::::::
relative

::::::::
vorticity

:::
(as

::::
well

::
as

:::
the

::::::::::::
geopotential).

:::::::
Figures

::::
1-2,

::
as

::::
well

::
as

:::::::
Figures

::::
4-5,

:::::
show

::
the

:::::::::
evolution

::
of

::::
these

::::
two

:::::
fields

:::::::
between

:::::::
t= 99T

::::
and

:::::::::
t= 100T ,

:::::
where

::
T

::
is

:::
the

:::::::::::
wave-period in each case. The errors in the

amplitudes of the first most dominant wave components were estimated using the amplitudes of the second most dominant

ones, and the errors in the amplitudes of the second most dominant wave components were estimated using the amplitudes of5

the third most dominant ones.

::::::
Clearly,

::::
both

:::::
fields

::::::
remain

::::::
regular

:::::::::
throughout

:::
the

::::::::::
simulations

:::
and

:::
do

:::
not

::::::
develop

::::::::::
small-scale

:::::::
features

:::
like

:::
the

::::
ones

::::::::
observed

::
in

:::::::::::::::::::
Thuburn and Li (2000).

::::::
Recall

::::
that

:::
the

::::::::::
simulations

::
in

:::
the

:::::::
present

:::::
work

::::
were

::::::
carried

::::
out

:::::::
without

:::
any

::::::::::::::::
diffusion/viscosity
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Figure 6.
::::
Same

::
as

:::::
Figure

::
3,
:::
but

::::
using

::::::
GFDL’s

::::::::::
global-scale

::::::
spectral

:::::
model.

:::::
terms.

:::::
Thus,

:::
the

::::::::::
simulations

::::::
remain

:::::
stable

::
for

::
at
:::::
least

:::
100

:::::::::::
wave-periods

::::
with

:::
no

::::
need

::
to

::::::
remove

::::::::
potential

::::::::
enstrophy

::
at

:::
the

::::
grid

::::
scale.

:
10

k |F̂k| (m sec-1) n |F̂n| (m sec-1) |ω| (rad day-1) |F̂ω| (m sec-1) Rossby, H = 30 m: Analytic 5 6.29e-09 1 2.39e-09 3.40e-01

6.29e-09 1st most dominant 5 6.39e-09 ± 9.99e-15 1 3.68e-09 ± 4.46e-10 3.42e-01 ± 3.11e-02 6.32e-09 ± 4.90e-10 2nd

most dominant 35 9.99e-15 ± 8.86e-15 0 4.46e-10 ± 2.19e-10 3.11e-01 ± 3.11e-02 4.90e-10 ± 4.44e-10 EIG, H = 30 m:

Analytic 5 6.29e-09 1 2.83e-09 3.34e+00 6.29e-09 1st most dominant 5 6.06e-09 ± 4.53e-15 1 5.81e-09 ± 1.82e-10 3.43e+00

± 3.12e-01 5.61e-09 ± 1.88e-09 2nd most dominant 10 4.53e-15 ± 3.95e-15 2 1.82e-10 ± 1.14e-10 3.12e+00 ± 3.12e-0115

1.88e-09 ± 1.10e-09 Rossby, H = 0.5 m: Analytic 5 5.46e-09 1 1.17e-09 4.92e-02 5.46e-09 1st most dominant 5 5.62e-09

± 3.27e-15 1 5.30e-09 ± 9.82e-10 4.79e-02 ± 4.79e-03 5.11e-09 ± 1.37e-09 2nd most dominant 52 3.27e-15 ± 2.87e-15 2

9.82e-10 ± 1.80e-10 5.26e-02 ± 4.79e-03 1.37e-09 ± 1.02e-09 EIG, H = 0.5 m: Analytic 5 5.46e-09 1 4.57e-09 1.10e+00

5.46e-09 1st most dominant 5 5.43e-09± 1.25e-15 1 5.58e-09± 2.27e-10 1.14e+00± 1.04e-01 3.76e-09± 3.11e-09 2nd most

dominant 55 1.25e-15± 1.22e-15 2 2.27e-10± 2.21e-10 1.04e+00± 1.04e-01 3.11e-09± 1.16e-09 The first and second most20

dominant wave components of the simulated solutions, compared to the wave components of the analytic (initial) solutions. The

dominant components were obtained from the same analyses as in Figure 3, i.e. using the same series. The frequencies errors

were derived from the spectral resolution, which is about 10% for the ten wave-periods integration. The errors in the amplitudes

of the first most dominant wave components were estimated using the amplitudes of the second most dominant component,

and the errors in the amplitudes of the second most dominant wave components were estimated using the amplitudes of the5

third most dominant component. |F̂k|, |F̂n| and |F̂ω| denote the amplitudes of the wave component in the k, n and ω spaces,

respectively.
::
In

:::::
order

::
to

:::::::
examine

:::
the

:::::::
stability

::
of

:::
the

::::::
chosen

:::::
initial

:::::
waves

:::
we

::::::
repeat

:::
the

:::::::::
simulations

::
of

:::
the

::::::::
previous

::::::
section

::::
with

::
an

:::::
added

:::::::::::
perturbation

:::::
(white

::::::
noise)

::
to

:::
the

:::::
initial

:::::
fields.

::::
We

::::::::::
demonstrate

:::
the

:::::::
stability

::
of

:::
the

::::::
waves

::::
using

:::::
only

:::
the

::::::::::
global-scale

::::::
model,

::::::
which

:::
was

::::::
found

::
to

::::
yield

:::::
more

:::::
stable

::::::
results

:::::
when

:::::
adding

:::
the

:::::::::::
perturbation.

:
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The overall scenario that emerges from the spectral analyses is similar to that of the
::::::
Figures

:
7
::::
and

:
8
:::::

show
:::
the

:::::::::
perturbed

::::::
Rossby

::::
and

::::
EIG

::::::
waves,

:::::::::::
respectively,

::
at

:::::
t= 4

:::::
hours

::::
(top)

::::
and

:::
the

::::::::
resulting

:::::::::::
latitude-time

:::::::
(middle

:::::
row)

:::
and

:::::::::::::
time-longitude

::::::
(bottom

:::::
row) Hovmöller diagrams

::
of

:::
the

:::::::::
simulated

:::::::
solution,

::::::::
obtained

:::::
using

:::::::
GFDL’s

::::::::::
global-scale

:::::::
spectral

::::::
model.

:::
The

::::::
initial

::::::::::
perturbation

::
in

::::
these

::::::
figures

::::::
consist

::
of

:
a
:::::::::
uniformly

:::::::::
distributed

::::::
random

:::::
white

:::::
noise

::::
with

::::::::
amplitude

::
of

:::
5%

::
of

:::
the

:::::
field’s

:::::::::
amplitude

:::::
added

::
to

::::
each

::
of

:::
the

:::::
fields

:
u,namely that the initial waves remain dominant after 10 wave-periods.

:::
v,Φ.

::::::::::
Specifically,

:::
let

:
q
::::::
stands5

::
for

::::
any

::
of

:::
the

:::::::
variables

::::
u,v

::
or

::
Φ

::::
then

:::
the

:::::
initial

::::::::::
perturbation

::
is

:::::
given

::
by

:

q = qa + 0.05max
λ,φ
|qa|(2R− 1),

::::::::::::::::::::::::::

(10)

:::::
where

::
qa::

is
:::
the

:::::::
analytic

:::::::
solutions

::::::::
obtained

::
as

::
in

::::::
Section

::
2,

:::
and

::
R
::
is
::
a

::::::::
uniformly

:::::::
sampled

:::::::
random

:::::
matrix

::::
with

::::::::
elements

::
in

:::::
(0,1)

:::::
whose

::::::::::
dimensions

:::
are

:::
the

::::
same

::
as

:::
qa ::

(in
:::
the

:::::::
present

::::
work

::
a

:::::::
different

::
R

::::
was

:::::
drawn

:::
for

::::
each

::
of

:::
the

:::::
three

:::::::::
variables).

::::::
Overall,

::::
the

::::::::
perturbed

:::::
waves

:::::
seem

::
to
:::

be
::::::
stable.

::::
The

:::
u,v

:::
and

::
Φ
:::::

fields
::::

are
::::::
almost

::
as

::::::
regular

::
as

:::::
those

:::
of

:::
the

::::::::::::
non-perturbed

:::::
waves,

::::::
except

:::
for

:::
the

:::::::::::
zero-contour.

:::
The

::::::::::
small-scale

::::::
features

::
in
:::
the

::::::::
vorticity

::::
field

::
of

::
the

:::::::::
perturbed

::::::
Rossby

::::::
smooth

:::
out

::::
with

:::::
time,

::
in

:::::::
contrast

::
to

:::
the

:::::::
potential

::::::::
vorticity

::::
field

::
of

:::
the

:::::::::::::::
Rossby-Haurwitz

::::::::::::
wave-number

::
4.

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

::::::::
perturbed

:::::::
Rossby

::::
wave

:::::::::
divergence

::::
field

::
is
::::::::::
completely

::::::
eroded.

::::
The

:::::::
vorticity

::::
and

:::::::::
divergence

:::::
fields

::
of

:::
the

:::::::::
perturbed

:::
EIG

:::::
wave

:::
are

:::
not

:::
as

::::::
regular

::
as

::::
those

:::
of

:::
the

:::::::::::
non-perturbed

::::::
wave. However, it provides a quantitative measure of the errors in the simulated solutions, since5

for an ideal model the amplitudes of the first most dominant wave components should be the same as the analytic ones. Thus,

the closer the amplitudes of the first
::::
they

::
do

:::::::
become

::::::::
smoother

::::
with

::::
time

:::
and

:::
the

:::::
initial

:::::
wave

:::::::
remains

:::
the most dominant wave

components to the analytic ones
::::::::
throughout

:::
the

::::::
entire

:::
100

:::::::::::
wave-period

:::::::::
simulation.

::::
The

::::::::::::
structure-error

::
in

::::::
Figure

::
9

::
is

::::::
similar

::
to

::
the

::::::::
previous

::::
ones

::
in

:::::::
Figures

:
3
:::
and

::
6.
::::::
These

:::::
results

:::
are

:::::
quite

:::::::::
surprising.

:::
We

:::::
would

::::::
expect

:
a
::::::::::
sufficiently

::::
large

:::::::::::
perturbation

::
to

:::::
excite

::::
other

:::::::
modes,

::::::::
regardless

::
of

:::
the

::::::
waves’

::::::::
stability.10

::::
Both

:::
the

::::::::::::
non-perturbed

::::::
Rossby

:::::
wave

::::::::
simulated

:::::
using

:::
the

:::::::::
equatorial

:::::::
channel

:::::
model, and the smaller the amplitudes of the

second most dominant wave components, the better
::::::::
perturbed

:::::::
Rossby

:::::
wave

::::::::
simulated

:::::
using

:::
the

:::::::::::
global-scale

:::::
mode

:::::::
indicate

:::
that

:::
the

:::::::::
divergence

::::
field

::
is
:::::
more

:::::::
sensitive

:::::
than

:::
the

::::
other

::::
four

:::::
fields

::
of

:::
the

:::::::
Rossby

:::::
wave.

:::
An

:::::::::
immediate

::::::
suspect

:::
in

:::
this

::::::
regard

:
is
:::
the

::::::::::
divergence

::::
field

:::::::::
amplitude,

::::::
which

::
is

:::::
small

:::
for

:::
the

::::::
chosen

::::::
Rossby

::::::
wave.

:::
For

::::::::
reference

:::
the

:::::::::
meridional

:::::
wind

:::::::::
amplitude

::
for

:::
the

::::::
chosen

::::::
waves

:::::::::
parameters

:::
(of

::::
both

:::
the

:::::::
Rossby

:::
and

::::
EIG

::::::
waves)

::
is
::::::::
6.4e− 6,

:::::::
whereas

:::
the

:::::::
Rossby

::::
wave

::::::::::
divergence

::::
field15

::::::::
amplitude

::
is

:::::::::
2.6e− 12.

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

::::::::::
divergence

::::
field

:::::::::
amplitude

::
is

::::
only

:::
one

:::::
order

:::
of

:::::::::
magnitude

::::::
smaller

:::::
than

:::
the

:::::::
vorticity

::::
field

:::::::::
amplitude,

:::::
which

::
is

::::::::
2.7e− 11.

:::::::::
Regardless

:::
of

::
the

::::::
cause,

:::
the

:::
fact

:::
the

::
all

:::::
other

::::
four

::::
fields

::::::
remain

:::::
quite

::::::
regular

:::::
while

::
the

::::::::::
divergence

::::
field

::
is

:::::::::
completely

::::::
eroded

:::::::
suggests

::::
that

:::
the

:::::::::::::::::
small-but-significant

:::::::::
divergence

::::
field

::::::::
described

:::
by

:::::::::::::
Phillips (1959)

:
is
::
in
::::
fact

:
a
:::::::::::::::::::
small-and-insignificant

::::
one.

:

4.4
::::::::::
Convergence

::::
test

:::
for

:::
the

::::::
linear

:::::::
shallow

:::::
water

::::::
models

::
In

:::::::
addition

::
to

:::
the

:::
test

:::::
cases

::::::::
proposed

:::
by

::::::::::::::::::::
Williamson et al. (1992)

:
a
:::::::::
resolution

::::::::::
convergence

::::
test

::
of

::::::::
linearized

::::::
SWEs

::
in

::::::
which

::
the

::::::::::
simulations

:::
are

:::::::::
compared

::
to

:::::
higher

:::::
order

::::::::::
simulations

::
is

::::
also

:::::
useful

:::
for

:::::::
ensuring

::::
that

:::
the

:::::
errors

::::::::
decrease

::::
with

:::
the

:::::::
increase

::
in

:::::::::
resolution.

::
In

:::
this

:::::::
section

::
we

:::::::::::
demonstrate

:::
that

:::::::::
Matsuno’s

:::::::
analytic

:::::
wave

::::::::
solutions

:::
can

::
be

:::::
used

::
for

::::
this

:::::::
purpose.

:::
We

::::
use

:::
the5

::::::::
equatorial

:::::::
channel

:::::
model

::::::
which

:::
can

::
be

:::::
easily

::::::
turned

::::
into

:
a
:::::
linear

:::::::
shallow

:::::
water

::::::
model.
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Figure 7.
::::
Same

::
as

:::::
Figure

::
4,
:::
but

::
for

:::
the

:::::::
perturbed

::::::
Rossby

:::::
wave.

:::::
Figure

:::
10

::::::
shows

:::
the

::::::::::::
structure-error

:::
in

:::::::
absolute

:::::
value

:::
as

:
a
::::::::

function
::
of

:::
the

:::::::::::
grid-spacing

::::::::::::::
∆ = ∆λ= ∆φ,

::::
from

:::::::::
∆ = 2.5◦

::
to

::::::::
∆ = 0.5◦

:::::
every

::::::
0.25◦.

:::
For

::::
each

:::::::::
resolution,

::::
the

:::::
initial

::::::::::::
non-perturbed

::::::
waves

::::
were

:::::::::
integrated

:::
for

:::
100

::::::::::::
wave-periods.

:::
As

:::
an

:::::::
estimate

::
of

:::
the

:::::::::::::
structure-error

::
at

::::
each

:::::::::
resolution

:::
we

:::
use

::::
the

:::::::::
time-series

::::::::
averages

:::::::::
(indicated

::
by

::::::
dots).

:::
The

:::::::::
error-bars

:::::
were

::::::::
estimated

:::::
using

:::
the

:::::::
standard

:::::::::
deviations

::
of

:::
the

:::::
entire

::::::::::
time-series.

:::
As

:::
the

:::::::::
resolution

:::::::
increase

:::::
from

::::::::
∆ = 2.5◦

::
to

:::::::::
∆ = 0.5◦,

:::
the10

::::::::::::
structure-error

:::::::::
time-series

:::::::
average

:::::::
decrease

::::
from

:::::
about

:::::
about

:::
2%

:::
to

:::
less

::::
than

::::
1%,

:::::
while

:::
the

:::::::
standard

::::::::
deviation

:::::::
decrease

:::::
from

::::
about

::::
2%

::
to

:::::
about

:::::
0.5%.

::::
The

::::
time

:::
step

::::::
across

::
all

::::::::::
resolutions

::
in

:::
this

:::::
figure

::::
was

::::
held

::::
fixed

::
at
:::::::::
∆t= 600

:::::::
seconds.

::::::::::
Attempting

::
to

:::::
further

::::::::
increase

:::
the

::::::::
resolution

:::::
while

:::::::
holding

:::
the

::::
time

::::
step

:::::
fixed

:::::
cause

:::
the

::::::::
equatorial

:::::::
channel

::::::
model

::
to

::::
blow

:::
up,

:::
so

:
a
:::::::
smaller

::::
time

:::
step

::
is

:::::::
required

::
in

:::::
order

::
to

::::::
further

:::::::
improve

:::
the

::::::::
accuracy.
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Figure 8.
::::
Same

::
as

:::::
Figure

::
5,
:::
but

::
for

:::
the

:::::::
perturbed

::::
EIG

:::::
wave.

5 Concluding remarks15

As vertical resolutions in atmospheric and oceanic models increase it is essential to assess the accuracy with which they

resolve baroclinic wave modes,
::::::
typified

:::
by

:::::
small

::::::
gravity

:::::
wave

:::::
phase

::::::
speed, in addition to the barotropic mode. To this end

we propose to use a similar procedure to the one
:::
that used in the Rossby-Haurwitz test case but replace the initial conditions.

Instead of using the analytic solutions obtained by Haurwitz (1940)
:::::::::::::
Haurwitz (1940), which are only accurate for large gravity

wave speeds such as those of the barotropic mode, we propose to use the analytic solutions obtained by Matsuno (1966)

:::::::::::::
Matsuno (1966), which are accurate for smaller gravity wave speeds such as those of the baroclinic modes.

Unlike the solutions obtained by Haurwitz (1940) for the non-divergent barotropic vorticity equation, the solutions of the

SWEs obtained by Matsuno (1966) fully account for the velocity divergence. As a result an initial wave can be accurately5
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Figure 9.
::::
Same

::
as

:::::
Figure

::
6,
:::
but

::
for

:::
the

:::::::
perturbed

::::::
Rossby

::::
(top)

:::
and

::::
EIG

::::::
(bottom)

::::::
waves.

Rossby
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∆
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Figure 10.
:::::::::::
Structure-error

::
in

::::::
absolute

::::
value

::
as
::
a
::::::
function

::
of

:::
the

:::::::::
grid-spacing

::::::::::::
∆ = ∆λ= ∆φ,

::::
from

::::::::
∆ = 2.5◦

::
to

:::::::
∆ = 0.5◦

::::
every

:::::
0.25◦.

::::
The

::::
points

:::::::::
correspond

::
to

::
the

::::
time

:::::::
averaged

:::::::::::
structure-error

:::
over

:::
100

:::::::::::
wave-periods,

:::
and

::
the

::::::::
error-bars

:::
are

::::::::
determined

::::
from

:::
the

::::::
standard

::::::::
deviation.

::::
Blue:

::::::::
calculated

::
for

:::
the

::::::
velocity

:::::
vector

::::::::

√
u2 + v2.

::::
Red:

::::::::
calculated

::
for

:::
the

:::::::::
geopotential

::
Φ

simulated for long times and the simulated solution can be compared to the analytic solution to obtain a quantitative assessment.

While Matsuno’s solutions apply for the equatorial β-plane, they approximate the solutions of the SWEs on the sphere for the

speeds of gravity waves found in the baroclinic modes in the atmosphereand oceans, and as demonstrated in the present work

can be accurately simulated in spherical coordinate models . Finally, in contrast to the barotropic mode, the baroclinic modes

are confined to narrow equatorial band. Therefore, the proposed test can also be used to test tropical models
:::
both

:::::::::
equatorial10

::::::
channel

::::
and

::::::::::
global-scale

::::::
models

:::
in

::::::::
spherical

::::::::::
coordinates.

::
In

::::::::
addition,

:::::
unlike

::::
the

::::::
original

:::::::::::::::
Rossby-Haurwitz

::::::::::::
wave-number

::
4,
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::
the

::::::
chosen

::::::
initial

:::::
waves

::
of

:::
the

::::::
present

::::
test

:::
case

:::::::
remain

:::::
stable

::
for

::
at
:::::
least

:::
100

::::::::::::
wave-periods,

:::::
which

:::
for

:::
the

::::::
chosen

::::::
Rossby

:::::
wave

:::::::::
correspond

::
to

:::::
about

::::
1850

:::::
days.

:

:::::
While

:::
the

::::::::
solutions

:::
of

:::
the

::::::
SWEs

:::::::
obtained

:::
by

::::::::::::::
Matsuno (1966)

::::::
account

::::
for

:::
the

:::::
small

:::::::::
divergence

:::::
field

:::::::
missing

::::
from

::::
the

:::::::::::
non-divergent

::::::::::::::
Rossby-Haurwitz

::::::
waves,

:::
the

::::::
results

::
of

:::
the

::::::
present

:::::
study

::::::
suggest

:::
that

::::
this

::::::
missing

:::::::::
divergence

::::
field

::
is

::::::::::
insignificant.15

Ideally, we expect the proposed test case to stand on an equal footing alongside the Rossby-Haurwitz one, but in the words of

Williamson et al. (1992)
::::::::::::::::::::
Williamson et al. (1992): “The test will only become standard to the extent that the community finds

it useful”.

Code availability. For the sake of re-producibility, the following files are available online as part of the supplementary material of this work:

matsuno.m: A Matlab code for computing the analytic solutions obtained by Matsuno as described in section 2. The code can be used to20

evaluate the horizontal velocity fields u and v, in m s-1, and the geopotential field Φ, in m2 s-2 (or h in m) for all t≥ 0.

shallow_water_model.m: A Matalb code containing the shallow water model used in section 4.1.

6 The roots of the cubic equation

For any combination of wave-number and wave-mode, k and n, the wave-frequencies are given by the three roots of the

cubic equation in . These roots can be written in a closed analytic form using the general solution of the cubic equation5

(e.g. Abramowitz and Stegun, 1964):

ωn,k,j =−1

3

(
∆j +

∆0

∆j

)
, for j = 1,2,3

where j stands for the three roots, and where

∆0 = 3
[
gHk2 + 2Ω

√
gH
a (2n+ 1)

]
,

∆j =

[
∆4+
√

∆2
4−4∆3

0

2

]1/3

× exp
(

2πj
3 i
)
,10

∆4 =− 54ΩgHk
a .

Data availability. TEXT

Given the definitions in , the explicit expressions for the frequencies of the Rossby, WIG and EIG waves are obtained by

sorting the values in as follows:

Code and data availability. TEXT15
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Sample availability. TEXT

6 The Hermite transform

Let ξ(φ) denote a latitudinal series (i.e. an intersect along specific longitude and time) of any one of the dependent variables.

We seek approximate series expansion of the form

ξ(φ) =

N∑
n=0

ξ̂nĤn

[
ε1/4φ

]
exp

[
−1

2
ε1/2φ2

]
,20

where ξ̂n are spectral coefficients, ε is Lamb’s parameter defined in the text, and Ĥn are the normalized Hermite polynomials

of degree n. The normalization of the Hermite polynomials implies that they are orthonormal on [−∞,∞] with respect to the

weight function exp(−x2), i.e.

∞∫
−∞

Ĥn(x)Ĥm(x)e−x
2

dx=

1 for n=m

0 for n 6=m.

It follows that the spectral coefficients are given by

ξ̂n =

∞∫
−∞

ξ(φ)Ĥn

[
ε1/4φ

]
exp

[
−1

2
ε1/2φ2

]
d(ε1/4φ).

In order to apply the Hermite analysis on the finite meridional domain we assume that ξ(φ) decays sufficiently fast so5

that it can be approximated by zero outside the computational domain, [−π/6,π/6] in the present work (or [−π/2,π/2] for

global-scale models). In particular, in the present work we assume that the following approximation holds

π/6∫
−π/6

ξ(φ)Ĥn

[
ε1/4φ

]
exp

[
−1

2
ε1/2φ2

]
d(ε1/4φ)≈

∞∫
−∞

ξ(φ)Ĥn

[
ε1/4φ

]
exp

[
−1

2
ε1/2φ2

]
d(ε1/4φ) .

Finally, the integral in was evaluated using the trapezoidal rule.10

Author contributions. NP conceived the idea of standardizing the Matsuno test case for General Circulation Models in spherical coordinates.

IY adopted the Cartesian shallow water model used in Gildor et al. (2016) to spherical coordinates and was responsible for the numerical

simulations. OS analyzed the numerical results, prepared the manuscript and ran the GFDL spectral global model.
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