General response

We were happy to see that the reviewers found the proposed test case useful for model developers. We
appreciate the reviewers’ comments and found their suggestions helpful in making our proposed test
case even more useful. We address all their comments below and have already implemented most of
their suggestions in a revised manuscript. Having said that, we are unable to meet the journal’s
standards with regard to the supplied codes (e.g. “reference implementation”) at this time. Our original
intent in submitting the codes for computing the initial conditions was to provide a “first aid” rather
than a “commercial grade” software package. The code essentially evaluates algebraic relations that
describe the initial (u, v, ®) fields and requires about 150 lines of code to do so. Evidently, the
developers can write the required code better than us and do it in a way that better suits their particular
needs, e.g. unstructured meshes. Therefore, we will not include the Fortran and Python codes in the
assets of the paper and leave the Matlab code only for the sake of reproducibility. We will accept the
editor’s decision on this matter. In light of the referees’ overall favorable reviews, and our efforts to
accommodate their suggestions, we hope that manuscript is accepted for publication in GMD.

Following the reviewers’ suggestions (see below), we have implemented the changes summarized
below in the revised manuscript.

Added subsections in the Results section:

1. A demonstration of the applicability of the test case to a global-scale model (GFDL, RSW model).
2. An examination of the stability of the waves along the lines used in Thuburn and Li (2000).

3. A demonstration of the use of the proposed test case a linear convergence test (Ref. 1).

Removed items:
1. The H=0.5 m waves were removed. The results of the simulations with this value were less robust.
In addition, adhering to a single value of H simplifies the test case.

Replaced items:
1. The spectral analyses were found to be too sensitive to be used for assessment purposes and were

therefore replaced with the difference between the global means, which unlike the L2 norm employed
by Williamson et al (1992) is insensitive to phase speed errors.

Response (in blue) to the referees’ comments (in black)

Anonymous referee #1

General comments:



The Rossby-Haurwitz wave described in test case 6 of Williamson et. al. (1992) is known to be
problematic. Thuburn and Li (2000) describes these issues and | think that paper should be referenced
here, as it was in the previous paper (Shamir and Paldor, 2016).

The findings of Thuburn and Li (2000) on the Rossby-Haurwitz wave are discussed in the revised
Introduction. In addition, we added a new subsection to the Results section, where we examine the
generation of small-scale features and the stability of the proposed test case, similar to the way it is
done in Thuburn and Li (2000).

One issue is that the original initial conditions as specified in Williamson et. al. (1992) lead to
wrapping up of potential vorticity contours and the associated generation of small scale features and
potential enstrophy cascade. A figure showing the potential vorticity at several times throughout the
simulations would be appreciated here to show that this does not happen for this test case.

For the small wave amplitude, A=1e-5 ms™, used in our test case the potential vorticity is dominated by
the planetary vorticity. Therefore, we added Hovmadller diagrams of the relative vorticity, instead of the
potential vorticity, which show that there is no generation of small-scale features during the last wave-
period of the simulation. See new section 4.3 and 4" columns in new Figs 1,2,4,5,7 and 8.

The other issue with the original test case is that it is unstable. This is demonstrated numerically in
Thuburn and Li (2000) by adding some small noise to the initial conditions after they noticed that the
solution they computed using a finite volume model on a grid of hexagons and pentagons (i.e. their
only non latitude-longitude model) broke down. The errors related to the structure of the underlying
grid triggered the dynamical instability. The solutions in this paper have been computed using a regular
latitude-longitude grid so | wonder if a similar issue could occur with this test case. | suggest that the
authors could check this by either adding some noise to the initial conditions, as in Thuburn and Li
(2000), or by running their code on a rotated grid (i.e. with the poles in the midlatitudes).

Similar to Thuburn and Li (2000) we added a small (5% in our MS) uniformly distributed random
noise (perturbation) to the initial conditions (IC). The simulations with the perturbed IC demonstrate
that after 100 wave-periods the simulated solutions preserve the initial wave structure. In particular, the
small-scale features in the initial u, v, ® and & fields smooth out and do not generate smaller-scale
features. See new section 4.3.

some papers use the Rossby wave test as a convergence test, using a reference solution from either a
higher resolution run or from a different model. Could the analytical solution here be used to test the
convergence of a linear shallow water model? This would provide a useful test in between the steady
state test case 2 and the other tests that require a reference solution from a higher resolution run.

We added a convergence test of the linear shallow water model, which demonstrates that the “error”
decreases “exponentially” as the resolution increases. Following one of the other comments by the



reviewer on the sensitivity of the spectral analyses we adopted a different assessment criterion which is
also used to estimate the error here. See the revised section 3.2 and new section 4.4.

Also, if the wave is indeed stable it would be a fantastic replacement for test case 6, especially for
unstructured grid models, or models that use adaptive mesh refinement, since truncation errors related
to mesh topology will have no dynamic instability to trigger.

We hope that the revised version of the manuscript, and, in particular, the addition of noise in section
4.3, is more convincing than the previous version. We, too, view the proposed Matsuno test case as a
substitute for test case 6 and hope it is adopted by the community.

Specific comments:

1. pg 4, lines 14-15: 1 am concerned that different pre-factors lead to less stable solutions - it makes me
wonder if the version chosen in this paper is indeed stable to differences in grid alignment.

This is a subtle question. There is no reason why Matsuno’s expressions should be more stable. We
imagine that the most optimal choice of pre-factors can depend on considerations e.g. the prognostic
variables used. For example, it is quite possible that different choices are more optimal for models that
use vorticity-divergence. Note also that the different pre-factors originate from the use of the
normalized Hermite functions whose amplitudes are bounded (Cramér’s inequality), as oppose to the
amplitudes of the non-normalized Hermite functions that grow indefinitely as n increases. Thus, for
large n we expect Matsuno’s expressions to be less stable numerically. On the other hand, for the
chosen n=1 it is unclear whether the difference between the two forms has any effect on there dtability.
Finally, while the present choice might not be the most optimal, the simulated solutions seem to be
stable for 100 wave-periods.

2. Figure 2:
Is there any reason why the Rossby wave with H=0.5 is less regular than the other solutions?
We are unsure but the wave modes of H=0.5 m were deleted altogether from the revised manuscript.

Why do some of the contour plots have white regions when the values have been normalised so should
lie in the range [-1, 1]?

As is stated in the figure caption, the fields are normalized on the global maximum at t=0. Therefore,
the white regions correspond to times when the field’s global extrema temporarily exceed the [-1,1]
contour range. In our opinion normalizing on the global maximum at t=0 and keeping the contour range
fixed is the better option. We added a clarification in the text in the paragraph discussing Figure 1.



3. Power spectra: Are these at all sensitive to the sampling frequency? My experience is that the spectra
can be very sensitive to this but maybe that is for more turbulent simulations.

The reviewer is right. By sub-sampling our results by factors of 2 or 4 (so as to insure there are at least
2.5 samples per wave-period) it was evident that while the power spectra were generally similar, the
results can be too sensitive to be used for assessment purposes. Therefore, we adopted a different
assessment criterion, which is also simpler than the spectral analyses. See the revised section 3.2.

4. Supplement: The code provided to compute the initial conditions, while appreciated, could be
improved. The authors state that the code will compute the analytic fields on arbitrary latitude-
longitude grids but they have assumed that these grids are structured. These codes will not work as
written for unstructured meshes, which are becoming more common in the community. The test case is
much more likely to be used if these codes could be amended (i.e. they return values given a list of
latitude-longitude values). In addition to this, there are some unnecessarily confusing aspects of the
code. For example, there is no need to capitalise variable names so the radius of the Earth, which is
called

a in the paper could be a rather than A in the code. The is especially confusing since there is also an A
in the equations described in the paper. It would also make sense to have H as an input parameter, since
this can be varied.

Thank you, but we have decided to leave the computation of the initial conditions to the developers that
can do it better than us and do it in a way that suits their particular needs, e.g. unstructured meshes.

Technical corrections:
1. Equation 3b: This is different to that in the code matsuno.py (and I think the code is correct).

Equation 3b and the code are consistent and both are correct! Note that, in the Fortran code for
example, in addition to the different pre-factor in line 200, the expressions in lines 193-194 are also
different from the text. The expressions in the code are obtained from the ones in the text by taking
another (gH)®® factor outside of the square brackets, so that the pre-factors of 2 and @ both have (gH)
in the numerator, but o in 3b is divided by (gH)%°. This was also flagged by Referee #2. Clearly, the
difference between the code and the text is confusing. In the revised manuscript we change 3b to match
the expressions in the codes.

2. Equation 3c: | think this is missing a sqrt around the gH.

Again, Equation 3c is correct! Dimensional consideration suggests that the referee’s suggestion cannot
be correct.



With regard to the last two comments, we have repeated the derivation of the expressions in Equation 3
from scratch and derived the same expressions as in the previous version. Also, we encourage the
community to implement the test, including different pre-factors and/or different powers of (gH).

Anonymous referee #2

General comments:

1. The manuscript claims (e.g. at the bottom of page 4) that this test case can be used for tropical-
channel shallow water models (as presented in this manuscript) and global-scale models. From the
manuscript it is not entirely clear that the test will work for global models due to the use of the
equatorial beta-plane approximation in the derivation for e.g. the transformations of (x,y) and the
wavenumber k. The modeling community (as a ‘customer’ of this test case) generally works with
global shallow water models and tropical-channel model in spherical geometry are extremely rare. It
therefore would have been more valuable (or convincing) to present example solutions for a global
shallow water model instead of a tropical-channel model. Can the tropical-channel shallow water
model also be configured as a global model to demonstrate that the test case works for the whole
sphere? Please provide extended explanations or ideally results from a global model.

We added a new subsection to the Results section where we repeat the simulations using a global-scale
model (the GFDL, RSW Model). The equatorial channel model cannot be easily adopted to the entire
sphere due to the convergence of longitudinal lines at the poles. Therefore, we used GFDL’s global-
scale model which is spectral. Please see the new section 4.2.

2. Model developments with regular latitude-longitude grids have become very rare over the last
decade. More typical grids are now cubed-sphere, hexagonal or icosahedral grid with built-in grid
irregularities. The manuscript states that the solutions of this test case are very stable for at least 10
wave periods, which is demonstrated on a regular lat-lon grid. This triggers the question whether this
statement will hold for today’s models with non-latitude-longitude grids. Another question is whether
small perturbations of the initial conditions will disrupt or shorten the stability of the test case. Please
provide information on these aspects.

Unfortunately, we are unable to provide results with a non-latitude-longitude grid model. We hope the
community will employ the Matsuno test case with such models and comment on the subject.

With regard to the perturbations, we added a new subsection to the Results section where we examine
the stability of the chosen waves. As in Thuburn and Li (2000) we added a small (5% in our MS)
uniformly distributed random noise (perturbation) to the initial conditions (IC). The simulations with
the perturbed IC demonstrate that after 100 wave-periods the simulated solutions preserve the initial
wave structure. In particular, the small-scale features in the initial u, v, ® and & fields smooth out and
do not generate smaller-scale features. See new section 4.3.



3. As detailed below (points 5-7), the description of the initial conditions is incomplete. In
addition, the analytic equations (Eq.(3)) differ slightly from the implementation in the Fortran,
Matlab and Python codes. The test is therefore not usable by others in its current form, and the
manuscript/codes need to be corrected.

All the required information can be found in the original manuscript, and Equation (3) and the code are
consistent and are both correct! Evidently, the original version was not clear/organized enough. We
hope that the revised version does a better job at conveying the information. Please see detailed
response to points 5-7 below.

Technical comments:

1. Page 1, line 9, also page 2, line 32: Please describe the model as an ‘equatorial channel’
model.

We now refer to the model as an ‘equatorial channel’ model as requested.

2. Page 1 line 12, page 2 line 2, page 5 lines 3&7: Generalize the description of the grids. A test case
for only ‘latitude-longitude’ grids will have rather limited use. I think you meant to say that given the
location of a latitude and longitude, the initial conditions and analytic solutions can be computed on
any grid.

Fixed

3. Page 2, line 24: It is incorrect to say that the term ‘baroclinic’ is associated with density variations in
the vertical directions. A flow with identical density and pressure variations (e.g. for isothermal
conditions) is still barotropic. Density and pressure variations need to vary

independently of each other.

Rephrased in the revised version

4. Page 3, line 15: What is meant by ‘reduced gravity’. The initialization of the test case uses the
regular Earth’s gravity. Modify.

The reviewer is right. As stated in page 5, line 24 of the original manuscript, we control the speed of
gravity waves (gH)%® by holding g fixed and equal to the Earth gravitational acceleration and varying
H. The use of the term ‘reduced gravity’ originates from the fact that the linearized shallow water
equations can also be derived as the horizontal structure equations in a stratified layer (in the linear
case with a motionless mean flow), in which case Earth gravity is replaced by the reduced gravity and



the layer depth by the equivalent height. In order to avoid confusion, we removed these two terms and
in the revised manuscript we now adhere to a “single layer” fluid.

5. Page 3, line 17, also page 5&6 section 3.1: The wave mode n=1 is selected which leads to

three distinct real roots in Eq. (2). Two of these roots are selected for the example results, but no
equations are given for the Rossby wave root and EIG root. Without this information, the

description of the initial conditions is incomplete. Add this information to Section 3.1.

This information was provided in Appendix A of the original manuscript. In the revised version this
information is moved to the main text after Equation (2) in Section 2, which is more suitable than sec.
3.1.

6. Page 4, Eq. (3) and text: The manuscript fails to explain the meaning and definition of y n .
What is the relationship between y n and the normalized Hermite polynomials H n ? Without the
definition of y n the description of the initial conditions is incomplete.

yn equals ¥,,. Thus, in the revised manuscript we have decided to remove yn altogether and adhere to
Dy, which is just the latitude-dependent amplitude of the meridional velocity.

7. Page 4, Eq. (3): Eq. (3) seems to be correct, but the Fortran/Matlab.Python scripts use a wrong u_hat
calculation. E.g. the Fortran code in line 200 needs to read sqrt(g*HO) instead of just ‘g*HO’.

Equation 3 and the code are consistent and both are correct! Note that, in the Fortran code for example,
in addition to the different pre-factor in line 200, the expressions in lines 193-194 are also different
from the text. The expressions in the code are obtained from the ones in the text by taking another
(gH)%® factor outside of the square brackets, so that the pre-factors of 2 and @& both have (gH) in the
numerator, but @ in 3b is divided by (gH)%°. This was also flagged by Referee #1. Clearly, the
difference between the code and the text is confusing. In the revised manuscript we change 3b to match
the expressions in the codes.

We have repeated the derivation of the expressions in Equation 3 from scratch and derived the same
expressions as in the previous version. Also, we encourage the community to implement the test,
including different pre-factors and/or different powers of (gH).

8. Page 4, line 10: State that the amplitude A needs to have units of m/s.
Added — Thank you

9. Page 4, line 25: you imply that the planar wavenumber Kk is unitless, so that that spherical
wavenumber k/(a cos¢ 0 ) has units of 1/m. Please comment and clarify.



The planar wave-number has units of 1/length, while the spherical wave-number is dimensionless. To
avoid any confusion we added a subscript ‘s’ for spherical variable and a comment in the text.

Correct typo, should be ‘replaced’. Corrected. Thank you

10. Page 8, line 1: What is meant by the ‘transport form” of the SWEs? This seems to imply the
‘advective form’. However, the provided equations are in ‘conservation form’.

The reviewer is right, the equations are in ‘conservation form’ - corrected.

11. Page 8, line 10: Explicitly state whether the example model uses diffusion or smoothing/filtering
operations for the computations, and if yes, which ones. Should users of the test case try to omit all
diffusion/filtering operations in their models when using this test case? E.g. the provided shallow water
code contains provisions for a temporal Asselin filter.

The equatorial channel model has no diffusion/viscosity terms. It does contain provisions for a Robert-
Asselin filter, but in our implementation the coefficient is set to zero. The global model also contains
hyperdiffusion terms, but the coefficient was also set to zero. Please see the revised model descriptions.
As is stated in the first paragraph of section 3.1, we consider the choice of diffusion/viscosity terms a
modeling choice, but we acknowledge the other approach of specifying them as part of the test case.

12. Page 9, Fig. 2: The value for the symbol ¢ f'is not provided. Add this information.

of IS removed from the text of the revised version.

13. Page 9, Fig. 2: It is highly unusual and confusing to see and interpret the flipped Hovmoeller
diagrams. Typically, Hovmoeller diagrams list the position along the x-axis and time along the y-axis. |

recommend flipping the axes in Fig. 2 to make the interpretation of the Hovmoeller diagrams easier.

To conform to common practice we changed the longitude-time diagrams into time-longitude
diagrams.

14. Supplemental material: Please add Fortran/Matlab wrapper codes that will enable the user to
create/test the initial conditions. In addition, the codes should not expect to receive regular
longitude and latitude arrays, but should be callable for any longitude and latitude position.

Thank you, but we have decided to leave the computation of the initial conditions to the developers that
can do it better than us and in a way that suits their particular needs, e.g. unstructured meshes.
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The Matsuno baroclinic wave test case
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Abstract. The analytic wave-solutions obtained by Matsuno-(1966)-Matsuno (1966) in his seminal work on equatorial waves
provide a simple and informative way of assessing atmospheric and-eceanic-models by measuring the accuracy with which
they simulate these waves. These solutions approximate the solutions of the shallow water equations on the sphere for small
speeds of gravity waves such as those of the baroclinic modes in the atmosphereand-oeean. This is in contrast to the solutions
of the non-divergent barotropic vorticity equation, used in the Rossby-Haurwitz test case, which are only accurate for large
speeds of gravity waves such as those of the barotropic mode. The proposed test case assigns specific values to the wave-
parameters (gravity wave speed, zonal wave-number, meridional wave-mode and amplitadewave-amplitude) for both planetary

and inertia gravity waves, and eenfirms-the-aceuracy-of-the-simulation-by-employing Hovméllerdiagrams-and-temporal-an

spatial-speetra—The propesed-testcase-suggests simple assessment criteria suitable for zonally propagating wave solutions. The
test is successfully applied to a-standard-finite-differenee-equaterialsnon-linear-both an equatorial channel spherical shallow

water modelin-sphetical-coordinates;-which-demonstrates-that- Matsune’s-wave-solutions-ean-be-accurately-simulated-, and a

lobal-scale one. By adding a small perturbation to the initial fields it is demonstrated that the chosen initial waves remain
stable for at least +6-100 wave-periods;-which-f i 5 i

the-, The proposed test case

arbitrary-latitude-longitude-gridscan also be used as a resolution convergence test.

Copyright statement. TEXT

1 Introduction

A cornerstone of global-scale model assessment is the Rossby-Haurwitz test case, originally used by Philips1+959)-Phillips (1959

as a qualitative way of assessing his shallow water model. Phillips initialized his model with an analytic wave-solution of the
non-divergent barotropic vorticity equation obtained by Haurwitz-(1946)Haurwitz (1940), and examined the spatio-temporal
smoothness of the simulated fields at later times. Using this procedure he concluded that the emergent noise in his model was
due to a smatt-but-significant-small-but-significant, divergence field missing from the initial fields. Even though the solutions
of the non-divergent barotropic vorticity equation are not solution of the Shallow Water Equations (SWEs), Phillips’ procedure

was adopted by Williamsen-et-al{1992)-Williamson et al. (1992) as a standard test case for shallow water models and has been
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extensively used ever since (Jablonowski et al., 2009; Mohammadian and Marshall, 2010; Bosler et al., 2014; Ullrich, 2014;

Li et al., 2015, are only five recent examples).

Reeently, Shamir and Paldor (2616) However, there are two known issues with the original Rossby-Haurwitz test case that
limit its usefulness (Thuburn and Li, 2000). The first is the generation of small-scale features via potential enstrophy cascade,
which requires adequate dissipation mechanisms to remove enstrophy at the grid scale (in order to mimic a continuous cascade
to_sub-grid scales). The second is the instability of the initial wave-number 4 used in the Rossby-Haurwitz test case. In
contrast to Hoskins (1973) who found that wave-numbers smaller than or equal to 5 are stable, Thuburn and Li show that

Rossby-Haurwitz wave-number 4 is in fact also unstable.
Recently, Shamir and Paldor (2016) proposed a similar procedure to that of Phillips (1959) where -instead of using the

solutions of the non-divergent barotropic vorticity equation, the initial fields are takenfrem-the analytic wave-solutions of the

linearized SWESs on the sphere obtained-byPatdoret-al(2643)derived in Paldor et al. (2013). These solutions fully account for
the small butsignifieant-divergence field and can be evaluated-on-arbitrary-latitude-longitude-gridscomputed on any grid given
the locations of the latitudes and longitudes. In particular, they include the fast propagating Inertia-Inertia- Gravity (IG) waves
—which-are-completelyfiltered-out-by-that are completely absent from the the non-divergent barotropic vorticity equation.
Consequently, the procedure proposed by Shamir and Paldor provides a more quantitative assessment than Phillips’s original
procedure -and-though it is just as easy to implement.

Both solutions obtained by Haurwitz(1940)-Haurwitz (1940) and Paldor et al. (2013) approximate the solutions of the
SWE:s in the asymptotic limit of large speed of gravity waves. For most practical purposes they are sufficiently accurate
for speeds of gravity waves of about 200 — 300 ms™' or higher, which are typical of the barotropic mode in Earth’s at-

mosphere and oceans. However, typlcal speeds of gravity waves of baroclinic modes are—about-20—36-ms~—for-in_the
-1

(tropical) atmosphere yare about 20 — 30 ms”"
(Wheeler and Kiladis, 1999). Thus, the above procedures are only relevant for assessing the accuracy with which the barotropic
wave mode is resetvedsimulated. In order to assess the accuracy of the baroclinic wave modes we propose, in the present
work, to use the analytic wave-solutions of the linearized SWEs on the equatorial S-plane obtained by Matsune-(1+966);-which
Matsuno (1966) that approximate the solutions of the SWEs on the sphere in the asymptotic limit of small speed of gravity
waves (De-Leon and Paldor, 2011; Garfinkel et al., 2017).

In addition to being on two opposite ends of the spectrum in-terms-of therelevantspeeds-of gravity wave ;-speed the solutions
obtained by Matsune-(1966)-Matsuno (1966) differ from those obtained by both Haurwitz(1940)-and—Paldoretal(26043)-

Haurwitz (1940) and Paldor et al. (2013) in their meridional extent. The-former-become-neglgible-While the former become
negligibly small outside a narrow equatorial band -whereas-the latter two have non-negligible amplitudes in the vicinity of the

poles. Thus, while the Rossby-Haurwitz test case is only relevant to global-scale models, the test case proposed in the present

study is applicable to both global-scale and tropical models.

A homonymous, but unrelated, test case is the baroclinic wave test case developed in Jablonewski-(2004)-andFablenewski-and-Williamse

Jablonowski (2004) and Jablonowski and Williamson (2006) and independently in Pelvani-et-al20604)Polvani et al. (2004),
and its variants in Eauritzen-et-al(204-0)-and-Ulrich-et-al-204+4)Lauritzen et al. (2010) and Ullrich et al. (2014). This test case
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is concerned with the non-linear generation of synoptic-scale eddies in multi-layer models via baroclinic instability. In con-
trast, the propesed-test-ease-test case proposed here is concerned with linear wave propagation in (non-linear) single-layer
models. While-the-eustomary-use-of-In particular, while the term baroclinic is i i i tati i i

direction;-here-the-same-usually implies the use of multi-layer models, here this term is used to denote thintayers-of-fluid-single
layer model of homogeneous density where the gravity waves speeds are similar to those observed in baroclinic modes in the

atmosphereand-eceans.

The idea of using Matsuno’s solutions as a test case in a similar fashion to that of the Rossby-Haurwitz test case is most
likely not original, but has never been standardized. Thus, the purpose of the present work is to standardize the Matsuno test
case in the same spirit that Williamsen-et-al-(1992)-Williamson et al. (1992) standardized the Rossby-Haurwitz one. We start
with a short description of the analytic expressions derived by Matsuno-(1966)-Matsuno (1966) in section 2. The proposed test
procedure, including the choice of wave-parameters and assessment criteria, is described in Section 3. We-then-In section 4 we
demonstrate the usefulness of the proposed test case 1
using both an equatorial channel spherical shallow water modelin-spherical-coordinates, and a global-scale one. In addition,
2000)
and demonstrate the possibility of using the proposed test case as a resolution convergence test. The paper ends with some
concluding remarks in section 5.

we examine the smoothness and stability of the initial waves in a similar fashion to that used in Thuburn and Li

2 The analytic solutions

The proposed test case is based on the analytic solutions of the SWEs on the equatorial S-plane obtained by Matsune1966)
Matsuno (1966). These solutions have the form of zonally propagating waves, i.e.

u(x,y,t) a(y)
v(z,y,1) i(y) | et (1)
D(z,y,t) D(y)

where x and y are the local Cartesian coordinates in the zonal and meridional directions, respectively; ¢ is time; u and v are
the velocity components in the zonal and meridional directions, respectively; ® is the geopotential height; & is the planar zonal
wave-number (which has dimensions of m™"); w is the wave-frequency; and @(y),o(y) and ®(y) are the latitude dependent
amplitudes. In accordance with the sign convention used in Matsuno we assume k is non-negative and let w take any real
value. Note, however, that the sign in front of w in (1) is opposite to that in Matsuno’s theory. The convention chosen here is
more intuitive as it implies that positive values of w correspond to waves that propagate in the positive x direction, i.e. in-the
eastwarddireetioneastward.

The unknown wave-frequencies and latitude dependent amplitudes are derived from the (well-known) energies and eigen-

functions of the (time-independent) Schodinger equation of the-quantum harmonic oscillator. The resulting frequencies are
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given by the solutions of the following cubic equation

20/ gH B 2Q9HkE
a

a

w3 o — |gHE® + (2n+1)| wn i 0, )

forn =-1,0,1,2,..., where Qand-, a and g are Earth’s angular frequencyand-, mean radius, respeetively;—g-and gravitational
acceleration respectively; and H are-thereduced-gravity-and-equivalentis the layer’s depth.

For n > 1 Equation (2) has three distinct real roots corresponding to a slowly westward propagating Rossby wave, a fast
Eastward propagating Inertia Gravity (EIG) wave, and a fast Westward propagating Inertia Gravity (WIG) wave. For n =0
one of the three roots, the one corresponding to a westward propagating gravity wave with w = —+/gHk, leads to infinite
zonal wind and is thus discarded as a physically reasonable solution. The remaining two roots correspond to the lowest (i.e.
n = 0) EIG wave and the Mixed Rossby-Gravity (MRG) wave. For n = —1 Equation (2) has one real root w = v/gHk, which
correspond to the equatorial Kelvin wave (see Matsuno, 1966). The existence of the latter two waves on a sphere is discussed

For given values of the zonal wave-number, k. and meridional mode-number, 7, the roots of the cubic equation can be
obtained in a closed analytic form using the solutions of the general cubic equation as follows (e.g. Abramowitz and Stegun, 1964)

~

1 A
Wn,k,j:—g (Aj‘f'A-(;), for j=1,2,3 3)

where j stands for the three roots, and where

Ag=3 {ngﬁ + Kl ;gH@n + 1)} , (4a)

1/3
/ 21y .
exp 71 , (4b)

A [Aat/ATIA
=
2

~L

54QgHk
4=

RSN SN

(40)

Given the definitions in (4), the explicit expressions for the frequencies of the Rossby, WIG and EIG waves are obtained b
sorting the values in (3) as follows:

Rossby : WnkR=— Min |wy x|, (5a)
P NN, A j:1,2,3 L

Westward Inertia-Gravity : W k. WIG= min_wy ., (5b)
A A A A A A A A A A A A A POASANS A 7j=1,2,3 L

Eastward Inertia-Gravity : W kEIG=  TAX W k- (5¢)
Sl A NG Vi roy j=1,2,
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Having found (one of) the wave-frequencies for a given combination of n and k, the corresponding latitude dependent

amplitudes can be written as

— 1/4 Q) 1/2 )2
op =y A, [Q,W(a }eXp[ 2m< } (6a)
N gHe'/A gHel/4 n+1 wnk \/ﬁ Wh k
n,k = - )n, + v gHk n 5 n,k 'V HE = —k
Unike = ia(wy , — gHk?) ia(w}, ;, — gHk?) 2 “ k J Y1 = 2 M\/gH

(6b)

R H 1/4 [ 11
q)n,k: m( g € ngQ) [_ r 9 (wn k + V ng) l/)vn-‘rl + \/7(wn k—V ng;) l/)vn 1‘| 5 (6C)

forn=1,2,3,... (the cases n = —1,0 require special treatment), where
1 .. 2
v, = AH, |:€1/4 (y)} exp |:—€1/2 (1/) } .
a 2 a

Here-¢ = (2Qa)?/gH is Lamb’s parameter, A is an arbitrary amplitude (that has dimensions of m s'), and H,, are the nor-
malized Hermite polynomials of degree n. Note: (i) The chosen normalization for the latitude dependent amplitudes in (6)
is different from the one used in Matsuno. We use the above normalization for convenience, as it relates—the-amplitude—of
guarantees that 0 to-thatof-in-a-straightferward-way-and-guarantees-thatitis independent of both k or w. (ii) The use of the
normalized version of the Hermite polynomials also leads to slightly different pre-factors in front of +n+rand-fr=1"0,41 and
Dy,—1 compared to Matsuno. However, they are generally more stableand-mere-convenientfor-thespeetral-analyses-employed

While the solutions obtained by Matsane-(1966)-Matsuno (1966) apply for the equatorial S-plane, the proposed test case is
intended for use in spherical models. As is shown in Garfinkel-et-al20+7)Garfinkel et al. (2017), the SWEs on the equatorial

[3-plane approximate the SWEs on the sphere to zero-order in powers of 1/¢'/4. Thus, the solutions obtained by Matsuno are

only accurate in the asymptotic limit ¢ — co. For the fixed values of Earth’s angular frequency and mean radius, this implies
that the solutions obtained by Matsuno are only accurate for sufficiently small speeds of gravity waves v/gH .

In practice, in order to use Matsuno’s solutions in spherical models, the local Cartesian coordinates x and y in the above

formulae (1) and (6) have to be replaced by the longitude A and latitude ¢ of the geographical coordinate system. Recall that

the transformation between-the-two-systera-from the Cartesian system to the spherical one is (z,y) — a(cosdoA, @), where ¢

is the central latitude tewheh%he—g-plan&vybgwmappmmmanon is applied. Thus;for-the-equatorial-5-plane-where
~Likewise, the planar waveﬁ&mbeﬁm k in all of the formulae

Q/J@nfl
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elobal-seale-and-trepical-modelsk — k. /acos ¢g. Thus, for the equatorial S-plane where ¢y = 0, the transformation is simpl
2,9y) = a(\, @) and k — k. /a. In particular, the reader should note that the planar wave-number % has units of m™! while the

spherical wave-number k is dimensionless.
Finally, using the above formulae to calculate the waves’ frequencies-and-latitude dependent amplitudes requires routines for

finding-the roots-of the-cubic-equationsandfor-evaluating the normalized Hermite polynomials on arbitrarylatitude-longitade

tr-any grid given
the locations of the latitudes. This can be done using the Hermite three-term recurrence relation, as in Press-et-al+2007H—1n

arbitrary latitade-longitude-gridsPress et al. (2007).

3 Proposed test procedure

The general procedure of the proposed test case is similar to the Rossby-Haurwitz one in that the model in question is initialized
with velocity and height fields corresponding to a particular wave-solution and the time evolution of that wave is then examined.
The initial wave fields in this case are taken from the analytic expressions in Section 2. The specific choice of wave-parameters
and assessment criteria in the present work are discussed below, separately. As is often the case, these choices represent
compromises between conflicting factors, e.g. adherence to observations vs. adherence to asymptotic validity of the analytic
solutions or rigorous testing vs. simplicity. In any case, these choices may be the subject of discourse as deemed appropriate

by the community.
3.1 wave-parameters

The wave-parameters consist of the speed of gravity waves \/gH, the wave-number and wave-mode k and n, the wave-
amplitude A, and the wave-type. Any given combination of these parameters completely speeify-specifies a unique wave
using the expressions in (1)-(6). We consider all other parameters, including the spatio-temporal resolution and the form
of diffusion/viscosity terms, to be modeling choices left to the developers. This approach is aimed at testing the models
in their modus operandi. However, as noted in Polvani-etal(2604)Polvani et al. (2004), different choices for the form of
diffusion/viscosity terms correspond to different sets of equations and may not converge to the same solutions.
We-offertwo-differentcheicesfor The choice of gravity wave speed /g H is inspired by the observed speeds-speed of gravity
waves of the baroclinic modes in the atmosphereand-eceans. In practice we keep ¢ fixed to Earth’s gravitational acceleration,
and vary-set the speed of gravity waves by varying--—For-atmespheric-models-wesuggestusing-letting H = 30 m, which is
within the range of observed equivalent depths in the equatorial atmosphere (Wheeler and Kiladis, 1999). Fer-eceanmodels-we

oo iog I (5 e whioh aoracnon do to tha

{Chelton-etal;1998)-As mentioned in section 2, the analytic solutions obtained by Matsuno fer-on the equatorial 3-plane are
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only accurate approximations of the SWEs on the sphere in the asymptotic limit of small speeds of gravity waves. The above
values-were-value was found by trial and error to be sufficiently accurate in the sense that they-yield-stable-integrations-it yields
stable solutions for at least +6-100 wave-periods in the simulations demenstrated-in-Seetion-2?described in Section 4.

In addition to the speed of gravity waves, the accuracy of Matsuno’s solutions depend-depends on the wave-number and
wave-mode as well. For a given value of \/gH, they-these solutions become asymptotically accurate in the limits k,n — 0
(but k£ # 0) (De-Leon and Paldor, 2011). In addition, the higher the wave-number or wave-mode are, the greater the spatial
variability and the required spatial resolution are. Both of these considerations suggest that reasonable choices for the wave-
number and wave-mode consist of small to moderate values. The proposed wave-number and wave-mode are k =5 and n =1,
whieh-are-i.e. within the range of dominant values observed in the equatorial atmosphere (Wheeler and Kiladis, 1999), but
other choices may work just as well provided & and n are not too large.

The proposed test case is based on the solutions of the linear SWEs but is intended to be used in non-linear models. There-
fore, the waves-amplitude should be sufficiently small so as to satisfy the linearization condition. The proposed amplitude of
Egquationis—4-=10=50 in Equation (6)is A = 10~° ms™!, chosen by trial and error so as to enable stable integrations-solutions
for at least +0-100 wave periods in the simulations in-Seetion-220f Section 4.

In general, there are two qualitatively different wave types, the-Rossby and IG wavetypes, that differ in the magnitude of
their divergence fieldand vorticity fields. The former is more solenoidal (non-divergent), whereas the latter is more irrotational.
In order to assess the models’ performances in these two qualitatively different limits we suggest using one of each. Since

Rossby waves are exclusively westward propagating, we choose the EIG wave frem-of the two IG waves as the second one i

order-to-eliminate-potential-Hongitudinal-biasesto cover the two directions of longitudinal direction.

in-Figure-2- The resulting wave-periods 7 for the chosen values of \/gH , k and n are T = 18.5 days for the Rossby wave and
T = 1.9 days for the EIG wayve.

3.2 Assessment criteria

For sufficiently small wave-amplitudes we expect the spatio-temporal structure of the simulated solutions to be that of zonally
propagating waves, i.e. é{é}eﬁw%ﬁe&qvgm&mlmtands for any of the dependent variables u, v or
®), with frequency and latitude dependent amplitudes corresponding to the initial wave. In this case, it is desirable to assess
the accuracy of the zonal and meridional structures of the waves independently. A fast and simple way of doing so is using
Hovmbller diagrams, where the temporal change in any direction is isolated by intersecting the fields along a fixed value of the
other direction. This results in the following two diagrams:

(1) A longitude-time-time-longitude diagram obtained by intersecting the fields at a certain latitude. The contour lines in the
lengitude-time-time-longitude plane are the set of points satisfying kA — wt = const (for some real const). Thus, the expected

pattern for this diagram is that of straight lines whose-slopes-egqual-the-with slopes that equal the inverse of the wave’s phase
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speed k/w. In order to avoid small fluctuations in the vicinity of latitudinal zero-crossings, we recommend using latitudinal
intersects at or near local extrema.

(ii) A latitude-time diagram obtained by intersecting the fields at a certain longitude. For any two wave-fronts with equal
phase k(A2 — A1) = w(t2 —t1). Thus, holding A fixed while varying ¢ from ¢, to o is equivalent to holding ¢ fixed and varying

A from Ay to Ay = Ay + w/k(t2 —t1). The resulting pattern is similar to that of a latitude-longitude diagram, but provides &

testamentan estimate of the time evolution as opposed to a momentary snapshot.

For-Likewise, for zonally propagating waves it is also desirable to isolate the errors in the phase speed and spatial structure.
As discussed in Shamir and Paldor (2016), the frequently used spherical [, error entangles the two, and is therefore of lesser
use for assessing the accuracy of propagating wave simulations. Thus for a more quantitative assessment we suggest us-

analysis-was-found-in-relative difference between the Root-Mean-Square of the analytic solution and the simulated solutions
ie.

VIg*] — V/Taa]

@)
A

where the quantities ¢ and ¢, (which can be vectors) correspond to the simulated and analytic solutions, respectively, and where

o2 /2

ta=- [ [ ané)cosadoar, @

0 —m/2

Henceforth we refer to the quantity in (7) as the structure-error since, as opposed to the present-work—using-theprocedure
}mefdeﬁeﬂ&&ﬂﬁeaseﬂab}eﬁaeetmaefm%eﬁﬂ&eﬁme%peeﬁ%}ﬂﬂalyﬁ% [y error, it is fec—emmeﬂded%eﬂmegfa%eﬁeﬂmﬁa%

aceuraey-in-terms-of-the-speetral-anabysis: unaffected by phase speed errors (i.e. phase shifts in \).
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5

4 DemeonstrationResults

In-order-to- In this section we demonstrate the usefulness of the Matsuno test case we-run-by applying the proposed procedure
using-a-simple-to both an equatorial channel finite-difference shallow—water-medel—model and a global-scale spectral one.
We then examine the stability of the selected waves/modes in a similar fashion to that used in Thuburn and Li (2000) for the
wave-number 4 Rossby-Haurwitz wave. Finally, we demonstrate the possibility of using the analytic solutions obtained by
Matsuno as a resolution convergence test.

4.1 Demonstration using an equatorial channel finite-difference model

The model is a spherical version of the Cartesian model used in Gilderet-al-2616)Gildor et al. (2016), in which the integration

forward in time is carried out using the transpert-conservation form of the SWEs

ou 1 9 [U? 10 2UV tan¢ . g Oh?

8t+acos¢8)\<>+aa¢ ( ) a ah _ZQSIH¢V__2(1COS¢W )
ov 1 9 /UV 10 (V? (U? —V?)tang . g 0h?

ot T acosdon <) 06 <h) T AU = 505 4b)
oh 1 oU 9(Vcosg)]

ot " acos¢ { f3L0) } =0, ©o)

where U = hu, V = hv and h is the total layer thickness. The numerical scheme employs a standard finite difference shallow-
water solver in which the time-differencing follows a leapfrog scheme (centre differencing in both time and space). The

computations were done on an Arakawa C-grid. The erigina

model contains provisions for a temporal Robert-Asselin filter.
Ww%rmmof the present paper-the-initial-v-field-is-independent-of-the-wave

M%W%WMWWWMMWWW@&WM

The computational domain is —180° < A < 180° and —30° < ¢ < 30°. The boundary conditions were-are periodicity at
the zonal boundaries A = +180° and vanishing meridional velocity at the channel’s boundaries ¢ = +30°. For H#—=-306-m;the
chosen wave-parameters the amplitude of the meridional velocity at- : i i
H="0-5mitdeeaysto2e—240in (6) tmmmwmﬁ%ww its

maximal value, so in-beth-eases-the velocity outside the computational domain can be comfortably neglected. The grid-spacing




10

15

20

25

30

and time step were-are AX = A¢ = 0.5° and At = 600 seconds, which were found to yield stable solutions for at least +6-100
wave-periods.

‘Fhe resulting Figure 1 shows the initial (top row) u,v. 2., fields (where £ and ¢ are the relative vorticity and divergence,
respectively) of the chosen Rossby wave mode, and the resulting latitude-time (middle row) and time-longitude (bottom

row) Hovmoller diagrams of the simulated s

expressions of Section 2 and wave-parameters of Section 3.1. The chosen intersects used in the calculation of the Hovméller
diagrams are indicated by white dashed lines superimposed on the initial fields, and are also provided in the Figure’s caption.
For the sake of legibility the shown time domain in each panel is 97-<+<-+6%0only the last wave periods of the simulation,
ie. 997 <t < 1007, where T is the eorresponding-wave-periodprovided-in-Table-22-Note-that-the-. The fields are normalized
on their global maximum at £ = 0. Thus, white regions correspond to times at which the simulated solution exceeds the initial
wave-amplitude, momentarily. With this in mind, recall that the patterns in the latitude-time diagrams are similar to that
those of a latitude-longitude diagramand-ean;-therefore—-, and can therefore be used to compare with the initial fields. In alt
eases-general, the initial wave-structure is elearty-diseernible-after16-wave-periods-preserved and the dominant slope in the
time-longitude diagrams corresponds to the analytic slope indicated with dashed white lines -

bottom row). There are, however, some noticeable deviations: A slight east-west tilt can be observed in the latitude-time

diagrams (middle row), but most egregiously, the divergence field is less regular than the other four. We return to this last point

is precisel

at the end of Section 4.3. The patterns in the latitude-time diagrams of the meridional velocity shown in panel

the expected pattern considering the westward propagation of the Rossby mode at A = —18° in one wave-period after an integer
number (99 in this case) of wave-periods.

Similarly, Figure 2 shows the initial (top row) u, v, ®,¢, fields of the chosen EIG wave mode, and the resulting latitude-time
middle row) and time-longitude (bottom row) Hovmoller diagrams of the simulated solution. Note that under the normalization
used in the present paper the initial v field is independent of the wave type and is therefore identical in both figures. As in Figure
1 the dominant slope in the time-longitude diagrams (bottom row) agrees well with the analytic phase speed. In contrast to
Figure 1 the latitude-time diagram in panel (g) appears to be m/4 out of phase (but can be any integer multiple of /4) indicating
that in this case there is a small (perhaps even tiny) phase speed error that accumulates over time. In addition, in contrast to the
Rossby wave in Figure 1, the divergence field in this case is just as regular as the other four,

structure-error defined in (7) is shown in Figure 3 for both Rossby (top) and EIG (bottom) waves as a function of time. In both
cases the structure-error fluctuates about a mean value of less than 1% and there is no visible trend throughout the simulation
time of 100 wave-periods.

10
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Figure 1. Top row: the initial u,v,®, 6 Rossby wave fields (top row), obtained using the analytic expressions of Section 2 and

wave-parameters of Section 3.1 Middle row: latitude-time Hovmdller diagrams
obtained by intersecting +-the fields at A = —18° —(e)—halso indicated by white vertical dashes lines in the top row)Eengitude-time-. Bottom
row: longitude-time Hovméller diagrams, obtained by intersecting v at ¢-=9"for H-=-30-m;-¢ = 0° and ¢-=4"Ffor H=0-5mrall other
M&Hﬁeﬁe&%ﬁ%ﬂso indicated by herizental-dashed-white Whnes in thﬁfe—l%«Felesakeeﬂegﬂaﬂ%}%he

B3

rrtop row). The amplitade-ineach-panetis-fields are normalized

on the-their global maximum at ¢ = Osi-e. ﬁf—fﬂaaa—ﬁ‘vét—eﬂ—whiehﬁThe wave-period for the same-in-ath-easeschosen wave-parameters
is T' = 18.5 days. Contour-levels range from —1.0 to +1.0 by 0.2.

4.2 Demonstration using a global-scale spectral model

11
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Figure 2. Top row: the initial u, v, ®, &, 0 EIG wave fields (top row), obtained using the analytic expressions of Section 2 and wave-parameters
—18°

also indicated by white

=9° dat g =0° and

of Section 3.1. Middle row: latitude-time Hovmoller diagrams, obtained by intersecting the fields at A =

vertical dashes lines in the top row). Bottom row: longitude-time Hovmoller diagrams, obtained by intersecting v at ¢

all other fields at ¢ = 15° (also indicated by white horizontal dashes lines in the top row). The fields are normalized on their global maximum

at t = 0. The wave-period for the chosen wave-parameters is 7' = 1.9 days. Contour-levels range from —1.0 to +1.0 by 0.2.

To demonstrate the applicability of the Matsuno wave as a test case for global-scale model we use the Geophysical Fluid
Dynamics Laboratory’s (GFDL's) spectral transformed shallow water model which uses the Spherical Harmonics as its basis
functions. The chosen spectral resolution was T85, i.c. a triangular truncation where the highest wave-number and total
wave-number retained both equal 85. The chosen time step was Al = 600 seconds, as in the equatorial channel model. The
model contains provisions for hyper-diffusion terms as well as a temporal Robert-Asselin filter, but the coefficients of both

were set to zero for the simulations described below.

12



10

15

Rossby

EIG

0T 20T 40T 60T 80T 100T
time

Figure 3. The structure-error defined in (7) is shown in Figure 3 for both the Rossby (top) and EIG (bottom) waves as a function of time,
Blue: calculated for the velocity vector y/u? + v2. Red: calculated for the geopotential .

Figures 4 and 5 show simulations of the same initial Rossby and EIG waves as in Figures 1 and 2, and the resulting

QIIMWWWW@@%%%QQQ)QMNHovaHM diagrams t&thﬂfe—Z—aﬂéi—}GT—a&fh&ﬁmeﬂﬁefseet—whefe—Pm
each-easeis-the correspondingof the simulated solution, obtained using GFDL's global-scale spectral model. Note, that unlike
Figures 1 and 2, the top row corresponds to the simulated solutions at ¢ = 4 hours, and not the initial fields at ¢ = 0.

Unlike the the equatorial channel model, the simulated divergence field of the initial Rossby wave in Figure 4 remains as
regular as the four other fields. The structure in the latitude-time diagrams (middle row) are at slightly out of phase after 99

structure-error

wave-periods. The simulated EIG wave in Figure 5 is at least 7 /4 out of phase after 99 wave-

in Figure 6 is generally similar to the simulations of the equatorial channel model, it fluctuates about a mean value of less than
1% and there are no visible trends throughout the 100 Wave-period listed-in-Table-221In-all-cases-the-dominant-wave-number

indieated-on-the figure using black dashed-Hinessimulations. Recall that the structure-error defined in (7) is insensitive to phase

differences.

4.3 Smoothness and stabilit

In this section we examine the generation of small-scale features and the stability of the proposed wave solutions in a similar
fashion to that used in Thuburn and Li (2000) for the original Rossby-Haurwitz wave-number 4.

13
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fields-arereal-only-a-one-sided-powerspeetrum-isshownNote, e—for{wl—In-orderto-facilitate-the-comparisonunlike Figure 1, the initial
equenee he-chosen-parametersin-Seetion € ihdicated-in-the figure using dashec-tines—For-top row corresponds to the
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In Thuburn and Li (2000), the generation of small-scale features and the potential enstrophy cascade is observed by examinin,
the potential vorticity field, which generates tongues that warp up around themselves and break the initial east-west symmetry.
For the small wave-amplitude A = 10~° m s™! used in the present work, the potential vorticity is dominated by the planeta

14
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Figure 5. Same as Figure 2, but using GFDL’s global-scale spectral model. Note, unlike Figure 2, the top row corresponds to the simulated

solutions at ¢ = 4 hours.

vorticity which is 5-6 orders of magnitudes (depending on the wave) larger than the relative vorticity. Thus, instead of the

. Figures 1-2, as well as Figures 4-5, show

the evolution of these two fields between ¢ = 997 and ¢t = 1007, where T is the wave-period in each case. The-errorsin-the

Clearly, both fields remain regular throughout the simulations and do not develop small-scale features like the ones observed
in Thuburn and Li (2000). Recall that the simulations in the present work were carried out without any diffusion/viscosit

15



Rossby

EIG

0T 20T 40T 60T 80T 100T
time

Figure 6. Same as Figure 3, but using GFDL’s global-scale spectral model.

terms. Thus, the simulations remain stable for at least 100 wave-periods with no need to remove potential enstrophy at the grid

10 scale.

15

20

d-most-de A Ompo — e rand-HF g deno he-amplitudes—o Wave-compo -the—kn-a

respeetively: In order to examine the stability of the chosen initial waves we repeat the simulations of the previous section with
an added perturbation (white noise) to the initial fields. We demonstrate the stability of the waves using only the global-scale
model, which was found to yield more stable results when adding the perturbation.

>
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Figures 7 and 8 show the perturbed
Rossby and EIG waves, respectively, at ¢ =4 hours (top) and the resulting latitude-time (middle row) and time-longitude
(bottom row) Hovméller diagrams of the simulated solution, obtained using GFDL'’s global-scale spectral model. The initial
perturbation in these figures consist of a uniformly distributed random white noise with amplitude of 5% of the field’s amplitude
added to each of the fields u.nas it i i : tods-y,®. Specifically, let ¢ stands
for any of the variables u,v or ® then the initial perturbation is given by

q:qa—l—0.0511/\1a¢x|qa|(2R—1)7 (10)

where g, is the analytic solutions obtained as in Section 2, and [ is a uniformly sampled random matrix with elements in (0. 1),
whose dimensions are the same as g, (in the present work a different /2 was drawn for each of the three variables).

Ouverall, the perturbed waves seem to be stable. The u,v and @ fields are almost as regular as those of the non-perturbed
waves, except for the zero-contour. The small-scale features in the vorticity field of the perturbed Rossby smooth out with time,
in contrast to the potential vorticity field of the Rossby-Haurwitz wave-number 4. On the other hand, the perturbed Rossby.
wave divergence field is completely eroded. The vorticity and divergence fields of the perturbed EIG wave are not as regular

the-closer-the-amplitudes-of-the-first-they do become smoother with time and the initial wave remains the most dominant wave
eomponents-to-the-analytie-ones-throughout the entire 100 wave-period simulation, The structure-error in Figure 9 is similar
to the previous ones in Figures 3 and 6. These results are quite surprising. We would expect a sufficiently large perturbation to
excite other modes, regardless of the waves’ stability.

Both the non-perturbed Rossby wave simulated using the equatorial channel model, and the smalier-the-amplitudes-of-the

d-most-dominant-wave-components;—the-betterperturbed Rossby wave simulated using the global-scale mode indicate

that the divergence field is more sensitive than the other four fields of the Rossby wave. An immediate suspect in this regard
is the divergence field amplitude, which is small for the chosen Rossby wave. For reference the meridional wind amplitude
for the chosen waves parameters (of both the Rossby and EIG waves) is 6.4¢ — 6, whereas the Rossby wave divergence field
amplitude is 2.6¢ — 12. On the other hand, the divergence field amplitude is only one order of magnitude smaller than the
vorticity field amplitude, which is 2.7¢ — 11, Regardless of the cause, the fact the all other four fields remain quite regular while
the divergence field is completely eroded suggests that the small-but-significant divergence field described by Phillips (1959)
is in fact a small-and-insignificant one.

4.4 Convergence test for the linear shallow water models

In addition to the test cases proposed by Williamson et al. (1992) a resolution convergence test of linearized SWEs in which

the simulations are compared to higher order simulations is also useful for ensuring that the errors decrease with the increase
in resolution. In this section we demonstrate that Matsuno’s analytic wave solutions can be used for this purpose. We use the
equatorial channel model which can be easily turned into a linear shallow water model.

17
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Figure 7. Same as Figure 4, but for the perturbed Rossby wave.

Figure 10 shows the structure-error in absolute value as a function of the grid-spacing A = A\ = A¢, from A = 2.5°

to A = 0.5° every 0.25°. For each resolution, the initial non-perturbed waves were integrated for 100 wave-periods. As an

estimate of the structure-error at each resolution we use the time-series averages (indicated by dots). The error-bars were

estimated using the standard deviations of the entire time-series. As the resolution increase from A = 2.5° to A = 0.5°, the

structure-error time-series average decrease from about about 2% to less than 1%, while the standard deviation decrease from
about 2% to about 0.5%. The time step across all resolutions in this figure was held fixed at At = 600 seconds. Attempting to
further increase the resolution while holding the time step fixed cause the equatorial channel model to blow up, so a smaller
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Figure 8. Same as Figure 5, but for the perturbed EIG wave.

5 Concluding remarks

As vertical resolutions in atmospheric and oceanic models increase it is essential to assess the accuracy with which they
resolve baroclinic wave modes, typified by small gravity wave phase speed, in addition to the barotropic mode. To this end
we propose to use a similar procedure to the-ene-that used in the Rossby-Haurwitz test case but replace the initial conditions.
Instead of using the analytic solutions obtained by Haurwitz-(1940)Haurwitz (1940), which are only accurate for large gravity
wave speeds such as those of the barotropic mode, we propose to use the analytic solutions obtained by Matsune-(1966)

Matsuno (1966), which are accurate for smaller gravity wave speeds such as those of the baroclinic modes.
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Figure 9. Same as Figure 6, but for the perturbed Rossby (top) and EIG (bottom) waves.
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Figure 10. Structure-error in absolute value as a function of the grid-spacing A = A\ = A¢, from A = 2.5° to A = 0.5° every 0.25°. The

oints correspond to the time averaged structure-error over 100 wave-periods, and the error-bars are determined from the standard deviation.

Blue: calculated for the velocity vector v/u2 + v2. Red: calculated for the geopotential $

While Matsuno’s solutions apply for the equatorial S-plane, they approximate the solutions of the SWEs on the sphere for the

speeds of gravity waves found in the baroclinic modes in the atmosphereand-eceans, and as demonstrated in the present work

can be accurately simulated in

both equatorial
channel and global-scale models in spherical coordinates. In addition, unlike the original Rossby-Haurwitz wave-number 4
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the chosen initial waves of the present test case remain stable for at least 100 wave-periods, which for the chosen Rossby wave

correspond to about 1850 days.

non-divergent Rossby-Haurwitz waves, the results of the present study suggest that this missing divergence field is insignificant.
Ideally, we expect the proposed test case to stand on an equal footing alongside the Rossby-Haurwitz one, but in the words of

Witliamsen-et-al-1992)Williamson et al. (1992): “The test will only become standard to the extent that the community finds

it useful”.

Code availability. For the sake of re-producibility, the following files are available online as part of the supplementary material of this work:
matsuno.m: A Matlab code for computing the analytic solutions obtained by Matsuno as described in section 2. The code can be used to

evaluate the horizontal velocity fields « and v, in m s™', and the geopotential field ®, in m* s (or & in m) for all ¢ > 0.

shallow_water_model.m: A Matalb code containing the shallow water model used in section 4.1.

Ag :3[ng2+%(2n+l)},

1/3 _
A = [A4+ % §§4Ag} X exp (2%32) ,
A4 _ _54£Zng:.

P a

Data availability. TEXT

Code and data availability. TEXT
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