# Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)

Femke Lutz<sup>1,2\*</sup> and Tobias Herzfeld<sup>1\*</sup>, Jens Heinke<sup>1</sup>, Susanne Rolinski<sup>1</sup>, Sibyll Schaphoff<sup>1</sup>, Werner von Bloh<sup>1</sup>,
 Jetse J. Stoorvogel<sup>2</sup>, Christoph Müller<sup>1</sup>

<sup>1</sup>Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association P.O. Box 60 12 03, D-14412 Potsdam, Germany

<sup>2</sup> Wageningen University, Soil Geography and Landscape Group, PO Box 47, 6700 AA Wageningen, The Netherlands.

9 10

12

14

5 6

7 8

11 \*Shared lead authorship

13 Correspondence to: Femke.Lutz@pik-potsdam.de

15 Abstract. The effects of tillage on soil properties, crop productivity, and global greenhouse gas emissions have 16 been discussed in the last decades. Global ecosystem models have limited capacity to simulate the various effects 17 of tillage. With respect to the decomposition of soil organic matter, they either assume a constant increase due to 18 tillage, or they ignore the effects of tillage. Hence, they do not allow for analyzing the effects of tillage and 19 cannot evaluate, for example, reduced-tillage or no-till as mitigation practices for climate change. In this paper, 20 we describe the implementation of tillage related practices in the global ecosystem model LPJmL. The extended 21 model is evaluated against reported differences between tillage and no-till management on several soil 22 properties. To this end, simulation results are compared with published meta-analysis on tillage effects. In 23 general, the model is able to reproduce observed tillage effects on global, as well as regional patterns of carbon 24 and water fluxes. However, modelled N-fluxes deviate from the literature and need further study. The addition of 25 the tillage module to LPJmL5 opens opportunities to assess the impact of agricultural soil management practices 26 under different scenarios with implications for agricultural productivity, carbon sequestration, greenhouse gas 27 emissions and other environmental indicators.

## 28 1 Introduction

29 Agricultural fields are tilled for various purposes, including seedbed preparation, incorporation of residues and 30 fertilizers, water management and weed control. Tillage affects a variety of biophysical processes that affect the 31 environment, such as greenhouse gas emissions or soil carbon sequestration and can influence various forms of 32 soil degradation (e.g. wind-, water- and tillage-erosion) (Armand et al., 2009; Govers et al., 1994; Holland, 33 2004). Reduced-tillage or no-till is being promoted as a strategy to mitigate greenhouse gas (GHG) emissions in 34 the agricultural sector (Six et al., 2004; Smith et al., 2008). However, there is an ongoing long-lasting debate 35 about tillage and no-till effects on soil organic carbon (SOC) and GHG emissions (e.g. Lugato et al., 2018). In 36 general, reduced-tillage and no-till tend to increase SOC storage through a reduced decomposition and 37 consequently reduces GHG emissions (Chen et al., 2009; Willekens et al., 2014). However, discrepancies exist 38 on the effectiveness of reduced tillage or no-till on GHG emissions. For instance, Abdalla et al. (2016), found in 39 a meta-analyses that on average no-till systems reduce CO<sub>2</sub> emissions by 21% compared to conventional tillage, 40 whereas Oorts et al. (2007) found that CO<sub>2</sub> emissions from no-till systems increased by 13% compared to 41 conventional tillage, and Aslam et al. (2000) found only minor differences in  $CO_2$  emissions. These

discrepancies are not surprising as tillage affects a complex set of biophysical factors, such as soil moisture and 42 43 soil temperature (Snyder et al., 2009), which drive several soil processes, including the carbon and nitrogen 44 dynamics, and crop performance. Moreover, other factors such as management practices (e.g. fertilizer 45 application and residue management) and climatic conditions have been shown to be important confounding 46 factors (Abdalla et al., 2016; Oorts et al., 2007; van Kessel et al., 2013). For instance Oorts et al. (2007) 47 attributed the higher CO<sub>2</sub> emissions under no-till to higher soil moisture and decomposition of crop litter on top 48 of the soil. Van Kessel et al. (2013) found that N<sub>2</sub>O emissions were smaller under no-till in dry climates and that 49 the depth of fertilizer application was important. Finally, Abdalla et al. (2016) found that no-till effects on  $CO_2$ 50 emissions are most effective in dryland soils.

51 In order to upscale this complexity and to study the role of tillage for global biogeochemical cycles, crop 52 performance and mitigation practices, the effects of tillage on soil properties need to be represented in global 53 ecosystem models. Although tillage is already implemented in other ecosystem models in different levels of 54 complexity (Lutz et al., 2019; Maharjan et al., 2018), tillage practices are currently underrepresented in global 55 ecosystem models that are used for biogeochemical assessments. In these, the effects of tillage are either ignored, 56 or represented by a simple scaling factor of decomposition rates. Global ecosystem models that ignore the effects 57 of tillage include for example JULES (Best et al., 2011; Clark et al., 2011), the Community Land Model (Levis et al., 2014; Oleson et al., 2010) PROMET (Mauser and Bach, 2009) and the Dynamic Land Ecosystem Model 58 59 (DLEM) (Tian et al., 2010). The models in which the effects of tillage are represented as an increase in 60 decomposition include LPJ-GUESS (Olin et al., 2015; Pugh et al., 2015) and ORCHIDEE-STICS (Ciais et al., 61 2011).

The objective of this paper is to 1) extend the Lund Potsdam Jena managed Land (LPJmL5) model (von Bloh 62 63 et al., 2018), so that the effects of tillage on biophysical processes and global biogeochemistry can be 64 represented and studied and 2) evaluate the extended model against data reported in meta-analyses by using a set 65 of stylized management scenarios. This extended model version allows for quantifying the effects of different 66 tillage practices on biogeochemical cycles, crop performance and for assessing questions related to agricultural 67 mitigation practices. Despite uncertainties in the formalization and parameterization of processes the processed-68 based representation allows for enhancing our understanding of the complex response patterns as individual 69 effects and feedbacks can be isolated or disabled to understand their importance. To our knowledge, some crop 70 models that have been used at the global scale, EPIC (Williams et al., 1983) and DSSAT (White et al., 2010), 71 have similarly detailed representations of tillage practices, but models used to study the global biogeochemistry 72 (Friend et al., 2014) have no or only very coarse representations of tillage effects.

#### 73 2 Tillage effects on soil processes

Tillage affects different soil properties and soil processes, resulting in a complex system with various feedbacks on soil water, temperature and carbon (C) and nitrogen (N) related processes (Fig. 1). The effect of tillage has to be implemented and analyzed in conjunction with residue management as these management practices are often inter-related. The processes that were implemented into the model were chosen based on the importance of the process and its compatibility with the implementation of other processes within the model. Those processes are visualized in Fig. 1 with solid lines; processes that have been ignored in this implementation are visualized with dotted lines. To illustrate the complexity, we here describe selected processes in the model
affected by tillage and residue management, using the numbered lines in Fig. 1.

82 With tillage, surface litter is incorporated into the soil [1] and increases the soil organic matter (SOM) 83 content of the tilled soil layer [2], while tillage also decreases the bulk density of this layer [3] (Green et al., 84 2003). An increase in SOM positively affects the porosity [4] and therefore the soil water holding capacity (whc) 85 [5] (Minasny and McBratney, 2018). Tillage also affects the whc by increasing porosity [6]. A change in whc 86 affects several water-related processes through soil moisture [7]. For instance, changes in soil moisture influence 87 lateral runoff [8] and leaching [9] and affect infiltration. A wet (saturated) soil for example decreases infiltration 88 [10], while infiltration can be enhanced if the soil is dry. Soil moisture affects primary production as it 89 determines the amount of water which is available for the plants [11] and changes in plant productivity again 90 determine the amount of residues left at the soil surface or to be incorporated into the soil [1] (feedback not 91 shown).

92 The presence of crop residues on top of the soil (referred to as "surface litter" hereafter) enhances water 93 infiltration into the soil [12], and thus increases soil moisture [13]. That is because surface litter limit soil 94 crusting, can constitute preferential pathways for water fluxes and slows lateral water fluxes at the soil surface so 95 that water has more time to infiltrate. Consequently, surface litter reduces surface runoff [14] (Ranaivoson et al., 96 2017). Surface litter also intercepts part of the rainfall [15], reducing the amount of water reaching the soil 97 surface, but also lowers soil evaporation [16] and thus reduces unproductive water losses to the atmosphere. 98 Surface litter also reduces the amplitude of variations in soil temperature [17] (Enrique et al., 1999; Steinbach 99 and Alvarez, 2006). The soil temperature is strongly related to soil moisture [18], through the heat capacity of 100 the soil, i.e. a relatively wet soil heats up much slower than a relatively dry soil (Hillel, 2004). The rate of SOM 101 mineralization is influenced by changes in soil moisture [19] and soil temperature [20]. The rate of 102 mineralization affects the amount of  $CO_2$  emitted from soils [21] and the inorganic N content of the soil. 103 Inorganic N can then be taken up by plants [22], be lost as gaseous N [23], or transformed into other forms of N. 104 The processes of nitrate  $(NO_3)$  leaching, nitrification, denitrification, mineralization of SOM and immobilization 105 or mineral N forms are explicitly represented in the model (von Bloh et al., 2018). The degree to which soil 106 properties and processes are affected by tillage mainly depends on the tillage intensity, which is a combination of 107 tillage efficiency and mixing efficiency (in detail explained in chapter 3.2 and 3.5.2). Tillage has a direct effect 108 on the bulk density of the tilled soil layer. The type of tillage determines the mixing efficiency, which affects the 109 amount of incorporating residues into the soil. Over time, soil properties reconsolidate after tillage, eventually 110 returning to pre-tillage states. The speed of reconsolidation depends on soil texture and the kinetic energy of 111 precipitation (Horton et al., 2016).

112 This implementation mainly focuses on two processes directly affected by tillage: 1) the incorporation of surface litter associated with tillage management and the subsequent effects (Fig. 1, arrow 1 and following 113 114 arrows), 2) the decrease in bulk density and the subsequent effects of changed soil water properties (Fig. 1, e.g. 115 arrow 3 and following arrows). In order to limit model complexity and associated uncertainty, tillage effects that 116 are not directly compatible with the original model structure such as subsoil compaction or require very high 117 spatial resolution, which renders it unsuitable for global-scale simulations, such as water erosion, are not taken 118 into account in this initial tillage implementation, despite acknowledging that these processes can be important. 119 [Fig. 1]

3

## 120 **3** Implementation of tillage routines into LPJmL

## 121 **3.1 LPJmL model description**

122 The tillage implementation described in this paper was introduced into the dynamical global vegetation, 123 hydrology and crop growth model LPJmL. This model was recently extended to also cover the terrestrial N 124 cycle, accounting for N dynamics in soils and plants and N limitation of plant growth (LPJmL5; von Bloh et al., 125 2018). Previous comprehensive model descriptions and developments are described by Schaphoff et al. (2018a). 126 The LPJmL model simulates the C, N and water cycles by explicitly representing biophysical processes in plants 127 (e.g. photosynthesis) and soils (e.g. mineralization of N and C). The water cycle is represented by the processes 128 of rain water interception, soil and lake evaporation, plant transpiration, soil infiltration, lateral and surface 129 runoff, percolation, seepage, routing of discharge through rivers, storage in dams and reservoirs and water 130 extraction for irrigation and other consumptive uses.

In LPJmL5, all organic matter pools (vegetation, litter and soil) are represented as C pools and the 131 132 corresponding N pools with variable C:N ratios. Carbon, water and N pools in vegetation and soils are updated 133 daily as the result of computed processes (e.g. photosynthesis, autotrophic respiration, growth, transpiration, 134 evaporation, infiltration, percolation, mineralization, nitrification, leaching; see von Bloh et al. (2018) for the full 135 description. Litter pools are represented by the above-ground pool (e.g. crop residues, such as leaves and 136 stubbles) and the below-ground pool (roots). The litter pools are subject to decomposition, after which the 137 humified products are transferred to the two SOM pools that have different decomposition rates (Appendix 1A). 138 The fraction of litter which is harvested from the field can range between almost fully harvested or none, when all litter is left on the field (90%, Bondeau et al., 2007). In the soil, pools of inorganic reactive N forms ( $NH_4^+$ , 139 140 NO<sub>3</sub>) are also considered. Each organic soil pool consists of C and N pools and the resulting C:N ratios are 141 flexible. Soil C:N ratios are considerably smaller than those of plants as immobilization by microorganisms 142 concentrates N in SOM. In LPJmL, as soil C:N ratio of 15 is targeted by immobilization for all soil types (von 143 Bloh et al., 2018). The SOM pools in the soil consist of a fast pool with a turnover time of 30 years, and a slow 144 pool with a 1000 year turnover time (Schaphoff et al., 2018a). Soils in LPJmL5 are represented by five 145 hydrologically active layers, each with a distinct layer thickness. The first soil layer, which is mostly affected by tillage, is 0.2 m thick. The following soil layers are 0.3, 0.5, 1.0 and 1.0 m thick, respectively, followed by a 10.0 146 147 m bedrock layer, which serves as a heat reservoir in the computation of soil temperatures (Schaphoff et al. 2013). 148 LPJmL5 has been evaluated extensively and demonstrated good skill in reproducing C,- water and N fluxes 149 in both agricultural and natural vegetation on various scales (Bloh et al., 2018; Schaphoff et al., 2018b).

## 150 **3.2 Litter pools and decomposition**

In order to address the residue management effects of tillage, the original above-ground litter pool is now separated into an incorporated litter pool ( $C_{litter,inc}$ ) and a surface litter pool ( $C_{litter,surf}$ ) for carbon, and the corresponding pools ( $N_{litter,inc}$ ) and ( $N_{litter,surf}$ ) for nitrogen (Appendix 1B). Crop residues not collected from the field are transferred to the surface litter pools. A fraction of residues from the surface litter pool is then partially or fully transferred to the incorporated litter pools, depending on the tillage practice;

156

157  $C_{litter,inc,t+1} = C_{litter,inc,t} + C_{litter,surf,t} \cdot TL$ , for carbon , and

(1)

158  $N_{litter,inc,t+1} = N_{litter,inc,t} + N_{litter,surf,t} \cdot TL$ , for nitrogen.

159

161

- 160 The  $C_{litter,surf}$  and  $N_{litter,surf}$  pools are reduced accordingly:
- 162  $C_{litter.surf.t+1} = C_{litter.surf.t} \cdot (1 TL), \tag{2}$
- 163  $N_{litter,surf,t+1} = N_{litter,surf,t} \cdot (1 TL),$
- 164

where  $C_{litter,inc}$  and  $N_{litter,inc}$  is the amount of incorporated surface litter C and N in g m<sup>-2</sup> at time step t (days). The parameter *TL* is the tillage efficiency, which determines the fraction of residues that is incorporated by tillage (0-1). To account for the vertical displacement of litter through bioturbation under natural vegetation and under no-till conditions, we assume that 0.1897% of the surface litter pool is transferred to the incorporated litter pool per day (equivalent to an annual bioturbation rate of 50%).

The litter pools are subject to decomposition. The decomposition of litter depends on the temperature and moisture of its surroundings. The decomposition of the incorporated litter pools depends on soil moisture and temperature of the first soil layer (as described by von Bloh et al., 2018), whereas the decomposition of the surface litter pools depends on the litter's moisture and temperature, which are approximated by the model. The decomposition rate of litter (*rdecom* in g C m<sup>-2</sup> day<sup>-1</sup>) is described by first-order kinetics, and is specific for each "plant functional type" (PFT), following Sitch et al. (2003);

176

177 
$$rdecom_{(PFT)} = 1 - exp(-\frac{1}{\tau_{10}(PFT)} \cdot g(T_{surf}) \cdot F(\theta)),$$
178 (3)

where  $\tau_{10}$  is the mean residence time for litter and  $F(\Theta)$  and  $g(T_{surf})$  are response functions of the decay rate to litter moisture and litter temperature  $(T_{surf})$  respectively. The response function to litter moisture  $F(\Theta)$  is defined as;

182

183 
$$F(\Theta) = 0.0402 - 5.005 \cdot \Theta^3 + 4.269 \cdot \Theta^2 + 0.7189 \cdot \Theta$$
 (4)

184

where,  $\Theta$  is the volume fraction of litter moisture which depends on the water holding capacity of the surface litter (*whc<sub>surf</sub>*), the fraction of surface covered by litter (*f<sub>surf</sub>*), the amount of water intercepted by the surface litter (*I<sub>surf</sub>*) (chapter 3.3.1) and lost through evaporation *E<sub>surf</sub>* (chapter 3.3.3).

188 The temperature function  $g(T_{surf})$  describes the influence of temperature of surface litter on decomposition 189 (von Bloh et al., 2018);

190

191 
$$g(T_{surf}) = exp(308.56 \cdot (\frac{1}{66.02} - \frac{1}{(T_{surf+56.02})}))$$
 (5)

192

193 Where  $T_{surf}$  is the temperature of surface litter (chapter 3.4).

A fixed fraction (70%) of the decomposed  $C_{litter,surf}$  is mineralized, i.e., emitted as CO<sub>2</sub>, whereas the remaining humified C is transferred to the soil C pools, where it is then subject to the soil decomposition rules as described by von Bloh et al. (2018) and Schaphoff et al. (2018a). The mineralized N (also 70% of the decomposed litter) is

added to the  $NH_4^+$  pool of the first soil layer, where it is subjected to further transformations (von Bloh et al.,

- 198 2018), whereas the humified organic N (30% of the decomposed litter) is allocated to the different organic soil N
- pools in the same shares as the humified C. In order to maintain the desired C:N ratio of 15 within the soil (von
  Bloh et al., 2018), the mineralized N is subject to microbial immobilization, i.e., the transformation of mineral N
- 201 to organic N directly reverting some of the N mineralization in the soil.
- The presence of surface litter influences the soil water fluxes and soil temperature of the soil (see 3.3 and 3.4), and therefore affects the decomposition of the soil carbon and nitrogen pools, including the transformations of mineral N forms. Nitrogen fluxes such as N<sub>2</sub>O from nitrification and denitrification for instance, are partly driven by soil moisture (von Bloh et al., 2018):
- 206

207 
$$F_{N20,nitrification,l} = K_2 \cdot K_{max} \cdot F_1(T_l) \cdot F_1(W_{sat,l}) \cdot F(pH) \cdot NH_{4,l}^+ \text{ for nitrification, and}$$
(6)  
208 
$$F_{N20,denitrification,l} = r_{mx2} \cdot F_2(W_{sat,l}) \cdot F_2(T_l, C_{org}) \cdot NO_{3,l}^- \text{ for denitrification.}$$

209

210 Where  $F_{N20,nitrification}$  and  $F_{N20,denitrification}$  are the N<sub>2</sub>O flux related to nitrification and denitrification respectively in gN m<sup>-2</sup> d<sup>-1</sup> in layer 1.  $K_2$  is the fraction of nitrified N lost as N<sub>2</sub>O ( $K_2 = 0.02$ ),  $K_{max}$  is the 211 maximum nitrification rate of  $NH_4^+$  ( $K_{max} = 0.1 d^{-1}$ ).  $F_1(T_l)$ ,  $F_1(W_{sat,l})$ , are response functions of soil 212 213 temperature and water saturation respectively, that limit the nitrification rate. F(pH) is the function describing 214 the response of nitrification rates to soil pH and  $NH_{4,l}^+$  and  $NO_{3,l}^-$  the soil ammonium and nitrate concentration in gN m<sup>-2</sup> respectively.  $F_2(T_l, C_{org})$ ,  $F_2(W_{sat,l})$  are reaction for soil temperature, soil carbon and water saturation 215 and  $r_{mx2}$  is the fraction of denitrified N lost as N<sub>2</sub>O (11%, the remainder is lost as N<sub>2</sub>). For a detailed description 216 217 of the N related processes implemented in LPJmL, we refer to von Bloh et al. (2018).

## 218 3.3 Water fluxes

#### 219 **3.3.1 Litter interception**

Precipitation and applied irrigation water in LPJmL5 is partitioned into interception, transpiration, soil evaporation, soil moisture and runoff (Jägermeyr et al., 2015). To account for the interception and evaporation of water by surface litter, the water can now also be captured by surface litter through litter interception ( $I_{surf}$ ) and be lost through litter evaporation, subsequently infiltrates into the soil and/or forms surface runoff. Litter moisture ( $\Theta$ ) is calculated in the following way:

226 
$$\theta_{t+1} = \min(whc_{surf} - \theta_{(t)}, I_{surf} \cdot f_{surf}).$$
(7)

227

225

f<sub>surf</sub> is calculated by adapting the equation from Gregory (1982) that relates the amount of surface litter (dry matter) per m<sup>2</sup> to the fraction of soil covered by crop residue;

231 
$$f_{surf} = 1 - exp^{-A_m \cdot OM_{litter,surf}},$$
(8)

232

where  $OM_{litter,surf}$  is the total mass of dry matter surface litter in g m<sup>-2</sup> and  $A_m$  is the area covered per mass of crop specific residue (m<sup>2</sup> g<sup>-1</sup>). The total mass of surface litter is calculated assuming a fixed C to organic matter ratio of 2.38 ( $CF_{OM,litter}$ ), based on the assumption that 42% of the organic matter is C, as suggested by Brady and Weil (2008):

237

238  $OM_{litter,surf} = C_{litter,surf} \cdot CF_{OM,litter},$  (9)

239

where  $C_{litter,surf}$  is the amount of C stored in the surface litter pool in g C m<sup>-2</sup>. We apply the average value of 0.004 for  $A_m$  from Gregory (1982) to all materials, neglecting variations in surface litter for different materials.  $WHC_{surf}$  (mm) is the water holding capacity of the surface litter and is calculated by multiplying the litter mass with a conversion factor of 2 10<sup>-3</sup> mm kg<sup>-1</sup> ( $OM_{litter,surf}$ ) following Enrique et al. (1999).

## 244 3.3.2 Soil infiltration

The presence of surface litter enhances infiltration of precipitation or irrigation water into the soil, as soil crusting is reduced and preferential pathways are affected (Ranaivoson et al., 2017). In order to account for improved infiltration with the presence of surface litter, we follow the approach by Jägermeyr et al. (2016), which has been developed for implementing in situ water harvesting, e.g. by mulching in LPJmL. The infiltration rate (*In* in mm d<sup>-1</sup>) depends on the soil water content of the first layer and the infiltration parameter *p*;

251

252 
$$In = prir \cdot \sqrt[p]{1 - \frac{W_a}{W_{sat,l=1} - W_{pwp,l=1}}},$$
 (10)

253

where *prir* is the daily precipitation and applied irrigation water in mm,  $W_a$  the available soil water content in the first soil layer, and  $W_{sat,l=1}$  and  $W_{pwp,l=1}$  the soil water content at saturation and permanent wilting point of the first layer in mm. By default p = 2, but four different levels are distinguished (p = 3, 4, 5, 6) by Jägermeyr et al. (2016), in order to account for increased infiltration based on the management intervention. To account for the effects of surface litter, we here scale this infiltration parameter between 2 and 6, based on the fraction of surface litter cover ( $f_{surf}$ );

260

261 
$$p = 2 \cdot (1 + f_{surf} \cdot 2)$$
 (11)

262

263 Surplus water that cannot infiltrate forms surface runoff and enters the river system.

264

## 265 **3.3.3 Litter and soil evaporation**

Evaporation ( $E_{surf}$ , in mm) from the surface litter cover ( $f_{surf}$ ), is calculated in a similar manner as evaporation from the first soil layer (Schaphoff et al., 2018a). Evaporation depends on the vegetation cover ( $f_v$ ), the radiation energy for the vaporation of water (PET) and the water stored in the surface litter that is available to evaporate ( $\omega_{surf}$ ) relative to  $whc_{surf}$ . Here, also  $f_{surf}$  is taken into account so that the fraction of soil uncovered is subject to soil evaporation as described in Schaphoff et al. (2018a);

271

272 
$$E_{surf} = PET \cdot \alpha \cdot \max(1 - f_{\nu}, 0.05) \cdot \omega_{surf}^2 \cdot f_{surf}, \qquad (12)$$

274 
$$\omega_{surf} = \Theta/WHC_{surf},$$
 (13)

275

where *PET* is calculated based on the theory of equilibrium evapotranspiration (Jarvis and McNaughton, 1986) and  $\alpha$  the empirically derived Priestley-Taylor coefficient ( $\alpha = 1.32$ ) (Priestley and Taylor, 1972).

The presence of litter at the soil surface reduces the evaporation from the soil ( $E_{soil}$ ).  $E_{soil}$  (mm) corresponds to the soil evaporation as described in Schaphoff et al. (2018a), and depends on the available energy for vaporization of water and the available water in the upper 0.3 m of the soil ( $\omega_{evap}$ ). However, with the implementation of tillage, the fraction of  $f_{surf}$  now also influences evaporation, i.e., greater soil cover ( $f_{surf}$ ) results in a decrease in  $E_{soil}$ ;

283

284 
$$E_{soil} = PET \cdot \alpha \cdot \max(1 - f_v, 0.05) \cdot \omega^2 \cdot (1 - f_{surf})$$
(14)

285

286  $\omega$  is calculated as the evaporation-available water ( $\omega_{evap}$ ) relative to the water holding capacity in that layer 287 ( $WHC_{evap}$ );

288

289 
$$\omega = \min\left(1, \frac{\omega_{evap}}{_{WHC_{evap}}}\right),\tag{15}$$

290 where  $\omega_{evap}$  is all the water above wilting point of the upper 0.3 m (Schaphoff et al., 2018a).

# 291 3.4 Heat flux

The temperature of the surface litter is calculated as the average of soil temperature of the previous day (t) of the first layer ( $T_{soil,l=1}$  in°C) and actual air temperature ( $T_{air,t+1}$  in°C), in the following way:

294

295 
$$T_{litter,surf,t+1} = 0.5(T_{air,t+1} + T_{l=1,t}).$$
 (16)

296

Equation (16) is an approximate solution for the heat exchange described by Schaphoff et al. (2013). The new upper boundary condition ( $T_{upper}$  in °C) is now calculated by the average of  $T_{air}$  and  $T_{surf}$  weighted by  $f_{surf}$ . With the new boundary condition, the cover of the soil with surface litter diminishes the heat exchange between soil and atmosphere;

301

$$302 T_{upper} = T_{air} \cdot (1 - f_{surf}) + T_{surf} \cdot f_{surf}. (17)$$

$$303$$

The remainder of the soil temperature computation remains unchanged from the description of Schaphoff et al.(2013).

## 306 **3.5 Tillage effects on physical properties**

## 307 3.5.1 Dynamic calculation of hydraulic properties

Previous versions of the LPJmL model used static soil hydraulic parameters as inputs, computed following the pedotransfer function (PTF) by Cosby et al. (1984). Different methods exist to calculate soil hydraulic properties

310 from soil texture and SOM content for different points of the water retention curve (Balland et al., 2008; Saxton

- and Rawls, 2006; Wösten et al., 1999) or at continuous pressure levels (Van Genuchten, 1980; Vereecken et al.,
- 312 2010). Extensive reviews of PTFs and their application in Earth system and soil modeling can be found in Van
- Looy et al. (2017) and Vereecken et al. (2016). We now introduced an approach following the PTF by Saxton
- and Rawls (2006), which was included in the model in order to dynamically simulate layer-specific hydraulic
- 315 parameters that account for the amount of SOM in each layer, constituting an important mechanism of how 316 hydraulic parameters are affected by tillage (Strudley et al., 2008).

As such, Saxton and Rawls (2006) define a PTF most suitable for our needs and capable of calculating all the necessary soil water properties for our approach: it allows for a dynamic effect of SOM on soil hydraulic properties, and is also capable of representing changes in bulk density after tillage and was developed from a large number of data points. With this implementation, soil hydraulic properties are now all updated daily. Following Saxton and Rawls (2006), soil water properties are calculated as:

323 
$$\lambda_{pwp,l} = -0.024 \cdot Sa + 0.0487 \cdot Cl + 0.006 \cdot SOM_l + 0.005 \cdot Sa \cdot SOM_l - 0.013 \cdot Cl \cdot SOM_l + 0.068 \cdot Sa \cdot$$
  
324  $Cl + 0.031,$  (18)

325  $W_{pwp,l} = 1.14 \cdot \lambda_{pwp,l} - 0.02,$  (19)

326  $\lambda_{fc,l} = -0.251 \cdot Sa + 0.195 \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l + 0.452 \cdot Sa \cdot Cl + 0.011 \cdot SOM_l + 0.011 \cdot SOM_l + 0.011 \cdot SOM_l + 0.011 \cdot SOM_l + 0.006 \cdot Sa \cdot$ 

(20)

327 0.299,

328 
$$W_{fc,l} = 1.238 \cdot (\lambda_{fc,l})^2 - 0.626 \cdot \lambda_{fc,l} - 0.015,$$
 (21)

 $329 \quad \lambda_{sat,l} = 0.278 \cdot Sa + 0.034 \cdot Cl + 0.022 \cdot SOM_l - 0.018 \cdot Sa \cdot SOM_l - 0.027 \cdot Cl \cdot SOM_l - 0.584 \cdot Sa \cdot Cl + 330 \quad 0.078,$ (22)

331 
$$W_{sat,l} = W_{fc,l} + 1.636 \cdot \lambda_{sat,l} - 0.097 \cdot Sa - 0.064,$$
 (23)

332 
$$BD_{soil,l} = (1 - W_{sat,l}) \cdot MD.$$
 (24)

333

SOM<sub>l</sub> is the soil organic matter content in weight percent (%w) of layer *l*,  $W_{pwp,l}$  is the moisture content at the permanent wilting point,  $W_{fc,l}$  moisture contents at field capacity,  $W_{sat,l}$  is the moisture contents at saturation,  $\lambda_{pwp,l}$ ,  $\lambda_{fc,l}$  and  $\lambda_{sat,l}$  are the moisture contents for the first solution at permanent wilting point, field capacity and saturation, *Sa* is the sand content in %v, *Cl* is the clay content in %v,  $BD_{soil,l}$  is the bulk density in kg m<sup>-3</sup>, *MD* is the mineral density of 2700 kg m<sup>-3</sup>. For  $SOM_l$ , total SOC content is translated into SOM of this layer, following:

340

$$341 \qquad SOM_l = \frac{CF_{OM,soil} \cdot (C_{fastSoil,l} + C_{slowSoil,l})}{BD_{soil,l'z_l}} \cdot 100, \tag{25}$$

342

where  $CF_{OM,soil}$  is the conversion factor of 2 as suggested by Pribyl (2010), assuming that SOM contains 50% SOC,  $C_{fastSoil,l}$  is the fast decaying C pool in kg m<sup>-2</sup>,  $C_{slowSoil,l}$  is the slow decaying C pool in kg m<sup>-2</sup>,  $BD_{soil,l}$  is the bulk density in kg m<sup>-3</sup> and z is the thickness of layer l in m. It was suggested by Saxton and Rawls (2006) that the PTF should not be used for SOM content above 8%, so we cap  $SOM_l$  at this maximum when computing soil hydraulic properties and thus treated soils with  $SOM_l$  content above this threshold as soils with 8% SOM content. Saturated hydraulic conductivity is also calculated following Saxton and Rawls (2006) as:

350 
$$Ks_l = 1930 \cdot \left( W_{sat_{(l)}} - W_{fc_{(l)}} \right)^{3-\phi_l},$$
 (26)

351

349

352 
$$\phi_l = \frac{\ln(W_{fc,l}) - \ln(W_{pwp,l})}{\ln(1500) - \ln(33)},$$
(27)

353

where  $Ks_l$  is the saturated hydraulic conductivity in mm h<sup>-1</sup> and  $\phi_l$  is the slope of the logarithmic tensionmoisture curve of layer *l*.

#### 356 3.5.2 Bulk density effect and reconsolidation

357 The effects of tillage on BD are adopted from the APEX model by Williams et al. (2015) which is a follow-up development of the EPIC model (Williams et al., 1983). Tillage causes changes in BD of the tillage layer (first 358 359 topsoil layer of 0.2 m) after tillage. Soil moisture content for the tillage layer is updated using the fraction of change in BD. Ks<sub>1</sub> is also updated based on the new moisture content after tillage. A mixing efficiency parameter 360 361 (mE) depending on the intensity and type of tillage (0-1), determines the fraction of change in BD after tillage. A mE of 0.90 for example represents a full inversion tillage practice, also known as conventional tillage (White et 362 363 al., 2010). The parameter mE can be used in combination with residue management assumptions to simulate 364 different tillage types. It should be noted that Williams et al. (1983) calculate direct effects of tillage on BD, 365 while we changed the equation accordingly to account for the fraction at which BD is changed.

366 The fraction of *BD* change after tillage is calculated the following way:

367

- $f_{BDtill,t+1} = f_{BDtill,t} \left(f_{BDtill,t} 0.667\right) \cdot mE.$   $\tag{28}$
- 369

371

372 
$$W_{sat,till,l,t+1} = 1 - (1 - W_{sat,l,t}) \cdot f_{BDtill,t+1},$$
 (29)

373 
$$W_{fc,till,l,t+1} = W_{fc,l,t} - 0.2 \cdot (W_{sat,l,t} - W_{sat,till,l,t+1}), \tag{30}$$

374

where  $f_{BDtill,t+1}$  is the fraction of density change of the topsoil layer after tillage,  $f_{BDtill,t}$  is the density effect before tillage,  $W_{sat,till,l,t+1}$  and  $W_{fc,till,l,t+1}$  are adjusted moisture content at saturation and field capacity after tillage and  $W_{sat,l,t}$  and  $W_{fc,l,t}$  are the moisture content at saturation and field capacity before tillage.

Reconsolidation of the tilled soil layer is accounted for following the same approach by Williams et al. (2015). The rate of reconsolidation depends on the rate of infiltration and the sand content of the soil. This ensures that the porosity and *BD* changes caused by tillage gradually return to their initial value before tillage. Reconsolidation is calculated the following way:

382

383 
$$sz = 0.2 \cdot In \cdot \frac{1+2 \cdot Sa/(Sa + e^{8.597 - 0.075 \cdot Sa})}{z_{till}^{0.06}},$$
 (31)

$$f = \frac{sz}{sz + e^{3.92 - 0.0226 \cdot sz}},$$
(32)

385 
$$f_{BDtill,t+1} = f_{BDtill,t} + f \cdot (1 - f_{BDtill,t}),$$
 (33)

386

384

387 where sz is the scaling factor for the tillage layer and  $z_{till}$  is the depth of the tilled layer in m. This allows for a 388 faster settling of recently tilled soils with high precipitation and for soils with a high sand content. In dry areas 389 with low precipitation and for soils with low sand content, the soil settles slower and might not consolidate back 390 to its initial state. This is accounted for by taking the previous bulk density before tillage into account. The effect 391 of tillage on BD can vary from year to year, but  $f_{BDtill,t}$  cannot be below 0.667 or above 1 so that unwanted 392 amplification is not possible. We do not yet account for fluffy soil syndrome processes and negative implication 393 from this, if the soil does not settle over the winter and spring time, which results in an unfavorable soil particle 394 distribution that can cause a decline in productivity (Daigh and DeJong-Hughes, 2017).

## 395 4 Model setup

## 396 4.1 Model input, initialization and spin-up

397 In order to bring vegetation patterns and SOM pools into a dynamic equilibrium stage, we make use of a 5000 398 years spin-up simulation of only natural vegetation, which recycles the first 30 years of climate input following 399 the procedures of von Bloh et al. (2018). For simulations with land-use inputs and to account for agricultural 400 management, a second spin-up of 390 years is conducted, to account for historical land-use change, which is 401 introduced in the year 1700. The spatial resolution of all input data and model simulations is 0.5°. Land use data 402 is based on crop-specific shares of MIRCA2000 (Portmann et al., 2010) and cropland and grassland time series 403 since 1700 from HYDE3 (Klein Goldewijk et al., 2010) as described by Fader et al. (2010). As we are here 404 interested in the effects of tillage on cropland, we ignore all natural vegetation in grid cells with cropland by 405 scaling existing cropland shares to 100%. We drive the model with daily mean temperature from the Climate 406 Research Unit (CRU TS version 3.23, University of East Anglia Climate Research Unit, 2015; Harris et al., 407 2014), monthly precipitation data from the Global Precipitation Climatology Centre (GPCC Full Data Reanalysis 408 version 7.0; Becker et al., 2013) and shortwave downward and net longwave downward radiation data from the 409 ERA-Interim data set (Dee et al., 2011). Static soil texture classes are taken from the Harmonized World Soil Database (HWSD) version 1.1 (Nachtergaele et al., 2009) and aggregated to  $0.5^{\circ}$  resolution by using the 410 411 dominant soil type. Twelve different soil textural classes are distinguished according to the USDA soil texture 412 classification and one unproductive soil type, which is referred to as "rock and ice". Soil pH data are taken from 413 the WISE data set (Batjes, 2005). The NOAA/ESRL Mauna Loa station (Tans and Keeling, 2015) provides 414 atmospheric CO<sub>2</sub> concentrations. Deposition of N was taken from the ACCMIP database (Lamarque et al., 415 2013).

#### 416 **4.2 Simulation options and evaluation set-up**

417 The new tillage management implementation allows for specifying different tillage and residue systems. We

418 conducted four contrasting simulations on current cropland area with or without the application of tillage and

419 with or without removal of residues (Table 1). The default setting for conventional tillage is: mE=0.9 and 420 TL=0.95. In the tillage scenario, tillage is conducted twice a year, at sowing and after harvest. Soil water 421 properties are updated on a daily basis, enabling the tillage effect to be effective from the subsequent day 422 onwards until it wears off due to soil settling processes. The four different management settings (MS) for global 423 simulations are as the following: 1) full tillage and residues left on the field (T\_R), 2) full tillage and residues are 424 removed (T\_NR), 3) no-till and residues are retained on the field (NT\_R), and 4) no-till and residues are 425 removed from the field (NT NR). The specific parameters for these four settings are listed in Table 1. The 426 default MS is T\_R and was introduced in the second spin-up from the year 1700 onwards, as soon as human land 427 use is introduced in the individual grid cells (Fader et al. 2010). All of the four MS simulations were run for 109 428 years, staring from year 1900. Unless specified differently, the outputs of the four different MS simulations were 429 analyzed using the relative differences between each output variable using T\_R as the baseline MS;

431 
$$RD_X = \frac{X_{MS}}{X_{T_R}} - 1,$$
 (34)

432

where  $RD_X$  is the relative difference between the management scenarios for variable X and  $X_{MS}$  and  $X_{TR}$  are the 433 434 values of variable X of the MS of interest and the baseline management systems: conventional tillage with 435 residues left on the field  $(T_R)$ . Spin-up simulations and relative differences for equation (34) were adjusted, if a 436 different MS was used as reference system, e.g. if reference data are available for comparisons of different MS. 437 The effects were analyzed for different time scales: the three year average of year 1 to 3 for short-term effects, 438 the average after year 9 to 11 for mid-term effects and the average of year 19 to 21 for long-term effects. 439 Depending on available reference data in the literature, the specific duration and default MS of the experiment were chosen. The results of the simulations are compared to literature values from selected meta-analyses. Meta-440 441 analyses allow for the comparison of globally modeled results to a set of combined results of individual studies 442 from all around the world, assuming that the data basis presented in meta-analyses is representative. A 443 comparison to individual site-specific studies would require detailed site-specific simulations making use of climatic records for that site and details on the specific land-use history. Results of individual site-specific 444 445 experiments can differ substantially between sites, which hampers the interpretation at larger scales. We calculated the median and the  $5^{th}$  and  $95^{th}$  percentile (values within brackets) between MS in order to compare 446 447 the model results to the meta-analyses, where averages and 95% confidence intervals (CI) are mostly reported. 448 We chose medians rather than arithmetic averages to reduce outlier effects, which is especially important for 449 relative changes that strongly depend on the baseline value. If region-specific values were reported in the metaanalyses, e.g. climate zones, we compared model results of these individual regions, following the same 450 451 approach for each study, to the reported regional value ranges.

To analyze the effectiveness of selected individual processes (see Fig. 1) without confounding feedback processes, we conducted additional simulations of the four different *MS* on bare soil with uniform dry matter litter input (simulation NT\_NR\_bs and NT\_R\_bs1 to NT\_R\_bs5) of uniform composition (C:N ratio of 20), no atmospheric N deposition and static fertilizer input (Elliott et al., 2015). This helps isolating soil processes, as any feedbacks via vegetation performance is eliminated in this setting.

457

#### 459 **5 Evaluation and discussion**

#### 460 **5.1 Tillage effects on hydraulic properties**

461 Table 2 presents the calculated soil hydraulic properties of tillage for each of the soil classes prior to and after tillage (mE of 0.9), combined with a SOM content in the tilled soil layer of 0% and 8%. In general, both tillage 462 and a higher SOM content tend to increase whc,  $W_{sat,l}$ ,  $W_{fc,l}$  and  $Ks_l$ . Clay soils are an exception, since higher 463 464 SOM content decreases whc,  $W_{sat,l}$  and  $W_{fc,l}$ , and increases  $Ks_l$ . The effect of increasing SOM content on whc,  $W_{sat,l}$  and  $W_{fc,l}$  is greatest in the soil classes sand and loamy sand. The increasing effects of tillage on the 465 hydraulic properties are generally weaker compared to an increase in SOM by 8% (maximum SOM content for 466 computing soil hydraulic properties in the model). While tillage (mE of 0.9, 0% SOM) in sandy soils increase 467 whc by 83%, 8% of SOM can increase whc in an untilled soil by 105% and in a tilled soil by 84%. As 468 469 comparison in silty loam soils with 0% SOM, tillage (mE of 0.9) increases whc by 16%, while 8% SOM can 470 increase whc by 31% and by 26% for untilled and tilled soil, respectively.

The PTF by Saxton and Rawls (2006) uses an empirical relationship between SOM, soil texture and hydraulic properties derived from the USDA soil database, implying that the PTF is likely to be more accurate within the US than outside. A PTF developed for global scale application is, to our knowledge, not yet developed. Nevertheless PTFs are used in a variety of global applications, despite the limitations to validate at this scale (Van Looy et al., 2017).

476

477 [Table 2]

#### 478 **5.2 Productivity**

479 In our simulations adopting NT\_R slightly increases productivity for all rain-fed crops simulated (wheat, maize, 480 pulses, rapeseed) on average, but ranges from increases to decreases across all cropland globally. This increase 481 can be observed for the first three years (Appendix 2), and for the first ten years (Fig. 2A and 2B). The numbers discussed here refer to the productivity after 10 years (average of year 9-11). The largest positive impact can be 482 found for rapeseed, where NT R results in a median increase of +2.4 % (5<sup>th</sup>, 95<sup>th</sup> percentiles: -34.8%, +61.0%). 483 The positive impact is lowest for maize, with median increases by +1.0% (5<sup>th</sup>, 95<sup>th</sup> percentiles: -34.2%, +55.6%). 484 The median productivity of wheat increases slightly by +1.7% (5<sup>th</sup>, 95<sup>th</sup> percentiles: -24.4%, +54.8%) under 485 NT\_R. The slight increases in median productivity under NT\_R are contrasting to the values reported by 486 487 Pittelkow et al. (2015b), who reports slight decreases in productivity for wheat and maize and small median 488 increases for rapeseed (Table 3). They report both positive and negative effects for wheat and rapeseed, but only negative effects for maize. Pittelkow et al. (2015b) identify aridity and crop type as the most important factors 489 490 influencing the responses of productivity to the introduction of no-till systems with residues left on the field. The 491 aridity index was determined by dividing the mean annual precipitation by potential evaporation. No-till 492 performed best under rain-fed conditions in dry climates (aridity index < 0.65), by which the overall response 493 was equal or positive compared to T\_R.

494 The positive effects on productivity under NT\_R in dry regions can also be found in our simulations. For 495 instance, wheat productivity increases substantially under NT\_R whereas this effect diminishes with increases in aridity indexes (Fig. 2A). Similar results are found for maize productivity (Fig. 2B). This positive effect can be 496 497 attributed to the presence of surface litter, which leads to higher soil moisture conservation through increased 498 water infiltration into the soil and decreases in evaporation. Areas where crop productivity is limited by soil 499 water could therefore potentially benefit from NT\_R (Pittelkow et al., 2015a). The influence of climatic 500 condition on no-till effects on productivity was already found by several other studies (e.g. Ogle et al., 2012; Pittelkow et al., 2015a; van Kessel et al., 2013). Ogle et al. (2012) found declines in productivity, but that these 501 502 declines were larger in the cooler and wetter climates. Pittelkow et al. (2015a) found only small declines in 503 productivity in dry areas, but emphasized that increases in yield can be found when no-till is combined with 504 residues and crop rotation. This was not the case for humid areas (aridity index >0.65), there declines in productivity were larger under no-till regardless if residues and crop rotations were applied. Finally, van Kessel 505 et al. (2013) found declines in productivity after adapting to no-till in dry areas (-11%) and humid areas (-3%). 506 507 However, in their analysis it is not clear how crop residues are treated in no-till and tillage (i.e. removed or 508 retained).

509

510 [Fig. 2]

# 511 5.3. Soil C stocks and fluxes

512 We evaluate the effects of tillage and residue management on simulated soil C dynamics and fluxes for CO<sub>2</sub> 513 emissions from cropland soils, relative change in C input, SOC turnover time as well as relative changes in soil and litter C stocks of the topsoil (0.3 m). In our simulation CO<sub>2</sub> emissions initially decrease for the average of the 514 first three years by a median value of -11.8% (5<sup>th</sup>, 95<sup>th</sup> percentile: -24.5%, +2.1%) after introducing no-till 515 (NT\_R vs. T\_R) (Appendix 3A) and soil and litter C stocks increase. After ten years duration (average of year 9-516 517 11) however, both CO<sub>2</sub> emissions and soil and litter C stocks are higher under NT\_R than under T\_R (Fig. 3A, 3D). Median CO<sub>2</sub> emissions from NT\_R compared to T\_R increase by +1.3% (5<sup>th</sup>, 95<sup>th</sup> percentile: -22.1%, 518 +32.8%), while at the same time median topsoil and litter C also increase by +4.6% (5<sup>th</sup>, 95<sup>th</sup> percentile: +1.0%. 519 520 +12.9%), i.e. the soil and litter C stock has already increased enough to sustain higher CO<sub>2</sub> emissions. There are two explanations for CO<sub>2</sub> increase in the long term: 1) more C input from increased net primary production 521 522 (NPP) for NT\_R or 2) a higher decomposition rate over time under NT\_R, due to changes in e.g. soil moisture or temperature. Initially CO<sub>2</sub> emissions decrease almost globally due to increased turnover times under T\_R 523 524 (Appendix 3C), but after ten years, CO<sub>2</sub> emissions start to increase in drier regions, while they still decrease in most humid regions (Fig. 3A). The relative differences in mean residence time of soil carbon for NT\_R 525 compared to T\_R are relatively small (+0.4% after ten years, 5<sup>th</sup>, 95<sup>th</sup> percentile: -23.2%, +29.2%) (Fig. 3C), but 526 show similar patterns, i.e. the mean residence time decreases in drier areas but increases in more humid areas. 527 528 The drier regions are also the areas where we observe a positive effect of reduced evaporation and increased 529 infiltration on plant growth, i.e. in these regions the C-input into soils is substantially increased under NT\_R 530 compared to T\_R (Fig. 3B) (see also 5.2 for productivity). As such, both mechanisms that affect CO<sub>2</sub> emissions are reinforcing each other in many regions. This is in agreement with the meta-analyses conducted by Pittelkow 531 et al. (2015b), who report a positive effect on yields (and thus general productivity and thus C-input) of no-till 532

533 compared to conventional tillage in dry climates. Their results show that in general, no-till performs best relative

to conventional tillage under water-limited conditions, due to enhanced water-use efficiencies when residues are retained.

Abdalla et al. (2016) reviewed the effect of tillage, no-till and residues management and found if residues are 536 returned, no-till compared to conventional tillage increases soil and litter C content by 5.0% (95th CI: -1.0%, 537 +9.2%) and an decreases CO<sub>2</sub> emissions from soils by -23% (95<sup>th</sup> CI: -35.0%, -13.8%) (Table 3). These findings 538 539 of Abdalla et al. are in line to our findings for CO<sub>2</sub> emissions if we consider the first three years of duration for CO<sub>2</sub> emissions and ten years duration for topsoil and litter C. Abdalla et al. (2016) do not explicitly specify a 540 time of duration for these results. If we only analyze the tillage effect without taking residues into account 541 (T\_NR vs. NT\_NR), we find in our simulation that topsoil and litter C decreases by -17.3% (5<sup>th</sup>, 95<sup>th</sup> percentile: -542 43.0%, -0.4%) after twenty years, while CO<sub>2</sub> emissions increase by +20.9% (5<sup>th</sup>, 95<sup>th</sup> percentile: -1.2%, 543 544 +125.8%) mostly in humid regions, whereas they start increasing in drier regions (Table 3). Abdalla et al. (2016) 545 also reported soil and litter C changes from a T NR vs. NT NR comparison and reported a decrease in soil and litter C under T\_NR of -12.0% (95th CI: -15.3%, -5.1%) and a CO2 increase of +18.0% (95th CI: +9.4%, 546 +27.3%), which is well in line with our model results. 547

Ogle et al. (2005) conducted a meta-analysis and reported SOC changes from NT R compared to T R 548 system with medium C input, grouped for different climatic zones. They found a +23%, +17%, + 16% and +10% 549 550 mean increase in SOC after converting from a conventional tillage to a no-till system for more than 20 years for 551 tropical moist, tropical dry, temperate moist and temperate dry climates, respectively. We only find a +3.7%, 552 +6.4%, +3.9% and +4.8% increase in topsoil and litter C for these regions, respectively. However, Ogle et al. (2005) analyzed the data by comparing a no-till system with high C inputs from rotation and residues to a 553 554 conventional tillage system with medium C input from rotation and residues. We compare two similarly 555 productive systems with each other, where residues are either left on the field or incorporated through tillage (NT\_R vs. T\_R), which may explain why we see smaller relative effects in the simulations. Comparing a high 556 557 input system with a medium or a low input system will essentially lead to an amplification of soil and litter C 558 changes over time; nevertheless we are still able to generally reproduce a SOC increase over longer periods.

559 Unfortunately there are high discrepancies in the literature with regard to no-till effects on soil and litter C, 560 since the high increases found by Ogle et al. (2005) are not supported by the findings of Abdalla et al. (2016). 561 Ranaivoson et al. (2017) found that crop residues left on the field increases soil and litter C content, which is in 562 agreement with our simulation results.

563

564 [Fig. 3]

## 565 5.4 Water fluxes

We evaluate the effects of tillage and residue management on water fluxes by analyzing soil evaporation and surface runoff. Our results show that evaporation and surface runoff under NT\_R compared to T\_R are generally reduced by -43.7% (5<sup>th</sup>, 95<sup>th</sup> percentiles: -64.0, -17.4%) and by -57.6% (5<sup>th</sup>, 95<sup>th</sup> percentiles: -74.5%, -27.6%), respectively (Appendix 4A and 4B). We also analyzed soil evaporation and surface runoff for different amounts of surface litter and cover on bare soil without vegetation in order to compare our results to literature estimates 571 from field experiments. We find that both the reduction in evaporation and surface runoff are dependent on the 572 residue load, which translates into different rates of surface litter cover.

On the process side, water fluxes highly influence plant productivity and are affected by tillage and residue 573 management (Fig. 1). Surface litter, which is left on the surface of the soil, creates a barrier that reduces 574 575 evaporation and also increases the rate of infiltration into the soil. Litter which is incorporated into the soil 576 through tillage loses this function to cover the soil. Both, the reduction of soil evaporation and the increase of 577 rainfall infiltration contribute to increased soil moisture and hence plant water availability. The model accounts for both processes. Scopel et al. (2004) modeled the effect of maize residues on soil evaporation calibrated from 578 two tropical sites and found a presence of  $100 \text{ g m}^{-2}$  surface litter decrease soil evaporation by -10 to -15% in the 579 data, whereas our model shows a median decrease in evaporation of -6.6% (5<sup>th</sup>, 95<sup>th</sup> percentiles: -26.1%, 580 +20.3%) globally (Appendix 4C). The effect of a higher amount of surface litter is much more dominate, as 581 Scopel et al. (2004) found that 600 g m<sup>-2</sup> surface litter reduced evaporation by approx. -50%. For the same litter 582 load our model shows a median decrease in evaporation by -72.6% (5<sup>th</sup>, 95<sup>th</sup> percentiles: -81.5%, -49.1%) 583 (Appendix 4D), which is higher than the results found by Scopel et al. (2004). We further analyze and compare 584 585 our model results to the meta-analysis from Ranaivoson et al. (2017), who reviewed the effect of surface litter on evaporation and surface runoff and other agro-ecological functions. Ranaivoson et al. (2017) and the studies 586 587 compiled by them not explicitly distinguish between the different compartments of runoff (e.g. lateral-, surfacerunoff). We assume that they measured surface runoff, since lateral runoff is difficult to measure and has to be 588 589 considered in relation to plot size. In Fig. 4, modeled global results for relative evaporation and surface runoff 590 change for 10, 30, 50, 70 and 90% soil cover on bare soil are compared to literature values from Ranaivoson et 591 al. (2017). Concerning the effect of soil cover on evaporation (Fig. 4A), we find that we are well in line with 592 literature estimates from Ranaivoson et al. (2017) for up to 70% soil cover, especially when analyzing humid 593 climates. For higher soil cover  $\geq$ 70%, the model seems to more in line with literature values for arid regions. 594 Overall for high soil cover of 90%, the model seems to overestimate the reduction of evaporation. It should be 595 noted that the estimates from Ranaivoson et al. (2017) are only taken from two field studies, which are only 596 representative for the local climatic and soil conditions, since global data on the effect of surface little on 597 evaporation are not available. The general effect of surface litter on the reduction in soil evaporation is thus 598 captured by the model, but the model seems to overestimate the response at high litter loads. It is not entirely 599 clear from the literature if these experiments have been carried on bare soil without vegetation. If crops are also 600 grown in the experiments, water can be used for transpiration which otherwise available for evaporation, which 601 could explain why the model overestimates the effect of surface litter on evaporation on bare soil without any 602 vegetation.

Ranaivoson et al. (2017) also investigated the runoff reduction under soil cover, but the results do not show a clear picture. In theory, surface litter reduces surface runoff and literature e generally supports this assumption (Kurothe et al., 2014; Wilson et al., 2008), but the magnitude of the effect varies. Fig. 4B compares our modeled results under different soil cover to the literature values from Ranaivoson et al. (2017). This shows that modeled results across all global cropland are on the upper end of the effect of surface runoff reduction from soil cover, but they are still well within the range reported by Ranaivoson et al. (2017).

609

610 [Fig. 4]

## 611 **5.5** N<sub>2</sub>O fluxes

- Switching from tillage to no-till management with leaving residues on the fields (NT\_R vs. T\_R) increases N<sub>2</sub>O emissions by a median of +19.9% (5<sup>th</sup>, 95<sup>th</sup> percentile: -5.8%, +341.0%) (Appendix 5A). The strongest increase is found in the warm temperate zone where the average increase is +25.1% (5<sup>th</sup>, 95<sup>th</sup> percentile: +5.9%, +195.3%) (Appendix 5B). The lowest increase is found in the tropical zone +12.6% (5<sup>th</sup>, 95<sup>th</sup> percentile: -9.1%, +67.7%) (Appendix 5C).
- The increase in  $N_2O$  emissions after switching to no-till is in agreement with several literature studies (Linn and Doran, 1984; Mei et al., 2018; van Kessel et al., 2013; Zhao et al., 2016) (Table 3). Mei et al. (2018) reports an overall increase of +17.3% (95<sup>th</sup> CI: +4.6%, +31.1%), which is in agreement with our median estimate. However, the regional patterns over the different climatic regimes are in less agreement. LPJmL simulations strongly underestimate the increase in N<sub>2</sub>O emissions in the tropical zone, whereas simulations overestimate the response in cool temperate and humid zones and to some extent in the warm temperate zone (Table 3).
- 623 In general, N<sub>2</sub>O emissions are formed in two separate processes: nitrification and denitrification. The increase 624 in N<sub>2</sub>O emissions after adapting to NT\_R is mainly resulting from denitrification in our simulations (+55.6%, 625 Fig. 5A). This increase is visible in most of the regions. The  $N_2O$  emissions resulting from nitrification decrease mostly (median of -7.2%, Fig. 5B) but tends to increase in dry areas. The increase in denitrification and decrease 626 627 in nitrification, results in a decrease in  $NO_3^-$  (median of -26.8%), which appears to be stronger in the tropical 628 areas as well (Fig. 5D). The transformation of mineral N to N<sub>2</sub>O is not only affected by the nitrification and 629 denitrification rates, but also by substrate availability ( $NH_4^+$  and  $NO_3^-$  respectively). These in turn are affected by 630 nitrification and denitrification rates, but also by other processes, such as plant uptake and leaching. In the Sahel zone for example, denitrification decreases and nitrification increases, but NO<sub>3</sub><sup>-</sup> stocks decline, because leaching 631 632 increase more strongly (Appendix 6).
- In LPJmL, denitrification and nitrification rates are mainly driven by soil moisture and to a lesser extent by 633 634 soil temperature, soil C (denitrification) and soil pH (nitrification). A strong increase in annually averaged soil 635 moisture can be observed after adapting NT\_R (median of +18.8%, Fig. 5C). Denitrification, as an anoxic process, increases non-linearly beyond a soil moisture threshold (von Bloh et al. 2018), whereas there is an 636 637 optimum soil moisture for nitrification, which is reduced at low and high soil moisture content. In wet regions, 638 as in the tropical and humid areas, nitrification is thus reduced by no-till practices whereas it increases in dryer 639 regions. The increase in soil moisture under NT\_R is caused by higher water infiltration rates and reduced soil 640 evaporation (see section 5.4). Also, no-till practices tend to increase bulk density and thus higher relative soil 641 moisture contents (Fig. 1) also affecting nitrification and denitrification rates and therefore  $N_2O$  emissions (van 642 Kessel et al., 2013; Linn and Doran, 1984).
- Empirical evidence shows that the introduction of no-till practices on  $N_2O$  emissions can cause both increases and decreases in  $N_2O$  emissions (van Kessel et al., 2013). This variation in response is not surprising, as tillage affects several biophysical factors that influence  $N_2O$  emissions (Fig. 1) in possibly contrasting manners (van Kessel et al., 2013; Snyder et al., 2009). For instance no-till can lower soil temperature exchange between soil and atmosphere, through the presence of litter residues, which can reduce  $N_2O$  emissions (Enrique et al. 1999). Reduced  $N_2O$  emissions under no-till compared to tillage MS can also be observed in the model results, for instance in Northern Europe and areas in Brazil (Appendix 5A).
- As several biophysical factors are affected, N<sub>2</sub>O emissions are characterized by significant spatial and temporal variability. As a result, the estimation of N<sub>2</sub>O emissions are accompanied with high uncertainties

(Butterbach-Bahl et al., 2013), which hampers the evaluation of the model results (Chatskikh et al., 2008;Mangalassery et al., 2015).

The deviations from the model results compared to the meta-analyses especially for specific climatic regimes 654 655 (i.e. tropical- and cool temperate) require further investigations and verification, including model simulations for 656 specific sites at which experiments have been conducted. The sensitivity of  $N_2O$  emissions highlights the importance of correctly simulating soil moisture. However, simulating soil moisture is subject to strong feedback 657 658 with vegetation performance and comes with uncertainties, as addressed by e.g. Seneviratne et al. (2010). The 659 effects of different management settings (as conducted here), on N<sub>2</sub>O emissions and soil moisture requires therefore further analyses, ideally in different climate regimes, soil types and in combination with other 660 661 management settings (e.g. N-fertilizers). We expect that further studies using this tillage implementation in LPJmL will further increase understanding of management effects on soil nitrogen dynamics. The great diversity 662 in observed responses in N<sub>2</sub>O emissions to management options (Mei et al. 2018) renders modeling these effects 663 as challenging, but we trust that the ability of LPJmL5.0-tillage to represent the different components can also 664 help to better understand their interaction under different environmental conditions. 665

666

667 [Fig. 5]

668

669 [Table 3]

## 670 **5.6 General discussion**

671 The implementation of tillage into the global ecosystem model LPJmL opens opportunities to assess the effects 672 of different tillage practices on agricultural productivity and its environmental impacts, such as nutrient cycles, 673 water consumption, GHG emissions and C sequestration and is a general model improvement to the previous 674 version of LPJmL (von Bloh et al., 2018). The implementation involved 1) the introduction of a surface litter pool that is incorporated into the soil column at tillage events and the subsequent effects on soil evaporation and 675 676 infiltration, 2) dynamically accounting for SOM content in computing soil hydraulic properties, and 3) simulating tillage effects on bulk density and the subsequent effects of changed soil water properties and all 677 678 water-dependent processes (Fig. 1).

679 In general, a global model implementation on tillage practices is difficult to evaluate, as effects are reported 680 often to be quite variable, depending on local soil and climatic conditions. The model results were evaluated with 681 data compiled from meta-analyses, which implies several limitations. Due to the limited amount of available 682 meta-analyses, not all fluxes and stocks could be evaluated within the different management scenarios. For the 683 evaluation we focused on productivity, soil and litter C stocks and fluxes, water fluxes and N<sub>2</sub>O dynamics. The 684 sample size in some of these meta-analyses was sometimes low, which may result in biases if not a representative set of climate and soil combinations was tested. Clearly a comparison of a small sample size to 685 686 simulations of the global cropland is challenging. Nevertheless, the meta-analyses gave the best overview of the 687 overall effects of tillage practices that have been reported for various individual experiments.

We find that the model results for NT\_R compared to T\_R are generally in agreement with literature with regard to magnitude and direction of the effects on C stocks and fluxes. Despite some disagreement between reported ranges in effects and model simulations, we find that the diversity in modeled responses across

691 environmental gradients is an asset of the model. The underlying model mechanisms as the initial decrease in 692 CO<sub>2</sub> emissions after introduction of no-till practices that can be maintained for longer time periods in moist 693 regions but is inverted in dry regions due to the feedback of higher water availability on plant productivity and 694 reduced turnover times and generally increasing soil carbon stocks (Fig. 3) are plausible and in line with general 695 process understanding. Certainly, the interaction of the different processes may not be captured correctly and 696 further research on this is needed. We trust that this model implementation, representing this complexity allows 697 for further research in this direction. For water fluxes the model seems to overestimate the effect of surface 698 residue cover on evaporation for high surface cover, but the evaluation is also constrained by the small number 699 of suitable field studies. Effects can also change over time so that a comparison needs to consider the timing, 700 history and duration of management changes and specific local climatic and soil conditions. The overall effect of 701 NT\_R compared to T\_R on  $N_2O$  emissions are in agreement with literature as well. However, the regional patterns over the different climatic regimes are in less agreement. N<sub>2</sub>O emissions are highly variable in space in 702 703 time and are very sensitive to soil water dynamics (Butterbach-Bahl et al., 2013). The simulation of soil water 704 dynamics differs per soil type as the calculation of the hydraulic parameters is texture specific. Moreover, these 705 parameters are now changed after a tillage event. The effects of tillage on N<sub>2</sub>O emissions, as well as other 706 processes that are driven by soil water (e.g. CO<sub>2</sub>, water dynamics) can therefore be different per soil type. The soil specific effects of tillage on N<sub>2</sub>O and CO<sub>2</sub> emissions was already studied by Abdalla et al. (2016) and Mei et 707 708 al. (2018). Abdalla et al. (2016) found that differences in CO<sub>2</sub> emissions between tilled and untilled soils are 709 largest in sandy soils (+29%), whereas the differences in clayey soils are much smaller (+12%). Mei et al. (2018) 710 found that clay content <20% significantly increases N<sub>2</sub>O emissions (+42.9%) after adapting to conservation tillage, whereas this effect for clay content >20% is smaller (+2.9%). These studies show that soil type specific 711 712 tillage effects on several processes can be of importance and should be investigated in more detail in future 713 studies. The interaction of all relevant processes is complex, as seen in Figure 1, which can also lead to high 714 uncertainties in the model. Again, we think that this model implementation captures substantial aspects of this 715 complexity and thus lays the foundation for further research. .

716 It is important to note that not all processes related to tillage and no-till are taken into account in the current 717 model implementation. For instance, NT\_R can improve soil structure (e.g., aggregates) due to increased faunal 718 activity (Martins et al., 2009), which can result in a decrease in BD. Although tillage can have several 719 advantages for the farmer, e.g. residue incorporation and topsoil loosening, it can also have several 720 disadvantages. For instance, tillage can cause compaction of the subsoil (Bertolino et al., 2010), which result in 721 an increase in BD (Podder et al., 2012) and creates a barrier for percolating water, leading to ponding and an 722 oversaturated topsoil. Strudley et al. (2008) however observed diverging effects of tillage and no-till on 723 hydraulic properties, such as BD, Ks and whc for different locations. They argue that affected processes of 724 agricultural management have complex coupled effects on soil hydraulic properties, as well as that variations in 725 space and time often lead to higher differences than the measured differences between the management 726 treatments. They also argue that characteristics of soil type and climate are unique for each location, which 727 cannot simply be transferred from one field location to another. A process-based representation of tillage effects 728 as in this extension of LPJmL allows for further studying management effects across diverse environmental 729 conditions, but also to refine model parameters and implementations where experimental evidence suggests 730 disagreement.

One of the primary reasons for tillage, weed control, is also not accounted for in LPJmL5.0-tillage or in other ecosystem models. As such, different tillage and residue management strategies can only be assessed with respect to their biogeochemical effects, but only partly with respect to their effects on productivity and not with respect to some environmental effects (e.g. pesticide use). Our model simulations show that crop yields increase under no-till practices in dry areas but decrease in wetter regions (Fig. 2). However, the median response is positive, which may be in part because the water saving effects from increased soil cover with residues are overestimated or because detrimental effects, such as competition with weeds, are not accounted for.

738 The included processes now allow us to analyze long term feedbacks of productivity on soil and litter C 739 stocks and N dynamics. Nevertheless the results need to be interpreted carefully, due to the capacity of the model 740 and implemented processes. We also find that the modeled impacts of tillage are very diverse in space as a result 741 of different framing conditions (soil, climate, management) and feedback mechanisms, such as improved 742 productivity in dry areas if residue cover increases plant available water. The process-based representation in the 743 LPJmL5.0-tillage of tillage and residue management and the effects on water fluxes such as evaporation and 744 infiltration at the global scale is unique in the context of global biophysical models (e.g. Friend et al. 2014, 745 (LeQuéré et al., 2018). Future research on improved parameterization and the implementation of more detailed 746 representation of tillage processes and the effects on soil water processes, changes in porosity and subsoil 747 compaction, effects on biodiversity and on soil N dynamics is needed in order to better assess the impacts of 748 tillage and residue management at the global scale. Data availability, the spatial resolution needed to resolve 749 processes, such as erosion, and model structure need to be considered in further model development (Lutz et al. 750 2019). As such, some processes, such as a detailed representation of soil crusting processes, may remain out of 751 reach for global-scale modeling.

#### 752 6 Conclusion

We described the implementation of tillage related processes into the global ecosystem model LPJmL5.0-tillage.
The extended model was tested under different management scenarios and evaluated by comparing to reported
impact ranges from meta-analyses on C, water and N dynamics as well as on crop yields.

756 We find that mostly arid regions benefit from a no-till management with leaving residues on the field, due to 757 the water saving effects of surface litter. We are able to broadly reproduce reported tillage effects on global 758 stocks and fluxes, as well as regional patterns of these changes, with LPJmL5.0-tillage but deviations in N-fluxes 759 need to be further examined. Not all effects of tillage, including one of its primary reasons, weed control, could 760 be accounted for in this implementation. Uncertainties mainly arise because of the multiple feedback 761 mechanisms affecting the overall response to tillage, especially as most processes are affected by soil moisture. 762 The processes and feedbacks presented in this implementation are complex and evaluation of effects is often 763 limited in the availability of reference data. Nonetheless, the implementation of more detailed tillage-related mechanics into global ecosystem model LPJmL improves our ability to represent different agricultural systems 764 765 and to understand management options for climate change adaptation, agricultural mitigation of GHG emissions 766 and sustainable intensification. We trust that this model implementation and the publication of the underlying 767 source code promote research on the role of tillage for agricultural production, its environmental impact and 768 global biogeochemical cycles.

769

770 *Code and data availability.* The source code and data is available upon request from the main author for the 771 review process and for selected collaborative projects. The source code will be generally available after final 772 publication of this paper and a DOI for access will be provided.

773

Author contributions. F.L and T.H. both share the lead authorship for this manuscript. They had an equal input in designing and conducting the model implementation, model runs, analysis and writing of the manuscript. S.R. contributed to simulation analysis and manuscript preparation/evaluation. J.H. contributed to the code implementation, evaluation and analysis and edited the paper. S.S. contributed to the code implementation and evaluation and edited the paper. W.v.B. contributed to the code implementation and edited the paper. J.S. contributed to the study design and edited the paper. C.M. contributed to the study design, supervised implementation, simulations and analyses and edited the paper.

781

782 *Competing interests.* All authors declare no competing interests.

783

784 Acknowledgements

785 F.L., T.H. and S.R. gratefully acknowledge the German Ministry for Education and Research (BMBF) for

funding this work, which is part of the MACMIT project (01LN1317A). J.H. acknowledges BMBF funding

through the SUSTAg project (031B0170A).

## 788 References

Abdalla, K., Chivenge, P., Ciais, P. and Chaplot, V.: No-tillage lessens soil CO2 emissions the most under arid and
sandy soil conditions: results from a meta-analysis, Biogeosciences, 13(12), 3619–3633, doi:10.5194/bg-133619-2016, 2016.

Armand, R., Bockstaller, C., Auzet, A.-V. and Van Dijk, P.: Runoff generation related to intra-field soil surface
characteristics variability: Application to conservation tillage context, Soil Tillage Res., 102(1), 27–37,
doi:https://doi.org/10.1016/j.still.2008.07.009, 2009.

Aslam, T., Choudhary, M. A. and Saggar, S.: Influence of land-use management on CO2 emissions from a silt loam
 soil in New Zealand, Agric. Ecosyst. Environ., 77(3), 257–262, doi:10.1016/S0167-8809(99)00102-4, 2000.

Balland, V., Pollacco, J. A. P. and Arp, P. A.: Modeling soil hydraulic properties for a wide range of soil conditions,
Ecol. Model., 219(3–4), 300–316, doi:10.1016/j.ecolmodel.2008.07.009, 2008.

799 Batjes, N.: ISRIC-WISE global data set of derived soil properties on a 0.5 by 0.5 degree grid (version 3.0), ISRIC –
 World Soil Information, Wageningen., 2005.

Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U. and Ziese, M.: A description
of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample
applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5(1), 71–99,
doi:https://doi.org/10.5194/essd-5-71-2013, 2013.

Bertolino, A. V. F. A., Fernandes, N. F., Miranda, J. P. L., Souza, A. P., Lopes, M. R. S. and Palmieri, F.: Effects of plough pan development on surface hydrology and on soil physical properties in Southeastern Brazilian plateau, J. Hydrol., 393(1), 94–104, doi:10.1016/j.jhydrol.2010.07.038, 2010.

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R., Ménard, C. B., Edwards, J. M., Hendry, M. A.,
Porson, A. and Gedney, N.: The Joint UK Land Environment Simulator (JULES), model description–Part 1:
energy and water fluxes, Geosci. Model Dev., 4(3), 677–699, 2011.

811 von Bloh, W., Schaphoff, S., Müller, C., Rolinski, S., Waha, K. and Zaehle, S.: Implementing the nitrogen cycle
into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0), Geosci. Model
Dev., 11(7), 2789–2812, doi:https://doi.org/10.5194/gmd-11-2789-2018, 2018.

814 Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H.,
MüLler, C., Reichstein, M. and Smith, B.: Modelling the role of agriculture for the 20th century global terrestrial
carbon balance, Glob. Change Biol., 13(3), 679–706, doi:10.1111/j.1365-2486.2006.01305.x, 2007.

817 Brady, N. C. and Weil, R. R.: The nature and properties of soils, Pearson Prentice Hall Upper Saddle River., 2008.

818 Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. and Zechmeister-Boltenstern, S.: Nitrous oxide
emissions from soils: how well do we understand the processes and their controls?, Philos. Trans. R. Soc. B Biol.
Sci., 368(1621), 20130122, 2013.

Katskikh, D., Olesen, J. E., Hansen, E. M., Elsgaard, L. and Petersen, B. M.: Effects of reduced tillage on net
greenhouse gas fluxes from loamy sand soil under winter crops in Denmark, Agric. Ecosyst. Environ., 128(1–2),
117–126, doi:10.1016/j.agee.2008.05.010, 2008.

825 117–120, doi:10.1010/j.agee.2008.05.010, 2008.

Chen, H., Hou, R., Gong, Y., Li, H., Fan, M. and Kuzyakov, Y.: Effects of 11 years of conservation tillage on soil
organic matter fractions in wheat monoculture in Loess Plateau of China, Soil Tillage Res., 106(1), 85–94,
doi:10.1016/j.still.2009.09.009, 2009.

King K., Gervois, S., Vuichard, N., Piao, S. L. and Viovy, N.: Effects of land use change and management on the
European cropland carbon balance, Glob. Change Biol., 17(1), 320–338, doi:10.1111/j.1365-2486.2010.02341.x,
2011.

Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R.
L. H. and Blyth, E.: The Joint UK Land Environment Simulator (JULES), model description–Part 2: carbon
fluxes and vegetation dynamics, Geosci. Model Dev., 4(3), 701–722, 2011.

836 Daigh, A. L. M. and DeJong-Hughes, J.: Fluffy soil syndrome: When tilled soil does not settle, J. Soil Water 837 Conserv., 72(1), 10A-14A, doi:10.2489/jswc.72.1.10A, 2017.

Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Berg, L. van de, Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L.,
Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K.,
Peubey, C., Rosnay, P. de, Tavolato, C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137(656), 553–597,
doi:10.1002/qj.828, 2011.

845 Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M.,
846 Heinke, J., Iizumi, T., Izaurralde, R. C., Mueller, N. D., Ray, D. K., Rosenzweig, C., Ruane, A. C. and Sheffield,
847 J.: The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0), Geosci.
848 Model Dev., 8(2), 261–277, doi:10.5194/gmd-8-261-2015, 2015.

849 Enrique, G. S., Braud, I., Jean-Louis, T., Michel, V., Pierre, B. and Jean-Christophe, C.: Modelling heat and water
exchanges of fallow land covered with plant-residue mulch, Agric. For. Meteorol., 97(3), 151–169,
doi:10.1016/S0168-1923(99)00081-7, 1999.

Fader, M., Rost, S., Müller, C., Bondeau, A. and Gerten, D.: Virtual water content of temperate cereals and maize:
Present and potential future patterns, J. Hydrol., 384(3–4), 218–231, doi:10.1016/j.jhydrol.2009.12.011, 2010.

854 Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts, R., Cadule, P., Ciais, P., Clark, D. B., Dankers, R.,

Falloon, P. D., Ito, A., Kahana, R., Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick, R., Peylin, P.,
Schaphoff, S., Vuichard, N., Warszawski, L., Wiltshire, A. and Woodward, F. I.: Carbon residence time
dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2, Proc. Natl.

858 Acad. Sci., 111(9), 3280–3285, doi:10.1073/pnas.1222477110, 2014.

859 Govers, G., Vandaele, K., Desmet, P., Poesen, J. and Bunte, K.: The role of tillage in soil redistribution on hillslopes, Eur. J. Soil Sci., 45(4), 469–478, 1994.

861 Green, T. R., Ahuja, L. R. and Benjamin, J. G.: Advances and challenges in predicting agricultural management 862 effects on soil hydraulic properties, Geoderma, 116(1–2), 3–27, doi:10.1016/S0016-7061(03)00091-0, 2003.

863 Gregory, J. M.: Soil cover prediction with various amounts and types of crop residue, Trans. ASAE, 25(5), 1333–
1337, doi:10.13031/2013.33723, 1982.

865 Harris, I., Jones, P. D., Osborn, T. J. and Lister, D. H.: Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset, Int. J. Climatol., 34(3), 623–642, doi:10.1002/joc.3711, 2014.

Hillel, D.: Chapter 12 Soil temperature and heat flow, in Introduction to Envrionmental Soil Physics, pp. 215–234,
Elsevier Academic Press Inc, Amsterdam., 2004.

Holland, J. M.: The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence,
Agric. Ecosyst. Environ., 103(1), 1–25, 2004.

871 Horton, R., Horn, R., Bachmann, J. and Peth, S.: Essential Soil Physics - An introduction to soil processes,
872 functions, structure and mechanic, E. Schweizerbart'sche Verlagsbuchhandlung., 2016.

873 Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M. and Lucht, W.: Water savings potentials of 874 irrigation systems: global simulation of processes and linkages, Hydrol. Earth Syst. Sci., 19(7), 3073, 2015.

875 Jägermeyr, J., Gerten, D., Schaphoff, S., Heinke, J., Lucht, W. and Rockström, J.: Integrated crop water
management might sustainably halve the global food gap, Environ. Res. Lett., 11(2), 025002, doi:10.1088/17489326/11/2/025002, 2016.

878 Jarvis, P. G. and McNaughton, K. G.: Stomatal control of transpiration: scaling up from leaf to region, Adv. Ecol.
879 Res., 15, 1–49, doi:10.1016/S0065-2504(08)60119-1, 1986.

van Kessel, C., Venterea, R., Six, J., Adviento-Borbe, M. A., Linquist, B. and Van Groenigen, K. J.: Climate,
duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis, Glob. Change
Biol., 19(1), 33–44, 2013.

Klein Goldewijk, K., Beusen, A., Van Drecht, G. and De Vos, M.: The HYDE 3.1 spatially explicit database of
human-induced global land-use change over the past 12,000 years: HYDE 3.1 Holocene land use, Glob. Ecol.
Biogeogr., 20(1), 73–86, doi:10.1111/j.1466-8238.2010.00587.x, 2010.

Kurothe, R. S., Kumar, G., Singh, R., Singh, H. B., Tiwari, S. P., Vishwakarma, A. K., Sena, D. R. and Pande, V.
C.: Effect of tillage and cropping systems on runoff, soil loss and crop yields under semiarid rainfed agriculture
in India, Soil Tillage Res., 140, 126–134, doi:10.1016/j.still.2014.03.005, 2014.

Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P.,
Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D.,
Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S.,
Fritzsche, D. and Nolan, M.: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry
and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes,
Atmospheric Chem. Phys. 13(16), 7007, 8018. doi:https://doi.org/10.5104/opp.13.7007.2013, 2013.

894 Atmospheric Chem. Phys., 13(16), 7997–8018, doi:https://doi.org/10.5194/acp-13-7997-2013, 2013.

895 LeQuéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. 896 P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E., Barbero, L., Becker, M., Betts, R. A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Cosca, C. E., Cross, J., 897 Currie, K., Gasser, T., Harris, I., Hauck, J., Haverd, V., Houghton, R. A., Hunt, C. W., Hurtt, G., Ilyina, T., Jain, 898 899 A. K., Kato, E., Kautz, M., Keeling, R. F., Klein Goldewijk, K., Körtzinger, A., Landschützer, P., Lefèvre, N., 900 Lenton, A., Lienert, S., Lima, I., Lombardozzi, D., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., 901 Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., Padin, X. A., Peregon, A., Pfeil, B., Pierrot, D., Poulter, B., Rehder, 902 G., Reimer, J., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Tian, H., Tilbrook, B., 903 Tubiello, F. N., Laan-Luijkx, I. T. van der, Werf, G. R. van der, Heuven, S. van, Viovy, N., Vuichard, N., 904 Walker, A. P., Watson, A. J., Wiltshire, A. J., Zaehle, S. and Zhu, D.: Global Carbon Budget 2017, Earth Syst. 905 Sci. Data, 10(1), 405-448, doi:https://doi.org/10.5194/essd-10-405-2018, 2018.

906 Levis, S., Hartman, M. D. and Bonan, G. B.: The Community Land Model underestimates land-use CO 2 emissions 907 by neglecting soil disturbance from cultivation, Geosci. Model Dev., 7(2), 613–620, 2014.

Linn, D. M. and Doran, J. W.: Effect of water-filled pore space on carbon dioxide and nitrous oxide production in
tilled and nontilled soils 1, Soil Sci. Soc. Am. J., 48(6), 1267–1272, 1984.

910 Lugato, E., Leip, A. and Jones, A.: Mitigation Potential of Soil Carbon Management Overestimated by Neglecting
911 N2O Emissions, Nat. Clim. Change, 8(3), 219, 2018.

912 Lutz, F., Stoorvogel, J. J. and Müller, C.: Options to model the effects of tillage on N2O emissions at the global
913 scale, Ecol. Model., 392, 212–225, 2019.

Maharjan, G. R., Prescher, A.-K., Nendel, C., Ewert, F., Mboh, C. M., Gaiser, T. and Seidel, S. J.: Approaches to
model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem
models, Soil Tillage Res., 180, 210–221, 2018.

917 Mangalassery, S., Sjoegersten, S., Sparkes, D. L. and Mooney, S. J.: Examining the potential for climate change 918 mitigation from zero tillage, J. Agric. Sci., 153(7), 1151–1173, doi:10.1017/S0021859614001002, 2015.

919 Martins, I. C. F., Cividanes, F. J., Barbosa, J. C., Araújo, E. de S. and Haddad, G. Q.: Faunal analysis and 920 population fluctuation of Carabidae and Staphylinidae (Coleoptera) in no-tillage and conventional tillage 921 systems, Rev. Bras. Entomol., 53(3), 432–443, 2009.

Mauser, W. and Bach, H.: PROMET–Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds, J. Hydrol., 376(3–4), 362–377, 2009.

Mei, K., Wang, Z., Huang, H., Zhang, C., Shang, X., Dahlgren, R. A., Zhang, M. and Xia, F.: Stimulation of N 2 O
emission by conservation tillage management in agricultural lands: A meta-analysis, Soil Tillage Res., 182, 86–
93, doi:10.1016/j.still.2018.05.006, 2018.

927 Minasny, B. and McBratney, A. B.: Limited effect of organic matter on soil available water capacity, Eur. J. Soil 928 Sci., 69(1), 39–47, 2018.

929 Nachtergaele, F., Van Velthuizen, H., Verelst, L., Batjes, N., Dijkshoorn, K., van Engelen, V., Fischer, G., Jones,
930 A., Montanarella, L. and Petri, M.: Harmonized World Soil Database (version 1.1). Food and Agriculture
931 Organization of the United Nations. Rome, Italy and IIASA, Laxenburg, Austria., [online] Available from:
932 http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/

933 (Accessed 12 July 2018), 2009.

934 Ogle, S. M., Breidt, F. J. and Paustian, K.: Agricultural management impacts on soil organic carbon storage under
moist and dry climatic conditions of temperate and tropical regions, Biogeochemistry, 72(1), 87–121,
doi:10.1007/s10533-004-0360-2, 2005.

937 Ogle, S. M., Swan, A. and Paustian, K.: No-till management impacts on crop productivity, carbon input and soil
938 carbon sequestration, Agric. Ecosyst. Environ., 149, 37–49, doi:10.1016/j.agee.2011.12.010, 2012.

939 Oleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter, J., Levis, S., Swenson, S. C.,
Thornton, E. and Feddema, J.: Technical description of version 4.0 of the Community Land Model (CLM),
2010.

942 Olin, S., Lindeskog, M., Pugh, T. a. M., Schurgers, G., Wårlind, D., Mishurov, M., Zaehle, S., Stocker, B. D.,
943 Smith, B. and Arneth, A.: Soil carbon management in large-scale Earth system modelling: implications for crop
944 yields and nitrogen leaching, Earth Syst. Dyn., 6(2), 745–768, doi:https://doi.org/10.5194/esd-6-745-2015, 2015.

945 Oorts, K., Merckx, R., Gréhan, E., Labreuche, J. and Nicolardot, B.: Determinants of annual fluxes of CO2 and N2O
946 in long-term no-tillage and conventional tillage systems in northern France, Soil Tillage Res., 95(1), 133–148,
947 doi:10.1016/j.still.2006.12.002, 2007.

Pittelkow, C. M., Liang, X., Linquist, B. A., van Groenigen, K. J., Lee, J., Lundy, M. E., van Gestel, N., Six, J.,
Venterea, R. T. and van Kessel, C.: Productivity limits and potentials of the principles of conservation
agriculture, Nature, 517(7534), 365–368, doi:10.1038/nature13809, 2015a.

Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., van Groenigen, K. J., Lee, J., van Gestel, N., Six, J.,
Venterea, R. T. and van Kessel, C.: When does no-till yield more? A global meta-analysis, Field Crops Res.,
183, 156–168, doi:10.1016/j.fcr.2015.07.020, 2015b.

Podder, M., Akter, M., Saifullah, A. and Roy, S.: Impacts of Plough Pan on Physical and Chemical Properties of
 Soil, J. Environ. Sci. Nat. Resour., 5(1), doi:10.3329/jesnr.v5i1.11594, 2012.

956 Portmann, F. T., Siebert, S. and Döll, P.: MIRCA2000—Global monthly irrigated and rainfed crop areas around the
957 year 2000: A new high-resolution data set for agricultural and hydrological modeling, Glob. Biogeochem.
958 Cycles, 24(1), GB1011, doi:10.1029/2008GB003435, 2010.

Pribyl, D. W.: A critical review of the conventional SOC to SOM conversion factor, Geoderma, 156(3–4), 75–83,
doi:10.1016/j.geoderma.2010.02.003, 2010.

961 Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux and evaporation using large-scale 962 parameters, Mon. Weather Rev., 100(2), 81–92, 1972.

Pugh, T. A. M., Arneth, A., Olin, S., Ahlström, A., Bayer, A. D., Klein Goldewijk, K., Lindeskog, M. and
Schurgers, G.: Simulated carbon emissions from land-use change are substantially enhanced by accounting for
agricultural management, Environ. Res. Lett., 10(12), 124008, doi:10.1088/1748-9326/10/12/124008, 2015.

966 Ranaivoson, L., Naudin, K., Ripoche, A., Affholder, F., Rabeharisoa, L. and Corbeels, M.: Agro-ecological
967 functions of crop residues under conservation agriculture. A review, Agron. Sustain. Dev., 37(26), 1–17,
968 doi:10.1007/s13593-017-0432-z, 2017.

Saxton, K. E. and Rawls, W. J.: Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic
Solutions, Soil Sci. Soc. Am. J., 70(5), 1569–1577, doi:10.2136/sssaj2005.0117, 2006.

971 Schaphoff, S., Heyder, U., Ostberg, S., Gerten, D., Heinke, J. and Lucht, W.: Contribution of permafrost soils to the 972 global carbon budget, Environ. Res. Lett., 8(1), 014026, doi:10.1088/1748-9326/8/1/014026, 2013.

Schaphoff, S., Forkel, M., Müller, C., Knauer, J., Bloh, W. von, Gerten, D., Jägermeyr, J., Lucht, W., Rammig, A.,
Thonicke, K. and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 2: Model
evaluation, Geosci. Model Dev., 11(4), 1377–1403, doi:https://doi.org/10.5194/gmd-11-1377-2018, 2018a.

976 Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., Heinke, J.,
977 Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S. and Waha, K.: LPJmL4 – a
978 dynamic global vegetation model with managed land – Part 1: Model description, Geosci Model Dev, 11(4),
979 1343–1375, doi:10.5194/gmd-11-1343-2018, 2018b.

Scopel, E., Da Silva, F. A. M., Corbeels, M., Affholder, F. and Maraux, F.: Modelling crop residue mulching effects
on water use and production of maize under semi-arid and humid tropical conditions, Agronomie, 24(6–7), 383–
395, doi:10.1051/agro:2004029, 2004.

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B. and Teuling, A. J.:
Investigating soil moisture-climate interactions in a changing climate: A review, Earth-Sci. Rev., 99(3–4), 125–
161, 2010.

986 Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes,
987 M. T. and others: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ
988 dynamic global vegetation model, Glob. Change Biol., 9(2), 161–185, doi:10.1046/j.1365-2486.2003.00569.x,
989 2003.

Six, J., Ogle, S. M., Jay breidt, F., Conant, R. T., Mosier, A. R. and Paustian, K.: The potential to mitigate global warming with no-tillage management is only realized when practised in the long term, Glob. Change Biol., 10(2), 155–160, doi:10.1111/j.1529-8817.2003.00730.x, 2004.

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C.,
Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon,
S., Wattenbach, M. and Smith, J.: Greenhouse gas mitigation in agriculture, Philos. Trans. R. Soc. B Biol. Sci.,
363(1492), 789–813, doi:10.1098/rstb.2007.2184, 2008.

997 Snyder, C. S., Bruulsema, T. W., Jensen, T. L. and Fixen, P. E.: Review of greenhouse gas emissions from crop
production systems and fertilizer management effects, Agric. Ecosyst. Environ., 133(3–4), 247–266,
doi:10.1016/j.agee.2009.04.021, 2009.

1000 Steinbach, H. S. and Alvarez, R.: Changes in soil organic carbon contents and nitrous oxide emissions after 1001 introduction of no-till in Pampean agroecosystems, J. Environ. Qual., 35(1), 3–13, 2006.

1002 Strudley, M. W., Green, T. R. and Ascough, J. C.: Tillage effects on soil hydraulic properties in space and time: 1003 State of the science, Soil Tillage Res., 99(1), 4–48, doi:10.1016/j.still.2008.01.007, 2008.

1004 Tans, P. and Keeling, R.: Trends in Atmospheric Carbon Dioxide, National Oceanic & Atmospheric Administration,

1005 Earth System Research Laboratory (NOAA/ESRL), available at: https://www.esrl.noaa.gov/gmd/ccgg/trends/,

1006 [online] Available from: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (Accessed 12 July 2018), 2015.

1007 Tian, H., Chen, G., Liu, M., Zhang, C., Sun, G., Lu, C., Xu, X., Ren, W., Pan, S. and Chappelka, A.: Model
estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems
of the southern United States during 1895–2007, For. Ecol. Manag., 259(7), 1311–1327, 2010.

1010 Van Genuchten, M.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1, Soil
 1011 Sci. Soc. Am. J., 44, doi:10.2136/sssaj1980.03615995004400050002x, 1980.

1012 Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y. 1013 A., Padarian, J., Schaap, M. G., Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M. J., Weihermüller, L.,

A., Padarian, J., Schaap, M. G., Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M. J., Weihermüller, L.,
 Zacharias, S., Zhang, Y. and Vereecken, H.: Pedotransfer Functions in Earth System Science: Challenges and

1015 Perspectives: PTFs in Earth system science perspective, Rev. Geophys., 55(4), 1199–1256, 1016 doi:10.1002/2017RG000581, 2017.

1017 Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G. and Genuchten, M. T. van: Using
Pedotransfer Functions to Estimate the van Genuchten–Mualem Soil Hydraulic Properties: A Review, Vadose
Zone J., 9(4), 795, doi:10.2136/vzj2010.0045, 2010.

1020 Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. H.,
1021 Amelung, W., Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P.,
1022 Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H. J., Heppell, J., Horn, R.,
1023 Huisman, J. A., Jacques, D., Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A.,
1024 Minasny, B., Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe,
1025 E. C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S. E. a. T. M., Vogel, H. J., Vrugt, J. A.,
1026 Wöhling, T. and Young, I. M.: Modeling Soil Processes: Review, Key Challenges, and New Perspectives,
1027 Vadose Zone J., 15(5), doi:10.2136/vzj2015.09.0131, 2016.

- White, J. W., Jones, J. W., Porter, C., McMaster, G. S. and Sommer, R.: Issues of spatial and temporal scale in modeling the effects of field operations on soil properties, Oper. Res., 10(3), 279–299, doi:10.1007/s12351-009-0067-1, 2010.
- 1031 Willekens, K., Vandecasteele, B., Buchan, D. and De Neve, S.: Soil quality is positively affected by reduced tillage 1032 and compost in an intensive vegetable cropping system, Appl. Soil Ecol., 82, 61–71, 1033 doi:10.1016/j.apsoil.2014.05.009, 2014.
- 1034 Williams, J. R., Renard, K. G. and Dyke, P. T.: EPIC: A new method for assessing erosion's effect on soil 1035 productivity, J. Soil Water Conserv., 38(5), 381–383, 1983.

1036 Williams, J. R., Izaurralde, R. C., Williams, C. and Steglich, E. M.: Agricultural Policy / Environmental eXtender
1037 Model. Theoretical Documentation. Version 0806. AgriLIFE Research. Texas A&M System.,
1038 https://agrilifecdn.tamu.edu/epicapex/files/2017/03/THE-APEX0806-theoretical-documentation-Oct-2015.pdf,
1039 2015.

1040 Wilson, G. V., McGregor, K. C. and Boykin, D.: Residue impacts on runoff and soil erosion for different corn plant 1041 populations, Soil Tillage Res., 99(2), 300–307, doi:10.1016/j.still.2008.04.001, 2008.

1042 Wösten, J. H. M., Lilly, A., Nemes, A. and Le Bas, C.: Development and use of a database of hydraulic properties of 1043 European soils, Geoderma, 90(3–4), 169–185, doi:10.1016/S0016-7061(98)00132-3, 1999.

1044 Zhao, X., Liu, S.-L., Pu, C., Zhang, X.-Q., Xue, J.-F., Zhang, R., Wang, Y.-Q., Lal, R., Zhang, H.-L. and Chen, F.:
1045 Methane and nitrous oxide emissions under no-till farming in China: a meta-analysis, Glob. Change Biol., 22(4),
1046 1372–1384, 2016.

| Scenario                                         | Simulation<br>abbreviation | Retained residue<br>fraction on field | Tillage efficiency<br>(TLFrac) | Mixing efficiency of tillage<br>(mE) | Litter cover <sup>+</sup><br>(%) | Litter amount $(dry matter g m^2)$ |
|--------------------------------------------------|----------------------------|---------------------------------------|--------------------------------|--------------------------------------|----------------------------------|------------------------------------|
| Tillage + residues on 100% scaled cropland       | T_R                        | 1                                     | 0.95                           | 0.9                                  | variable*                        | variable*                          |
| Tillage + no residues on<br>100% scaled cropland | T_NR                       | 0.1                                   | 0.95                           | 0.9                                  | variable*                        | variable*                          |
| No-till + residues on 100% scaled cropland       | NT_R                       | 1                                     | 0                              | 0                                    | variable*                        | variable*                          |
| No-till + no residues on<br>100% scaled cropland | NT_NR                      | 0.1                                   | 0                              | 0                                    | variable*                        | variable*                          |
| No-till + no residues on<br>bare soil            | NT_NR_bs                   | 0                                     | 0                              | 0                                    | 0                                | 0                                  |
| No-till + residues on bare soil (1)              | NT_R_bs1                   | 1                                     | 0                              | 0                                    | 10                               | 17                                 |
| No-till + residues on bare soil (2)              | NT_R_bs2                   | 1                                     | 0                              | 0                                    | 30                               | 60                                 |
| No-till + residues on bare soil (3)              | NT_R_bs3                   | 1                                     | 0                              | 0                                    | 50                               | 117                                |
| No-till + residues on bare soil (4)              | NT_R_bs4                   | 1                                     | 0                              | 0                                    | 70                               | 202                                |
| No-till + residues on bare soil (5)              | NT_R_bs5                   | 1                                     | 0                              | 0                                    | 90                               | 383                                |

Table 1: LPJmL simulation settings and tillage parameters used in the stylized simulations for model evaluation.

<sup>+</sup>Litter cover is calculated following Gregory (1982). \*Litter amounts and litter cover are modeled internally.

Table 2: Percentage values for each soil textural class of silt, sand and clay content used in LPJmL and correspondent hydraulic parameters before and after tillage with 0% and 8% SOM using the Saxton and Rawls (2006) pedotransfer function.

|                 |          |          |          | pı                | e-tillage        | ,0% SC   | OM** pre-tillage, 8% SOM |      |                  | after tillage <sup>++</sup> , 0% SOM |        |      |                  | after tillage <sup>++</sup> , 8% SOM |        |      |                  |          |        |
|-----------------|----------|----------|----------|-------------------|------------------|----------|--------------------------|------|------------------|--------------------------------------|--------|------|------------------|--------------------------------------|--------|------|------------------|----------|--------|
| Soil class      | Silt (%) | Sand (%) | Clay (%) | whc <sup>++</sup> | W <sub>sat</sub> | $W_{fc}$ | Ks                       | whc  | W <sub>sat</sub> | $W_{fc}$                             | Ks     | whc  | W <sub>sat</sub> | $W_{fc}$                             | Ks     | whc  | W <sub>sat</sub> | $W_{fc}$ | Ks     |
| Sand            | 5        | 92       | 3        | 0.04              | 0.42             | 0.05     | 152.05                   | 0.09 | 0.71             | 0.19                                 | 361.98 | 0.08 | 0.59             | 0.09                                 | 343.67 | 0.14 | 0.80             | 0.21     | 498.92 |
| Loamy sand      | 12       | 82       | 6        | 0.06              | 0.40             | 0.09     | 83.23                    | 0.12 | 0.70             | 0.23                                 | 244.20 | 0.10 | 0.58             | 0.13                                 | 230.13 | 0.17 | 0.79             | 0.25     | 360.89 |
| Sandy loam      | 32       | 58       | 10       | 0.12              | 0.40             | 0.17     | 32.03                    | 0.18 | 0.70             | 0.31                                 | 152.75 | 0.15 | 0.58             | 0.21                                 | 125.75 | 0.23 | 0.79             | 0.33     | 239.93 |
| Loam            | 39       | 43       | 18       | 0.15              | 0.41             | 0.26     | 10.69                    | 0.21 | 0.69             | 0.37                                 | 80.46  | 0.19 | 0.59             | 0.30                                 | 64.76  | 0.25 | 0.78             | 0.39     | 143.99 |
| Silty loam      | 70       | 17       | 13       | 0.22              | 0.42             | 0.31     | 5.49                     | 0.29 | 0.75             | 0.42                                 | 99.77  | 0.26 | 0.59             | 0.34                                 | 48.23  | 0.32 | 0.83             | 0.44     | 155.38 |
| Sandy clay loam | 15       | 58       | 27       | 0.12              | 0.42             | 0.28     | 6.60                     | 0.17 | 0.63             | 0.38                                 | 36.33  | 0.16 | 0.59             | 0.32                                 | 48.79  | 0.21 | 0.74             | 0.40     | 87.40  |
| Clay loam       | 34       | 32       | 34       | 0.17              | 0.47             | 0.38     | 2.29                     | 0.20 | 0.65             | 0.43                                 | 24.96  | 0.21 | 0.63             | 0.41                                 | 26.22  | 0.23 | 0.75             | 0.45     | 63.73  |
| Silty clay loam | 56       | 10       | 34       | 0.21              | 0.50             | 0.42     | 1.93                     | 0.23 | 0.69             | 0.45                                 | 34.54  | 0.24 | 0.65             | 0.45                                 | 22.45  | 0.25 | 0.78             | 0.47     | 73.85  |
| Sandy clay      | 6        | 52       | 42       | 0.15              | 0.47             | 0.40     | 0.72                     | 0.16 | 0.58             | 0.44                                 | 5.64   | 0.18 | 0.63             | 0.44                                 | 16.73  | 0.20 | 0.70             | 0.47     | 29.30  |
| Silty clay loam | 47       | 6        | 47       | 0.20              | 0.56             | 0.48     | 1.64                     | 0.18 | 0.65             | 0.46                                 | 18.69  | 0.23 | 0.69             | 0.50                                 | 16.67  | 0.20 | 0.76             | 0.48     | 50.99  |
| Clay            | 20       | 22       | 58       | 0.19              | 0.58             | 0.53     | 0.39                     | 0.14 | 0.58             | 0.48                                 | 2.87   | 0.21 | 0.71             | 0.55                                 | 8.62   | 0.16 | 0.71             | 0.50     | 20.03  |
| Rock*           | 0        | 99       | 1        | 0.00              | 0.01             | 0.01     | 0.10                     | 0.00 | 0.01             | 0.01                                 | 0.10   | 0.00 | 0.01             | 0.01                                 | 0.10   | 0.00 | 0.01             | 0.01     | 0.10   |

\*Soil class rock is not affected by SOM changes and tillage practices

\*\*For SOM we only consider the C part in SOM in  $\mathrm{gC/m^2}$ 

<sup>+</sup>Tillage with a *mE* of 0.9 for conventional tillage

<sup>++</sup>whc is calculated as: whc =  $W_{fc}$ -  $W_{pwp}$  in all cases

| Variable/Scenario                         | Soil depth (m) | # of paired treatments | Literature mean (95% interval) | Time<br>horizon<br>(years) | Modeled<br>response<br>(median %) | Modeled response (5% and<br>95% percentile) | Reference                                |
|-------------------------------------------|----------------|------------------------|--------------------------------|----------------------------|-----------------------------------|---------------------------------------------|------------------------------------------|
| notill residue - till<br>_residue         |                |                        |                                |                            |                                   |                                             |                                          |
| SOM (0.3m)                                | 0-0.3          | 101                    | +5.0 (+1.0, +9.2)*‡            | 10§                        | +4.6                              | +1.0, +12.9                                 | Abdalla et al., 2016                     |
| CO2                                       |                | 113                    | -23.0 (-35.0, -13.8)*          | **                         | -11.8                             | -24.5, +2.1                                 | Abdalla et al., 2016                     |
| N2O                                       |                | 98                     | +17.3 (+4.6, +31.1)*           | **                         | +19.9                             | -5.8, +341.0                                | Mei et al., 2018                         |
| N2O (tropical)                            |                | 123                    | +74.1 (+34.8, +119.9)†‡        | **                         | +12.6                             | -9.1, +67.7                                 | Mei et al., 2018                         |
| N2O (warm temperate)                      |                | 62                     | +17.0 (+6.5, +29.9)†‡          | **                         | +25.1                             | +5.9, +195.3                                | Mei et al., 2018                         |
| N2O (cool temperate)                      |                | 27                     | -1.7 (-10.5, +8.4)†‡           | **                         | +23.6                             | -2.9, +783.1                                | Mei et al., 2018                         |
| N2O (arid)                                |                | 56                     | +35.0 (+7.5, +69.0)*           | **                         | +22.5                             | -1.8, +533.1                                | Kessel et al., 2013                      |
| N2O (humid)                               |                | 183                    | -1.5 (-11.6, +11.1)*           | **                         | +16.7                             | -15.6, +58.6                                | Kessel et al., 2013<br>Pittelkow et al.  |
| Yield (wheat)                             |                | 47                     | -2.6 (-8.2, +3.8)*             | 10§                        | +1.7                              | -24.4, +54.8                                | 2015b<br>Pittelkow et al.                |
| Yield (maize)                             |                | 64                     | -7.6 (-10.1, -4.3)*            | 10§                        | +1.0                              | -34.2, +55.6                                | 2015b<br>Pittelkow et al.                |
| Yield (rapeseed)                          |                | 10                     | +0.7 (-2.8, +4.1)*             | 10§                        | +2.4                              | -34.8, +61.0                                | 2015b                                    |
| till noresidue - notill<br>noresidue      |                |                        |                                |                            |                                   |                                             |                                          |
| SOM (0.3m)                                | 0-0.3          | 46                     | -12.0 (-15.3, -5.1)*           | 20§                        | -17.6                             | -43.0, -0.4                                 | Abdalla et al., 2016                     |
| CO2                                       |                | 46                     | +18.0 (+9.4, +27.3)*           | 20§                        | +20.9                             | -1.2, +125.8                                | Abdalla et al., 2016<br>Pittelkow at al. |
| Yield (wheat) B                           |                | 8                      | +2.7 (-6.3, +12.7)*            | 10§                        | -4.2                              | -14.1, +10.4                                | 2015b<br>Pittelkow et al.                |
| Yield (maize) B<br>till noresidues - till |                | 12                     | -25.4 (-14.7, -34.1)*          | 10§                        | -2.8                              | -22.5, +31.3                                | 2015b                                    |
| residue                                   |                |                        |                                |                            |                                   |                                             |                                          |
| N2O                                       |                | 105                    | +1.3 (-5.4, +8.2)*‡            | **                         | -9.4                              | -21.8, +3.9                                 | Mei et al., 2018                         |

Table 3: Comparison of simulated model output and literature values from meta-analysis.

\*estimated from graph \*\*Time horizon of the study is unclear in the meta-analysis. The average over the first three years of model results is taken.

† includes conservation till

†† at least 30% on soil
‡ Residue management for conventional till unsure
§ Time horizon not explicitly mentioned by author

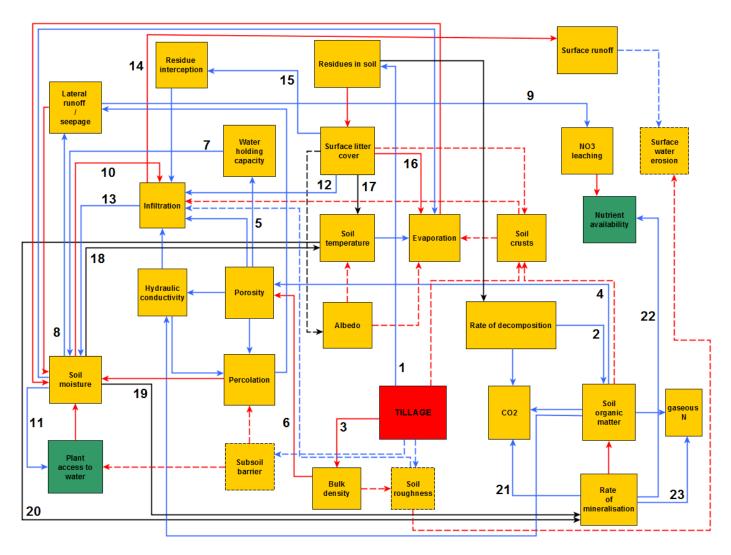
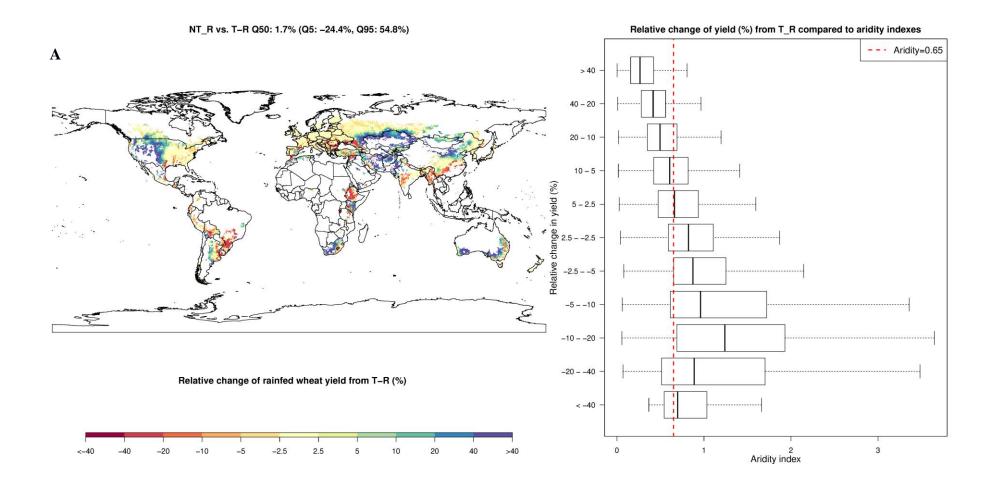




Figure 1: Flow chart diagram of feedback processes caused by tillage, which are considered (solid lines) and not considered (dashed lines) in this implementation in LPJmL5.0tillage. Blue lines highlight positive feedbacks, red negative and black are ambiguous feedbacks. The numbers in the figure indicate the processes described in chapter 2.



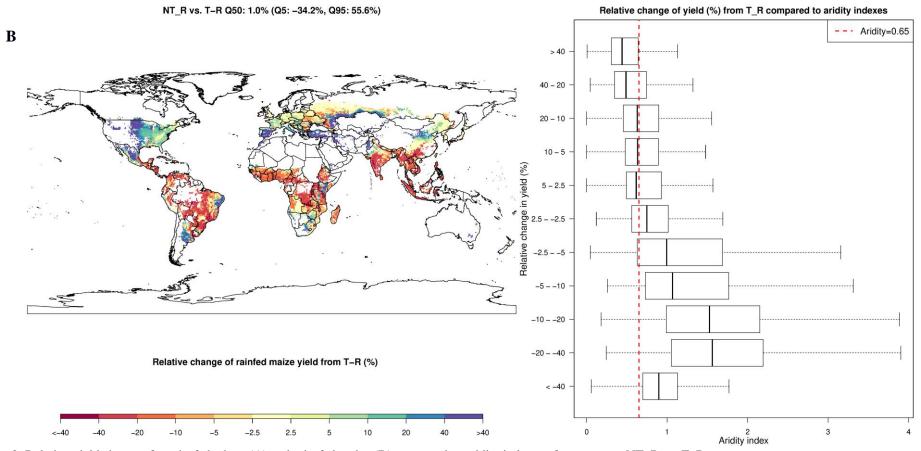



Figure 2: Relative yield changes for rain-fed wheat (A) and rain-fed maize (B) compared to aridity indexes after ten years NT\_R vs. T\_R.

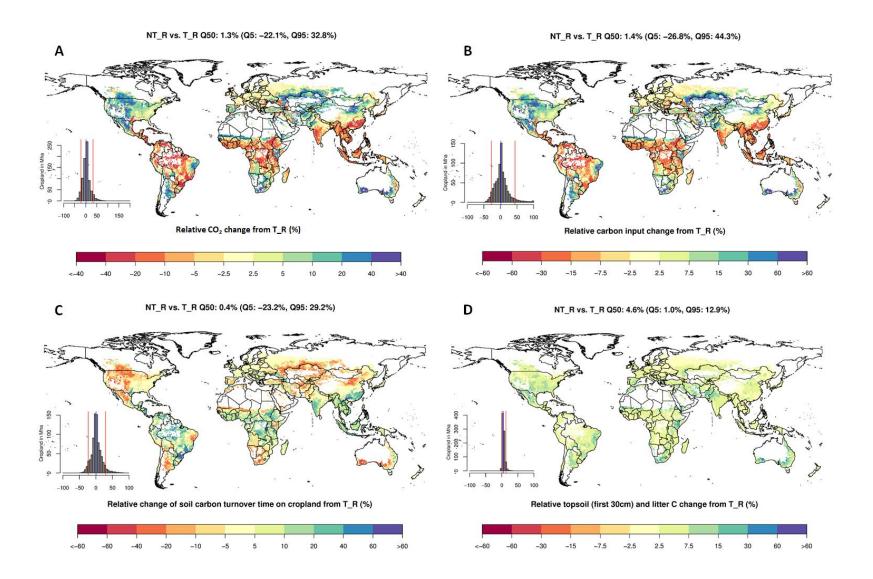



Figure 3: Relative C dynamics for NT\_R vs. T\_R comparison after ten years of simulation experiment (average of year 9-11) for relative CO<sub>2</sub> change (A), relative C input change (B), relative change of soil C turnover time (C), relative topsoil and litter C change (D).

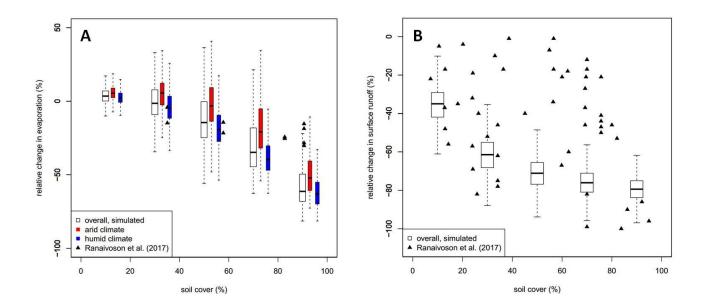
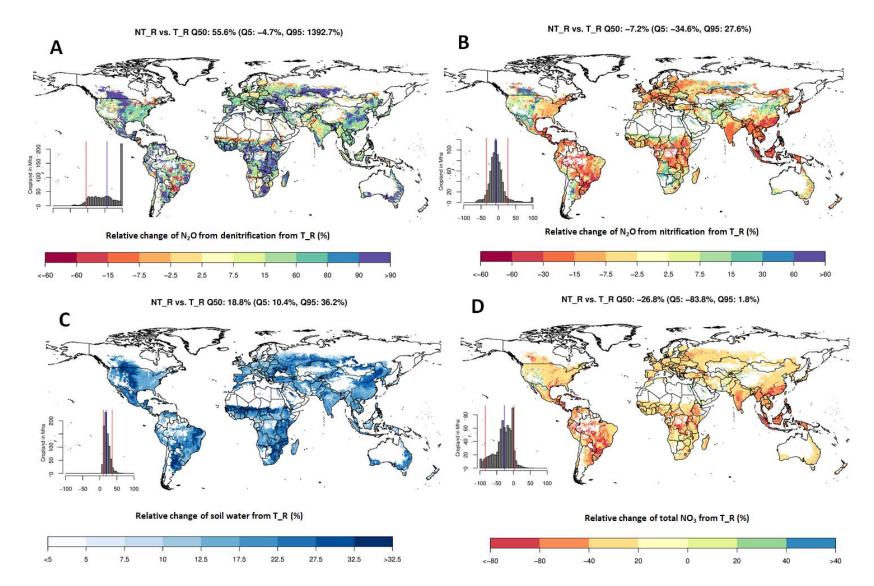
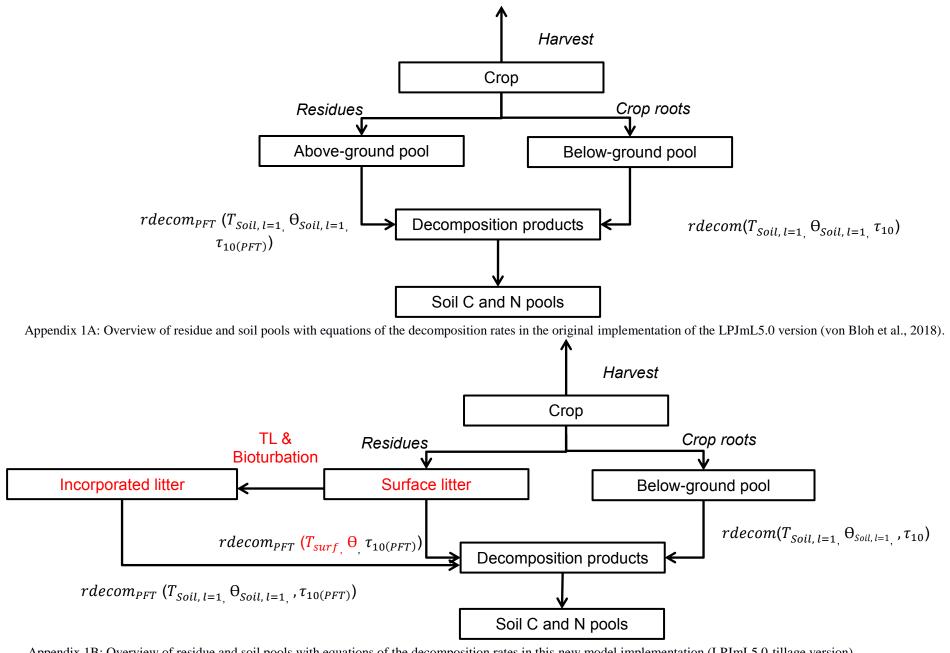
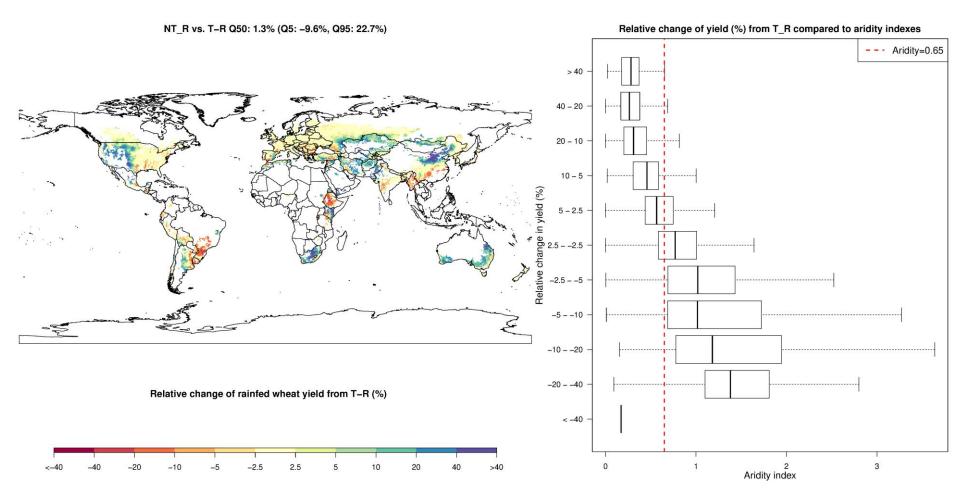
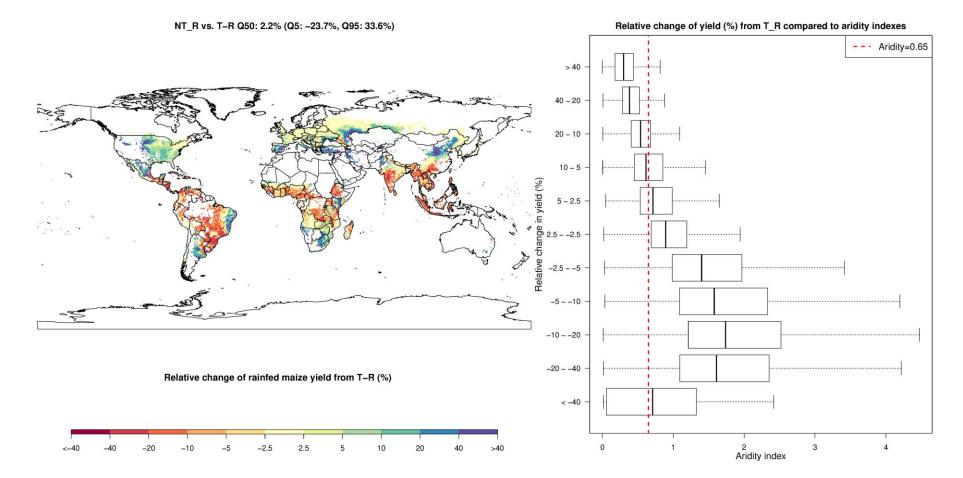
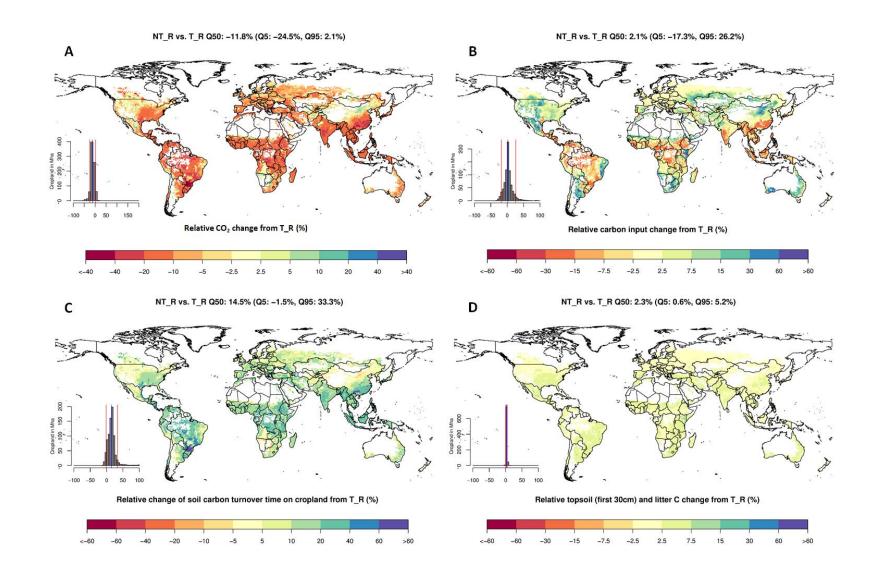



Figure 4: Relative change in evaporation (A) and surface runoff (B) relative to soil cover from surface residues for different soil cover values of 10, 30, 50, 70 and 90% (simulation NT\_R\_bs1 to NT\_R\_bs5 vs NT\_NR\_bs, respectively). For better visibility, the red and blue boxplots are plotted next to the overall boxplots, but correspond to the soil cover value of the overall simulation (empty boxes).

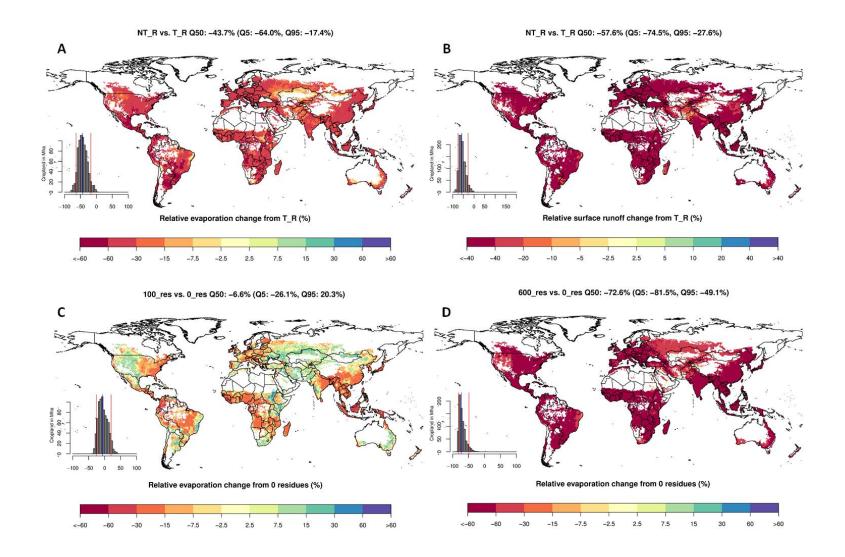






Figure 5: Relative changes for the average of the first three years of NT\_R vs. T\_R for denitrification (A), nitrification (B), soil water content (C) and NO<sub>3</sub><sup>-</sup> (D).

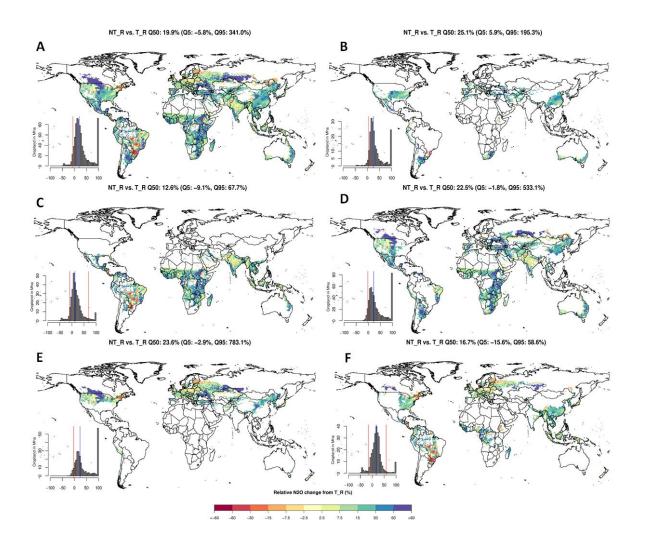



Appendix 1B: Overview of residue and soil pools with equations of the decomposition rates in this new model implementation (LPJmL5.0-tillage version).

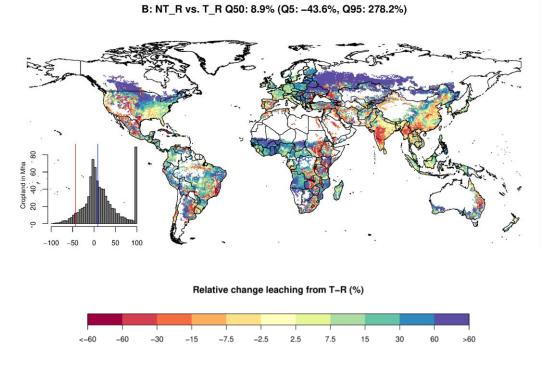



Α




Appendix 2: Relative yield changes for rain-fed wheat (A) and rain-fed maize (B) compared to aridity indexes for the average of the first three years of NT\_R vs. T\_R.




Appendix 3: Relative C dynamics for NT\_R vs. T\_R comparison after 10 years (average of year 9-11) of the simulation experiment for relative  $CO_2$  change (A), relative C input change (B), relative change of soil C turnover time (C) and relative topsoil and litter C change (D).



Appendix 4: Relative changes in evaporation (A) and surface runoff (B) for NT\_R vs. T\_R for the average of the first 3 years of the simulation experiment and for bare soil experiments with fixed dry matter loads of 100 g  $m^2$  (C) and 600 g  $m^2$  (D) compared to bare soil with no residues.



Appendix 5: Relative changes for  $N_2O$  dynamics for the average of the first three years of  $NT_R$  vs.  $T_R$  of the simulation experiment for different climates – overall (A), warm-temperate (B), tropical (C), arid (D), cold-temperate (E) and humid (F).



Appendix 6: Relative changes for leaching  $(NO_3^-)$  dynamics for the average of the first three years for NT\_R vs. T\_R simulation experiment.