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Abstract. The Weather Research and Forecasting Hydrological (WRF-Hydro) system is a state-12 

of-the-art numerical model that models the entire hydrological cycle based on physical principles. 13 

As with other hydrological models, WRF-Hydro parameterizes many physical processes. Hence, 14 

WRF-Hydro needs to be calibrated to optimize its output with respect to observations for the 15 

application region. When applied to a relatively large domain, both WRF-Hydro simulations and 16 

calibrations require intensive computing resources and are best performed on multimode, 17 

multicore high-performance computing (HPC) systems. Typically, each physics-based model 18 

requires a calibration process that works specifically with that model and is not transferrable to a 19 

different process or model. The parameter estimation tool (PEST) is a flexible and generic 20 

calibration tool that can be used in principle to calibrate any of these models. In its existing 21 

configuration, however, PEST is not designed to work on the current generation of massively 22 

parallel HPC clusters. To address this issue, we ported the parallel PEST to HPCs and adapted it 23 

to work with WRF-Hydro. The porting involved writing scripts to modify the workflow for 24 

different workload managers and job schedulers, as well as developing code to connect parallel 25 

PEST to WRF-Hydro. To test the operational feasibility and the computational benefits of this 26 

first-of-its-kind HPC-enabled parallel PEST, we developed a case study using a flood in the 27 

midwestern United States in 2013. Results on a problem involving calibration of 22 parameters 28 

show that on the same computing resource used for parallel WRF-Hydro, the HPC-enabled parallel 29 

PEST can speed the calibration process by a factor of up to 15 compared with commonly used 30 

mailto:jialiwang@anl.gov
mailto:vrkotamarthi@anl.gov


2 

 

PEST in sequential mode. The speedup factor is expected to be greater with a larger calibration 1 

problem (e.g., more parameters to be calibrated or a larger size of study area).  2 

1 Introduction 3 

Physically based hydrological models contain detailed physical mechanisms to model the 4 

hydrological cycle, but many complex physical processes in these models are parameterized. For 5 

example, the state-of-the-art Weather Research and Forecasting Hydrological (WRF-Hydro) 6 

modeling system (Gochis et al., 2018) has dozens of parameters that can be land- and river-type 7 

dependent and are typically specified in lookup tables. Therefore, these hydrological models need 8 

to be calibrated before they can be applied to research over different regions. In this context, 9 

calibration refers to adjusting the values of the model parameters so that the model can closely 10 

match the behavior of the real system it represents. In some cases, the appropriate value for a 11 

model parameter can be determined through direct measurements conducted on the real system. In 12 

many situations, however, the model parameters are conceptual representations of abstract 13 

watershed characteristics and must be determined through calibration. In fact, model calibration is 14 

the most time-consuming step, not only for hydrological models, but also for Earth system model 15 

development, because both parametric estimation and parametric uncertainty analysis require 16 

hundreds—if not thousands—of model simulations to understand how perturbations in model 17 

parameters affect simulations of dominant physical processes and to find the optimum value of a 18 

single parameter. 19 

 20 

WRF-Hydro is a numerical model that can simulate the entire hydrological cycle using advanced 21 

high-resolution data such as satellite and radar products. Compared with the traditional land 22 

surface model (LSM) used by WRF, WRF-Hydro provides a framework for multiscale 23 

representation of surface flow, subsurface flow, channel routing, and baseflow, as well as a simple 24 

lake/reservoir routing scheme. As a physics-based model, WRF-Hydro includes many complicated 25 

physical processes that are nonlinear and must be parameterized. The default parameters given by 26 

WRF-Hydro may be valid for one region but not for another region. Hence calibration of related 27 

model parameters is often required in order to use the model in a new domain. In particular, for a 28 

large spatial domain such as the entire contiguous United States, in order to develop the optimal 29 

parameter sets in a reasonable amount of time, the calibration must be conducted on high-30 
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performance computing (HPC) systems in parallel instead of in the traditional sequential mode. 1 

To date, no such calibration tool can efficiently calibrate WRF-Hydro on HPC resources. 2 

Typically, each physics-based model needs a calibration code that is custom designed to work with 3 

that particular numerical model and its set of physics parameterizations, software architecture, and 4 

solvers. These custom-designed calibration codes are highly challenging and do not offer 5 

flexibility. Therefore, a more flexible and generic calibration tool is needed that can calibrate any 6 

code that uses Message Passing Interface/Open Multi Processing (MPI/OpenMP) for 7 

parallelization on HPC systems. 8 

 9 

One widely used generic and independent calibration tool is the parameter estimation tool (PEST). 10 

PEST (Doherty, 2016) conducts calibration automatically based on mathematical methods and 11 

thus is applicable for optimizing nonlinear parameters. Compared with manual calibration, 12 

automatic calibration is more efficient and effective because it avoids interference from human 13 

factors (Madsen, 2000; Getirana, 2010). The uniqueness of PEST is that it operates independent 14 

of models: there is no need to develop additional programs for a particular model except preparing 15 

the files required by PEST (as described in Sec. 3.2). PEST has four modes of operation. One of 16 

the modes is regularization mode, which supports the use of Tikhonov regularization and is found 17 

better for serving environmental models because, if implemented properly, it supports model 18 

predictions of minimum error variance, is numerically stable, and embraces rather than eschews 19 

the heterogeneity of natural systems. Singular value decomposition (SVD) can be used as a 20 

regularization device to guarantee numerical stability of the calibration problem. Parallel PEST is 21 

able to distribute many runs across many computing nodes using master-worker parallel 22 

programing. To our best knowledge, however, no approach is available that allows users to submit 23 

jobs using PEST parallelization to a typical supercomputing facility that uses job scheduling and 24 

workload management such as Simple Linux Utility for Resource Management (SLURM), 25 

Portable Batch System (PBS), and Cobalt. A previous study (Senatore et al., 2015) used PEST to 26 

calibrate WRF-Hydro over the Crati River Basin in southern Italy. Because the study area was 27 

relatively small, the authors were able to conduct the calibration using PEST in sequential mode 28 

(Alfonso Senatore, personal communication, 2018).  29 

 30 
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The objective of this study is to (1) port parallel PEST to HPC clusters operated by the U.S. 1 

Department of Energy (DOE) and adapt it to work with WRF-Hydro, (2) evaluate the performance 2 

of HPC-enabled parallel PEST linked to WRF-Hydro by calibrating a flood event, and (3) explore 3 

the scale-up capability and computational benefits of HPC-enabled parallel PEST by assigning 4 

different computing resource to the entire calibration process.  5 

2 Model description 6 

2.1 Study area 7 

The case presented here is one of the worst floods experienced by Greater Chicago Area in the 8 

past three decades; the storm occurred on April 18, 2013. According to the National Weather 9 

Service (NWS), the heaviest 24-hour accumulated rainfall during this storm reached 201.4, 171.1, 10 

and 136.4 mm across Illinois, Iowa, and Missouri, respectively. The Mississippi River crested at 11 

10.8 m (1.7 m above flood stage), and the Illinois River crested in Peoria, Illinois, at 8.95 m; these 12 

river cresting broke the previous record of 8.78 m, set in 1943, and was 4.55 m above the historical 13 

normal river stage (NWS, 2013). Campos and Wang (2015) conducted three-domain nested WRF 14 

simulations to understand the dynamical and microphysical mechanisms of the event. Our study 15 

builds on the smallest domain of that study, which covers Illinois, and majority of Iowa and 16 

Missouri at a spatial resolution of 3 km (Fig. 1). The domain size is ~495,000 km2 (747 km from 17 

west to east; 657 km from south to north). 18 

 19 

2.2 WRF-Hydro configuration 20 

This study employs WRF-Hydro version 5 with a basic configuration. This configuration does not 21 

use nudging techniques or spatially distributed soil-related parameters as used in the National 22 

Water Model configuration. WRF-Hydro has been tested in several different cases that focused on 23 

different hydrometeorological forecasting and simulation problems (e.g., Yucel et al., 2015; 24 

Senatore et al., 2015; Arnault et al., 2016), and it shows reasonable accuracy in simulated 25 

streamflow after being carefully calibrated. For details of the WRF-Hydro modeling system, see 26 

Gochis et al. (2018). Currently, two LSMs are available in WRF-Hydro for representing land-27 

surface column physics: Noah (Chen and Dudhia, 2001) and Noah Multi-parameterization (Noah-28 
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MP; Niu et al. 2011). We utilize Noah-MP LSM because compared with Noah LSM it shows 1 

obvious improvements in reproducing surface fluxes, skin temperature over dry periods, snow 2 

water equivalent, snow depth, and runoff (Niu et al. 2011). The Noah-MP is configured at a grid 3 

spacing of 3 km, and the aggregation factor is 15; that is, starting from a 3 km LSM resolution in 4 

the domain shown in Fig. 1, hydrological routing is performed at a grid resolution of 200 m, with 5 

3285 south-north × 3735 west-east grid cells. We use a time step of 10 seconds for the routing grid 6 

in order to maintain model stability and prevent numerical dispersion of overland flood waves. 7 

The WRF-Hydro is configured to be in offline or uncoupled mode―there is no online interaction 8 

between the WRF-Hydro hydrological model and the WRF atmospheric model. Overland flow, 9 

saturated subsurface flow, gridded channel routing, and a conceptual baseflow are active in this 10 

study. The gridded channel network uses an explicit, one-dimensional, variable time-stepping 11 

diffusive wave. The time step of 10 seconds also meets the Courant condition criteria for diffusive 12 

wave routing on a 200 m resolution grid. A direct output-equals-input “pass-through” relationship 13 

is adopted to estimate the baseflow. Although the baseflow module is not physically explicit, it is 14 

important because the water flow in the channel routing is contributed by both the overland flow 15 

and baseflow. If the overland flow is active as it is in this study, it passes water directly to the 16 

channel model. In this case the soil drainage is the only water resource flowing into the baseflow 17 

buckets. However, if the overland flow is deactivated but channel routing is still active, then WRF-18 

Hydro collects excess surface infiltration water from the land model and passes this water into the 19 

baseflow bucket. This bucket then contributes the water from both overland and soil drainage to 20 

the channel flow. Therefore, the baseflow must be active if the overland flow is switched off. This 21 

study does not consider lakes and reservoirs.  22 

 23 

We use the geographic information system (GIS) tool (Sampson and Gochis, 2018) developed by 24 

the WRF-Hydro team to delineate the stream channel network, open water (i.e., lake, reservoir, 25 

and ocean) grid cells, and groundwater/baseflow basins. Meteorological input for the WRF-Hydro 26 

includes hourly precipitation; near-surface air temperature, humidity, and wind speed; incoming 27 

shortwave and longwave radiation; and surface pressure. In this study, the hourly precipitation is 28 

from the National Centers for Environmental Prediction (NCEP) Stage IV analysis at a spatial 29 

resolution of 4 km. The Stage IV data is based on combined radar and gauge data (Lin and 30 

Mitchell, 2005; Prat and Nelson, 2015), and has been shown to be temporally well correlated with 31 
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high-quality measurements from individual gauges (see, e.g., Sapiano and Arkin, 2009; Prat and 1 

Nelson, 2015). The other hourly meteorological inputs are from the second phase of the multi-2 

institution North American Land Data Assimilation System project, phase 2 (NLDAS‐2) (Xia et 3 

al., 2012a,b), at a spatial resolution of 12 km. NLDAS‐2 is an offline data assimilation system 4 

featuring uncoupled LSMs driven by observation‐based atmospheric forcing. 5 

 6 

During the 15-day period of this studied case, light to moderate rain occurred on April 8 through 7 

11, 2013, followed by a relatively dry period from April 12 to 15. Then a heavy rain event began 8 

on April 16 and peaked on April 18. The heaviest rain band moved east of the study area on April 9 

19. The rainy event ended over the study area on April 20 (see Fig. S1 in Supporting Information). 10 

We start the WRF-Hydro simulation on October 1, 2012, and run the model for six months to reach 11 

equilibrium. This 6-month period is considered as spin-up time and is excluded from model 12 

calibration and evaluation. We calibrate the river discharge calculated by the WRF-Hydro model 13 

from 00UTC April 9 to 00UTC April 12, 2013, considering it long enough to achieve our objective. 14 

We then evaluate the model performance against U.S. Geological Survey (USGS) observed river 15 

discharge from 00UTC April 12 to 00UTC April 25, 2013.  16 

3 Calibration 17 

3.1 Platforms 18 

We customized parallel PEST to work on three different workload managers and job schedulers: 19 

SLURM at the National Energy Research Scientific Computing Center (NERSC), PBS at the 20 

Argonne National Laboratory Computing Resource Center (LCRC), and Cobalt at the Argonne 21 

Leadership Computing Facility. The tests presented here are conducted on Edison and Cori at 22 

NERSC, and Bebop at Argonne LCRC, which all use the SLURM workload manager and job 23 

scheduler.  24 

 25 

The interface we have built between parallel PEST and the management software is, in general, 26 

used for (1) setting the number of workers, and the nodes for each worker to conduct a model run 27 

(WRF-Hydro here); (2) setting up the working directory for the workers; (3) finding the nodes that 28 

are available; (4) identifying the nodes that work for each worker; (5) passing the global files (same 29 
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for all the working directory) to all the workers (these files include the lookup table files that are 1 

not to be calibrated, the namelist files for both LSM and hydrological sector, and restart files that 2 

generated by the previous simulations, or  spin-up period); and (6) submitting the job for the entire 3 

calibration process, including parallel PEST and parallel WRF-Hydro. This job can be submitted 4 

as a cold-start run or as a restart. The main difference for this interface on different management 5 

software is that different management software has its own way to identify available nodes and to 6 

submit jobs. These differences require minor changes in the scripts we developed, which involve 7 

finding and identifying available nodes for workers, and submitting jobs for the specific 8 

management software. See detailed comments in the published code and scripts. 9 

3.2 PEST files and settings 10 

PEST requires three file types in both sequential and parallel modes. They are template files to 11 

define the parameters to be calibrated, an instruction file to define the format of model-generated 12 

output files, and a control file to supply PEST with the size of the problem and the settings for the 13 

calibration method. Parallel PEST uses a “master-worker” paradigm that starts model runs 14 

simultaneously by different workers (or in different folders). The master of parallel PEST 15 

communicates with each of its workers many times during a calibration. To run PEST in parallel 16 

mode, one also needs a management file to inform PEST where the working folder is for each 17 

worker and what the names and paths are for each model input file that PEST must write (i.e., 18 

lookup tables that come from template files) and each model output file that PEST must read (such 19 

as frsxt_pts_out.txt). The management file also set the maximum running time for each worker. 20 

For those workers that take longer than the maximum running time, PEST will stop the model run 21 

by that particular worker and assign that model run to another worker if there is one with nothing 22 

else to do.  23 

 24 

To the best of our knowledge, however, parallel PEST is not designed to run on HPCs directly. 25 

We developed scripts and an interface to enable parallel PEST to run on HPCs using SLURM, 26 

PBS, or Cobalt workload managers and job schedulers. The development involved writing scripts 27 

to modify the workflow for different workload managers and job schedulers, as well as developing 28 

code to connect parallel PEST to WRF-Hydro. These developments enable parallel PEST to have 29 

many workers to run at the same time; each worker runs a parallel code (here WRF-Hydro) that 30 
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uses more than one node, which could significantly reduce the wall-clock time for model 1 

calibrations. Although this master-worker parallelism may not be as efficient as a fully MPI 2 

approach, it is sufficient for model calibration and requires the least effort for the current parallel 3 

PEST to run on HPC systems.  4 

 5 

This study presents calibration results from PEST using the SVD-based regularization in 6 

regularization mode to ensure numerical stability (Tonkin and Doherty, 2005). We focus on 7 

calibrating 22 parameters (see Table 1 and detail description in Sec. 3.3) using 96 observation 8 

points and 22 items of prior information for the calibrated parameters. In each item of prior 9 

information, a value equal to its default value provided by the WRF-Hydro v5.0 (or the log of its 10 

default value) is assigned for each adjustable parameter, assuming that default values are the 11 

preferred values. All prior information equations are assigned a weight of 1.0. We assigned five 12 

different regularization groups to the prior information: Manning’s roughness coefficients 13 

specified by Strahler stream order in CHANPARM.TBL to one group; the parameters in 14 

HYDRO.TBL (Manning’s roughness coefficients for overland flow as a function of vegetation 15 

types) to another group; and three global parameters for the Noah-MP (xslop1, refdk, and refkdt) 16 

in GENPARM.TBL to the remaining three groups. The 96 observation points are given different 17 

weights based on the inversed mean of their observed discharge during the studied period (see the 18 

detailed description in Sec. 3.3 and Sec. 4.1). For a detailed description of these settings see the 19 

PEST User Manual (Doherty, 2016).  20 

 21 

3.3 Calibrated experiments 22 

The primary objective of this study is to build a bridge for linking the parallel PEST and WRF-23 

Hydro on the basis of HPC clusters and to explore the computational benefits of this bridge. We 24 

do not attempt to extensively assess each individual tool or address questions in each individual 25 

domain, such as optimizing the objective functions in PEST or calibrating WRF-Hydro for a long 26 

time period considering all the relevant parameters to achieve an optimal parameter set. The 27 

calibration period thus is limited to only three days, which we believe long enough to achieve our 28 

objective and to understand WRF-Hydro’s sensitivity to the calibrated parameters. We calibrated 29 

WRF-Hydro using four USGS sites (referred to as Station 1, Station 2, Station 3, and Station 4 30 
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hereafter), as shown in Fig. 1. (More USGS sites could be included if one manually reallocated 1 

the stations that were not properly assigned to the desired location on the channel network by the 2 

GIS tool.) As shown by the lower left index map in Fi. 1, the study area (the red box) only covers 3 

the lower part of Upper Mississippi River Basin (UMRB) and a portion of Missouri River Basin 4 

(MORB). In order to prepare observation datasets of streamflow contributed only from the 5 

drainage area within the model domain, we identified inflows entering the model domain at three 6 

different sites, namely, sites 05411500, 06807000, and 06887500, as indicated by the black solid 7 

triangles in the index map of Fig. 1. The outflows of combined UMRB and MORB can be found 8 

at the three outlets, namely, sites 07010000, 07020500, and 07022000 (named Stations 2, 3, and 9 

4, respectively, as shown by black solid circles in Fig. 1). These outlets are located sequentially at 10 

the main Mississippi River after confluence of Mississippi River and Missouri River. Thus, the 11 

observed streamflow contributed by drainage area within the model domain can be calculated by 12 

subtracting the sum of the discharge at the three sites (black triangles; recognized as inflow) from 13 

the discharge at each of the three outlet sites (black circles; recognized as outflow). The final 14 

derived observations of streamflow (or adjusted streamflow observation data) from the drainage 15 

area within this model domain are prepared for model calibration and validation. To prove this 16 

concept, we validated the consistency of the sum of observed drainage areas at inflow sites plus 17 

modeled drainage area with the overall drainage area at the outlet. The drainage area (UMRB and 18 

MORB) at outlet site 07010000 is 1.8E+12 m2. The sum of drainage areas at three inflow sites is 19 

about 1.4E+12 m2 (2.0E+11, 1.1E+12, and 1.4E+11 m2 for site 05411500, 06807000, and 20 

06887500, respectively) and the modeled drainage area is 0.36E+12 m2; the total area is 1.76+12 21 

m2. This indicates that the flows from sum of three inflow sites and modeled result represent 98% 22 

of drainage area at the outflow site 07010000. Therefore, the adjusted streamflow observation data 23 

are qualified for model calibration. We then transfer the calibrated parameters to other sub-basins 24 

in the study area to assess the transferability of the calibrated parameters. Although many 25 

parameters, including spatially distributed parameters and constant parameters in the lookup 26 

tables, affect the model performance, we calibrate only the parameters in lookup tables and do not 27 

consider the spatial variability of other parameters or their scaling factors. On the other hand, we 28 

acknowledge that some studies calibrated a single scaling factor (without considering its spatial 29 

variability, however) of overland roughness coefficients (OVROUGHRTFAC) rather than the 30 

actual value of each land type in the lookup table (e.g., Kerandi et al., 2018). Although this 31 
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approach reduces the number of calibrated parameters, it has less flexibility because changing one 1 

factor will change all the parameters that use the same proportion.   2 

 3 

For the calibration exercises we conduct here, the retention depth factor (RETDEPRTFAC) is 4 

fixed at 0.001. This value is reasonable because the modeled discharge of our particular 5 

configuration (Sec. 2.2) using default parameters is lower than observed discharge. Reducing this 6 

factor from 1 to 0.001 keeps less water in water ponds and more water on the surface so it can 7 

contribute to river discharge. First, we calibrate 48 parameters based on a 3-day simulation from 8 

April 9 to April 11, 2013 (Table S1 in Supporting Information). This calibration uses the 9 

estimation mode in the PEST tool and considers equal weight for all four USGS stations. We 10 

calibrate Manning’s roughness coefficients for both channels and land-use types, the deep drainage 11 

(SLOPE), infiltration-scaling parameter (REFKDT), and saturated soil lateral conductivity 12 

(REFDK). Manning’s roughness coefficients control the hydrograph shape and the timing of the 13 

peaks; the SLOPE, REFKDT, and REFDK control the total water volume. Second, based on the 14 

knowledge we learn from the 48-parameter calibration (see details in Sec. 4.1), for the same 3-day 15 

period, we reduce the number of calibrated parameters from 48 to 22 according to the sensitiveness 16 

of the WRF-Hydro model to the adjustable parameters. For example, during the calibration we 17 

find that Manning’s roughness coefficients for several land types barely change because these land 18 

types (e.g., tundra, snow/ice) are not present in the study area. We also learn that even though the 19 

calibrated WRF-Hydro parameters can generate discharge results that closely resemble 20 

observations, the physical meaning of several parameters are not appropriate because of the wide 21 

range of those parameters that we set in the PEST control file. For example, Manning’s roughness 22 

coefficient for stream order 1 (0.199) is calibrated smaller than that for stream order 2 (0.218); the 23 

overland roughness coefficients for evergreen needleleaf forest (0.043) and mixed forest (0.023) 24 

are calibrated smaller than for cropland/woodland (0.046). Neither of these is true in the real world. 25 

We therefore adjust the range of many parameters according to the literature (Soong et al., 2012) 26 

to maintain their physical meanings (Table 1). On the other hand, we find that by using the same 27 

absolute weight for all four stations, the calibration helps three stations (Station 2, 3, and 4) with 28 

large water volumes to generate more reasonable results than do the default parameters; however, 29 

the results for Station 1, which has a relatively small volume of water, is not always better than the 30 

discharge that is modeled by using default parameters. Thus, we assign a higher weight (9.0) for 31 
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Station 1 than for the other three stations (1.0) according to the inversed mean of observed 1 

discharge over these four stations in April 2013. The ratio of the weights between Station 1 and 2 

the other three stations stays similar even if the means are calculated based on different time 3 

periods.  4 

  5 

3.4 Statistics 6 

This study employs three statistical criteria: Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 7 

1970; Moriasi et al., 2007), root-mean-square error (RMSE), and Pearson correlation coefficient 8 

(PCC). RMSE and PCC evaluate model performance in terms of bias and temporal variation. NSE 9 

quantitatively describes the accuracy of modeled discharge compared with the mean of the 10 

observed data. Equation (1) calculates the NSE with defined variables: 11 

𝑁𝑆𝐸 = 1 −
∑ (𝑌𝑡

𝑜𝑏𝑠−𝑌𝑡
𝑠𝑖𝑚)

2𝑛
𝑡=0

∑ (𝑌𝑡
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )
2𝑛

𝑡=0

,         (1) 12 

where 𝑌𝑡
𝑜𝑏𝑠 is the tth observed value from USGS sites for river discharge , 𝑌𝑡

𝑠𝑖𝑚is the tth 13 

simulated value from the WRF-Hydro output, 𝑌𝑚𝑒𝑎𝑛
𝑜𝑏𝑠  is the temporal average of USGS observed 14 

discharge, and n is the total number of observation time points. An efficiency of 1 (NSE = 1) 15 

corresponds to a perfect match between modeled discharge and observed data. An efficiency of 0 16 

(NSE = 0) indicates that the model predictions are as accurate as the mean of the observed data. 17 

An efficiency below zero (NSE < 0) occurs when the model is worse than the observed mean. 18 

Essentially, the closer the NSE is to 1, the more accurate the model is. 19 

4 Results 20 

4.1 WRF-Hydro calibration and validation 21 

Based on the knowledge we gained from the 48-parameter 3-day calibration, we adjust the range 22 

of critical parameters in the PEST control file to maintain their physical meanings. For example, 23 

we set Manning’s roughness coefficient larger for stream order 1 than for stream order 2. We also 24 

adjust the parameter range of the overland roughness coefficient for multiple land covers, such as 25 

cropland and forests. We exclude the parameters that are not sensitive to WRF-Hydro streamflow 26 

for this study, in order to constrain the problem size considering the availability of computational 27 



12 

 

resources. However, if one has an area of interest that is much larger with more land types than 1 

the study area here, then there would be more parameters to calibrate. Meanwhile, hundreds of 2 

constant parameters in the Noah-MP model could affect the WRF-Hydro results (Cuntz et al. 2016) 3 

and can be calibrated as well. Both these situations would increase the burden of WRF-Hydro 4 

calibration. We perform the same 3-day calibration from April 9 to April 11, 2013. Figure 2 shows 5 

the results of the 3-day modeled discharge using default and calibrated parameters after five 6 

iterations, as well as observed discharge. The four stations are calibrated by considering different 7 

weights. While the model performance for Station 1 using default and calibrated parameters are 8 

similar, the calibration improves the model performance over the drainage areas represented by 9 

Stations 2, 3, and 4 significantly. The modeled discharge using the default parameter 10 

underestimates the streamflow by 24-33%. PEST detects this underestimation, immediately 11 

adjusts the parameters and increases the modeled discharge during the first iteration. After the third 12 

iteration, the difference in calibrated results between different iterations is relatively small. We 13 

allow the PEST to conduct five iterations and use the parameters obtained from the fifth iteration 14 

as our optimum parameters. As shown in Table 2, when the optimum parameters are used, the 15 

modeled discharges are much closer to the observations than the modeled results using default 16 

parameters. The NSEs for the four stations increased from -4.8 (Station 2), -18.8 (Station 3) and -17 

57.0 (Station 4) to 0.75, -0.03, and -0.42, respectively, being closer to 1. It is noteworthy that, the 18 

NSE values have been suggested between 0.5 to 0.65 to indicate a model of sufficient quality. 19 

However, we see much lower NSE values for Stations 3 and 4 although the calibration results are 20 

close to the observations. This may be because the objective function used in PEST is sum of 21 

squared weighted residuals (SSWR), which is calculated differently from NSE. Thus even if 22 

SSWR reaches a small value, the NSE might still be far from 0.5. Incorporating other measures 23 

into the objective function of PEST may improve the robustness of PEST calibrations. The RMSEs 24 

decreased from 902.2, 1001.3, and 1399.3 m3/sec to 188.6, 228.7, and 219.1 m3/sec, respectively.  25 

 26 

During the validation period, compared with the modeled discharge using default parameters, as 27 

shown in Table 2, the NSEs for all four stations are increased to be closer to 1; RMSEs are 28 

significantly decreased; and the correlation coefficients between the observed and modeled 29 

discharge are increased from 0.8, 0.7, 0.19, and 0.65 to 0.9, 0.81, 0.78, and 0.75. Compared with 30 

the results of calibration using the estimation mode (no regularization) in PEST (not illustrated), 31 
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the SVD-based regularization generates slightly better hydrograph shape with 1-day later 1 

discharge peaks that are closer to the observations. However, a problem remains with the 2 

hydrograph shapes of the modeled discharge, especially with the modeled peak of discharge. For 3 

Station 1, the WRF-Hydro almost captures the timing of the peak of discharge, but it still 4 

underestimates the discharge by ~25%. One of the reasons perhaps is that this study uses a direct 5 

pass-through baseflow module, which does not account for slow discharge and long-term storage 6 

of the baseflow. Therefore, the largest contribution to river discharge is from precipitation, and 7 

groundwater does not contribute much discharge to the channels in a long-term view, as is also 8 

true for the other three large river stations. As a result, the contribution from the baseflow to the 9 

river discharge in model simulations does not stay as long as in real situations. In the observations, 10 

the river discharge decreases from the peak at a speed of ~500 m3/sec per day, while the modeled 11 

river discharge decreases from the peak at a speed of ~1667 m3/sec per day. Using exponential 12 

storage-discharge function for the baseflow may improve this situation. Other reasons include that 13 

the parameter range we set in the PEST control file is perhaps not wide enough, as we can see 14 

from Table 1 that, several optimal parameters hit the bound of parameter ranges. Allowing wider 15 

parameter ranges may improve the calibration results.   16 

 17 

Alternatively, instead of calibrating the stations that have large drainage area and water coming 18 

from outside of the current model domain, we have also tested calibrating small flows at local 19 

stations that have relatively small drainage area covered by the current study area. This requires to 20 

generate a new high-resolution GIS data file to distribute the stations of interest. We first run the 21 

WRF-Hydro model for 6 month using default parameters to spin up the model, and then we 22 

calibrate the model based on observations of these local stations. Results including figures and 23 

tables are shown in Supporting Information. The calibration results are improved compared to the 24 

results that use default parameters, although further improvements are still needed. This again may 25 

be because the parameter range are not wide enough to consider the possible values of parameters 26 

that work for these specific areas represented at local stations, as we see many optimal parameters 27 

hit the bound of the parameter range. More tests to figure out a better set of parameters are needed 28 

for future investigation, which is beyond the scope of this study. The goal of this study is to present 29 

the feasibility and computational benefits of HPC enabled parallel PEST linked to WRF-Hydro. 30 

 31 
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4.2 Computational benefits of parallel PEST on HPCs 1 

The ability to scale up the calibration of WRF-Hydro by using parallel PEST on HPC systems is 2 

determined by two factors: the scale-up capability of parallel PEST and the scale-up capability of 3 

WRF-Hydro. In calibrating WRF-Hydro, PEST first makes as many model runs as there are 4 

adjustable parameters to calculate Jacobian matrix (Doherty, 2016). The Jacobian matrix has a 5 

column for each calibrated parameter and a row for each observation and each item of prior 6 

information that set in the PEST control file. These model runs are independent between workers 7 

and can be easily parallelized. Each worker runs the model with temporarily incremented 8 

parameters that are defined in the template and control files. Then, PEST needs to make additional 9 

model runs to test parameter updates. Different from calculating the Jacobian matrix, these 10 

additional runs are performed by using different Marquardt lambdas, and the search for a 11 

Marquardt lambda that achieves the best set of parameters is a serial iterative process. The lambda 12 

to use for the next run depends on the outcome of the model run conducted using the previously 13 

chosen lambda. Although serial testing of Marquardt lambdas may quickly find the optimal 14 

Marquardt lambda in the first or second series of model runs, it is an inefficient use of computing 15 

resources because other processors are idle while only one process is searching the lambdas. This 16 

is especially true when the model domain is large and requires extensive computing resources. 17 

This study employs partial parallelization for the lambda-testing procedure (Doherty, 2016), so 18 

multiple workers can be used to calculate parameter upgrades based on a series of lambda values 19 

that are related to each other by a factor of RLAMFAC set in the PEST control file. We set the 20 

value of PARLAM to -9999 in the management file so only one cycle of parallel WRF-Hydro runs 21 

is devoted to testing Marquardt lambdas. For additional details on these parameters and their 22 

settings see the PEST User Manual (Doherty, 2016). 23 

  24 

In this study we test the computational performance of HPC-enabled parallel PEST using different 25 

number of workers (6, 12, and 23) for the 22-parameter calibration. As shown in Table 3, we 26 

conducted six experiments: Test 1 uses 23 workers, Test 2 uses 12 workers, and Test 3 uses 6 27 

workers. All three tests use two nodes for each worker to run WRF-Hydro in parallel. The 28 

maximum number of lambda-testing runs undertaken per iteration is set to 15, 10, and 5 for Tests 29 

1, 2, and 3, respectively, to assure that only one cycle of WRF-Hydro runs is devoted (using 15, 30 

10 and 5 workers from Tests 1, 2, and 3, respectively) to testing Marquardt lambdas. Note that the 31 
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maximum number of lambda-testing runs should be set equal to or less than the workers available. 1 

Otherwise, another cycle of WRF-Hydro runs needs to be conducted. In fact, generating more 2 

Marquardt lambdas does not always guarantee that the best Marquardt lambdas are generated. In 3 

contrast, it may make the model convergence slower (here, PEST) or even model failure.  4 

 5 

In order to test the trade-offs between the computing nodes used for running parallel WRF-Hydro 6 

and the workers used for running parallel PEST, Tests 4, 5 and 6 use the same number of workers 7 

(six) as Test 3 but use different number of nodes for each worker to run WRF-Hydro in parallel. 8 

Explicitly, Test 4 uses four nodes per worker, Test 5 uses six nodes per worker, and Test 6 uses 9 

eight nodes per worker. The maximum number of lambda-testing runs undertaken per iteration is 10 

set to five for Tests 4, 5 and 6. Note that the time costs in Table 3 are limited to only one iteration. 11 

Conducting more iterations will increase the cost of wall-clock time and computing resource, but 12 

will not change the conclusion for the scale-up capability and computational benefits for HPC-13 

enabled parallel PEST linked to WRF-Hydro.    14 

 15 

PEST needs to run the WRF-Hydro model at least as many times as the number of calibrated 16 

parameters (22 here). In fact, PEST runs the model 23 times in the first round (or the first iteration) 17 

with initial parameter values and for the first Jacobian matrix. From the second iteration, it runs 18 

the model 22 times to calculate Jacobian matrix. Therefore, if there are fewer than 23 workers, the 19 

time cost for the first round of Jacobian matrix calculation will increase accordingly. For example, 20 

as shown in Fig. 4a, when we assign 12 (and 6) workers to parallel PEST, the time cost for 21 

calculating the Jacobian matrix is increased by a factor of 2 (and 4) compared with the time cost 22 

when using 23 workers. The time cost for the parameter upgrade stays similar for the three 23 

experiments because they all conducted only one cycle of WRF-Hydro simulation to test the 24 

Marquardt lambdas. As a result, the total time cost for Test 2 is ~1.5 times more than that for Test 25 

1, and the total time cost for Test 3 is ~1.5 times more than that for Test 2 (Fig. 4b). By 26 

extrapolating the speedup curve shown in Fig. 4a and Fig. 4b, we expect the total time cost to be 27 

~1516 minutes when using only one worker (or sequential mode), which is about 15 times slower 28 

compared with running the PEST in parallel mode using 23 workers. For this particular study with 29 

22 adjustable parameters, we expect the time cost most likely to stay the same even if one increases 30 

the number of workers to more than 23, because PEST runs WRF-Hydro only 23 or 22 times for 31 
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each iteration. Assigning more workers for this particular study would most likely render some 1 

workers idle and is not an efficient use of computing resources. PEST may run WRF-Hydro more 2 

than 22 times (e.g., 44 times) if higher-order finite differences are employed; in this case, assigning 3 

more workers (e.g. 45 workers) may further speed up the calibration process. On the other hand, 4 

for the same case study as we presented here and using the same number of nodes for running 5 

parallel WRF-Hydro, we can estimate the computing speedup by assuming an increase in the 6 

number of calibrated parameters to 50. This would be the case, for example, to evaluate model 7 

sensitiveness to the physics in Noah-MP or the spatial variabilities of certain parameters. We then 8 

expect to use 51 workers to calculate the Jacobian matrix in only one cycle. This would then be 9 

28–30 times faster than running PEST using one worker (or in sequential mode). Similarly, if 100 10 

parameters were used for the calibration for the same case study, a factor of up to 60 speedup in 11 

the calibration process would be achieved by running HPC-enabled parallel PEST.  12 

 13 

In addition, by increasing the number of nodes for each worker to conduct WRF-Hydro (Tests 3, 14 

4, 5, and 6), the time cost for the entire calibration process is significantly reduced (Figs. 4c and 15 

4d). Specifically, the WRF-Hydro scales up well when using four, six, and eight nodes, thus both 16 

the time spent on calculating the Jacobian matrix and the time spent on testing the parameter 17 

upgrades are decreased by 49% 67%, and 77%, respectively, when using four, six, and eight nodes. 18 

Therefore, the total time spent is also decreased when using more nodes for each worker (see Table 19 

3). Moreover, if one has a larger study area such as the entire contiguous United States, we expect 20 

the WRF-Hydro to have an even better scale-up capability (e.g., on dozens of nodes) than this 21 

study.  22 

 23 

While these numbers in Table 3 and Figure 4 are helpful to demonstrate the scale-up capability of 24 

each component (PEST and WRF-Hydro), they do not answer questions such as, if one has certain 25 

number of nodes, how many workers and how many nodes per worker should be used to achieve 26 

the highest efficiency of the WRF-Hydro calibration using HPC-enabled PEST? On the other hand, 27 

one may have unlimited computational resource, but would like to complete the calibration in a 28 

short time period. We present scalability analysis below to answer these questions. First, we 29 

generate more scenarios using different number of workers and nodes per worker by extrapolating 30 

the existing time and computing costs based on the experiments that are already conducted. These 31 
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scenarios use 23 or 12 workers, and 4, 6, or 8 nodes per worker, respectively. Since we have 1 

conducted simulations using the same number of nodes per worker, the cost for these scenarios 2 

can be easily and accurately predicted.    3 

 4 

As shown in Figure 5, compared with Test 3 (which requires the least computing resource ―12 5 

nodes in total), having more workers (with the same number of nodes for each worker, e.g., Tests 6 

1 and 2), takes more time than the ideal curve. The ideal curve assumes a linear speedup based on 7 

the time cost of Test 3. However, using the same number of workers and increasing the number of 8 

nodes for each worker (e.g., Tests 4, 5, and 6) can achieve the ideal speedup. Even when using 12 9 

workers, increasing the number of nodes for each worker can still achieve a speedup close to the 10 

ideal curve. Using 23 workers and increasing the number of nodes for each worker will not achieve 11 

the ideal speedup. Therefore, if one only has a certain number of nodes available, we recommend 12 

to use relatively small number of workers but large number of nodes for each worker. For example, 13 

if one has 48 nodes, then there are three options can be considered: using 23 workers and 2 nodes 14 

per worker; 12 workers and 4 nodes per worker, and 6 workers and 8 nodes per worker. Other 15 

partition (16x3; or 8x6) between numbers of workers and nodes per worker are not as efficient as 16 

above. These three options will cost 103, 72 and 60 min, respectively, to finish one iteration. Thus, 17 

using 6 workers and 8 nodes per worker is the most efficient way to spend the limited computing 18 

resource. On the other hand, if one would like to conduct the calibration in a short time period 19 

without any limits for the computing resource, then using 23 workers and 8 nodes (perhaps even 20 

more nodes depending on the scale up capability of WRF-Hydro), will finish one iteration in ~24 21 

min.        22 

  23 

4.3 Evaluation of spatial transferability of the calibrated parameters 24 

To assess the transferability of the calibrated parameters, we apply the optimum parameters 25 

obtained from the calibration for the four stations (black circles) in Fig. 1 to another set of four 26 

stations (crosses in Fig. 1) in the study area. All four sites are located on relatively small rivers, so 27 

the lag time between precipitation peak and the discharge peak are much shorter than that for the 28 

stations on the lower part of MRB (e.g., Stations 2, 3, and 4). The assessment compares the 29 

observed discharge with the closest grid cells from the discharge output of WRF-Hydro. Figure 6 30 
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shows the observed and modeled discharge using default and the optimum parameters. Overall, 1 

WRF-Hydro’s default parameters underestimate the discharge and misrepresent the timing of 2 

discharge peaks compared with observations over the four assessed stations (Stations 5, 6, 7, and 3 

8). By using the calibrated parameters from other sites over the area, the model results increase the 4 

discharge and shift the hydrograph shape so they are much closer to the observations than model 5 

results using default parameters. The absolute error of simulated discharge decreases by 13.1%, 6 

38.3%, and 71.6%, respectively, over Stations 6 through 8 (Station 5 shows a 6% increase of 7 

absolute error), compared with the default simulated discharge. We also find that using the SVD-8 

based regularization for the PEST calibration captures the timing of discharge peak better than 9 

using the estimation mode, which is one-day earlier than the observations reaching the discharge 10 

peak. 11 

5 Summary and discussion 12 

WRF-Hydro is a new, and perhaps the first practical, computer code that can run on HPC systems 13 

and can model the entire hydrological cycle using physics-based submodels and high-resolution 14 

input datasets (e.g., radar). The hydrological community has desired this capability for decades, 15 

although it requires intensive computing resources. Thus, the calibration of this model would 16 

ideally be conducted on HPCs in parallel as well, especially when the model covers a large domain 17 

rather than the basin scale. This study ports an independent model calibration tool, parallel PEST, 18 

to HPC clusters and links it to WRF-Hydro to help WRF-Hydro users calibrate the model within 19 

a much shorter wall-clock time period. The bridge we build here (between parallel PEST and 20 

WRF-Hydro on the basis of HPC systems) can be applied to any other hydrological models and 21 

Earth system models that use parameterizations to represent model physics. We present the 22 

operational feasibility of the HPC-enabled parallel PEST by evaluating the performance of 23 

calibrated WRF-Hydro against observation in hydrograph features such as volume and timing of 24 

flood events. We examine the scale-up capability and computational benefits of the tool by 25 

assigning different computing resource for PEST and for WRF-Hydro. While this study presents 26 

the optimum parameters identified from the calibration of the particular flood event, the parameters 27 

can be significantly different if one uses different physics, such as exponential storage-discharge 28 

function for a groundwater model or reach-based channel routing. Our preliminary testing shows 29 

that using exponential storage-discharge function with the default parameters provided by WRF-30 
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Hydro, the modeled discharge was larger than that of observations. Thus, the calibration will need 1 

to adjust the parameters to reduce the discharge. Our study finds that for calibrating 22 parameters, 2 

using the same computing resource for running WRF-Hydro, the HPC-enabled PEST calibration 3 

tool can speed up WRF-Hydro calibration by a factor of 15, compared with running PEST in 4 

sequential mode. The speedup factor can be larger when there are more parameters to be calibrated.  5 

 6 

The following are several key points that we would like to highlight and to inform future studies: 7 

1. In this study, we consider using the prior or regularization information only for the 8 

parameters that we calibrate. As is the case with solving inverse problems, prior 9 

information is added to improve the smoothness of the solutions. In order to build a more 10 

comprehensive calibration, an important aspect that can be considered is to enrich the prior 11 

with available historical data (e.g., April and May from the past few years). Hence, the 12 

regularization objective function in PEST will constitute not only the discrepancies 13 

between parameters and their “current estimates” but also the discrepancies between WRF-14 

Hydro simulations and preferred values (which is the observed time series of historical 15 

discharge). Additionally, one can use the pilot points technique described by Doherty 16 

(2005) in conjunction with parameter estimation to add more flexibility to the calibration 17 

process. This will be potentially beneficial in improving the predictions. 18 

2.  To focus on our main goal, we calibrate only the parameters in lookup tables. We 19 

acknowledge that though, using a single value to represent a physics for a large domain 20 

could be problematic, especially we expect the HPC-enabled parallel PEST to execute with 21 

WRF-Hydro for large domains. This situation often needs parameter regionalization. For 22 

example, WRF-Hydro version 5.0 has many spatially distributed parameters available, 23 

such as OVROUGHRTFAC― the overland flow roughness scaling factor, 24 

RETDEPRTFAC― the factor of maximum retention depth, and the soil-related parameters 25 

(when compiled with SPATIAL_SOIL=1). Calibrating these spatial parameters based on 26 

grid scale (e.g., catchments) rather than a single value will give the model more flexibility 27 

and thus better fit the observations (Hundecha and Bardossy, 2004; Wagener and Wheater, 28 

2006). In practice, for example, one can include regional OVROUGHRTFACs (e.g., their 29 

lower/upper bounds, and default values) in the PEST control file based on catchments. 30 

However, the selection of the locations and sizes of catchment may introduce significant 31 
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uncertainties to the calibration results, which require systematic and comprehensive 1 

investigation and understanding of the study area.  2 

3. This study is limited to calibrating the observed streamflow only based on the format of 3 

one of WRF-Hydro model outputs for individual station or point (frxst_pts_out.txt). It is 4 

feasible, however, to calibrate other variables as long as the observation data is available. 5 

For example, one can either find the closest point from the gridded dataset to the 6 

observation location and then compare that model grid to observations; or one can change 7 

the WRF-Hydro input/output code to output other variables in the frxst_pts_out.txt file, so 8 

they can still use the same interface we developed here to calibrate other variables in 9 

addition to the discharge. 10 

4. The optimal parameter set obtained from this study is from the 5th iteration of parallel 11 

PEST by testing five Marquardt lambdas. Testing different number of lambdas or 12 

calibrating different number of parameters may generate a different set of optimal 13 

parameters. These parameter sets can all make physical sense and be equally good for 14 

reproducing observed discharges. This problem is named equifinality (Beven and Freer, 15 

2001; Savenije, 2001), which is an important source of model uncertainty. To reduce the 16 

model uncertainty through reducing the equifinality, hydrologists carry out additional 17 

modelling objective for model evaluation to find more useful parameter sets (Mo and 18 

Beven, 2004; Gallart et al., 2007). Alternatively, inspired by No. 3 discussed above, one 19 

can calibrate the WRF-Hydro model based on more than one variables, such as discharge 20 

and soil moisture (or heat flux or water table depth) to reduce the number of optimal 21 

parameter sets, and thus reduce the model uncertainty of predictions for these variables.  22 

5. While this study ported the parallel PEST to HPC system and linked it to WRF-Hydro, we 23 

note that BEOPEST is available in the PEST family. BEOPEST has the same functionality 24 

as parallel PEST but uses a different approach for communication between master and 25 

workers. Working with HPC-enabled BEOPEST may save total time cost since BEOPEST 26 

uses the Transmission Control Protocol and the Internet Protocol instead of message files 27 

(reading input and writing output between master and works) for communication. We 28 

expect it to be relatively straightforward to use BEOPEST to calibrate WRF-Hydro on 29 

HPCs since the interface remains the same, except one needs to copy the template and 30 

instruction files in addition to the global files (see Section 3.1) into each working folder.  31 
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Table 1: Calibrated 22 parameters and the optimum parameters found after five iterations, 1 

based on four USGS stations, indicated by the solid circles in Fig. 1.a 2 

Calibrated Parameter Default 

Lower 

Bound 

Upper 

Bound 

Optimum 

Parameter 

MannN1 0.55 0.35 0.6 0.6 

MannN2 0.35 0.15 0.35 0.35 

MannN3 0.15 0.08 0.15 0.15 

MannN4 0.1 0.05 0.15 5.00E-02 

MannN5 7.00E-02 0.02 0.1 6.59E-02 

MannN6 5.00E-02 0.015 0.1 4.67E-02 

MannN7 4.00E-02 0.01 0.08 2.24E-02 

MannN8 3.00E-02 0.005 0.06 1.72E-02 

xslope1 0.1 1.00E-04 1 0.181358 

refdk 2.00E-06 1.00E-08 1.00E-05 6.69E-07 

refkdt 1 0.01 5 0.956414 

ovn1 (urban) 2.50E-02 0.005 0.06 6.00E-02 

ovn2 (dry crop) 3.50E-02 0.015 0.06 1.50E-02 

ovn3 (irrigated crop) 3.50E-02 0.015 0.06 6.00E-02 

ovn5 (crop/grass) 3.50E-02 0.015 0.06 1.50E-02 

ovn6 (crop/wood) 6.80E-02 0.035 0.25 3.68E-02 

ovn7 (grass) 5.50E-02 0.015 0.25 0.127159 

ovn10 (savanna) 5.50E-02 0.015 0.3 0.157904 

ovn11 (deciduous forest) 0.2 0.1 0.3 0.1 

ovn14 (evergreen forest) 0.2 0.1 0.3 0.11768 

ovn15 (mixed forest) 0.2 0.1 0.3 0.1 

ovn16 (water) 5.00E-03 0.001 0.01 1.00E-02 
a MannN# are the Manning’s roughness coefficients in CHANPARM.TBL; xslope1 is the first 3 

number of the nine “SLOPE_DATA” (deep drainage) in GENPARM.TBL; refdk and refkdt are 4 

saturated soil lateral conductivity and infiltration-scaling parameter, respectively, in 5 

GENPARM.TBL; ovn# are the Manning’s roughness coefficients for different land-use types.  6 
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Table 2: Statistics of model performance using optimum and default (in parentheses) 1 

parameters for Stations 1–4 during the calibration and validation period.a 2 

Statistics Station 1 Station 2 Station 3 Station 4 

Calibration 

NSE 0.64 (0.73) 0.75 (-4.8) -0.03 (-18.8) -0.42 (-57.0) 

RMSE 79.8 (69.3) 188.6 (902.2) 228.7 (1001.3) 219.1 (1399.3) 

PCC 0.92 (0.91) 0.91 (0.81) 0.86 (0.40) 0.50 (-0.52) 

Validation 

NSE 0.52 (0.41) 0.17 (-0.62) 0.19 (-23.1) 0.09 (-0.76) 

RMSE 440.6 (487.3) 2953.6 (4129.5) 2827.6 (15459.1) 3222.6 (4480.4) 

PCC 0.9 (0.8) 0.81 (0.70) 0.78 (0.19) 0.75 (0.65) 

a The calibration is for 3 days (April 9–11) and includes 22 parameters. The validation period is 3 

April 12–24. Bold typeface indicates the calibrated model results are closer to observations 4 

compared with the default model results. NSE and PCC are unitless; RMSE is in m3/s. 5 
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Table 3. Experiments designed to test the scale-up capability and computational benefits of 1 

HPC-enabled parallel PEST linked to WRF-Hydro. a 2 

Test 

No. of 

Workers 

No. of 

Lamdas 

No. of 

Nodes for 

Each 

Worker 

Total 

computing 

resource 

(nodes) 

Total 

Time Cost 

(min) 

Time Cost for  

Calculating 

Jacobian Matrix 

Time Cost for 

Testing Parameter 

 Upgrades 

Test 1 23 15 2 46 103 52 51 

Test 2 12 10 2 24 150 102 48 

Test 3 6 5 2 12 264 211 53 

Test 4 6 5 4 24 131 107 24 

Test 5 6 5 6 36 86 70 16 

Test 6 6 5 8 48 60 48 12 

Extrap. 1 23 15 4 92 48 24 24 

Extrap. 2 23 15 6 138 32 16 16 

Extrap. 3 23 15 8 184 24 12 12 

Extrap. 4 12 10 4 48 72 48 24 

Extrap. 5 12 10 6 72 48 32 16 

Extrap. 6 12 10 8 96 36 24 12 

a The tests were conducted on Edison/NERSC. Edison is a Cray XC30 with a peak performance 3 

of 2.57 petaflops per second. It has 5,586 nodes, 24 cores per node, and ~61GB physical memory 4 

per node.  5 
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 1 

Figure 1:  Eight USGS sites over the study area. The bounder of Upper Mississippi River 2 

Basin (UMRB) and Missouri River Basin (MORB) are highlighted. The four black circles 3 

indicate the sites that are used for calibrations; the four black crosses are sites that are used 4 

for transferability assessment. USGS site numbers corresponding to the site indices used in 5 

this study are: Station 1: 05465500; Station 2: 07010000; Station 3: 07020500; Station 4: 6 

07022000; Station 5: 05465700; Station 6: 05474000; Station 7: 05558300; Station 8: 7 
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05568500.  The three inflow stations indicated by the black triangles on the lower left map 1 

are 06807000, 06887500, and 05389500.  2 
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Figure 2: Observed and modelled discharge (m3/sec) using default and calibrated parameters 1 

during a 3-day calibration period (April 9–11, 2013) over the four stations indicated by the 2 

black circles in Fig. 1. The observed discharge for Stations 2, 3 and 4 have been adjusted to 3 

exclude the inflows from the catchments that are not covered by current study area. 4 
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Figure 3: Observed and modelled discharge (m3/sec) during a validation period (April 12–1 

24, 2013) using optimum parameters identified from a 3-day calibration over the four 2 

stations indicated by black circles in Fig. 1. Same as Fig. 2, the observed discharge for 3 

Stations 2, 3, and 4 have been adjusted.   4 
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 1 

Figure 4. Time cost for calculating Jacobian matrix and total time cost for one iteration for 2 

five experiments (see Table 3) using different number of workers to conduct PEST (a, b) and 3 

different number of nodes for each worker (c, d) to conduct WRF-Hydro.  4 
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 1 

Figure 5. Total time cost and total computing resource needed for each test and extrapolated 2 

scenario, which uses different number of workers and different number of nodes per worker. 3 

The dash line is an ideal curve, which assumes a linear decrease in terms of time cost when 4 

more computing resource is used, built on Test 3. All the circles are real cost for time and 5 

computing resources by each test and extrapolated scenarios. The red text and filled circles 6 

indicate those specific tests meet the ideal speedup curve.  7 
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 1 

Figure 6: Observed and modelled daily averaged discharge (m3/s) over the four stations that 2 

are indicated by the black crosses in Fig. 1, from April 9–24 using default and the optimum 3 

parameters (shown in Table 1) identified by the 3-day calibration. 4 


