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Abstract. The Weather Research and Forecasting Hydrological (WRF-Hydro) system is a state-12 

of-the-art numerical model that models the entire hydrological cycle based on physical principles. 13 

As with other hydrological models, WRF-Hydro parameterizes many physical processes. Hence, 14 

WRF-Hydro needs to be calibrated to optimize its output with respect to observations for the 15 

application region. When applied to a relatively large domain, both WRF-Hydro simulations and 16 

calibrations require intensive computing resources and are best performed on multimode, 17 

multicore high-performance computing (HPC) systems. Typically, each physics-based model 18 

requires a calibration process that works specifically with that model and is not transferrable to a 19 

different process or model. The parameter estimation tool (PEST) is a flexible and generic 20 

calibration tool that can be used in principle to calibrate any of these models. In its existing 21 

configuration, however, PEST is not designed to work on the current generation of massively 22 

parallel HPC clusters. To address this issue, we ported the parallel PEST to HPCs and adapted it 23 

to work with WRF-Hydro. The porting involved writing scripts to modify the workflow for 24 

different workload managers and job schedulers, as well as developing code to connect parallel 25 

PEST to WRF-Hydro. To test the operational feasibility and the potential computational benefits 26 

of this first-of-its-kind HPC-enabled parallel PEST, we developed a case study using a flood in the 27 

midwestern United States in 2013. Results on a problem involving calibration of 22 parameters 28 

show that on the same computing resource used for parallel WRF-Hydro, the HPC-enabled parallel 29 

PEST can speed the calibration process by a factor of up to 15 compared with commonly used 30 
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PEST in sequential mode. The speedup factor is expected to be greater with a larger calibration 1 

problem (e.g., more parameters to be calibrated or a larger size of study area).  2 

1 Introduction 3 

Physically based hydrological models contain detailed physical mechanisms to model the 4 

hydrological cycle, but many complex physical processes in these models are parameterized. For 5 

example, the state-of-the-art Weather Research and Forecasting Hydrological (WRF-Hydro) 6 

modeling system  (Gochis et al., 2015) has dozens of parameters that can be land- and river-type 7 

dependent and are typically specified in lookup tables. Therefore, these hydrological models need 8 

to be calibrated before they can be applied to research over different regions. In this context, 9 

calibration refers to adjusting the values of the model parameters so that the model can closely 10 

match the behavior of the real system it represents. In some cases, the appropriate value for a 11 

model parameter can be determined through direct measurements conducted on the real system. In 12 

many situations, however, the model parameters are conceptual representations of abstract 13 

watershed characteristics and must be determined through calibration. In fact, model calibration is 14 

the most time-consuming step, not only for hydrological models, but also for Earth system model 15 

development, because both parametric estimation and parametric uncertainty analysis require 16 

hundreds—if not thousands—of model simulations to understand how perturbations in model 17 

parameters affect simulations of dominant physical processes and to find the optimum value of a 18 

single parameter. 19 

 20 

WRF-Hydro is a numerical model that can simulate the entire hydrological cycle using advanced 21 

high-resolution data such as satellite and radar products. Compared with the traditional land 22 

surface model (LSM) used by WRF, WRF-Hydro provides a framework for multiscale 23 

representation of surface flow, subsurface flow, channel routing, and baseflow, as well as a simple 24 

lake/reservoir routing scheme. As a physics-based model, WRF-Hydro includes many complicated 25 

physical processes that are nonlinear and must be parameterized. The default parameters given by 26 

WRF-Hydro may be valid for one region but not for another region. Hence calibration of related 27 

model parameters is often required in order to use the model in a new domain. In particular, for a 28 

large spatial domain such as the entire contiguous United States, in order to develop the optimal 29 

parameter sets in a reasonable amount of time, the calibration must be conducted on high-30 
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performance computing (HPC) systems in parallel instead of in the traditional sequential mode. 1 

To date, no such calibration tool can efficiently calibrate WRF-Hydro on HPC resources. 2 

Typically, each physics-based model needs a calibration code that is custom designed to work with 3 

that particular numerical model and its set of physics parameterizations, software architecture, and 4 

solvers. These custom-designed calibration codes are highly challenging and do not offer 5 

flexibility. Therefore, a more flexible and generic calibration tool is needed that can calibrate any 6 

code that uses Message Passing Interface/Open Multi Processing (MPI/OpenMP) for 7 

parallelization on HPC systems. 8 

 9 

One widely used generic and independent calibration tool is the parameter estimation tool (PEST). 10 

PEST (Doherty, 2016) conducts calibration automatically based on mathematical methods and 11 

thus is applicable for optimizing nonlinear parameters. Compared with manual calibration, 12 

automatic calibration is more efficient and effective because it avoids interference from human 13 

factors (Madsen, 2000; Getirana, 2010). The uniqueness of PEST is that it operates independent 14 

of models: there is no need to develop additional programs or codes for a particular model except 15 

preparing the files required by PEST (as described in Sec. 3.2). PEST has four modes of operation. 16 

One of the modes is regularization mode, which supports the use of Tikhonov regularization and 17 

is found better for serving environmental models because, if implemented properly, it supports 18 

model predictions of minimum error variance, is numerically stable, and embraces rather than 19 

eschews the heterogeneity of natural systems. Singular value decomposition (SVD) can be used as 20 

a regularization device to guarantee numerical stability of the calibration problem. Parallel PEST 21 

is able to distribute many runs across many computing nodes using master-worker parallel 22 

programing. To our best knowledge, however, no approach is available that allows users to submit 23 

jobs using PEST parallelization to a typical supercomputing facility that uses job scheduling and 24 

workload management such as Simple Linux Utility for Resource Management (SLURM), 25 

Portable Batch System (PBS), and Cobalt. A previous study (Senatore et al., 2015) used PEST to 26 

calibrate WRF-Hydro over the Crati River Basin in southern Italy. Because the study area was 27 

relatively small, the authors were able to conduct the calibration using PEST in sequential mode 28 

(Alfonso  Senatore, personal communication, 2018).  29 

 30 
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This study aims to (1) port parallel PEST to HPC clusters operated by the U.S. Department of 1 

Energy (DOE) and adapt it to work with WRF-Hydro, (2) evaluate the performance of HPC-2 

enabled parallel PEST linked to WRF-Hydro by calibrating a flood event, and (3) explore the 3 

scale-up capability and computational benefits of HPC-enabled parallel PEST by assigning 4 

different computing resource to the entire calibration process.  5 

2 Model description 6 

2.1 Study area 7 

The case presented here is one of the worst floods experienced by greater Chicago area in the past 8 

three decades; the storm  occurred on April 18, 2013 (Campos and Wang, 2015). According to the 9 

National Weather Service (NWS), the heaviest 24-hour accumulated rainfall during this storm 10 

reached 201.4, 171.1, and 136.4 mm across Illinois, Iowa, and Missouri, respectively. The 11 

Mississippi River crested at 10.8 m (1.7 m above flood stage), and the Illinois River crested in 12 

Peoria, Illinois, at 8.95 m; these river cresting broke the previous record of 8.78 m, set in 1943, 13 

and was 4.55 m above the historical normal river stage (NWS, 2013). Campos and Wang (2015) 14 

conducted three-domain nested WRF simulations to understand the dynamical and microphysical 15 

mechanisms of the event. Our study builds on the smallest domain of that study, which covers the 16 

majority of Illinois, Iowa, and Missouri at a spatial resolution of 3 km (Fig. 1). The domain size is 17 

750 km from west to east and 660 km from south to north. 18 

 19 

2.2 WRF-Hydro configuration 20 

This study employs WRF-Hydro version 5 with a basic configuration. This configuration does not 21 

use nudging techniques or spatially distributed soil-related parameters as used in the National 22 

Water Model configuration. WRF-Hydro has been tested in several different cases that focused on 23 

different hydrometeorological forecasting and simulation problems (e.g., Gochis et al., 2018; 24 

Yucel et al., 2015; Senatore et al., 2015; Arnault et al., 2016), and it shows reasonable accuracy in 25 

simulated streamflow after being carefully calibrated. For details of the WRF-Hydro modeling 26 

system, see Gochis et al. (2018). Currently, two LSMs are available in WRF-Hydro for 27 

representing land-surface column physics: Noah (Chen and Dudhia, 2001) and Noah Multi-28 
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parameterization (Noah-MP; Niu et al. 2011). We utilize Noah-MP LSM because compared with 1 

Noah LSM it shows obvious improvements in reproducing surface fluxes, skin temperature over 2 

dry periods, snow water equivalent, snow depth, and runoff (Niu et al. 2011). The Noah-MP is 3 

configured at a grid spacing of 3 km, and the aggregation factor is 15; that is, starting from a 3 km 4 

LSM resolution in the domain shown in Fig. 1, hydrological routing is performed at a grid 5 

resolution of 200 m, with 3285 south-north × 3735 west-east grid cells. We use a time step of 10 6 

seconds for the routing grid in order to maintain model stability and prevent numerical dispersion 7 

of overland flood waves. The time step also meets the Courant condition criteria for diffusive wave 8 

routing on a 200 m resolution grid. The WRF-Hydro is configured to be in offline or uncoupled 9 

mode―there is no online interaction between the WRF-Hydro hydrological model and the WRF 10 

atmospheric model. Overland flow, saturated subsurface flow, gridded channel routing, and a 11 

conceptual baseflow are active in this study. The gridded channel network uses an explicit, one-12 

dimensional, variable time-stepping diffusive wave. A direct output-equals-input “pass-through” 13 

relationship is adopted to estimate the baseflow. Although the baseflow module is not physically 14 

explicit, it is important because the water flow in the channel routing is contributed by both the 15 

overland flow and baseflow. If the overland flow is active as it is in this study, it passes water 16 

directly to the channel model. In this case the soil drainage is the only water resource flowing into 17 

the baseflow buckets. However, if the overland flow is deactivated but channel routing is still 18 

active, then WRF-Hydro collects excess surface infiltration water from the land model and passes 19 

this water into the baseflow bucket. This bucket then contributes the water from both overland and 20 

soil drainage to the channel flow. Therefore, the baseflow must be active if the overland flow is 21 

switched off. This study does not consider lakes and reservoirs.  22 

 23 

We use the geographic information system (GIS) tool (Sampson and Gochis, 2018) developed by 24 

the WRF-Hydro team to delineate the stream channel network, open water (i.e., lake, reservoir, 25 

and ocean) grid cells, and groundwater/baseflow basins. Meteorological input for the WRF-Hydro 26 

model system includes hourly precipitation; near-surface air temperature, humidity, and wind 27 

speed; incoming shortwave and longwave radiation; and surface pressure. In this study, the hourly 28 

precipitation is from the National Centers for Environmental Prediction (NCEP) Stage IV analysis 29 

at a spatial resolution of 4 km. The Stage IV data is based on combined radar and gauge data (Lin 30 

and Mitchell, 2005; Prat and Nelson, 2015), and has been shown to be temporally well correlated 31 
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with high-quality measurements from individual gauges (see, e.g., Sapiano and Arkin, 2009; Prat 1 

and Nelson, 2015). The other hourly meteorological inputs are from the second phase of the multi-2 

institution North American Land Data Assimilation System project, phase 2 (NLDAS‐2) (Xia et 3 

al., 2012a,b), at a spatial resolution of 12 km. NLDAS‐2 is an offline data assimilation system 4 

featuring uncoupled LSMs driven by observation‐based atmospheric forcing. 5 

 6 

During the 15-day period of this studied case, light to moderate rain occurred on April 8 through 7 

11, 2013, followed by a relatively dry period from April 12 to 15. Then a heavy rain event began 8 

on April 16 and peaked on April 18. The heaviest rain band moved east of the study area on April 9 

19. The rainy event ended over the study area on April 20 (see Fig. S1 in Supporting Information). 10 

We start the WRF-Hydro simulation on Jan. 1, 2013, and run the model for more than three months 11 

to reach equilibrium. This 3-month period is considered as spin-up time and is excluded from 12 

model calibration and evaluation. We calibrate the river discharge calculated by the WRF-Hydro 13 

model from 00UTC April 9 to 00UTC April 12, 2013, considering it long enough to achieve our 14 

objective. We then evaluate the model performance against U.S. Geological Survey (USGS) 15 

observed river discharge from 00UTC April 12 to 00UTC April 25, 2013.  16 

3 Calibration 17 

3.1 Platforms 18 

We customized parallel PEST to work on three different workload managers and job schedulers: 19 

SLURM at the National Energy Research Scientific Computing Center (NERSC), PBS at the 20 

Argonne National Laboratory Computing Resource Center, and Cobalt at the Argonne Leadership 21 

Computing Facility. The tests presented here are conducted on Edison at NERSC, which uses the 22 

SLURM workload manager and job scheduler. Edison is a Cray XC30 with a peak performance 23 

of 2.57 petaflops per second, 133,824 compute cores, 357 terabytes of memory, and 7.56 petabytes 24 

of disk storage. It has 5,586 nodes and 24 cores per node. 25 

 26 

The interface we have built between parallel PEST and the management software (SLURM here) 27 

is, in general, used for (1) setting the number of workers and the nodes for each worker to conduct 28 

a model run (WRF-Hydro here); (2) finding the nodes that are available; (3) setting up the working 29 
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directory for the workers; (4) identifying the nodes that work for each worker; (5) passing the 1 

global files (same for all the working directory) to all the workers (these files include the lookup 2 

table files that are not to be calibrated, the namelist files for both LSM and hydrological sector, 3 

and restart files that generated by the previous simulations, or  spin-up period); and (6) submitting 4 

the job for the entire calibration process, including parallel PEST and parallel WRF-hydro. This 5 

job can be submitted as a cold-start run or as a restart. The main difference for this interface on 6 

different management software is that different management software has its own way to submit 7 

jobs and identify available nodes. This difference requires some changes in the script we 8 

developed. 9 

3.2 PEST files and settings 10 

PEST requires three file types in both sequential and parallel mode. They are template files to 11 

define the parameters to be calibrated, an instruction file to define the format of model-generated 12 

output files, and a control file to supply PEST with the size of the problem and the settings for the 13 

calibration method. Parallel PEST uses a “master-worker” paradigm that starts model runs 14 

simultaneously by different workers (or in different folders). The master of parallel PEST 15 

communicates with each of its workers many times during a calibration. To run PEST in parallel 16 

mode, one also needs a management file to inform PEST where the working folder is for each 17 

worker and what the names and paths are for each model input file that PEST must write (i.e., 18 

lookup tables that come from template files) and each model output file that PEST must read (such 19 

as frsxt_pts_out.txt). The management file also set the maximum running time for each worker. 20 

For those workers that take longer than the maximum running time, PEST will stop the model run 21 

by that particular worker and assign that model run to another worker if there is one with nothing 22 

else to do.  23 

 24 

To the best of our knowledge, however, parallel PEST is not designed to run on HPCs directly. 25 

We developed scripts and an interface to enable parallel PEST to run on HPCs using SLURM, 26 

PBS, or Cobalt workload managers and job schedulers. The development involved writing scripts 27 

to modify the workflow for different workload managers and job schedulers, as well as developing 28 

code to connect parallel PEST to WRF-Hydro. These developments enable parallel PEST to run 29 

many workers at the same time; each worker runs a parallel code (here WRF-Hydro) that uses 30 
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more than one node, which could significantly reduce the wall-clock time of model calibrations. 1 

Although this master-worker parallelism may not be as efficient as a fully MPI approach, it is 2 

sufficient for model calibration and requires the least effort for the current parallel PEST to run on 3 

HPC systems.  4 

 5 

This study presents calibration results from PEST using the SVD-based regularization in 6 

regularization mode to ensure numerical stability (Tonkin and Doherty, 2005). We focus on 7 

calibrating 22 parameters (see Table 1 and detail description in Sec. 3.3) using 96 observation 8 

points and 22 items of prior information for the calibrated parameters. In each item of prior 9 

information, a value equal to its default value provided by the WRF-Hydro v5.0 (or the log of its 10 

default value) is assigned for each adjustable parameter, assuming that default values are the 11 

preferred values. All prior information equations are assigned a weight of 1.0. We assigned five 12 

different regularization groups to the prior information: Manning’s roughness coefficients 13 

specified by Strahler stream order in CHANPARM.TBL to one group; the parameters in 14 

HYDRO.TBL (Manning’s roughness coefficients for overland flow as a function of vegetation 15 

types) to another group; and three global parameters for the Noah-MP (xslop1, refdk, and refkdt) 16 

in GENPARM.TBL to the remaining three groups. The 96 observation points are given different 17 

weights based on the inversed mean of their observed discharge during the studied period (see the 18 

detailed description in Sec. 3.3 and Sec. 4.1). For a detailed description of these settings see the 19 

PEST User Manual (Doherty, 2016).  20 

 21 

3.3 Calibrated experiments 22 

The primary objective of this study is to build a bridge for linking the parallel PEST and WRF-23 

hydro on the basis of HPC clusters and to explore the computational benefits of this bridge. We 24 

do not attempt to extensively assess each individual tool or address questions in each individual 25 

domain, such as optimizing the objective functions in PEST or calibrating WRF-Hydro for a long 26 

time period considering all the relevant parameters to achieve an optimal parameter set. The 27 

calibration period thus is limited to only three days, which we believe long enough to achieve our 28 

objective and to understand WRF-Hydro’s sensitivity to the calibrated parameters. We calibrated 29 

WRF-Hydro using four USGS sites (referred to as Station 1, Station 2, Station 3, and Station 4 30 
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hereafter), as shown in Fig. 1. (More USGS sites could be included if one manually reallocated 1 

the stations that were not properly assigned to the desired location on the channel network by the 2 

GIS tool.) We then transfer the calibrated parameters to other subbasins in the study area to assess 3 

the transferability of the calibrated parameters. Although many parameters, including spatially 4 

distributed parameters and constant parameters in the lookup tables, affect the model performance, 5 

we calibrate only the parameters in lookup tables and do not consider the spatial variability of 6 

other parameters or their scaling factors. We acknowledge that some studies calibrate a single 7 

scaling factor (without considering its spatial variability, however) of overland roughness 8 

coefficients (OVROUGHRTFAC) rather than the actual value of each land type in the lookup table 9 

(e.g., Kerandi et al., 2018). Although this approach reduces the number of calibrated parameters, 10 

however, it has less flexibility because changing one factor will change all the parameters that use 11 

the same proportion.   12 

 13 

For the calibration exercises we conduct here, the retention depth factor (RETDEPRTFAC) is 14 

fixed at 0.001. This value is reasonable because the modeled discharge of our particular 15 

configuration (Sec. 2.2) using default parameters is lower than observed discharge. Reducing this 16 

factor from 1 to 0.001 keeps less water in water ponds and more water on the surface so it can 17 

contribute to river discharge. First, we calibrate 48 parameters based on a 3-day simulation from 18 

April 9 to April 11, 2013 (Table S1 in Supporting Information). This calibration uses the 19 

estimation mode in the PEST tool and considers equal weight for all four USGS stations. We 20 

calibrate Manning’s roughness coefficients for both channels and land-use types, the deep drainage 21 

(SLOPE), infiltration-scaling parameter (REFKDT), and saturated soil lateral conductivity 22 

(REFDK). Manning’s roughness coefficients control the hydrograph shape and the timing of the 23 

peaks; the SLOPE, REFKDT, and REFDK control the total water volume. Second, based on the 24 

knowledge we learn from the 48-parameter calibration (see details in Sec. 4.1), for the same 3-day 25 

period, we reduce the number of calibrated parameters from 48 to 22 according to the sensitiveness 26 

of the WRF-Hydro model to the adjustable parameters. For example, during the calibration we 27 

find that Manning’s roughness coefficients for several land types barely change because these land 28 

types (e.g., tundra, snow/ice) are not present in the study area. We also learn that even though the 29 

calibrated WRF-Hydro parameters can generate discharge results that closely resemble 30 

observations, the physical meaning of several parameters are not appropriate because of the wide 31 
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range of those parameters that we set in the PEST control file. For example, Manning’s roughness 1 

coefficient for stream order 1 (0.199) is calibrated smaller than that for stream order 2 (0.218); the 2 

overland roughness coefficients for evergreen needleleaf forest (0.043) and mixed forest (0.023) 3 

are calibrated smaller than for cropland/woodland (0.046). Neither of these is true in the real world. 4 

We therefore adjust the range of many parameters according to the literature (Soong et al., 2012) 5 

to maintain their physical meanings (Table 1). We find that by using the same absolute weight for 6 

all four stations, the calibration helps three stations (Station 2, 3, and 4) with large water volumes 7 

to generate more reasonable results than do the default parameters; however, the results for Station 8 

1, which has a relatively small volume of water, is not always better than the discharge that is 9 

modeled by using default parameters. Thus, we assign a weight of 15.0 for Station 1 versus a 10 

weight of 1.0 for the other three stations according to the inversed mean of observed discharge 11 

over these four stations in April 2013. The ratio of the weights between Station 1 and the other 12 

three stations stays similar even if the means are calculated based on different time periods.  13 

  14 

3.4 Statistics 15 

This study employs three statistical criteria: Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 16 

1970; Moriasi et al., 2007), root-mean-square error (RMSE), and Pearson correlation coefficient 17 

(PCC). RMSE and PCC evaluate model performance in terms of bias and temporal variation. NSE 18 

quantitatively describes the accuracy of modeled discharge compared with the mean of the 19 

observed data. Equation (1) calculates the NSE with defined variables: 20 

𝑁𝑆𝐸 = 1 −
∑ (𝑌𝑡

𝑜𝑏𝑠−𝑌𝑡
𝑠𝑖𝑚)

2𝑛
𝑡=0

∑ (𝑌𝑡
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛

𝑠𝑖𝑚 )
2𝑛

𝑡=0

,         (1) 21 

where 𝑌𝑡
𝑜𝑏𝑠 is the tth observed value from USGS sites for river discharge , 𝑌𝑡

𝑠𝑖𝑚is the tth 22 

simulated value from the WRF-Hydro output, 𝑌𝑚𝑒𝑎𝑛
𝑜𝑏𝑠  is the temporal average of USGS observed 23 

discharge, and n is the total number of observation time points. An efficiency of 1 (NSE = 1) 24 

corresponds to a perfect match between modeled discharge and observed data. An efficiency of 0 25 

(NSE = 0) indicates that the model predictions are as accurate as the mean of the observed data. 26 

An efficiency below zero (NSE < 0) occurs when the model is worse than the observed mean. 27 

Essentially, the closer the NSE is to 1, the more accurate the model is. 28 
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4 Results 1 

4.1 WRF-Hydro calibration and validation 2 

Based on the knowledge we gained from the 48-parameter 3-day calibration, we adjust the range 3 

of critical parameters in the PEST control file to main their physical meanings. For example, we 4 

set Manning’s roughness coefficient larger for stream order 1 than for stream order 2. We also 5 

adjust the parameter range of the overland roughness coefficient for multiple land covers, such as 6 

forests. We exclude the parameters that WRF-Hydro is not sensitive to for this study, in order to 7 

constrain the problem size considering the availability of computational resources. However, if the 8 

studied area is much larger with more land types than the study area here, then there would be 9 

more parameters to calibrate. Also, hundreds of constant parameters in the Noah-MP model could 10 

affect the WRF-Hydro results (Cuntz et al. 2016) and can be calibrated. Both these situations 11 

would increase the burden of WRF-Hydro calibration. We perform the same 3-day calibration 12 

from April 9 to April 11, 2013. Figure 2 shows the results of the 3-day modeled discharge (in cubic 13 

meters) using default and calibrated parameters after five iterations, as well as observed discharge. 14 

The four stations are calibrated by considering different weights. Compared with the results 15 

calibrated by using equal weights for all the stations, by giving a higher weight to Station 1 the 16 

model bias over Station 1 is significantly reduced, with a higher NSE (0.87 with higher weight 17 

versus 0.14 with equal weight) and lower RMSE (48.1 versus 123.6). Over Stations 2, 3, and 4, 18 

which sit on rivers with relatively large water volumes, the modeled discharge using the default 19 

parameter underestimates the streamflow by more than 65%. PEST detects this underestimation 20 

and immediately adjusts the parameters and increases the modeled discharge during the first 21 

iteration. After the third iteration, the difference in calibrated results between different iterations 22 

is relatively small. We allow the PEST to conduct five iterations and use the parameters obtained 23 

from the fifth iteration as our optimum parameters. As shown in Table 2, when the optimum 24 

parameters are used, the modeled discharges are much closer to the observations compared with 25 

the modeled results when the default parameters were used. The NSEs for the four stations 26 

increased from 0.73 (Station 1), -54.4 (Station 2), 157.3 (Station 3) and -1316.9 (Station 4) to 0.87, 27 

0.64, 0.05, and -58.78, respectively, being closer to 1. The RMSEs decreased from 69.3, 3925.2, 28 

3981.3, and 4391.3 m3/sec to 48.1, 318.2, 308.7, and 934.6 m3/sec, respectively. Giving a lower 29 

weight for the three large river stations does not change the calibration results much.  30 
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 1 

During the validation period, compared with the modeled discharge using default parameters, as 2 

shown in Table 2, the NSEs for all four stations are increased to be closer to 1; RMSEs are 3 

decreased by 50% or more; and the correlation coefficients between the observed and modeled 4 

discharge are increased from 0.8, 0.76, 0.21, and 0.72 to 0.98, 0.82, 0.80, and 0.75. Compared with 5 

the results of calibration using the estimation mode (no regularization) in PEST, the SVD-based 6 

regularization generates slightly better hydrograph shape with 24-hour later discharge peaks that 7 

are closer to the observations. However, a problem remains with the hydrograph shapes of the 8 

modeled discharge, especially with the modeled peak of discharge. For Station 1, the WRF-Hydro 9 

almost captures the timing of the peak of discharge, although it still underestimates the water 10 

volume by ~25%. The reason is that this study uses a direct pass-through baseflow module, which 11 

does not account for slow discharge and long-term storage of the baseflow. Therefore, the largest 12 

contribution to river discharge is from precipitation, and groundwater does not contribute much 13 

discharge to the channels in a long-term view, as is also true for the other three large river stations. 14 

Different from Station 1, for the other three large river stations, the WRF-Hydro modeled 15 

discharge increases soon after the peak of precipitation and reaches a peak on April 21, 2013, 16 

which is much earlier than the observed peak of river discharge (near April 24). The reason is that 17 

the water contributions for these stations are from a larger river basin (Mississippi River) than we 18 

included in our current study area. Thus, when a heavy precipitation event occurs over the entire 19 

river basin, there will be a significant lag time (especially at the lower part of the basin) between 20 

the peak of precipitation amount and the peak of river discharge. For example, the precipitation 21 

over the upper part of Mississippi River Basin (MRB) has a peak amount on April 18–19, but the 22 

river discharge did not reach its peak until April 24. Because our studied area covers only half of 23 

the MRB, the modeled river discharge has a shorter delay period after the peak of precipitation 24 

than does the observed river discharge. Enlarging the study area to include the entire MRB may 25 

improve this situation. Alternatively, calibrating and validating local rivers that are included in the 26 

current study area may also reduce the bias in hydrograph shape compared to calibrating and 27 

validating large rivers. On the other hand, the WRF-Hydro simulated river discharge decreases 28 

soon after it reaches the peak and much earlier than the observed discharge. The reason is again 29 

that the direct pass-through baseflow employed by this study does not account for slow discharge 30 

and long-term storage of the baseflow. As a result, the contribution from the baseflow to the river 31 
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discharge in model simulations does not stay as long as in real situations. In the observations, the 1 

river discharge decreases from the peak at a speed of ~500 m3/sec per day, while the modeled river 2 

discharge decreases from the peak at a speed of ~1667 m3/sec per day. Using exponential storage-3 

discharge function for the baseflow may improve this situation. 4 

 5 

4.2 Computational benefits of parallel PEST on HPCs 6 

The ability to scale up the calibration of WRF-Hydro by using parallel PEST on HPC systems is 7 

determined by two factors: the scale-up capability of parallel PEST and the scale-up capability of 8 

WRF-Hydro. In calibrating WRF-Hydro, PEST first makes as many model runs as there are 9 

adjustable parameters to calculate Jacobian matrix (Doherty, 2016). The Jacobian matrix has a 10 

column for each calibrated parameter and a row for each observation and each item of prior 11 

information that set in the PEST control file. These model runs are independent between workers 12 

and can be easily parallelized. Each worker runs the model with temporarily incremented 13 

parameters that are defined in the template and control files. Then, PEST needs to make additional 14 

model runs to test parameter updates. Different from the Jacobian runs, these additional runs are 15 

performed by using  different Marquardt lambdas, and the search for a Marquardt lambda that 16 

achieves the best set of parameters is a serial iterative process. The lambda to use for the next run 17 

depends on the outcome of the model run conducted using the previously chosen lambda. Although 18 

serial testing of Marquardt lambdas may quickly find the optimal Marquardt lambda in the first or 19 

second series of model runs, it is an inefficient use of computing resources because other 20 

processors are idle while only one process is searching the lambdas. This is especially true when 21 

the model domain is large and requires extensive computing resources. This study employs “partial 22 

parallelization” for the lambda-testing procedure (Doherty, 2016), so multiple workers can be used 23 

to calculate parameter upgrades based on a series of lambda values that are related to each other 24 

by a factor of RLAMFAC set in the PEST control file. We also set the value of PARLAM to -9999 25 

in the management file so only one cycle of parallel WRF-hydro runs is devoted to testing 26 

Marquardt lambdas. For additional details on these parameters and their settings see the PEST 27 

User Manual (Doherty, 2016). 28 

  29 
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In this study we test the computational performance of HPC-enabled parallel PEST using different 1 

number of workers (6, 12, and 23) for the 22-parameter calibration. As shown in Table 3, we 2 

conducted five experiments: Test 1 uses 23 workers, Test 2 uses 12 workers, and Test 3 uses 6 3 

workers. All  three tests use two nodes for each worker to run WRF-Hydro in parallel. The 4 

maximum number of lambda-testing runs undertaken per iteration is set to 15, 10, and 5 for Test 5 

1, 2, and 3, respectively, to make sure that only one cycle of WRF-hydro runs is devoted (using 6 

15, 10 and 5 workers from Tests 1, 2, and 3, respectively) to testing Marquardt lambdas. Note that 7 

the maximum number of lambda-testing runs should be set equal to or less than the workers 8 

available. Otherwise, another cycle of WRF-hydro runs needs to be conducted. In fact, generating 9 

more Marquardt lambdas does not always guarantee that the best Marquardt lambdas are 10 

generated. In contrast, it may make the model convergence slower (here, PEST) or even model 11 

failure.  12 

 13 

In order to test the trade-offs between the computing nodes used for running parallel WRF-Hydro 14 

and the workers used for running parallel PEST, Tests 4 and 5 use different number of nodes for 15 

each worker to run WRF-Hydro in parallel. Explicitly, Test 4 uses four nodes per worker, and Test 16 

5 uses six nodes per worker. Both tests use six workers for running the parallel PEST. The 17 

maximum number of lambda-testing runs undertaken per iteration is set to five for both Tests 4 18 

and 5. Note that the time costs in Table 3 are limited to only one iteration. Conducting more 19 

iterations will increase the cost of wall-clock time and computing, but will not change the 20 

conclusion for the scale-up capability and computational benefits for HPC-enabled parallel PEST 21 

linked to WRF-hydro.    22 

 23 

PEST needs to run the WRF-Hydro model at least as many times as the number of calibrated 24 

parameters (22 here). In fact, PEST runs the model 23 times in the first round (or the first iteration) 25 

with initial parameter values and for the first Jacobian matrix. From the second iteration, it runs 26 

the model 22 times to calculate Jacobian matrix. Therefore, if there are fewer than 23 workers, the 27 

time cost for the first round of Jacobian matrix calculation will increase accordingly. For example, 28 

as shown in Fig. 4a, when we assign 12 (and 6) workers to parallel PEST, the time cost for 29 

calculating the Jacobian matrix is increased by a factor of 2 (and 4) compared with the time cost 30 

of using 23 workers. The time cost for the parameter upgrade stays similar for the three 31 
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experiments because only one cycle of WRF-hydro simulation is conducted to test the Marquardt 1 

lambdas. As a result, the total time cost for Test 2 is ~1.5 times more than that for Test 1, and the 2 

total time cost for Test 3 is ~1.5 times more than that for Test 2 (Fig. 4b). By extrapolating the 3 

speedup curve shown in Fig. 4a and Fig. 4b, we expect the total time cost to be ~1516 minutes 4 

when using only one worker (or sequential mode), which is about 15 times slower compared with 5 

running the PEST in parallel mode using 23 workers. For this particular study with 22 adjustable 6 

parameters, we expect the time cost most likely to stay the same even if one increases the number 7 

of workers to more than 23, because PEST runs WRF-Hydro only 23 or 22 times for each iteration. 8 

Assigning more workers for this particular study would most likely render some workers idle and 9 

is not an efficient use of computing resources. PEST may run WRF-Hydro more than 22 times 10 

(e.g., 44 times) if higher-order finite differences are employed. In this case, assigning more 11 

workers (e.g. 45 workers) may further speed up the calibration process. On the other hand, for the 12 

same case study and using the same number of nodes for running parallel WRF-Hydro, we can 13 

estimate the computing speedup by assuming an increase in the number of calibrated parameters 14 

to 50. This would be the case, for example, to evaluate model sensitiveness to the physics in Noah-15 

MP or the spatial variabilities of certain parameters. We then expect to use 51 workers to achieve 16 

the best computing performance for parallel PEST. This would then be 28–30 times faster than 17 

running PEST using one worker (or in sequential mode). Similarly, if 100 parameters were used 18 

for the calibration for the same case study, a factor of up to 60 speedup in the calibration process 19 

would be achieved by running HPC-enabled parallel PEST.  20 

 21 

In addition, by increasing the number of nodes for each worker to conduct WRF-Hydro (Tests 3, 22 

4, and 5), the time cost for the entire calibration process is significantly reduced (Figs. 4c and 4d). 23 

Specifically, the WRF-hydro scales up well when using four and six nodes compared with using 24 

two nodes per worker for running the WRF-Hydro. Both the time spent on calculating the Jacobian 25 

matrix and the time spent on testing the parameter upgrades are decreased by 49% and 67%, 26 

respectively, when using four and six nodes. Therefore, the total time spent is also decreased when 27 

using more nodes for each worker (see Table 3). Increasing the number of nodes to eight for each 28 

worker will most likely further decrease the time cost by 70–75% compared with using only two 29 

nodes per worker. Moreover, if one has a larger study area such as the entire contiguous United 30 

States, we expect the WRF-Hydro to have an even better scale-up capability (e.g., on dozens of 31 
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nodes) than this study. Overall, based on the experiments we conduct here, using 23 workers for 1 

parallel PEST and six nodes for each worker to run parallel WRF-Hydro would cost the least wall-2 

clock time―about 32 min for one iteration for this particular study.  3 

 4 

4.3 Evaluation of spatial transferability of the calibrated parameters 5 

To assess the transferability of the calibrated parameters, we apply the optimum parameters 6 

obtained from the calibration for the four stations (black circles) in Fig. 1 to another set of  four 7 

stations (crosses in Fig. 1) in the study area. All four sites are located on relatively small rivers, so 8 

the lag time between precipitation peak and the discharge peak are much shorter than that for the 9 

stations on the lower part of MRB (e.g., Stations 2, 3, and 4). The assessment compares the 10 

observed discharge with the closest grid cells from the discharge output of WRF-Hydro. Figure 5 11 

shows the observed and modeled discharge using default and the optimum parameters. Overall, 12 

WRF-Hydro’s default parameters underestimate the discharge and misrepresent the timing of 13 

discharge peaks compared with observations over the four assessed stations (Stations 5, 6, 7, and 14 

8). By using the calibrated parameters from other sites over the area, the model results increase the 15 

discharge and shift the hydrograph shape so they are much closer to the observations than model 16 

results using default parameters. The absolute error of simulated discharge decreases by 13.1%, 17 

38.3%, and 71.6%, respectively, over Stations 6 through 8 (Station 5 shows a 6% increase of 18 

absolute error), compared with the default simulated discharge. We also find that using the SVD-19 

based regularization for the PEST calibration captures the timing of discharge peak better than 20 

using the estimation mode, which is one-day earlier than the observations reaching the discharge 21 

peak. 22 

5 Summary and discussion 23 

WRF-Hydro is a new, and perhaps the first practical, computer code that can run on HPC systems 24 

and can model the entire hydrological cycle using physics-based submodels and high-resolution 25 

input datasets (e.g., radar). The hydrological community has desired this capability for decades, 26 

although it requires intensive computing resources. Thus, the calibration of this model would 27 

ideally be conducted on HPCs in parallel as well, especially when the model covers a large domain 28 

rather than the basin scale. This study ports an independent model calibration tool, parallel PEST, 29 
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to HPC clusters and links it to WRF-Hydro to help WRF-Hydro users calibrate the model within 1 

a much shorter wall-clock time period. The bridge we build here (between parallel PEST and 2 

WRF-Hydro on the basis of HPC systems) can be applied to any other hydrological models and 3 

Earth system models that use parameterizations to represent model physics. We present the 4 

operational feasibility of the HPC-enabled parallel PEST by evaluating the performance of 5 

calibrated WRF-Hydro against observation in hydrograph features such as volume and timing of 6 

flood events. We examine the scale-up capability and computational benefits of the tool by 7 

assigning different computing resource for PEST and for WRF-Hydro. While this study presents 8 

the optimum parameters identified from the calibration of the particular flood event, the parameters 9 

can be significantly different if one uses different physics, such as exponential storage-discharge 10 

function for a groundwater model or reach-based channel routing. Our preliminary testing shows 11 

that using exponential storage-discharge function with the default parameters provided by WRF-12 

Hydro, the modeled discharge was larger than that of observations. Thus, the calibration will need 13 

to adjust the parameters to reduce the discharge. Our study finds that for calibrating 22 parameters, 14 

using the same computing resource for running WRF-hydro, the HPC-enabled PEST calibration 15 

tool can speed up WRF-Hydro calibration by a factor of 15, compared with running PEST in 16 

sequential mode. The speedup factor can be larger when the number of parameters needing 17 

calibration is higher (e.g., 50 or 100).  18 

 19 

The following are several key points that we would like to mention to inform future studies: 20 

1. In this study, we consider using the prior or regularization information only for the 21 

parameters that we calibrate. As is the case with solving inverse problems, prior 22 

information is added to improve the smoothness of the solutions. In order to build a more 23 

comprehensive calibration, an important aspect that can be considered is to enrich the prior 24 

with the available historical data. For example, in this particular case, one can use the 25 

historical observation data (e.g., April and May from the past few years) to enrich the prior 26 

information for the parameters. Hence, the regularization objective function in PEST will 27 

constitute not only the discrepancies between parameters and their “current estimates” but 28 

also the discrepancies between WRF-Hydro simulations and preferred values (which is the 29 

observed time series of historical discharge). Additionally, one can use the pilot points 30 

technique described by Doherty (2005) in conjunction with parameter estimation to add 31 
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more flexibility to the calibration process. This will be potentially beneficial in improving 1 

the predictions. 2 

2.  To focus on our main goal, we calibrate only the parameters in lookup tables. However, 3 

we acknowledge that using a single value to represent a physics for a large domain could 4 

be problematic, especially we expect the HPC-enabled parallel PEST to execute with 5 

WRF-Hydro for large domains. This situation often needs parameter regionalization. For 6 

example, WRF-Hydro v5 has many spatially distributed parameters available, such as the 7 

overland flow roughness scaling factor (OVROUGHRTFAC), the factor of maximum 8 

retention depth (RETDEPRTFAC), and the soil-related parameters (when compiled with 9 

SPATIAL_SOIL=1). Calibrating these spatial parameters based on grid scale (e.g., 10 

catchments) rather than a single value will give the model more flexibility and thus better 11 

fit the observations (Hundecha and Bardossy, 2004; Wagener and Wheater, 2006). In 12 

practice, for example, one can include regional OVROUGHRTFACs (e.g., their 13 

lower/upper bounds, and default values) in the PEST control file based on catchments. 14 

However, the selection of the locations and sizes of catchment may introduce significant 15 

uncertainties to the calibration results, which require systematic and comprehensive 16 

investigation and understanding of the study area.  17 

3. This study is limited to calibrating the observed streamflow only based on the format of 18 

one of WRF-Hydro model outputs for individual station or point (frxst_pts_out.txt). It is 19 

feasible, however, to calibrate other variables as long as the observation data is available. 20 

For example, one can either find the closest point from the gridded dataset to the 21 

observation location and then compare that model grid to observations; or one can change 22 

the WRF-Hydro input/output code to output other variables in the frxst_pts_out.txt file, so 23 

they can still use the same interface we developed here to calibrate other variables instead 24 

in addition to the discharge. 25 

4. The optimal parameter set obtained from this study is from the 5th iteration of parallel 26 

PEST by testing five Marquardt lambdas. Testing different number of lambdas or 27 

calibrating different number of parameters may generate a different set of optimal 28 

parameters. These parameter sets can all make physical sense and be equally good for 29 

reproducing observed discharges. This problem is named equifinality (Beven and Freer, 30 

2001; Savenije, 2001), which is an important source of model uncertainty. To reduce the 31 
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model uncertainty through reducing the equifinality, hydrologists carry out additional 1 

modelling objective for model evaluation to find more useful parameter sets (Mo and 2 

Beven, 2004; Gallart et al., 2007). Alternatively, inspired by No. 3 discussed above, one 3 

can calibrate the WRF-hydro model based on more than one variables, such as discharge 4 

and soil moisture (or heat flux or water table depth) to reduce the number of optimal 5 

parameter sets, and thus reduce the model uncertainty of predictions for these variables.  6 

5. While this study ported the parallel PEST to HPC system and linked it to WRF-Hydro, we 7 

note that BEOPEST is available in the PEST family. BEOPEST has the same functionality 8 

as parallel PEST but uses a different approach for communication between master and 9 

workers. Working with HPC-enabled BEOPEST may save total time cost since BEOPEST 10 

uses the Transmission Control Protocol (TCP) and the Internet Protocol (IP) instead of 11 

message files (reading input and writing output between master and works) for 12 

communication. We expect it to be relatively straightforward to use BEOPEST to calibrate 13 

WRF-hydro on HPCs since the interface remains similar, except one needs to copy the 14 

template and instruction files in addition to the global files (see Section 3.1) into each 15 

working folder.  16 

    17 

Data and Code availability. The observed river discharge is downloaded from the USGS Surface-18 

Water Data website, available at https://waterdata.usgs.gov/nwis/sw. The Stage IV precipitation 19 

data were downloaded from https://data.eol.ucar.edu/dataset/21.093. PEST was downloaded from 20 

http://www.pesthomepage.org/Downloads.php. We use the Unix PEST version 13.6. The scripts 21 

and files that are developed in this study and required by PEST for calibrating WRF-Hydro are 22 

available at http://doi.org/10.5281/zenodo.2588506. 23 
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Table 1: Calibrated 22 parameters and the optimum parameters found after five iterations.  1 

Calibrated Parameter Default 

Lower 

Bound 

Upper 

Bound 

Optimum 

Parameter 

mannn1 0.55 0.35 0.6 0.517599 

mannn2 0.35 0.15 0.35 0.153894 

mannn3 0.15 0.08 0.15 8.00E-02 

mannn4 0.1 0.05 0.15 5.00E-02 

mannn5 7.00E-02 0.02 0.1 6.677379E-02 

mannn6 5.00E-02 0.015 0.1 1.628244E-02 

mannn7 4.00E-02 0.01 0.08 1.298054E-02 

mannn8 3.00E-02 0.005 0.06 5.00E-03 

xslope1 0.1 1.00E-04 1 0.496680 

refdk 2.00E-06 1.00E-08 1.00E-05 2.899043E-07 

refkdt 1 0.01 5 1.66664 

ovn1 (urban) 2.50E-02 0.005 0.06 6.00E-02 

ovn2 (dry crop) 3.50E-02 0.015 0.06 1.50E-02 

ovn3 (irrigated crop) 3.50E-02 0.015 0.06 1.50E-02 

ovn5 (crop/grass) 3.50E-02 0.015 0.06 2.822497E-02 

ovn6 (crop/wood) 6.80E-02 0.035 0.25 4.568903E-02 

ovn7 (grass) 5.50E-02 0.015 0.25 1.50E-02 

ovn10 (savanna) 5.50E-02 0.015 0.3 1.50E-02 

ovn11 (deciduous forest) 0.2 0.1 0.3 0.30 

ovn14 (evergreen forest) 0.2 0.1 0.3 0.164557 

ovn15 (mixed forest) 0.2 0.1 0.3 0.112134 

ovn16 (water) 5.00E-03 0.001 0.01 1.00E-02 
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Table 2: Statistics of model performance using optimum and default (in parentheses) 1 

parameters for Stations 1–4 during the calibration and validation period.a 2 

Statistics Station 1 Station 2 Station 3 Station 4 

Calibration 

NSE 0.87 (0.73) 0.64 (-54.4) 0.05 (-157.3) -58.78 (-1316.9) 

RMSE 48.1 (69.3) 318.2 (3925.2) 308.7 (3981.3) 934.6 (4391.3) 

PCC 0.95 (0.91) 0.87 (0.92) 0.91 (0.87) 0.53 (0.66) 

Validation 

NSE 0.83 (0.41) -0.08 (-3.5) -0.08 (-27.4) -0.12 (-3.33) 

RMSE 259.9 (487.3) 3264.3 (6670.1) 3170.1 (16305.7) 3283.9 (6854.3) 

PCC 0.83 (0.8) 0.98 (0.69) 0.29 (0.19) 0.94 (0.64) 

a The calibration period is 3 days (April 9–11) and includes 22 parameters. The validation period 3 

is April 12–24. Bold typeface indicates the calibrated model results are closer to observations 4 

compared with the default model results. NSE and PCC are unitless; RMSE is in m3/sec. 5 
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Table 3. Experiments designed to test the scale-up capability and computational benefits of 1 

HPC-enabled parallel PEST linked to WRF-Hydro.  2 

Test 

No. of 

Workers 

No. of 

Lamdas 

No. of 

Nodes for 

Each 

Worker 

Total 

Time Cost 

(min) 

Time Cost for  

Calculating 

Jacobian Matrix 

Time Cost for 

Testing Parameter 

 Upgrades 

Test 1 23 15 2 103 52 51 

Test 2 12 10 2 150 102 48 

Test 3 6 5 2 264 211 53 

Test 4 6 5 4 131 107 24 

Test 5 6 5 6 86 70 16 

 3 
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 1 

Figure 1:  Eight USGS sites over the study area (750 km x 660 km). The four circles are sites 2 

that are used for calibrations; the four crosses are sites that are used for transferability 3 

assessment. USGS site numbers corresponding to the site index used in this study are listed 4 

on the top left corner of the map.   5 
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 1 

Figure 2: Observed and modeled discharge (m3/sec) using default and calibrated parameters 2 

during a 3-day calibration period (April 9–11, 2013) over the four stations indicated by the 3 

black circles in Fig. 1. The calibrations shown in solid lines are conducted by using SVD-4 
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based regularization and a higher weight for Station 1. The dashed line is the optimum result 1 

calibrated by using equal weight for all four sites.  2 
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Figure 3: Observed and modeled discharge (m3/sec) during a validation period (April 12–24, 1 

2013) using optimum parameters identified from a 3-day calibration over the four stations 2 

indicated by black circles in Fig. 1. The solid line uses the optimum parameters that 3 

identified by PEST with SVD-based regularization and a higher weight for Station 1. The 4 

dashed line uses the optimum result calibrated by using estimation mode (no regularization).   5 
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 1 

Figure 4. Time cost for calculating Jacobian matrix and total time cost for one iteration for 2 

the five experiments (Table 3) using different number of workers to conduct PEST (a, b) and 3 

different number of nodes for each worker (c, d) to conduct WRF-Hydro.  4 
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  1 

Figure 5: Observed and modeled daily averaged discharge (m3/sec) from April 9–24 using 2 

default and the optimum parameters (shown in Table 1) identified by the 3-day calibration 3 

over four stations that are in the study area (indicated by crosses in Fig. 1). The calibrations 4 

shown in solid lines are conducted by using SVD-based regularization and a higher weight 5 

for Station 1. The dashed line is the optimum result calibrated by using estimation mode (no 6 

regularization). 7 


