
 

We would like to express our deep appreciation to the two reviewers (Dr. Doherty and the anonymous 

reviewer) for the thoughtful comments and insightful suggestions. Working to resolve these comments 

helps us add lots of interesting science and add value to the manuscript.  

 

The primary objective of this study, as pointed out by Reviewer #2, is to build a bridge for linking the 

parallel PEST and WRF-hydro on the basis of HPC clusters and explore the computational benefits of this 

bridge. We do not attempt to extensively assess each individual tool or address questions in each individual 

domain, such as optimizing the objective functions in PEST or calibrating WRF-Hydro to achieve the best 

set of model parameters. However, we appreciate the opportunity every much during the revision of this 

manuscript by learning more about PEST especially the method of regularization for calibrating 

environmental models. We are also very glad that the reviewers found the bridge we built useful for helping 

WRF-Hydro users with the long and tedious model calibration.  

 

In the revised version of this manuscript, several major changes are made based on both reviewers’ 

comments/suggestions. They are listed below: 

1. We re-do the WRF-Hydro calibration using SVD-based regularization method in PEST.  

2. We consider prior information for the calibrated parameters. 

3. We also consider different weight for the stations that are calibrated, based on their inversed mean of 

discharges. 

4. To test the computational benefits of the bridge, we design five experiments by assigning different 

amount of computing resource for parallel PEST and for parallel WRF-hydro. 

5. To constrain the problem size due to the limits of computing resource, we reduce the number of 

calibrated parameters to 22 according to the model sensitiveness of this particular study. 

 

Please find our one-on-one response below to each reviewer’s comment. A complete list of the changes 

made for the revised manuscript can be found in the “track changes” version of the manuscript. A clean 

version of the revised manuscript is also attached at the end. 

 

Sincerely, 

Jiali Wang 

jialiwang@anl.gov 
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Reviewer #1  

 

Interactive comment on “A parallel workflow implementation for PEST version 13.6 in 

high-performance computing for WRF-Hydro version 5.0: a case study over the Midwestern 

United States” by Jiali Wang et al.  

Doherty (Referee) 

johndoherty@ozemail.com.au 

Received and published: 6 December 2018 

 

The authors describe modifications that they made to PEST to enhance its use on a HPC. They then describe 

use of their modified PEST in calibration of a complex surface water model. While I found the paper 

interesting, I found that it was lacking in information in some respects. For example nothing is said about 

the interface that they constructed between parallel PEST and the run management software that they 

employed.  

 

Response:  

 

Thank you for your comment. The interface is the most important thing we built in this study, and testing 

the operational feasibility and computational benefit of this interface are the main objectives of this 

manuscript. Hence it definitely should be described as you suggested. We add this paragraph in Section 3.2 

PEST files and settings: 

 

“The interface we have built between parallel PEST and the management software (SLURM here) is, in 

general, used for (1) setting the number of workers and the nodes for each worker to conduct a model run 

(WRF-Hydro here); (2) finding the nodes that are available; (3) setting up the working directory for the 

workers; (4) identifying the nodes that work for each worker; (5) passing the global files (same for all the 

working directory) to all the workers (these files include the lookup table files that are not to be calibrated, 

the namelist files for both LSM and hydrological sector, and restart files that generated by the previous 

simulations, or  spin-up period); and (6) submitting the job for the entire calibration process, including 

parallel PEST and parallel WRF-hydro. This job can be submitted as a cold-start run or as a restart. The 

main difference for this interface on different management software is that different management software 

has its own way to submit jobs and identify available nodes. This difference requires some changes in the 

script we developed.” 

 

Nor was any reference made to PEST settings.  

 

Response:  

 

Thanks for the comment. In our original version of manuscript, we used estimation mode for PEST, and 

considered equal weight for all four calibrated stations. There was no singular value decomposition (SVD) 

nor regularization used.  

 

In our revised manuscript, we conduct the calibration using SVD-based regularization, we assign prior 

information for all the calibrated parameters, and we also consider different weights for the calibrated 

stations. We add the PEST setting in Section 3.2 PEST files and settings: 

 

“This study presents calibration results from PEST using the SVD-based regularization in regularization 

mode to ensure numerical stability (Tonkin and Doherty, 2005). We focus on calibrating 22 parameters (see 

Table 1 and detail description in Sec. 3.3) using 96 observation points and 22 items of prior information for 

the calibrated parameters. In each item of prior information, a value equal to its default value provided by 

the WRF-Hydro v5.0 (or the log of its default value) is assigned for each adjustable parameter, assuming 



that default values are the preferred values. All prior information equations are assigned a weight of 1.0. 

We assigned five different regularization groups to the prior information: Manning’s roughness coefficients 

specified by Strahler stream order in CHANPARM.TBL to one group; the parameters in HYDRO.TBL 

(Manning’s roughness coefficients for overland flow as a function of vegetation types) to another group; 

and three global parameters for the Noah-MP (xslop1, refdk, and refkdt) in GENPARM.TBL to the 

remaining three groups. The 96 observation points are given different weights based on the inversed mean 

of their observed discharge during the studied period (see the detailed description in Sec. 3.3 and Sec. 4.1). 

For a detailed description of these settings see the PEST User Manual (Doherty, 2015).” 

 

While I agree with the authors that use of inversion methods that can parallelize model runs and handle the 

estimation of many parameters employed by a complex model is a much-needed addition to the arsenal of 

surface water modelling, I think that many more advances could be made than the authors have made. In 

particular, there was no mention of the use of Tikhonov regularization to accommodate parameter 

nonuniqueness at the same time as it promulgates uniqueness through obtaining a set of parameters that 

“make sense” from an expert knowledge point of view. This, I think, is one of the strongest arguments for 

use of gradient-based, highly parameterized methods in regional surface or land use model calibration, that 

is the ability to not just accommodate nonuniqueness, but to turn the “wiggle room” engendered by 

nonuniqueness into formulation of an inverse problem that can actually make regionalization and 

transportability of parameters a reality.  

 

Response:  

 

Thanks for your comment, and we understand this is one of the major concerns for how PEST was used in 

our original manuscript to calibration a hydrological model and more broadly, environmental models. 

During the revision of this study, we conduct all the WRF-hydro calibration using SVD-based 

regularization. We also use prior information for the parameters that we calibrated, as you can see from our 

previous response about PEST settings. In Section 5 Summary and discussion, we also commented that, 

“In this study, we consider using the prior or regularization information only for the parameters that we 

calibrate. As is the case with solving inverse problems, prior information is added to improve the 

smoothness of the solutions. In order to build a more comprehensive calibration, an important aspect that 

can be considered is to enrich the prior with the available historical data. For example, in this particular 

case, one can use the historical observation data (e.g., April and May from the past few years) to enrich the 

prior information for the parameters. Hence, the regularization objective function in PEST will constitute 

not only the discrepancies between parameters and their “current estimates” but also the discrepancies 

between WRF-Hydro simulations and preferred values (which is the observed time series of historical 

discharge). Additionally, one can use the pilot points technique described by Doherty (2005) in conjunction 

with parameter estimation to add more flexibility to the calibration process. This will be potentially 

beneficial in improving the predictions” 

 

In addition, to emphasize the importance of regularization for hydrological and environmental model 

calibration, we mentioned regularization in introduction: “PEST has four modes of operation. One of the 

modes is regularization mode, which supports the use of Tikhonov regularization and is found better for 

serving environmental models, because if implemented properly, it supports model predictions of minimum 

error variance, it is numerically stable and it embraces rather than eschews the heterogeneity of natural 

systems. Singular value decomposition (SVD) can be used as a regularization device to guarantee numerical 

stability of the calibration problem”.  

 

We also find that regularization mode does generate a better hydrograph shape compared to using 

estimation mode: 



In Section 4.1 WRF-Hydro calibration and validation, we mentioned “Compared with the results of 

calibration using the estimation mode (no regularization) in PEST, the SVD-based regularization generates 

slightly better hydrograph shape with 24-hour later discharge peaks that are closer to the observations.” 

 

In Section 4.3 Evaluation of spatial transferability of the calibrated parameters, we mentioned “We 

also find that using the SVD-based regularization for the PEST calibration captures the timing of discharge 

peak better than using the estimation mode, which is one-day earlier than the observations reaching the 

discharge peak.” 

 

The authors use a simple objective function. This may be ok for some inverse problems. However as they 

point out, some of the smaller flows (in terms of location in space and location in a single flow time series) 

are not as well fitted as they could be. Perhaps weights should be a function of flow – and of location. 

Perhaps other important aspects of the flow time series should be made more visible to PEST through 

formulation of separate, targetted objective function components to ensure that these aspects of the time 

series are also well fit.  

 

Response:  

 

We understand this is another major concern about how PEST was setup for this study. We agree that, due 

to the fact that the calibrated station we chose are on different size in terms of water volume, to better handle 

the smaller river station (Station 1), considering different weight is fundamental, as also pointed out by 

Reviewer #2. 

 

Therefore, during the revision of this study, we conduct all the PEST calibration of WRF-hydro considering 

a higher weight for Station 1 than for the other three stations. We add description about weight in the revised 

manuscript in Section 3.2 PEST files and settings, as you can find from previous response. We also add 

description in Section 3.3 Calibration experiments: 

   

“We find that by using the same absolute weight for all four stations, the calibration helps three stations 

(Station 2, 3, and 4) with large water volumes to generate more reasonable results than do the default 

parameters; however, the results for Station 1, which has a relatively small volume of water, is not always 

better than the discharge that is modeled by using default parameters. Thus, we assign a weight of 15.0 for 

Station 1 versus a weight of 1.0 for the other three stations according to the inversed mean of observed 

discharge over these four stations in April 2013. The ratio of the weights between Station 1 and the other 

three stations stays similar even if the means are calculated based on different time periods.” 

 

We describe the results in Section 4.1 WRF-Hydro calibration and validation by comparing PEST 

calibration using equal weight and a higher weight for Station 1: 

 

“Compared with the results calibrated by using equal weights for all the stations, by giving a higher weight 

to Station 1 the model bias over Station 1 is significantly reduced, with a higher NSE (0.87 with higher 

weight versus 0.14 with equal weight) and lower RMSE (48.1 versus 123.6).” 

 

Here is a figure (Figure I) showing how the weight helps the result of Station 1. “Calib5” represent the 

results using higher weight for Station 1, while “Equal Weight” the results using equal weight for all the 

four stations. 



 

 
 

The authors make a big deal out of their modifications to parallel PEST so that it is HPC-friendly. Actually, 

I think that the BEOPEST version of PEST has similar capabilities. The original version of BEOPEST used 

both MPI and TCP/IP for communication between master and slaves (now called manager and workers). 

Now only TCP/IP is used. One of the reasons that BEOPEST’s capabilities exceed those of parallel PEST 

in the HPC environment (actually on any network) is that the manager does not need to write model input 

files and read model output files across the network. This makes run management must faster, more secure, 

and able to take place in a greater variety of network environments.  

 

Response: 

 

Thanks for the comment. Since our major objective is to build the bridge (or interface) between the parallel 

PEST and WRF-Hydro on the basis of HPCs, we expect the interface still working if one wants to use 

BEOPEST instead of parallel PEST to calibrated WRF-hydro, assuming there is also a version of 

BEOPEST in Linux environment (this is not clear to us by reading the manual). The only main changes for 

our script would be copying the template files and instruction file into each working directory. The 

command to execute BEOPEST is also different, which is beopest instead of ppest for parallel PEST. We 

add this paragraph in Section 5 Summary and discussion: 

 

“While this study ported the parallel PEST to HPC system and linked it to WRF-Hydro, we note that 

BEOPEST is available in the PEST family. BEOPEST has the same functionality as parallel PEST but uses 

a different approach for communication between master and workers. Working with HPC-enabled 

BEOPEST may save total time cost since BEOPEST uses the Transmission Control Protocol (TCP) and 

the Internet Protocol (IP) instead of message files (reading input and writing output between master and 

works) for communication. We expect it to be relatively straightforward to use BEOPEST to calibrate 

WRF-hydro on HPCs since the interface remains similar, except one needs to copy the template and 

instruction files in addition to the global files (see Section 3.1) into each working folder.” 

 

In summary, I think that what the authors have done is good. However I also think that the potential for 

regional surface water model calibration and uncertainty analysis in a HPC environment still remains 
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largely untapped. Some of this potential will be realized with use of singular value decomposition to ensure 

numerical stability when inverse problems are ill-posed, use of Tikhonov regularisation to ensure parameter 

sensibility and transportability under the same conditions, and more creative formulation of the 

objective function than the authors have done. 

Response:  

 

We thank Reviewer #1 again for all your valuable comments. Although optimizing the objective functions 

in PEST is beyond the scope of this study, we do have some thoughts for future studies. We add this in 

Section 5 Summary and discussion: 

 

“In this study, we consider using the prior or regularization information only for the parameters that we 

calibrate. As is the case with solving inverse problems, prior information is added to improve the 

smoothness of the solutions. In order to build a more comprehensive calibration, an important aspect that 

can be considered is to enrich the prior with the available historical data. For example, in this particular 

case, one can use the historical observation data (e.g., April and May from the past few years) to enrich the 

prior information for the parameters. Hence, the regularization objective function in PEST will constitute 

not only the discrepancies between parameters and their “current estimates” but also the discrepancies 

between WRF-Hydro simulations and preferred values (which is the observed time series of historical 

discharge). Additionally, one can use the pilot points technique described by Doherty (2005) in conjunction 

with parameter estimation to add more flexibility to the calibration process. This will be potentially 

beneficial in improving the predictions.” 

 

 



Reviewer #2 

Interactive comment on “A parallel workflow implementation for PEST version 13.6 in high-

performance computing for WRF-Hydro version 5.0: a case study over the Midwestern United 

States” by Jiali Wang et al. Anonymous Referee #2 

Received and published: 16 January 2019 

The paper of Wang et al. deals with a potentially interesting implementation of the parallel version of the 

PEST software. PEST is a powerful and very useful tool for hydrologists, helping them during long and 

“exhausting” calibration sessions. Therefore, introducing the portability of parallel PEST to HPCs is good 

news and, specifically for the present paper, the main theme to highlight.  

Response:  

 

We are so glad that the reviewer finds this study helpful for hydrologist with the most tedious part of model 

development and application ― calibration. We also wish to thank the reviewer for your great insight about 

the highlight of this study, which add important value to this manuscript.  

Nevertheless, in my opinion the way the paper is structured mainly highlights, instead of the advantages of 

the novelty, the performances of the PEST calibration, which is something widely and well assessed by the 

hydrology research community. Almost all figures and tables deal with PEST results. Furthermore, the 

calibration procedure presented is questionable from different points of view (some of which are exposed 

later).  

Response:  

 

Thanks and we agree your comment. In our revised manuscript, we delete the section of 7-day calibration 

(figures and tables) considering it is unnecessary to support our main objective. We also delete or shorten 

the descriptions about WRF-Hydro and PEST, which readers can easily learn from the User 

Guides/Manuals. We thus focus on only two points: one is to show the operational feasibility, and the other 

is to explore the computational benefits of the HPC-enabled parallel PEST linked to WRF-Hydro. To 

demonstrate the first point, we calibrate WRF-Hydro for 3 days using SVD-based regularization method in 

PEST, and considering different weight for the four calibrated stations. For the second point, we design 

new experiments, using different computing resources for PEST workers and for WRF-hydro. Details can 

be found below in our response to your later comments.  

 

The most interesting/innovative Section of the paper is Section 5.1, but the analysis of scale-up capabilities 

should be described with much more detail. Concerning the main outcomes of the paper highlighted in the 

summary, points from 2 to 5 are quite obvious (they deal with the recognized skills of the PEST software), 

while point 1 should be expanded: what does a factor of 30 “with respect to a serial calibration” exactly 

mean? In my opinion it’s not a rigorous statement. What do the authors exactly mean with “serial”? Even 

though PEST calibration is serial, WRF-Hydro can run in a parallel fashion, and the speed of the calibration 

process would depend on the number of nodes used for the hydrological simulation. A possible idea is to 

provide hints about the trade-off between the number of nodes/CPUs used for running the parallel model 

(i.e., WRF-Hydro in this case) and the number of nodes/CPUs used for running PEST in a parallel fashion. 

I guess it depends somehow also on the dimensions of the domain (and no information is given here about 

the number of cells in which the basin is discretized, so the reader has no idea about the actual computational 

burden). 



Response:  

 

Thanks for your comment and suggestions. We re-write Section 5 Summery and discussion to only 

summarize the findings of the study, and then raise some key points that beyond the scope of this study but 

may inform future studies. In other words, we delete majority of the summary that appears in points 2 to 5 

in our original manuscript.  

 

In the revised manuscript we expand the discussion of scale-up capabilities of parallel PEST linked to WRF-

hydro by designing more experiments using different computing resource for PEST workers and for WRF-

hydro. We add Section 4.2 computational benefits of parallel PEST on HPCs. Some key notes about the 

experiments and our findings are quoted below: 

 
“In this study we test the computational performance of HPC-enabled parallel PEST using different number 

of workers (6, 12, and 23) for the 22-parameter calibration. As shown in Table 3, we conducted five 

experiments: Test 1 uses 23 workers, Test 2 uses 12 workers, and Test 3 uses 6 workers. All  three tests use 

two nodes for each worker to run WRF-Hydro in parallel.” 

 

“In order to test the trade-offs between the computing nodes used for running parallel WRF-Hydro and the 

workers used for running parallel PEST, Tests 4 and 5 use different number of nodes for each worker to 

run WRF-Hydro in parallel. Explicitly, Test 4 uses four nodes per worker, and Test 5 uses six nodes per 

worker. Both tests use six workers for running the parallel PEST.” 

 

“when we assign 12 (and 6) workers to parallel PEST, the time cost for calculating the Jacobian matrix is 

increased by a factor of 2 (and 4) compared with the time cost of using 23 workers. The time cost for the 

parameter upgrade stays similar for the three experiments because only one cycle of WRF-hydro simulation 

is conducted to test the Marquardt lambdas. As a result, the total time cost for Test 2 is ~1.5 times more 

than that for Test 1, and the total time cost for Test 3 is ~1.5 times more than that for Test 2 (Fig. 4b). By 

extrapolating the speedup curve shown in Fig. 4a and Fig. 4b, we expect the total time cost to be ~1516 

minutes when using only one worker (or sequential mode), which is about 15 times slower compared with 

running the PEST in parallel mode using 23 workers.”    

 

“On the other hand, for the same case study and using the same number of nodes for running parallel WRF-

Hydro, we can estimate the computing speedup by assuming an increase in the number of calibrated 

parameters to 50. This would be the case, for example, to evaluate model sensitiveness to the physics in 

Noah-MP or the spatial variabilities of certain parameters. We then expect to use 51 workers to achieve the 

best computing performance for parallel PEST. This would then be 28–30 times faster than running PEST 

using one worker (or in sequential mode). Similarly, if 100 parameters were used for the calibration for the 

same case study, a factor of up to 60 speedup in the calibration process would be achieved by running HPC-

enabled parallel PEST.” 

“In addition, by increasing the number of nodes for each worker to conduct WRF-Hydro (Tests 3, 4, and 

5), the time cost for the entire calibration process is significantly reduced (Figs. 4c and 4d). Specifically, 

the WRF-hydro scales up well when using four and six nodes compared with using two nodes per worker 

for running the WRF-Hydro. Both the time spent on calculating the Jacobian matrix and the time spent on 

testing the parameter upgrades are decreased by 49% and 67%, respectively, when using four and six nodes. 

Therefore, the total time spent is also decreased when using more nodes for each worker (see Table 3). 

Increasing the number of nodes to eight for each worker will most likely further decrease the time cost by 

70–75% compared with using only two nodes per worker. Moreover, if one has a larger study area such as 

the entire contiguous United States, we expect the WRF-Hydro to have an even better scale-up capability 

(e.g., on dozens of nodes) than this study.” 



Here is a figure to show the computational benefit using parallel PEST to calibrate WRF-hydro. 

 

 

Another important point, that should be better discussed, is the missed capability of the implemented 

version of PEST to deal with the calibration of spatially distributed parameters. This is important because 

it’s reasonable to expect parallel PEST executions with WRF-Hydro for wide domains, and wide domains 

often need spatial differentiation of spatially distributed parameters, like, e.g., OVROUGHRTFAC, 

RETDEPRTFAC or other spatially distributed parameters available with WRF-Hydro v5.0.  

Response:  

 

We do acknowledge the importance of regionalization of parameter calibration, which definitely deserves 

future studies especially for large domains. We have been trying to add the interface on top of what we 

have now, to consider the spatial distributed files/parameters. For example, one can add regional 

OVROUGHRTFACs (e.g., their lower/upper bounds, and default values) in the PEST control file based on 

catchments/basins/regular regions etc. the potential challenge is that, the selection of the locations and sizes 

of catchment may introduce significant uncertainties to the calibration results. Thus it requires systematic 

and comprehensive investigation and understanding of the study area. We add a paragraph in Section 5 

Summary and discussion about this: 

 



“We only calibrate the parameters in lookup tables. Using a single value to represent a physics may work 

for a small domain but could be problematic for a large domain, especially we expect the HPC-enabled 

parallel PEST to execute with WRF-Hydro for large domains, which often need parameter regionalization. 

For example in WRF-Hydro v5, there are many spatially distributed parameters available such as the 

overland flow roughness scaling factor (OVROUGHRTFAC), the factor of maximum retention depth 

(RETDEPRTFAC), and the soil related parameters (when compiled with SPATIAL_SOIL=1). Calibrating 

these spatial parameters based on grid scale (e.g., catchments) rather than a single value will give the model 

more flexibility and thus can better fit the observations (Wagener and Wheater, 2006; Hundecha and 

Bardossy, 2004). In practice, for example, one can include regional OVROUGHRTFACs (e.g., their 

lower/upper bounds, and default values) in the PEST control file based on catchments. However, the 

selection of the locations and sizes of catchment may introduce significant uncertainties to the calibration 

results, which requires systematic and comprehensive investigation and understanding of the study area.” 

 

By the way, another limitation is that, at least as I understand, the calibration is available only against 

observed streamflow. Of course, this is the first option but not the unique one (one can decide to calibrate 

also against, e.g., soil moisture or latent heat flux data). 

Response:  

 

For the calibration exercise we did in this study, we use frxst_pts_out.txt as an instruction file which serves 

the format of output files of each working directory. In this file there is only discharge and water level 

available, so we calibrate the model using discharge data. It is feasible, however, to calibrate other variables 

as long as the observation data is available. For example, one can either find the closest point from the 

gridded dataset to the observation location and then compare that point to observations; or one can change 

the WRF-Hydro I/O code to output other variables in the frxst_pts_out.txt file, so they can still use the same 

interface we build here to calibrate other variables in addition to the discharge. We have added this regard 

in Section 5 Summary and discussion. 

 

Finally, another important point is to (at least) discuss the problem of equifinality, which is incidentally 

(but not explicitly) dealt with in P11 L29 – P12 L5.  

Response:  

 

Thanks for your comment. It’s actually interesting to think about this together with your other comment 

that one can also calibrate other variables rather than discharge. Since equifinality is an important source 

of model uncertainty, to reduce the model uncertainty, one may calibrate the model using multiple variables 

instead of one variables. This way the calibrate can constrain the model drift and may reduce the model 

uncertainty of prediction of certain variables (e.g. discharge and soil moisture). We add a paragraph in the 

Section 5 Summary and discussion: 

 

 “The optimal parameter set obtained from this study is from the 5th iteration of parallel PEST by testing 

five Marquardt lambdas. Testing different number of lambdas or calibrating different number of parameters 

may generate a different set of optimal parameters. These parameter sets can all make physical sense and 

be equally good for reproducing observed discharges. This problem is named equifinality (Beven and Freer, 

2001; Savenije, 2001), which is an important source of model uncertainty. To reduce the model uncertainty 

through reducing the equifinality, hydrologists carry out additional modelling objective for model 

evaluation to find more useful parameter sets (Mo and Beven, 2004; Gallart et al., 2007). Alternatively, 

inspired by No. 3 discussed above, one can calibrate the WRF-hydro model based on more than one 

variables, such as discharge and soil moisture (or heat flux or water table depth) to reduce the number of 

optimal parameter sets, and thus reduce the model uncertainty of predictions for these variables.”  



 

Summarizing, though I acknowledge that the research presented is potentially interesting and innovative, I 

suggest to re-think the paper highlighting much more the computational benefits provided and reviewing 

the calibration performed in the case study. 

Response:  

 

We thank Reviewer #2 again for all your great insights. Our responses and revisions can be found above 

and below, as well as in the revised manuscript with tracked changes.  

  

Following, a (not comprehensive) list of doubts regarding the calibration procedure and other minor 

comments and typos. I hope my comments can help improving the research. 

Doubts about the calibration procedure: 

Even though I acknowledge that authors decided to “focus less on extensively assessing the performance 

of the WRF-Hydro model”, several aspects of the calibration procedure are very questionable. 

1. no information about spin-up. This is extremely important, especially for such a short range calibration 

(only few days). The model should be run in advance (at least one month, I would say) in order to let 

several variables (e.g., moisture fields) have a realistic spatial distribution. 

Response:  

 

We did run the model for 3 months for spin-up. We apologize for not including it in the model description. 

Here is what we add in the revised manuscript: 

 

“We start the WRF-Hydro simulation on Jan 1 2013 and run the model for more than 3 months to reach 

equilibrium. This 3-month period is considered as spin-up time and is excluded from model calibration and 

evaluation. We calibrate the river discharge calculated by the WRF-Hydro model from 00UTC April 9 to 

00UTC April 12 2013, considering it is long enough to achieve our objective. We then evaluate the model 

performance against U.S. Geological Survey (USGS) observed river discharge from 00UTC April 12 to 

00UTC 25, 2013.” 

 

2. the authors state that: April 8-11 moderate rain, April 12-14 no rain, April 15-18 rain, peak flow April 

19. 3-day calibration is: April 9-11 (to be precise, April 12 at midnight), then validation is April 13-23 

(April 12 is missed). 7-days calibration is April 9-15, validation is April 17-23. To me, it does not make 

too much sense that 4 more days are added when only the last one is rainy. It would be much better to 

calibrate the model with respect to a previous flood event, as it is usual. After all, observing graphs in 

figures 3 and 5 one after another just shows that increasing the number of days used for calibration 

improves the performances (but this is rather obvious), even though not yet enough. 

Response:  

As we mentioned earlier, in the revised manuscript we only focus on model calibration during April 9-11, 

and validation from April 12-24. We delete the 7-day calibration/validation results considering it is not 

necessary nor helpful to demonstrate our main objective. We add these sentences to emphasize this regard: 

“The primary objective of this study is to build a bridge for linking the parallel PEST and WRF-hydro on 

the basis of HPC clusters and to explore the computational benefits of this bridge. We do not attempt to 



extensively assess each individual tool or address questions in each individual domain, such as optimizing 

the objective functions in PEST or calibrating WRF-Hydro for a long time period considering all the 

relevant parameters to achieve an optimal parameter set. The calibration period thus is limited to only three 

days, which we believe long enough to achieve our objective and to understand WRF-Hydro’s sensitivity 

to the calibrated parameters.” 

We also add text in 4.1 WRF-Hydro calibration and validation to explain the reason for the bias in 

hydrograph shape, such as the early peak and the faster decrease of river discharge: 

“For Station 1, the WRF-Hydro almost captures the timing of the peak of discharge, although it still 

underestimates the water volume by ~25%. The reason is that this study uses a direct pass-through baseflow 

module, which does not account for slow discharge and long-term storage of the baseflow. Therefore, the 

largest contribution to river discharge is from precipitation, and groundwater does not contribute much 

discharge to the channels in a long-term view, as is also true for the other three large river stations. Different 

from Station 1, for the other three large river stations, the WRF-Hydro modeled discharge increases soon 

after the peak of precipitation and reaches a peak on April 21, 2013, which is much earlier than the observed 

peak of river discharge (near April 24). The reason is that the water contributions for these stations are from 

a larger river basin (Mississippi River) than we included in our current study area. Thus, when a heavy 

precipitation event occurs over the entire river basin, there will be a significant lag time (especially at the 

lower part of the basin) between the peak of precipitation amount and the peak of river discharge. For 

example, the precipitation over the upper part of Mississippi River Basin (MRB) has a peak amount on 

April 18–19, but the river discharge did not reach its peak until April 24. Because our studied area covers 

only half of the MRB, the modeled river discharge has a shorter delay period after the peak of precipitation 

than does the observed river discharge. Enlarging the study area to include the entire MRB may improve 

this situation. Alternatively, calibrating and validating local rivers that are included in the current study area 

may also reduce the bias in hydrograph shape compared to calibrating and validating large rivers. On the 

other hand, the WRF-Hydro simulated river discharge decreases soon after it reaches the peak and much 

earlier than the observed discharge. The reason is again that the direct pass-through baseflow employed by 

this study does not account for slow discharge and long-term storage of the baseflow. As a result, the 

contribution from the baseflow to the river discharge in model simulations does not stay as long as in real 

situations. In the observations, the river discharge decreases from the peak at a speed of ~500 m3/sec per 

day, while the modeled river discharge decreases from the peak at a speed of ~1667 m3/sec per day. Using 

exponential storage-discharge function for the baseflow may improve this situation.” 

 

3. In order to deal with the observed streamflow in Section 1, it is fundamental to work with weights. 

Response:  

 

Thanks for your comment. This is also a major concern of Reviewer #1. For all the experiments we present 

in the revised manuscript, we consider a higher weight for Station 1. We add description about weight in 

the revised manuscript in Section 3.2 PEST files and settings, and in 3.3 Calibration experiments: 

   

“The 96 observation points are given different weights based on the inversed mean of their observed 

discharge during the studied period (see the detailed description in Sec. 3.3 and Sec. 4.1).” 

 

“We find that by using the same absolute weight for all four stations, the calibration helps three stations 

(Station 2, 3, and 4) with large water volumes to generate more reasonable results than do the default 

parameters; however, the results for Station 1, which has a relatively small volume of water, is not always 

better than the discharge that is modeled by using default parameters. Thus, we assign a weight of 15.0 for 



Station 1 versus a weight of 1.0 for the other three stations according to the inversed mean of observed 

discharge over these four stations in April 2013. The ratio of the weights between Station 1 and the other 

three stations stays similar even if the means are calculated based on different time periods.” 

 

We describe the results in Section 4.1 by comparing PEST calibration using equal weight and a higher 

weight for Station 1: 

 

“Compared with the results calibrated by using equal weights for all the stations, by giving a higher weight 

to Station 1 the model bias over Station 1 is significantly reduced, with a higher NSE (0.87 with higher 

weight versus 0.14 with equal weight) and lower RMSE (48.1 versus 123.6).” 

 

A figure is shown above in the response to Reviewer #1. 

 

Minor comments, grammar and typos  

P6 LL6-17: not clear if in this case overland flow is switched on. It should. 

Response:  

 

Yes, it is. We change the sentence to emphasize this regard: “Overland flow, saturated subsurface flow, 

gridded channel routing, and a conceptual baseflow are active in this study” 

 

“If overland flow is active as it is in this study, it passes water directly to the channel model.” 

 

P6 L19: probably “tools” 

Response: corrected 

 

P7 L18: GENPARM.TBL 

Response: fixed 

 

P8 LL11-12: master, not mater. The full stop is missing. 

Response: fixed 

 

P8 L30: As it is a common problem, it is usually solved ‘simply’ reallocating manually the stations. It’s a 

pity to miss streamflow data for this reason  

Response:  

 

We regret we didn’t do that, and it should be done in future applications. To clarify and to emphasize this 

regard, we change the sentence to: 

 

“We calibrated WRF-Hydro using four USGS sites (referred to as Station 1, Station 2, Station 3, and Station 

4 hereafter), as shown in Fig. 1. More USGS sites could be included if one manually reallocated the stations 

that were not properly assigned to the desired location on the channel network by the GIS tool.” 

 

P9 L24 and following: I suggest to explicitly declare also the meaning of the ovn parameter 



Response: added the vegetation type in Table 1 for each ovn* parameter 

 

P12 L17: 50%, maybe 

Response: Apologize for the wrong number. It should be 66.7% 

 

Figs.2 and 3: April 12 is missing. It should be the first validation day, I guess. 

Response: added.  

 

Figs. 4 and 5: the same for April 16 

Response: this figure is deleted as it is for the 7-day calibration result 

 

Table 3: the note is incorrect, it refers to information about the 3-day calibration 

Response: fixed 

 

Section 4.3: this is a purely “hydrological” analysis that could be skipped, given the numerous limitations 

of the calibration procedure and the focus on the implementation of the PEST software 

Response:  

 

We still keep this section and the figure in the revised manuscript. One of the reasons is that, it is more 

obvious using these stations to show the benefit (generate better hydrograph shape) of SVD-based 

regularization compared to non-regularization, which is the method we emphasize that should be applied 

for calibrating hydrological and environmental models. The other reason is that, these rivers are relatively 

small and are local rivers that included in the current study area, therefore, (1) the lag time between 

precipitation peak and discharge peak is much shorter than those for Station 3, 4, 5, and the hydrograph 

shape is well captured by the optimal parameter set; (2) the slow-discharge effect from baseflow is also 

relatively small so the discharge decrease faster after the peak than that for Station 3, 4, 5. This is also well 

captured by the optimal parameter set. Overall, the WRF-Hydro calibration with current configuration 

actually did a good job to capture the hydrograph features for these stations.  

 

P16 LL9-10: please check the sentence 

Response: this sentence is deleted, and changes are made accordingly through the entire manuscript.  

 

P16 L18: to investigate 

Response: corrected. 
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Abstract. Surface hydrological models must be calibrated for each application region. The 12 

Weather Research and Forecasting Hydrological system (WRF-Hydro) system is a state-of-the-art 13 

numerical model that models the entire hydrological cycle based on physical principles. However, 14 

asAs with other hydrological models, WRF-Hydro parameterizes many physical processes. As a 15 

resultHence, WRF-Hydro needs to be calibrated to optimize its output with respect to observations. 16 

However, when for the application region. When applied to a relatively large domain, both WRF-17 

Hydro simulations and calibrations require intensive computing resources and are best performed 18 

in parallel.on multimode, multicore high-performance computing (HPC) systems. Typically, each 19 

physics parameterization-based model requires a calibration process that works specifically with 20 

that model, and is not transferrable to a different process or model. Parameter Estimate Tool The 21 

parameter estimation tool (PEST) is a flexible and generic calibration tool that can be used in 22 

principle to calibrate any numerical code. However, PEST inof these models. In its currentexisting 23 

configuration, however, PEST is not designed to work on the current generation of massively 24 

parallel high-performance computing (HPC) clusters. This studyTo address this issue, we ported 25 

the parallel PEST to HPCs and adapted it to work with the WRF-Hydro. The porting involved 26 

writing scripts to modify the workflow for different workload managers and job schedulers, as 27 

well as developing code to connect Parallel-parallel PEST to WRF-Hydro. WeTo test the 28 

operational feasibility and the potential computational benefits of this first-of-its-kind HPC-29 

enabled parallel PEST, we developed a case study using a flood in the Midwesternmidwestern 30 

United States in 2013 to test the operational feasibility of the HPC-enabled parallel PEST. We then 31 
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evaluate the WRF-Hydro performance in water volume and timing of the flood event. We also 1 

assess the spatial transferability of the calibrated parameters for the study area. We finally discuss 2 

the scale-up capability of. Results on a problem involving calibration of 22 parameters show that 3 

on the same computing resource used for parallel WRF-Hydro, the HPC-enabled parallel PEST to 4 

provide insight for PEST’s application to other hydrological models and earth system models on 5 

current and emerging HPC platforms. We find that, for this particular study, the HPC-enabled 6 

PEST calibration tool can speed up WRF-Hydrothe calibration process by a factor of 30up to 15 7 

compared towith commonly- used PEST in sequential mode. The speedup factor is expected to be 8 

greater with a larger calibration approaches.problem (e.g., more parameters to be calibrated or a 9 

larger size of study area).  10 

1 Introduction 11 

Hydrological models are important tools for research relevant but not limited to, water resource 12 

management, flood control, and hydrological response to climate change (Zanon et al., 2010; 13 

Papathanasiou et al., 2015). Conceptual hydrological models express hydrological processes in the 14 

form of abstract models that come from physical phenomenon and experience. Physically based 15 

hydrological models contain definitePhysically based hydrological models contain detailed 16 

physical mechanisms to model the hydrological cycle, but many complex physical processes in 17 

these models are parameterized. For example, the state-of-the-art Weather Research and 18 

Forecasting Hydrological (WRF-Hydro) modeling system (WRF-Hydro;  (Gochis et al., 2015) has 19 

dozens of parameters that can be land- and river-type dependent and are typically specified in 20 

lookup tables. Both conceptual hydrological models and physically basedTherefore, these 21 

hydrological models need to be calibrated before they can be applied to research. over different 22 

regions. In this context, calibration refers to the hydrologists’ need to adjustadjusting the values of 23 

the model parameters so that the model can closely match the behavior of the real system it 24 

represents. In some cases, the appropriate value for a model parameter can be determined through 25 

direct measurements conducted on the real system. However, inIn many situations, however, the 26 

model parameters are conceptual representations of abstract watershed characteristics and must be 27 

determined through calibration. In fact, model calibration is the most time-consuming step, not 28 

only for hydrological models, but also for earthEarth system model development, because both 29 

parametric estimation and parametric uncertainty analysis require hundreds—if not thousands—30 
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of model simulations to understand how perturbations in model parameters affect simulations of 1 

dominant physical processes and to find the optimum value of a single parameter. 2 

 3 

WRF-Hydro is a practical physics-based numerical model that can simulate the entire hydrological 4 

cycle using advanced high-resolution data such as satellite and radar products. Compared towith 5 

the traditional land surface model (LSM) used by WRF, WRF-Hydro provides a framework for 6 

multiscale representation of surface flow, subsurface flow, channel routing, and baseflow, as well 7 

as a simple lake/reservoir routing scheme. As a physics-based model, WRF-Hydro includes many 8 

complicated physical processes that are nonlinear and must be parameterized. For example, the 9 

parameters for channel routing are prescribed as functions of stream order, not space; thus theThe 10 

default parameters given by WRF-Hydro are onlymay be valid over a smallfor one region. Because 11 

channel routing can affect the accuracy of the model performance, but not for another region. 12 

Hence calibration of related model parameters is often required in order to use the model in a new 13 

domain. In particular, for a large spatial domain such as the entire Contiguouscontiguous United 14 

States (CONUS),, in order to develop the optimal parameter sets in a reasonable amount of time, 15 

the calibration must be conducted on HPCshigh-performance computing (HPC) systems in parallel 16 

instead of in the traditional sequential mode. To date, there is no such calibration tool that can 17 

straightforwardlyefficiently calibrate WRF-Hydro on HPCs.HPC resources. Typically, each 18 

physics-based model needs a calibration code that is custom- designed to work with that particular 19 

numerical model. These custom-designed calibration codes/tools are highly challenging and do 20 

not offer flexibility; they are designed to operate with that particular numerical model and its set 21 

of physics parameterizations, software architecture, and solvers. These custom-designed 22 

calibration codes are highly challenging and do not offer flexibility. Therefore, there is a need for 23 

a more flexible and generic calibration tool is needed that can calibrate any code that uses Message 24 

Passing Interface/Open Multi Processing (MPI/OpenMP) for parallelization on HPCsHPC 25 

systems. 26 

 27 

There are two general types of calibration methods for hydrological models: manual calibration 28 

and automatic calibration. Models for individual catchments have traditionally been calibrated by 29 

manually adjusting key model parameters within established ranges of parameters to obtain a best 30 

match between observed and simulated discharges. This procedure is time consuming, dependent 31 
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on the skill and experience of the modeler, and therefore prone to inconsistency between modelers. 1 

Automatic calibration is based on stochastic or mathematical methods and thus is more widelyOne 2 

widely used generic and independent calibration tool is the parameter estimation tool (PEST). 3 

PEST (Doherty, 2016) conducts calibration automatically based on mathematical methods and 4 

thus is applicable for optimizing nonlinear parameters. Compared with manual calibration, 5 

automatic calibration is more efficient and effective, because it avoids interference from human 6 

factors (Madsen, 2000; Getirana, 2010). One widely used automatic calibration toolThe 7 

uniqueness of PEST is Parameter Estimation Tool (PEST; Doherty 2016), which uniquelythat it 8 

operates independent of models. There: there is no need to develop additional programs/ or codes 9 

for a particular model except preparing the files required by PEST (as described in SectSec. 3.2, 10 

because). PEST works with that model throughhas four modes of operation. One of the model’s 11 

own inputmodes is regularization mode, which supports the use of Tikhonov regularization and 12 

output files. PEST implements a particularly robust variant of the Gauss-Marquardt-Levenberg 13 

method (Levenberg, 1944; Marquardt, 1963) to estimate parameters. This method requires a 14 

continuous relationship to exist between model parameters and model outputs, but it can normally 15 

find the is found better for serving environmental models because, if implemented properly, it 16 

supports model predictions of minimum in the objective function in a fairly shorter time period 17 

error variance, is numerically stable, and embraces rather than other parameter estimation methods. 18 

This is especially important when model runs are lengthy or when many parameters must eschews 19 

the heterogeneity of natural systems. Singular value decomposition (SVD) can be calibrated.used 20 

as a regularization device to guarantee numerical stability of the calibration problem. Parallel 21 

PEST is able to distribute many runs across many computing nodes using master-slaveworker 22 

parallel programing. However, to the To our best of our knowledge, however, no approach is 23 

available that allows users to submit jobs using PEST parallelization to a typical supercomputing 24 

facility that uses job scheduling and workload management usingsuch as Simple Linux Utility for 25 

Resource Management (SLURM), Portable Batch System (PBS), and Cobalt. A previous study 26 

(Senatore et al., 2015) used PEST to calibrate WRF-Hydro over the Crati River Basin in 27 

Southernsouthern Italy. However, becauseBecause the study area was relatively small, theythe 28 

authors were able to conduct the calibration using PEST in sequential mode. (Alfonso  Senatore, 29 

personal communication, 2018).  30 

 31 
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In thisThis study, we ported aims to (1) port parallel PEST to HPC clusters operated by the U.S. 1 

Department of Energy (DOE) and adaptedadapt it to work with WRF-Hydro. Porting involved 2 

writing additional scripts to modify, (2) evaluate the workflow for SLURM, Cobalt, and PBS and 3 

developing code to connect parallel PEST to WRF-Hydro. In particular, we aim to (1) calibrate 4 

the parameters of WRF-Hydro to improve model performance with realistic values maintaining 5 

their physical meanings; (2) speed up calibration for this particular study case and provide the 6 

capability to WRF-Hydro users; and (3) explore the scale-up capability of HPC-enabled parallel 7 

PEST linked to WRF-Hydro. by calibrating a flood event, and (3) explore the scale-up capability 8 

and computational benefits of HPC-enabled parallel PEST by assigning different computing 9 

resource to the entire calibration process.  10 

2 Model description 11 

2.1 Study area 12 

The case presented here is one of the worst floods experienced by greater Chicago area in the 13 

lastpast three decades, which; the storm  occurred on April 18, 2013 (Campos and Wang, 2015). 14 

According to the National Weather Service (NWS), the heaviest 24-hour accumulated rainfall 15 

during this storm reached 201.4, 171.1, and 136.4 mm across Illinois, Iowa, and Missouri, 16 

respectively. The Mississippi River crested at 10.8 m (1.7 m above flood stage), and the Illinois 17 

River crested in Peoria, Illinois, at 8.95 m; thisthese river cresting broke the previous record of 18 

8.78 m, set in 1943, and was 4.55 m above the historical normal river stage (NWS, 2013). Campos 19 

and Wang (2015) conducted three-domain nested WRF simulations to understand the dynamical 20 

and microphysical mechanisms of the event. Our study builds on the smallest domain of that study, 21 

which covers the majority of Illinois, Iowa, and Missouri at a spatial resolution of 3 km for the 22 

atmospheric and land surface model (Fig. 1).(Fig. 1). The domain size is 750 km from west to east 23 

and 660 km from south to north. 24 

 25 

During the 10-day period of this studied case, light to moderate rain occurred on April 8 through 26 

11, 2013, followed by a relatively dry period from April 12 to 14. Then a heavy rain event began 27 

on April 15 and peaked on April 18. The heaviest rain band moved east of the study area on April 28 

19. The rainy event ended over the study area on April 20. 29 
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2.2 WRF-Hydro configuration 1 

This study employs WRF-Hydro version 5 with a basic configuration. This configuration does not 2 

use nudging techniques or spatially distributed soil-related parameters as used in the National 3 

Water Model configuration. WRF-Hydro has been tested in several different cases that focused on 4 

different hydrometeorological forecasting and simulation problems (e.g., Gochis et al., 2018; 5 

Yucel et al., 2015; Senatore et al., 2015; Arnault et al., 2016), and it shows reasonable accuracy in 6 

simulated streamflow after being carefully calibrated. For details of the WRF-Hydro modeling 7 

system, see Gochis et al. (2018).WRF-Hydro employs a multiscale modeling approach to handle 8 

the local landscape gradient features. Specifically, WRF-Hydro uses a subgrid disaggregation-9 

aggregation procedure. For each time-step at which forcing data are available, the column moisture 10 

stays within the LSM and is disaggregated from the LSM grid to a high-resolution routing grid 11 

(Gochis and Chen 2003). After disaggregation, the routing schemes are executed using the high-12 

resolution grid values. After execution of the routing schemes, the high-resolution grid values are 13 

aggregated back to the native LSM grid. For details of each routing component, see Gochis et al. 14 

(2015), Yucel et al. (2015), and Senatore et al. (2015). 15 

 16 

 Currently, two LSMs are available in WRF-Hydro for representing land-surface column physics: 17 

Noah (Chen and Dudhia, 2001) and Noah Multi-parameterization (NoahMPNoah-MP; Niu et al. 18 

2011). We utilize NoahMPNoah-MP LSM because compared towith Noah LSM it shows obvious 19 

improvements in reproducing surface fluxes, skin temperature over dry periods, snow water 20 

equivalent, snow depth, and runoff (Niu et al. 2011). Compared to LSM, one major advantage of 21 

WRF-Hydro systemThe Noah-MP is that, WRF-Hydro system can keep the infiltration capacity 22 

exceedance as ponded water within the model domain. This ponded water is subsequently 23 

available for lateral redistribution, which combine the ponded water with new precipitation for 24 

calculating the infiltration amount in the next time stepconfigured. WRF-Hydro has been tested in 25 

several different cases that focused on different hydrometeorological forecasting and simulation 26 

problems (e.g., Gochis et al., 2015; Yucel et al., 2015; Senatore et al., 2015; Arnault et al., 2016), 27 

and it shows reasonable accuracy in simulated streamflow.  28 

 29 

This study employs WRF-Hydro version 5 with a basic configuration. This configuration does not 30 

use nudging technique as used in the National Water Model configuration and spatially distributed 31 
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soil-related parameters. The LSM is at a grid spacing of 3 km, and the aggregation factor is 15,; 1 

that is, starting from a 3- km LSM resolution in the domain shown in Fig. 1, hydrological routing 2 

is performed at a spatialgrid resolution of 200 m., with 3285 south-north × 3735 west-east grid 3 

cells. We use a time step of 10 seconds for the routing grid in order to maintain model stability 4 

and prevent numerical dispersion of overland flood waves. The time step also meets the Courant 5 

condition criteria for diffusive wave routing on a 200- m resolution grid. The WRF-Hydro is 6 

configured to be in offline or uncoupled mode ― ―there is no online interaction withbetween the 7 

WRF-Hydro hydrological model and the WRF atmospheric model. SurfaceOverland flow, 8 

saturated subsurface flow, gridded channel routing, and a conceptual baseflow are active in this 9 

study. The gridded channel network uses an explicit, one-dimensional, variable time-stepping 10 

diffusive wave. A direct output-equals-input “pass-through” relationship is adopted here to 11 

estimate the baseflow. Although the baseflow module is not physically explicit, it is very important 12 

because the water flow in the channel routing areis contributed by both the overland flow and 13 

baseflow. If the overland flow is active as it is in this study, it passes water directly to the channel 14 

model. In this case the soil drainage is the only water resource flowing into the baseflow buckets. 15 

IfHowever, if the overland flow is deactivated but channel routing is still active, then WRF-Hydro 16 

collects excess surface infiltration water from the land model, and passes this water into the 17 

baseflow bucket. This bucket then contributes the water from both overland and soil drainage to 18 

the channel flow. Therefore, the baseflow must be active if the overland flow is switched off. This 19 

study does not consider lakes and reservoirs.  20 

 21 

We use the geographic information system (GIS) tool that are(Sampson and Gochis, 2018) 22 

developed by the WRF-Hydro team to delineate the stream channel network, open water (i.e., lake, 23 

reservoir, and ocean) grid cells, and groundwater/baseflow basins. Meteorological input for the 24 

WRF-Hydro model system includes hourly precipitation; near-surface air temperature, humidity, 25 

and wind speed; incoming shortwave and longwave radiation; and surface pressure. In this study, 26 

the hourly precipitation is from the National Centers for Environmental Prediction (NCEP) Stage 27 

IV analysis at a spatial resolution of 4 km. The Stage IV data is based on combined radar and 28 

gauge data (Lin and Mitchell, 2005; Prat and Nelson, 2015), and has been shown to be temporally 29 

well correlated with high-quality measurements from individual gauges (see, e.g., Sapiano and 30 

Arkin, 2009; Prat and Nelson, 2015). The other hourly meteorological inputinputs are from the 31 
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second phase of the multi-institution North American Land Data Assimilation System project, 1 

phase 2 (NLDAS‐2) (Xia et al., 2012a,b), at a spatial resolution of 12 km. NLDAS‐2 is an offline 2 

data assimilation system featuring uncoupled LSMs that are driven by observation‐based 3 

atmospheric forcing.  4 

 5 

During the 15-day period of this studied case, light to moderate rain occurred on April 8 through 6 

11, 2013, followed by a relatively dry period from April 12 to 15. Then a heavy rain event began 7 

on April 16 and peaked on April 18. The heaviest rain band moved east of the study area on April 8 

19. The rainy event ended over the study area on April 20 (see Fig. S1 in Supporting Information). 9 

We start the WRF-Hydro simulation on Jan. 1, 2013, and run the model for more than three months 10 

to reach equilibrium. This 3-month period is considered as spin-up time and is excluded from 11 

model calibration and evaluation. We calibrate the river discharge calculated by the WRF-Hydro 12 

model from 00UTC April 9 to 00UTC April 12, 2013, considering it long enough to achieve our 13 

objective. We then evaluate the model performance against U.S. Geological Survey (USGS) 14 

observed river discharge from 00UTC April 12 to 00UTC April 25, 2013.  15 

3 Calibration 16 

3.1 Platforms 17 

We customized parallel PEST to work on twothree different workload managers and job 18 

schedulers: SLURM at the National Energy Research Scientific Computing Center (NERSC), PBS 19 

at the Argonne National Laboratory Computing Resource Center, and Cobalt at the Argonne 20 

Leadership Computing Facility. The tests presented here are conducted on Edison ofat NERSC, 21 

which uses the SLURM workload manager and job scheduler. Edison is a Cray XC30 with a peak 22 

performance of 2.57 petaflops per second, 133,824 compute cores, 357 terabytes of memory, and 23 

7.56 petabytes of disk storage. It has 5,586 nodes and 24 cores per node. 24 

3.2 PEST files 25 

Parallel PEST requires four types of input file: 26 

Template files, which  27 
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The interface we have built between parallel PEST and the management software (SLURM here) 1 

is, in general, used for (1) setting the number of workers and the nodes for each worker to conduct 2 

a model run (WRF-Hydro here); (2) finding the nodes that are available; (3) setting up the working 3 

directory for the workers; (4) identifying the nodes that work for each worker; (5) passing the 4 

global files (same for all the working directory) to all the workers (these files include the lookup 5 

table files that are not to be calibrated, the namelist files for both LSM and hydrological sector, 6 

and restart files that generated by the previous simulations, or  spin-up period); and (6) submitting 7 

the job for the entire calibration process, including parallel PEST and parallel WRF-hydro. This 8 

job can be submitted as a cold-start run or as a restart. The main difference for this interface on 9 

different management software is that different management software has its own way to submit 10 

jobs and identify available nodes. This difference requires some changes in the script we 11 

developed. 12 

3.2 PEST files and settings 13 

1. PEST requires three file types in both sequential and parallel mode. They are template files 14 

to define the parameters to be calibrated. For example, we generated CHANNEL.TPL, 15 

HYDRO.TPL, and GENPARAM.TPL based on the format of their corresponding lookup 16 

tables, which are CHANNEL.TBL, HYDRO.TBL, and GENPARAM.TBL, respectively. 17 

CHANNEL.TBL describes the features of a channel, such as bottom width, channel side 18 

slope, and Manning’s roughness coefficients. HYDRO.TBL contains Manning’s 19 

roughness coefficients for land-use types. GENPARAM.TPL describes the parameters 20 

used in the Noah-MP LSM.  21 

2. An, an instruction file, which defines to define the format of model-generated output files. 22 

For example, WRF-Hydro can output time series of streamflow over the forecast points 23 

(frxst_pts_out.txt) specified during model configuration. The instruction file follows the 24 

format of frxst_pts_out.txt and specifies the line number of each calibrated forecast point 25 

in frxst_pts_out.txt. 26 

3. A , and a control file, which supplies to supply PEST with the size of the problem (e.g., 27 

how many parameters to be calibrated; how many observational points); initial parameter 28 

values and their lower and upper bounds; the increment of each parameter for forward-29 

calculation; the names of all template and instruction files;  observational  values, and 30 
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weight for each parameter to be calibrated. PEST requires all these three file types in both 1 

sequential and parallel mode. 2 

4. and the settings for the calibration method. Parallel PEST uses a “master-worker” paradigm 3 

that starts model runs simultaneously by different workers (or in different folders). The 4 

master of parallel PEST communicates with each of its workers many times during a 5 

calibration. To run PEST in parallel mode, one also needs a management file to inform 6 

PEST where each slave’sthe working folder is, as well as for each worker and what the 7 

names and paths ofare for each model input file that PEST must write (i.e., lookup tables 8 

that come from template files) and each model output file that PEST must read (such as 9 

frsxt_pts_out.txt). 10 

 11 

Parallel PEST uses a “master-slave” paradigm that starts model runs simultaneously in different 12 

folders (or by different “slaves”). The master of parallel PEST communicates with each of its 13 

slaves many times during the course of a calibration. When PEST needs to run a The management 14 

file also set the maximum running time for each worker. For those workers that take longer than 15 

the maximum running time, PEST will stop the model in arun by that particular folder, the master 16 

notifies the slave to start theworker and assign that model in that folder. Each slave starts the model 17 

execution accordingly, and informs the master that the model starts running. Once the simulation 18 

is completed in a particular folder, the slave signals the master, so the mater can read the particular 19 

output However, to the best of our knowledgerun to another worker if there is one with nothing 20 

else to do.  21 

 22 

To the best of our knowledge, however, parallel PEST is not designed to run on HPCs directly. 23 

We developed scripts and an interface to enable parallel PEST to run on HPCs using SLURM, 24 

PBS, or Cobalt workload managers and job schedulers. This enablesThe development involved 25 

writing scripts to modify the workflow for different workload managers and job schedulers, as 26 

well as developing code to connect parallel PEST to WRF-Hydro. These developments enable 27 

parallel PEST to run many slaves onworkers at the HPCsame time; each slaveworker runs a 28 

parallel code (such ashere WRF-Hydro) that uses more than one node, which could significantly 29 

increasereduce the computational performancewall-clock time of model calibrations. Although 30 

this master-slaveworker parallelism may not be as efficient as a fully MPI approach, it is sufficient 31 
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for model calibration and requires the least effort for the current parallel PEST to run on HPCsHPC 1 

systems.  2 

 3 

This study presents calibration results from PEST using the SVD-based regularization in 4 

regularization mode to ensure numerical stability (Tonkin and Doherty, 2005). We focus on 5 

calibrating 22 parameters (see Table 1 and detail description in Sec. 3.3) using 96 observation 6 

points and 22 items of prior information for the calibrated parameters. In each item of prior 7 

information, a value equal to its default value provided by the WRF-Hydro v5.0 (or the log of its 8 

default value) is assigned for each adjustable parameter, assuming that default values are the 9 

preferred values. All prior information equations are assigned a weight of 1.0. We assigned five 10 

different regularization groups to the prior information: Manning’s roughness coefficients 11 

specified by Strahler stream order in CHANPARM.TBL to one group; the parameters in 12 

HYDRO.TBL (Manning’s roughness coefficients for overland flow as a function of vegetation 13 

types) to another group; and three global parameters for the Noah-MP (xslop1, refdk, and refkdt) 14 

in GENPARM.TBL to the remaining three groups. The 96 observation points are given different 15 

weights based on the inversed mean of their observed discharge during the studied period (see the 16 

detailed description in Sec. 3.3 and Sec. 4.1). For a detailed description of these settings see the 17 

PEST User Manual (Doherty, 2016).  18 

 19 

3.3 Calibrated experiments 20 

The primary objective of this study is to presentbuild a bridge for linking the operational parallel 21 

PEST and WRF-hydro on the scale-up capabilitybasis of HPC clusters and to explore the HPC-22 

enabled parallel PEST for use with WRF-Hydro calibration over a relatively large 23 

domain.computational benefits of this bridge. We focus less on do not attempt to extensively 24 

assessing the performance of assess each individual tool or address questions in each individual 25 

domain, such as optimizing the objective functions in PEST or calibrating WRF-Hydro for a long 26 

time period considering all the WRF-Hydro model.relevant parameters to achieve an optimal 27 

parameter set. The calibration and validationperiod thus is limited to only 7three days, considering 28 

it iswhich we believe long enough to achieve our objective and to understand WRF-Hydro’s 29 

sensitivity to multiple parameters. The calibration compares WRF-Hydro modeled river discharge 30 
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to U.S. Geological Survey (USGS) surface water observations.the calibrated parameters. We 1 

originally choose 11 USGS sites across the study area. However, because of inaccuracies 2 

introduced when projecting geospatial data from one coordinate system to another by the ArcGIS 3 

tool, three of the observational sites were not properly assigned to the desired location on the 4 

channel network. This situation is common in hydrographic data processing and well known to 5 

hydrologists (Sampson and Gochis, 2018). Among the remaining eight sites, four have 6 

discontinuous or missing data over the calibration period. Therefore, we calibrated WRF-Hydro 7 

using four USGS sites (referred to as Station 1, Station 2, Station 3, and Station 4 hereafter), as 8 

shown in Fig. 1 with their site number.. (More USGS sites could be included if one manually 9 

reallocated the stations that were not properly assigned to the desired location on the channel 10 

network by the GIS tool.) We then transfer the calibrated parameters to other sub-basinssubbasins 11 

in the study area to assess the transferability of the calibrated parameters. Although there are many 12 

parameters, including spatially distributed parameters and constant parameters in the lookup 13 

tables, that affect the model performance, we only calibrate only the parameters in lookup tables 14 

and do not consider the spatial variability of each parameterother parameters or their scaling 15 

factors. We acknowledge that there aresome studies that calibrate a single scaling factor (without 16 

considering its spatial variability, however) of overland roughness coefficients 17 

(OVROUGHRTFAC) rather than the actual value of each land type in the lookup table (e.g., 18 

Kerandi et al., 2018). Although this approach reduces the number of calibrated parameters, 19 

however, it has less flexibility because changing one factor will change all the parameters that use 20 

the same proportion.  In addition, a single scaling factor holds the same for the entire domain, 21 

which may work well for a small domain, but could be problematic for a large domain. Thus, we 22 

suggest the calibration of spatially distributed parameters requires more knowledge and 23 

understanding of the study area and deserves future studies. In this study, we calibrate the 24 

roughness coefficients for each land type rather than calibrating a single scaling factor. 25 

 26 

For mostthe calibration exercises we documentconduct here, the retention depth factor 27 

(RETDEPRTFAC) is fixed at 0.001. This value is reasonable because the modelledmodeled 28 

discharge of our particular configuration (SectSec. 2.2) using default parameters is much lower 29 

than observed discharge. Reducing this factor from 1 to 0.001 keeps less water in water ponds and 30 

more water on the surface so it can contribute to river discharge. First, we calibrate 48 parameters 31 
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based on a 3-day simulation from April 9 to 12April 11, 2013 (Table S1 in Supporting 1 

Information). This calibration uses the estimation mode in the PEST tool and considers equal 2 

weight for all four USGS stations. We calibrate the Manning’s roughness coefficients for both 3 

channels and land-use types, the deep drainage (SLOPE), infiltration-scaling parameter 4 

(REFKDT), and saturated soil lateral conductivity (REFDK). The Manning’s roughness 5 

coefficients control the hydrograph shape and the timing of the peaks; the infiltration factor, 6 

saturated hydraulic conductivitySLOPE, REFKDT, and deep drainageREFDK control the total 7 

water volume. Second, based on the knowledge we learn from the 3-day48-parameter calibration 8 

(see details in SectSec. 4.1), for the same 3-day period, we redefinereduce the number of calibrated 9 

parameters from 48 to calibrate22 according to the sensitiveness of the WRF-Hydro model to the 10 

adjustable parameters. For example, during the calibration we find that Manning’s roughness 11 

coefficients for several land types barely change because these land types (e.g., tundra, snow/ice) 12 

are not present in the study area. We also learn that even though the calibrated WRF-Hydro 13 

parameters can generate discharge results that closely resemble observations, the physical meaning 14 

of several parameters are not appropriate because of the wide range of those parameters that we 15 

set in the PEST control file. For example, Manning’s roughness coefficient for stream order 1 16 

(0.199) is calibrated smaller than that for stream order 2 (0.218); the overland roughness 17 

coefficients for evergreen needleleaf forest (0.043) and mixed forest (0.023) are calibrated smaller 18 

than for cropland/woodland (0.046). Neither of these is true in the real world. We therefore adjust 19 

the range of many parameters according to the literature (Soong et al., 2012) to maintain their 20 

physical meanings (Table 1). We also extend our calibration period to 7 days to include a heavy 21 

precipitation period. Although a period of 7 days is still very short compared to the traditional 22 

calibration period of at least 1 year, we find it provides more appropriate parameter estimation—23 

as well as better results of simulated hydrograph shape and the total water volume—than does the 24 

3-day calibration.We find that by using the same absolute weight for all four stations, the 25 

calibration helps three stations (Station 2, 3, and 4) with large water volumes to generate more 26 

reasonable results than do the default parameters; however, the results for Station 1, which has a 27 

relatively small volume of water, is not always better than the discharge that is modeled by using 28 

default parameters. Thus, we assign a weight of 15.0 for Station 1 versus a weight of 1.0 for the 29 

other three stations according to the inversed mean of observed discharge over these four stations 30 
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in April 2013. The ratio of the weights between Station 1 and the other three stations stays similar 1 

even if the means are calculated based on different time periods.  2 

  

3 

3.4 Statistics 4 

This study employs three statistical criteria: Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 5 

1970; Moriasi et al., 2007), root-mean-square error (RMSE), and Pearson correlation coefficient 6 

(PCC). RMSE and PCC evaluate model performance in terms of bias and temporal variation. NSE 7 

quantitatively describes the accuracy of modelledmodeled discharge compared towith the mean of 8 

the observed data. Equation (1) calculates the NSE with defined variables: 9 

𝑁𝑆𝐸 = 1 −
∑ (𝑌𝑡

𝑜𝑏𝑠−𝑌𝑡
𝑠𝑖𝑚)

2𝑛
𝑡=0

∑ (𝑌𝑡
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛

𝑠𝑖𝑚 )
2𝑛

𝑡=0

,         (1) 10 

where 𝑌𝑡
𝑜𝑏𝑠 is the tth observed value from USGS sites for river discharge , 𝑌𝑡

𝑠𝑖𝑚is the tth 11 

simulated value from the WRF-Hydro output, 𝑌𝑚𝑒𝑎𝑛
𝑜𝑏𝑠  is the temporal average of USGS observed 12 

discharge, and n is the total number of observation time points. An efficiency of 1 (NSE = 1) 13 

corresponds to a perfect match between modeled discharge and observed data. An efficiency of 0 14 

(NSE = 0) indicates that the model predictions are as accurate as the mean of the observed data. 15 

An efficiency below zero (NSE < 0) occurs when the model is worse than the observed mean. 16 

Essentially, the closer the NSE is to 1, the more accurate the model is. 17 

4 Results 18 

4.1 Three-dayWRF-Hydro calibration and validation 19 

Based on the knowledge we gained from the 48-parameter 3-day calibration, we adjust the range 20 

of critical parameters in the PEST control file to main their physical meanings. For example, we 21 

set Manning’s roughness coefficient larger for stream order 1 than for stream order 2. We also 22 

adjust the parameter range of the overland roughness coefficient for multiple land covers, such as 23 

forests. We exclude the parameters that WRF-Hydro is not sensitive to for this study, in order to 24 

constrain the problem size considering the availability of computational resources. However, if the 25 

studied area is much larger with more land types than the study area here, then there would be 26 

more parameters to calibrate. Also, hundreds of constant parameters in the Noah-MP model could 27 
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affect the WRF-Hydro results (Cuntz et al. 2016) and can be calibrated. Both these situations 1 

would increase the burden of WRF-Hydro calibration. We perform the same 3-day calibration 2 

from April 9 to April 11, 2013. Figure 2 shows the results of the 3-day modeled discharge (in cubic 3 

meters) using default and calibrated parameters after five iterations, as well as observed discharge 4 

from April 9 to 12. . The four stations are calibrated by considering different weights. Compared 5 

with the results calibrated by using equal weights for all the stations, by giving a higher weight to 6 

Station 1 the model bias over Station 1 is significantly reduced, with a higher NSE (0.87 with 7 

higher weight versus 0.14 with equal weight) and lower RMSE (48.1 versus 123.6). Over Stations 8 

2, 3, and 4, which sit on rivers with relatively large water volumes, the modeled discharge using 9 

the default parameter underestimates the streamflow by more than 65%. PEST detects this 10 

underestimation and immediately adjusts the parameters and increases the modeled discharge 11 

during the first iteration. After the fifththird iteration, the difference in calibrated results between 12 

different iterations is relatively small, and . We allow the PEST performed 12to conduct five 13 

iterations before finding theand use the parameters obtained from the fifth iteration as our optimum 14 

parameters. Here we only show results generated by default parameters and by parameters 15 

calibrated from the 1st, 5th, and 12th iterations. Over Stations 2, 3, and 4, which sit on rivers with 16 

relatively large water volumes, the discharge modeled by the default parameters is much lower 17 

than discharge seen in observations. PEST detects this underestimation. It immediately adjusts the 18 

parameters and increases the modeled discharge during the first iteration. After adjusting the 19 

parameters for several iterationsAs shown in Table 2, when the optimum parameters are used, the 20 

modeled discharge gets discharges are much closer to the observations compared to the modeled 21 

results that used the with the modeled results when the default parameters were used. The NSEs 22 

for the four stations increased from 0.73 (Station 1), -54.4 (Station 2), 157.3 (Station 3) and -23 

1316.9 (Station 4) to 0.87, 0.64, 0.05, and -58.78, respectively, being closer to 1. The RMSEs 24 

decreased from 69.3, 3925.2, 3981.3, and 4391.3 m3/sec to 48.1, 318.2, 308.7, and 934.6 m3/sec, 25 

respectively. Giving a lower weight for the three large river stations does not change the calibration 26 

results much.  27 

 28 

During the validation period, compared with the modeled discharge using default parameters., as 29 

shown in Table 2 shows, the statistics of model performance using default and calibrated 30 

parametersNSEs for all four stations during are increased to be closer to 1; RMSEs are decreased 31 
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by 50% or more; and the calibrationcorrelation coefficients between the observed and validation 1 

period. Compared to the discharge that was modeled using the default WRF-Hydro parameters, 2 

overall, the calibrated modeled discharge matches observations betterare increased from 0.8, 0.76, 3 

0.21, and 0.72 to 0.98, 0.82, 0.80, and 0.75. Compared with the results of calibration using the 4 

estimation mode (no regularization) in PEST, the SVD-based regularization generates slightly 5 

better hydrograph shape with 24-hour later discharge peaks that are closer to the observations. 6 

However, a problem remains with the hydrograph shapes of the modeled discharge, especially at 7 

the three stations with large volumes of with the modeled peak of discharge. For Station 1, the 8 

WRF-Hydro almost captures the timing of the peak of discharge, although it still underestimates 9 

the water. Note  volume by ~25%. The reason is that this 3-day period only experienced a light 10 

rain over the study area. The streamflow in the rivers is, therefore, mostly from groundwater and 11 

overland flow from upstream or from previous precipitation events. The contribution of overland 12 

flow is small for this period because the amount of precipitation was also small, so the main 13 

contributor to river discharge in the real situation was from the groundwater. However, in this 14 

study WRF-Hydro study uses a direct pass-through groundwater modelbaseflow module, which 15 

does not account for slow discharge and long-term storage of the baseflow. Therefore, Therefore, 16 

the largest contribution to river discharge is from precipitation, and groundwater does not 17 

contribute much discharge to the channels. This situation causes the model to greatly 18 

underestimate discharge, so the calibration adjusts critical parameters aggressively to increase the 19 

streamflow to match the observations. When we apply these calibrated parameters to the following 20 

days, the calibrated discharge is much higher than the observed discharge during the heavy 21 

precipitation period, as shown by Fig. 3 and the RMSEs for the validation period in Table 2. 22 

However, after the in a long-term view, as is also true for the other three large river stations. 23 

Different from Station 1, for the other three large river stations, the WRF-Hydro modeled 24 

discharge increases soon after the peak of precipitation and reaches a peak on April 21, 2013, 25 

which is much earlier than the observed peak of river discharge (near April 24). The reason is that 26 

the water contributions for these stations are from a larger river basin (Mississippi River) than we 27 

included in our current study area. Thus, when a heavy precipitation event, the modeled discharge 28 

occurs over the entire river basin, there will be a significant lag time (especially at the lower part 29 

of the basin) between the peak of precipitation amount and the peak of river discharge. For 30 

example, the precipitation over the upper part of Mississippi River Basin (MRB) has a peak amount 31 
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on April 18–19, but the river discharge did not reach its peak until April 24. Because our studied 1 

area covers only half of the MRB, the modeled river discharge has a shorter delay period after the 2 

peak of precipitation than does the observed river discharge. Enlarging the study area to include 3 

the entire MRB may improve this situation. Alternatively, calibrating and validating local rivers 4 

that are included in the current study area may also reduce the bias in hydrograph shape compared 5 

to calibrating and validating large rivers. On the other hand, the WRF-Hydro simulated river 6 

discharge decreases soon after it reaches the peak and much fasterearlier than in the observed 7 

situation (Fig. 3). Thisdischarge. The reason is again might be due to that the direct pass-through 8 

groundwater model we adopt in baseflow employed by this study, which uses an output-equals-9 

input relationship between soil drainage and the discharge into river channels. This model does 10 

not allow  does not account for slow discharge and long-term storage of baseflow in each 11 

conceptual bucket, and thereby not be able to fully representthe baseflow. As a result, the 12 

contribution of groundwater to streamflowfrom the baseflow to the river discharge in model 13 

simulations does not stay as long as in real situations. In the observations, the river discharge 14 

decreases from the peak at a speed of ~500 m3/sec per day, while the modeled river discharge 15 

decreases from the peak at a speed of ~1667 m3/sec per day. Using exponential storage-discharge 16 

function for the baseflow may improve this situation. 17 

 18 

From this 3-day calibration experiment, we learn that the WRF-Hydro output is not sensitive to 19 

several parameters we calibrated in this particular study. For example, Manning’s roughness 20 

coefficients for several land types barely change during the calibration because these land types 21 

(e.g., tundra, snow/ice) are not present in the study period and area. We also learn that even though 22 

the calibrated WRF-Hydro parameters can generate discharge results that closely resemble 23 

observations, the physical meaning of several parameters are not appropriate due to the wide range 24 

of those parameters that we set in the PEST control file. For example, as shown in Table S1, the 25 

Manning’s roughness coefficient for stream order 1 (0.199) is calibrated smaller than that for 26 

stream order 2 (0.218); the overland roughness coefficients for evergreen needleleaf forest (0.043) 27 

and mixed forest (0.023) are calibrated smaller than cropland/woodland (0.046). Neither of these 28 

is true in the real world. 29 
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4.2 Seven-day calibration and validation 1 

Based on the knowledge we gained from the 3-day calibration, we adjust the range of critical 2 

parameters in the PEST control file. For example, we set the Manning’s roughness coefficient 3 

larger for stream order 1 than for stream order 2. We also adjust the parameter range of the overland 4 

roughness coefficient for multiple land covers, such as forests. With the adjusted range of 5 

parameters, we perform 7-day calibration from 00:00 UTC on April 9, 2013, to 00:00 UTC on 6 

April 16, 2013, when there is an increased streamflow that the simulation does not capture using 7 

3-day calibrated parameters. The entire calibration takes 12 iterations. Figure 4 shows the results 8 

of modeled discharge (in cubic meters) using default and calibrated parameters (from the first, 9 

fifth, and 12th iterations), as well as observed discharge from April 9 to 16. Over Stations 2, 3, and 10 

4, the modeled discharge using the default parameter underestimates the streamflow by more than 11 

100%. PEST detects this underestimation and starts adjusting parameters to increase the discharge 12 

to match the observations. Compared to the modeled discharge using default parameters during 13 

the validation period, as shown in Table 3, the RMSE decreased from 624.9 (Station 1), 5162.9 14 

(Station 2), 4990.0 (Station 3), and 5098.3 m3/sec (Station 4) to 283.1, 637.9, 666.8, and 1202.8 15 

m3/sec, respectively. The correlation coefficient between observed and modeled discharge 16 

increased from 0.71, 0.90, 0.87, and 0.82 to 0.97, 0.99, 0.96, and 0.86. Note that, although the 17 

calibration helps three stations (Station 2, 3, and 4) with large water volumes to generate more 18 

reasonable results than the default parameters, the results for Station 1, which has a relatively small 19 

volume of water, is not always better than the discharge that is modeled using default parameters 20 

(Tables 2 and 3). This might be because we use the same absolute weight for all the stations when 21 

we perform the calibration. Using a higher weight for Station 1 may help improve this situation 22 

and generate better results for this station.  23 

 24 

Although a period of 7 days is still very short for calibration compared to traditional calibration 25 

period of at least 1 year, we find that the 7-day period provides better and more appropriate 26 

parameter estimation than does the 3-day calibration, and it does a better job of capturing the 27 

hydrograph shape and the total water volume. Comparing the validation statistics between Tables 28 

2 and 3 as well as Figs. 3 and 5, we find the 7-day calibrated parameters generate better results 29 

than do the 3-day calibrated parameters for both water volume and the hydrograph shape over the 30 

validation period. Compared to the discharge modeled using 3-day calibrated optimum parameters, 31 
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there is a 17–33% increase in the simulated streamflow (1,400–2,800 m3/sec) calculated over 1 

Station 2, 3, and 4 using the 7-day calibrated parameters from April 12 to 16. The RMSE is 3,400–2 

3,600 m3/sec when calculated using the 3-day calibration, but this decreases to 600–1,200 m3/sec 3 

when calculated using the 7-day calibration. The correlation coefficient between observed and 4 

modeled discharge using the 7-day calibration is 0.8–0.99, but that using the 3-day calibration is 5 

only 0.7–0.8. However, there is still a problem with the temporal variability of the modeled 6 

discharge, especially over the rivers with large discharge. When there is precipitation, the 7 

discharge immediately increases and is higher than the observed discharge. After the precipitation 8 

period, when the observed discharge still stays high, the modeled discharge decreases sooner and 9 

thus is smaller than the observed discharge. This might be the direct pass-through approach 10 

simplified groundwater flow, and does not represent the interaction between stream flow and 11 

groundwater properly in this case study. 12 

4.3 Evaluation of spatial transferability of the modeling system 13 

In this section, we apply the calibrated parameters for the four stations (black circles) in Fig. 1 to 14 

other 13 stations in the study area. As mentioned before, because of inaccuracies in the spatial 15 

location of station data and digital elevation models, and because of small errors introduced when 16 

projecting geospatial data from one coordinate system to another using the ArcGIS tool, only four 17 

stations are mapped on the river systems (crosses in Fig. 1); others are slightly shifted out of their 18 

closest grid cell. One of these four sites (Station 5) is located on a relatively small river, and others 19 

are located on larger rivers. The following analyses assess the transferability of the calibrated 20 

parameters from particular sites to other sites that are in the study area but not calibrated. The 21 

assessment compares the observed discharge with the closest grid cells from the discharge output 22 

of WRF-Hydro. Figure 6 shows the observed and modeled discharge using default and calibrated 23 

parameters. Overall, WRF-Hydro’s default parameters underestimate the discharge. WRF-Hydro 24 

also generates an earlier discharge peak compared to observations over the four stations (Stations 25 

5, 6, 7, and 8) in this particular study. The calibrated model results increase the discharge and 26 

generate a hydrograph shape that is closer to the observations than the default model results do. 27 

The absolute error of simulated discharge decreases by 12.8%, 22.8%, 46.8%, and 49.9%, 28 

respectively, over Stations 5 through 8, compared to the default simulated discharge. However, 29 
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because we did not specifically calibrate these stations based on observations, there are still 1 

differences between the calibrated results and observations. 2 

5 Discussion and summary 3 

5.1 Scale-up capabilities 4 

4.2 Computational benefits of parallel PEST on HPCs 5 

The ability to scale up the calibration of WRF-Hydro by using parallel PEST on HPCsHPC 6 

systems is determined by two factors: the scale-up capability of WRF-Hydro,parallel PEST and 7 

the scale-up capability of PESTWRF-Hydro. In the course of calibrating WRF-Hydro, PEST must 8 

run the WRF-Hydro model many times. PESTfirst makes someas many model runs as there are 9 

adjustable parameters to calculate Jacobian matrix (Doherty, 2016). The Jacobian matrix has a 10 

column for each calibrated parameter and a row for each observation and each item of prior 11 

information that set in the PEST control file. These model runs are independent between 12 

slaves.workers and can be easily parallelized. Each slave runworker runs the model usingwith 13 

temporarily incremented parameters that are defined in the template and control files. These model 14 

runs can be easily parallelized. HoweverThen, PEST also needneeds to make some otheradditional 15 

model runs to test parameter upgrades. These runs are calculated based onupdates. Different from 16 

the Jacobian runs, these additional runs are performed by using  different Marquardt lambdas. The, 17 

and the search for a Marquardt lambda that achieves the best set of parameters is a serial procedure 18 

― what iterative process. The lambda to use for the next run depends on the outcome of the model 19 

run conducted using the previously chosen lambda. This in fact is the major bottleneck of 20 

parallelization of the PEST code. Although serial testing of Marquardt lambdas may quickly find 21 

the optimal Marquardt lambda in the first or second series of model runs, it is an inefficient use of 22 

computing resources because other processors are idle while only one process is searching the 23 

lambdas. This is especially true when the model domain is large and requires extensive computing 24 

resources. 25 

 26 

 This study employs “partial parallelization” for the lambda-testing procedure (Doherty, 2016), so 27 

all the processorsmultiple workers can be used to calculate parameter upgrades based on a series 28 

of lambda values that are related to each other by a factor of RLAMFAC set in the PEST control 29 
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file. This partial parallelization makes the scale up challenging when more processors are in use, 1 

because generating many Marquardt lambdas does not always guarantee that the best Marquardt 2 

lambdas were the ones generated. As a result, the calibration process may converge more slowly 3 

when using more slaves than it does when using less slaves. We tested different numbers of slaves 4 

(35, 50, 70, and 105) for the 32-parameter calibration experiment. In total, each of these tests uses 5 

71, 101, 141, and 211 nodes; two nodes for each slave run WRF-Hydro, and one node runs PEST 6 

master to coordinate jobs and communicate with the slaves. The results shown in Figs. 2–6 and 7 

Tables 2–3 are from a calibration using 35 slaves; PEST conducted 12 iterations before finding 8 

the optimum parameters. We find that using different numbers of slaves generates slightly different 9 

parameter values and involves different numbers of iterations. For example, using 70 slaves only 10 

takes eight iterations and 41% of the wall-clock time 35 slaves used to find the optimum 11 

parameters. The calibrated parameters are slightly different from those generated by 35 slaves 12 

(Table 1, last column), and they generate slightly better results than does the 35-slave test 13 

compared to observed discharge. We finish the 12 iterations using 35 slaves (71 nodes) within 73 14 

hours, and the eight iterations using 70 slaves (141 nodes) within 30 hours. More than 800 model 15 

runs were conducted for entire calibration process including calculating the Jacobian Matrix as 16 

well as testing the parameter upgrades. In fact if more nodes were used by each slave for the 17 

calculation, the wall-clock time can be further reduced. If these calibration were conducted 18 

sequentially on personal computers, the same calibration process would have taken 60–80 days for 19 

a 7-day calibration. We also set the value of PARLAM to -9999 in the management file so only 20 

one cycle of parallel WRF-hydro runs is devoted to testing Marquardt lambdas. For additional 21 

details on these parameters and their settings see the PEST User Manual (Doherty, 2016). 22 

 23 

Our  24 

In this study finds that, depending on we test the computational performance of HPC-enabled 25 

parallel PEST using different number of parameters being calibrated (e.g., 32 parameters in this 26 

particular study), using 32 to 64 slaves shows fairly good scale-up capability; most of the time 27 

consumed by PEST is for running WRF-Hydroworkers (6, 12, and the number of slaves can be 28 

used to carry out model runs to generate the Jacobian matrix. However, using 105 slaves (211 29 

nodes) does not result in fewer iterations or a shorter wall-clock time than using 70 slaves. In fact, 30 

using more than 64 slaves may not be necessary because generating many 23) for the 22-parameter 31 
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calibration. As shown in Table 3, we conducted five experiments: Test 1 uses 23 workers, Test 2 1 

uses 12 workers, and Test 3 uses 6 workers. All  three tests use two nodes for each worker to run 2 

WRF-Hydro in parallel. The maximum number of lambda-testing runs undertaken per iteration is 3 

set to 15, 10, and 5 for Test 1, 2, and 3, respectively, to make sure that only one cycle of WRF-4 

hydro runs is devoted (using 15, 10 and 5 workers from Tests 1, 2, and 3, respectively) to testing 5 

Marquardt lambdas. Note that the maximum number of lambda-testing runs should be set equal to 6 

or less than the workers available. Otherwise, another cycle of WRF-hydro runs needs to be 7 

conducted. In fact, generating more Marquardt lambdas does not always guarantee generatingthat 8 

the best Marquardt lambdas. In addition, at least for  are generated. In contrast, it may make the 9 

calibrations conducted in this study, in each iterationmodel convergence slower (here, PEST runs 10 

the) or even model either 32 or 64failure.  11 

 12 

In order to test the trade-offs between the computing nodes used for running parallel WRF-Hydro 13 

and the workers used for running parallel PEST, Tests 4 and 5 use different number of nodes for 14 

each worker to run WRF-Hydro in parallel. Explicitly, Test 4 uses four nodes per worker, and Test 15 

5 uses six nodes per worker. Both tests use six workers for running the parallel PEST. The 16 

maximum number of lambda-testing runs undertaken per iteration is set to five for both Tests 4 17 

and 5. Note that the time costs in Table 3 are limited to only one iteration. Conducting more 18 

iterations will increase the cost of wall-clock time and computing, but will not change the 19 

conclusion for the scale-up capability and computational benefits for HPC-enabled parallel PEST 20 

linked to WRF-hydro.    21 

 22 

PEST needs to run the WRF-Hydro model at least as many times as the number of calibrated 23 

parameters (22 here). In fact, PEST runs the model 23 times in the first round (or the first iteration) 24 

with initial parameter values and for the first Jacobian matrix. From the second iteration, it runs 25 

the model 22 times to calculate the JacobinJacobian matrix. Therefore, havingif there are fewer 26 

than 23 workers, the time cost for the first round of Jacobian matrix calculation will increase 27 

accordingly. For example, as shown in Fig. 4a, when we assign 12 (and 6) workers to parallel 28 

PEST, the time cost for calculating the Jacobian matrix is increased by a factor of 2 (and 4) 29 

compared with the time cost of using 23 workers. The time cost for the parameter upgrade stays 30 

similar for the three experiments because only one cycle of WRF-hydro simulation is conducted 31 
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to test the Marquardt lambdas. As a result, the total time cost for Test 2 is ~1.5 times more than 64 1 

slavesthat for Test 1, and the total time cost for Test 3 is ~1.5 times more than that for Test 2 (Fig. 2 

4b). By extrapolating the speedup curve shown in Fig. 4a and Fig. 4b, we expect the total time cost 3 

to be ~1516 minutes when using only one worker (or sequential mode), which is about 15 times 4 

slower compared with running the PEST in parallel mode using 23 workers. For this particular 5 

study with 22 adjustable parameters, we expect the time cost most likely to stay the same even if 6 

one increases the number of workers to more than 23, because PEST runs WRF-Hydro only 23 or 7 

22 times for each iteration. Assigning more workers for this particular study would most likely 8 

render some slavesworkers idle and is not an efficient use of computing resources. PEST may run 9 

WRF-Hydro more than 22 times (e.g., 44 times) if higher-order finite differences are employed. 10 

In this case, assigning more workers (e.g. 45 workers) may further speed up the calibration process. 11 

On the other hand, for the same case study and using the same number of nodes for running parallel 12 

WRF-Hydro, we can estimate the computing speedup by assuming an increase in the number of 13 

calibrated parameters to 50. This would be the case, for example, to evaluate model sensitiveness 14 

to the physics in Noah-MP or the spatial variabilities of certain parameters. We then expect to use 15 

51 workers to achieve the best computing performance for parallel PEST. This would then be 28–16 

30 times faster than running PEST using one worker (or in sequential mode). Similarly, if 100 17 

parameters were used for the calibration for the same case study, a factor of up to 60 speedup in 18 

the calibration process would be achieved by running HPC-enabled parallel PEST.  19 

 20 

In addition, by increasing the number of nodes for each worker to conduct WRF-Hydro (Tests 3, 21 

4, and 5), the time cost for the entire calibration process is significantly reduced (Figs. 4c and 4d). 22 

Specifically, the WRF-hydro scales up well when using four and six nodes compared with using 23 

two nodes per worker for running the WRF-Hydro. Both the time spent on calculating the Jacobian 24 

matrix and the time spent on testing the parameter upgrades are decreased by 49% and 67%, 25 

respectively, when using four and six nodes. Therefore, the total time spent is also decreased when 26 

using more nodes for each worker (see Table 3). Increasing the number of nodes to eight for each 27 

worker will most likely further decrease the time cost by 70–75% compared with using only two 28 

nodes per worker. Moreover, if one has a larger study area such as the entire contiguous United 29 

States, we expect the WRF-Hydro to have an even better scale-up capability (e.g., on dozens of 30 

nodes) than this study. Overall, based on the experiments we conduct here, using 23 workers for 31 
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parallel PEST and six nodes for each worker to run parallel WRF-Hydro would cost the least wall-1 

clock time―about 32 min for one iteration for this particular study.  2 

 3 

4.3 Evaluation of spatial transferability of the calibrated parameters 4 

To assess the transferability of the calibrated parameters, we apply the optimum parameters 5 

obtained from the calibration for the four stations (black circles) in Fig. 1 to another set of  four 6 

stations (crosses in Fig. 1) in the study area. All four sites are located on relatively small rivers, so 7 

the lag time between precipitation peak and the discharge peak are much shorter than that for the 8 

stations on the lower part of MRB (e.g., Stations 2, 3, and 4). The assessment compares the 9 

observed discharge with the closest grid cells from the discharge output of WRF-Hydro. 5.2 Figure 10 

5 shows the observed and modeled discharge using default and the optimum parameters. Overall, 11 

WRF-Hydro’s default parameters underestimate the discharge and misrepresent the timing of 12 

discharge peaks compared with observations over the four assessed stations (Stations 5, 6, 7, and 13 

8). By using the calibrated parameters from other sites over the area, the model results increase the 14 

discharge and shift the hydrograph shape so they are much closer to the observations than model 15 

results using default parameters. The absolute error of simulated discharge decreases by 13.1%, 16 

38.3%, and 71.6%, respectively, over Stations 6 through 8 (Station 5 shows a 6% increase of 17 

absolute error), compared with the default simulated discharge. We also find that using the SVD-18 

based regularization for the PEST calibration captures the timing of discharge peak better than 19 

using the estimation mode, which is one-day earlier than the observations reaching the discharge 20 

peak. 21 

5 Summary and discussion 22 

WRF-Hydro is a new, and perhaps the first practical, computer code that can run on HPCsHPC 23 

systems and can model the entire hydrological cycle using physics-based sub-modelssubmodels 24 

and very high-resolution input datasets (e.g., radar). The hydrological community has desired this 25 

capability for decades, although it requires intensive computing resources. Thus, the calibration of 26 

this model would ideally be conducted on HPCs in parallel as well, especially when the model 27 

covers a large domain rather than the basin scale. This study ports an independent model 28 

calibration tool, parallel PEST, to HPC clusters and links it to WRF-Hydro to help WRF-Hydro 29 
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users calibrate the model within a much shorter wall-clock time period. This tool’s uniqueness lies 1 

in its flexibilityThe bridge we build here (between parallel PEST and robustness to calibration any 2 

parameters in WRF-Hydro. It is also unique in its use on the basis of two levels of parallelization 3 

across many slaves running PEST, with each slave running a simulation of WRF-Hydro. The 4 

calibration tool presented in this study also appliesHPC systems) can be applied to any other 5 

hydrological models and similar earthEarth system models that use parameterization 6 

toparameterizations to represent model physics. We present the operational feasibility of the HPC-7 

enabled parallel PEST by evaluating the performance of calibrated WRF-Hydro against 8 

observation in hydrograph features such as volume and timing of flood events. We examine the 9 

scale-up capability and computational benefits of the tool by assigning different computing 10 

resource for PEST and for WRF-Hydro. While this study presents the optimum parameters 11 

identified from the calibration of thisthe particular study case and area, but the calibratedflood 12 

event, the parameters can be significantly different if one uses different physics, such as 13 

exponential storage-discharge function for a groundwater model, or reach-based channel routing. 14 

or reach-based channel routing. Our preliminary testing shows that using exponential storage-15 

discharge function with the default parameters provided by WRF-Hydro, the modeled discharge 16 

was larger than that of observations. Thus, the calibration will need to adjust the parameters to 17 

reduce the discharge. Our study finds that for calibrating 22 parameters, using the same computing 18 

resource for running WRF-hydro, the HPC-enabled PEST calibration tool can speed up WRF-19 

Hydro calibration by a factor of 15, compared with running PEST in sequential mode. The speedup 20 

factor can be larger when the number of parameters needing calibration is higher (e.g., 50 or 100).  21 

 22 

We apply the HPC-enabled parallel PEST to WRF-Hydro to investigated a major flood event that 23 

occurred over the Midwestern United States in April 2013. Our precipitation inputs were derived 24 

from a radar, gauge, and satellite rainfall product named Stage IV. The calibrated parameters 25 

include Manning’s roughness coefficients for both channels and land-use types, deep drainage, the 26 

infiltration scaling parameter, and saturated soil lateral conductivity. We evaluated the 27 

performance of WRF-Hydro in hydrograph features such as volume and timing of flood events. 28 

We also assessed the spatial transferability of the calibrated parameters in the study area.  29 

 30 
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The following are the primary findings of several key points that we would like to mention to 1 

inform future studies: 2 

1. In this study: , we consider using the prior or regularization information only for the 3 

parameters that we calibrate. As is the case with solving inverse problems, prior 4 

information is added to improve the smoothness of the solutions. In order to build a more 5 

comprehensive calibration, an important aspect that can be considered is to enrich the prior 6 

with the available historical data. For example, in this particular case, one can use the 7 

historical observation data (e.g., April and May from the past few years) to enrich the prior 8 

information for the parameters. Hence, the regularization objective function in PEST will 9 

constitute not only the discrepancies between parameters and their “current estimates” but 10 

also the discrepancies between WRF-Hydro simulations and preferred values (which is the 11 

observed time series of historical discharge). Additionally, one can use the pilot points 12 

technique described by Doherty (2005) in conjunction with parameter estimation to add 13 

more flexibility to the calibration process. This will be potentially beneficial in improving 14 

the predictions. 15 

1. For this particular study, the HPC-enabled PEST calibration tool can speed up WRF-Hydro 16 

calibration by a factor of 30, compared to a serial calibration procedure. 17 

2. Calibrated WRF-Hydro improves the modeled hydrographs compared to the default model 18 

results. The RMSE of discharge over the three large stations are reduced by 76–86% with 19 

calibration for the validation period. 20 

3. Although the calibration period in this study is relatively short, we found that the longer 21 

the calibration period is, the better the model results are when compared to observations. 22 

It is difficult to precisely define what length of data is sufficient to identify model 23 

parameters so that they can also be used for other periods, because different models have 24 

different levels of complexity and different catchments have different information content 25 

in each year of hydrological record. Because of the heavy computation load for the 26 

calibration of WRF-Hydro, it would be challenging to calibrate yearlong time series. 27 

4. Although there are inaccuracies when mapping the USGS stations onto the river systems, 28 

we found the WRF-Hydro calibrated parameters are helpful for nearby locations. The 29 

absolute bias over the four assessed stations decreased by 12–50% as a result of using the 30 
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calibrated parameters, compared to using the default parameters for their simulations. The 1 

mapping issue are often random, or non-systematic; there is no generalizable way to 2 

automate the correction procedure with a high degree of fidelity. Manual manipulation or 3 

specification of the data is often required (Sampson and Gochis 2018).  4 

5. Using different groundwater models can generate very different results and will require a 5 

completely different set of parameters for WRF-Hydro to model the observed discharge. 6 

Our preliminary testing shows that, using exponential storage-discharge function with the 7 

default parameters provided by WRF-Hydro, the modeled discharge was larger than 8 

observations. Thus, the calibration will need to adjust the parameters to reduce the 9 

discharge. 10 

 11 

2.  To focus on our main goal, we calibrate only the parameters in lookup tables. However, 12 

we acknowledge that using a single value to represent a physics for a large domain could 13 

be problematic, especially we expect the HPC-enabled parallel PEST to execute with 14 

WRF-Hydro for large domains. This situation often needs parameter regionalization. For 15 

example, WRF-Hydro v5 has many spatially distributed parameters available, such as the 16 

overland flow roughness scaling factor (OVROUGHRTFAC), the factor of maximum 17 

retention depth (RETDEPRTFAC), and the soil-related parameters (when compiled with 18 

SPATIAL_SOIL=1). Calibrating these spatial parameters based on grid scale (e.g., 19 

catchments) rather than a single value will give the model more flexibility and thus better 20 

fit the observations (Hundecha and Bardossy, 2004; Wagener and Wheater, 2006). In 21 

practice, for example, one can include regional OVROUGHRTFACs (e.g., their 22 

lower/upper bounds, and default values) in the PEST control file based on catchments. 23 

However, the selection of the locations and sizes of catchment may introduce significant 24 

uncertainties to the calibration results, which require systematic and comprehensive 25 

investigation and understanding of the study area.  26 

3. This study is limited to calibrating the observed streamflow only based on the format of 27 

one of WRF-Hydro model outputs for individual station or point (frxst_pts_out.txt). It is 28 

feasible, however, to calibrate other variables as long as the observation data is available. 29 

For example, one can either find the closest point from the gridded dataset to the 30 

observation location and then compare that model grid to observations; or one can change 31 
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the WRF-Hydro input/output code to output other variables in the frxst_pts_out.txt file, so 1 

they can still use the same interface we developed here to calibrate other variables instead 2 

in addition to the discharge. 3 

4. The optimal parameter set obtained from this study is from the 5th iteration of parallel 4 

PEST by testing five Marquardt lambdas. Testing different number of lambdas or 5 

calibrating different number of parameters may generate a different set of optimal 6 

parameters. These parameter sets can all make physical sense and be equally good for 7 

reproducing observed discharges. This problem is named equifinality (Beven and Freer, 8 

2001; Savenije, 2001), which is an important source of model uncertainty. To reduce the 9 

model uncertainty through reducing the equifinality, hydrologists carry out additional 10 

modelling objective for model evaluation to find more useful parameter sets (Mo and 11 

Beven, 2004; Gallart et al., 2007). Alternatively, inspired by No. 3 discussed above, one 12 

can calibrate the WRF-hydro model based on more than one variables, such as discharge 13 

and soil moisture (or heat flux or water table depth) to reduce the number of optimal 14 

parameter sets, and thus reduce the model uncertainty of predictions for these variables.  15 

5. While this study ported the parallel PEST to HPC system and linked it to WRF-Hydro, we 16 

note that BEOPEST is available in the PEST family. BEOPEST has the same functionality 17 

as parallel PEST but uses a different approach for communication between master and 18 

workers. Working with HPC-enabled BEOPEST may save total time cost since BEOPEST 19 

uses the Transmission Control Protocol (TCP) and the Internet Protocol (IP) instead of 20 

message files (reading input and writing output between master and works) for 21 

communication. We expect it to be relatively straightforward to use BEOPEST to calibrate 22 

WRF-hydro on HPCs since the interface remains similar, except one needs to copy the 23 

template and instruction files in addition to the global files (see Section 3.1) into each 24 

working folder.  25 

    26 
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http://www.pesthomepage.org/Downloads.php. We use the Unix PEST version 13.6. The scripts 30 

and files that are developed in this study and required by PEST for calibrating WRF-Hydro are 31 
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Table 1: Calibrated 22 parameters and the optimum parameters found after five iterations.  1 

Calibrated Parameter Default 

Lower 

Bound 

Upper 

Bound 

Optimum 

Parameter 

mannn1 0.55 0.35 0.6 0.517599 

mannn2 0.35 0.15 0.35 0.153894 

mannn3 0.15 0.08 0.15 8.00E-02 

mannn4 0.1 0.05 0.15 5.00E-02 

mannn5 7.00E-02 0.02 0.1 6.677379E-02 

mannn6 5.00E-02 0.015 0.1 1.628244E-02 

mannn7 4.00E-02 0.01 0.08 1.298054E-02 

mannn8 3.00E-02 0.005 0.06 5.00E-03 

xslope1 0.1 1.00E-04 1 0.496680 

refdk 2.00E-06 1.00E-08 1.00E-05 2.899043E-07 

refkdt 1 0.01 5 1.66664 

ovn1 (urban) 2.50E-02 0.005 0.06 6.00E-02 

ovn2 (dry crop) 3.50E-02 0.015 0.06 1.50E-02 

ovn3 (irrigated crop) 3.50E-02 0.015 0.06 1.50E-02 

ovn5 (crop/grass) 3.50E-02 0.015 0.06 2.822497E-02 

ovn6 (crop/wood) 6.80E-02 0.035 0.25 4.568903E-02 

ovn7 (grass) 5.50E-02 0.015 0.25 1.50E-02 

ovn10 (savanna) 5.50E-02 0.015 0.3 1.50E-02 

ovn11 (deciduous forest) 0.2 0.1 0.3 0.30 

ovn14 (evergreen forest) 0.2 0.1 0.3 0.164557 

ovn15 (mixed forest) 0.2 0.1 0.3 0.112134 

ovn16 (water) 5.00E-03 0.001 0.01 1.00E-02 
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Table 2: Statistics of model performance using optimum and default (in parentheses) 1 

parameters for Stations 1–4 during the calibration and validation period.a 2 

Statistics Station 1 Station 2 Station 3 Station 4 

Calibration 

NSE 0.87 (0.73) 0.64 (-54.4) 0.05 (-157.3) -58.78 (-1316.9) 

RMSE 48.1 (69.3) 318.2 (3925.2) 308.7 (3981.3) 934.6 (4391.3) 

PCC 0.95 (0.91) 0.87 (0.92) 0.91 (0.87) 0.53 (0.66) 

Validation 

NSE 0.83 (0.41) -0.08 (-3.5) -0.08 (-27.4) -0.12 (-3.33) 

RMSE 259.9 (487.3) 3264.3 (6670.1) 3170.1 (16305.7) 3283.9 (6854.3) 

PCC 0.83 (0.8) 0.98 (0.69) 0.29 (0.19) 0.94 (0.64) 

a The calibration period is 3 days (April 9–11) and includes 22 parameters. The validation period 3 

is April 12–24. Bold typeface indicates the calibrated model results are closer to observations 4 

compared with the default model results. NSE and PCC are unitless; RMSE is in m3/sec. 5 
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Table 3. Experiments designed to test the scale-up capability and computational benefits of 1 

HPC-enabled parallel PEST linked to WRF-Hydro.  2 

Test 

No. of 

Workers 

No. of 

Lamdas 

No. of 

Nodes for 

Each 

Worker 

Total 

Time Cost 

(min) 

Time Cost for  

Calculating 

Jacobian Matrix 

Time Cost for 

Testing Parameter 

 Upgrades 

Test 1 23 15 2 103 52 51 

Test 2 12 10 2 150 102 48 

Test 3 6 5 2 264 211 53 

Test 4 6 5 4 131 107 24 

Test 5 6 5 6 86 70 16 

 3 
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 1 

Figure 1:  Eight USGS sites over the study area (750 km x 660 km). The four circles are sites 2 

that are used for calibrations; the four crosses are sites that are used for transferability 3 

assessment. USGS site numbers corresponding to the site index used in this study are listed 4 

on the top left corner of the map.   5 
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 1 

Figure 2: Observed and modeled discharge (m3/sec) using default and calibrated parameters 2 

during a 3-day calibration period (April 9–11, 2013) over the four stations indicated by the 3 

black circles in Fig. 1. The calibrations shown in solid lines are conducted by using SVD-4 
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based regularization and a higher weight for Station 1. The dashed line is the optimum result 1 

calibrated by using equal weight for all four sites.  2 
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 1 
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Figure 3: Observed and modeled discharge (m3/sec) during a validation period (April 12–24, 1 

2013) using optimum parameters identified from a 3-day calibration over the four stations 2 

indicated by black circles in Fig. 1. The solid line uses the optimum parameters that 3 

identified by PEST with SVD-based regularization and a higher weight for Station 1. The 4 

dashed line uses the optimum result calibrated by using estimation mode (no regularization).   5 
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 1 

Figure 4. Time cost for calculating Jacobian matrix and total time cost for one iteration for 2 

the five experiments (Table 3) using different number of workers to conduct PEST (a, b) and 3 

different number of nodes for each worker (c, d) to conduct WRF-Hydro.  4 
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  1 

Figure 5: Observed and modeled daily averaged discharge (m3/sec) from April 9–24 using 2 

default and the optimum parameters (shown in Table 1) identified by the 3-day calibration 3 

over four stations that are in the study area (indicated by crosses in Fig. 1). The calibrations 4 

shown in solid lines are conducted by using SVD-based regularization and a higher weight 5 

for Station 1. The dashed line is the optimum result calibrated by using estimation mode (no 6 

regularization). 7 



 

1 

 

A parallel workflow implementation for PEST version 13.6 in 1 

high-performance computing for WRF-Hydro version 5.0: a case 2 

study over the midwestern United States 3 

1Jiali Wang, 1Cheng Wang, 2Vishwas Rao, 1Andrew Orr, 1Rao Kotamarthi 4 

1Argonne National Laboratory, Environmental Science Division, 9700 South Cass Avenue, 5 

Lemont, IL 60439, USA 6 

 7 
2Argonne National Laboratory, Mathematics and Computer Science Division, 9700 South Cass 8 

Avenue, Lemont, IL 60439, USA 9 

 10 

Correspondence to: Jiali Wang (jialiwang@anl.gov) 11 

Abstract. The Weather Research and Forecasting Hydrological (WRF-Hydro) system is a state-12 

of-the-art numerical model that models the entire hydrological cycle based on physical principles. 13 

As with other hydrological models, WRF-Hydro parameterizes many physical processes. Hence, 14 

WRF-Hydro needs to be calibrated to optimize its output with respect to observations for the 15 

application region. When applied to a relatively large domain, both WRF-Hydro simulations and 16 

calibrations require intensive computing resources and are best performed on multimode, 17 

multicore high-performance computing (HPC) systems. Typically, each physics-based model 18 

requires a calibration process that works specifically with that model and is not transferrable to a 19 

different process or model. The parameter estimation tool (PEST) is a flexible and generic 20 

calibration tool that can be used in principle to calibrate any of these models. In its existing 21 

configuration, however, PEST is not designed to work on the current generation of massively 22 

parallel HPC clusters. To address this issue, we ported the parallel PEST to HPCs and adapted it 23 

to work with WRF-Hydro. The porting involved writing scripts to modify the workflow for 24 

different workload managers and job schedulers, as well as developing code to connect parallel 25 

PEST to WRF-Hydro. To test the operational feasibility and the potential computational benefits 26 

of this first-of-its-kind HPC-enabled parallel PEST, we developed a case study using a flood in the 27 

midwestern United States in 2013. Results on a problem involving calibration of 22 parameters 28 

show that on the same computing resource used for parallel WRF-Hydro, the HPC-enabled parallel 29 

PEST can speed the calibration process by a factor of up to 15 compared with commonly used 30 
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PEST in sequential mode. The speedup factor is expected to be greater with a larger calibration 1 

problem (e.g., more parameters to be calibrated or a larger size of study area).  2 

1 Introduction 3 

Physically based hydrological models contain detailed physical mechanisms to model the 4 

hydrological cycle, but many complex physical processes in these models are parameterized. For 5 

example, the state-of-the-art Weather Research and Forecasting Hydrological (WRF-Hydro) 6 

modeling system  (Gochis et al., 2015) has dozens of parameters that can be land- and river-type 7 

dependent and are typically specified in lookup tables. Therefore, these hydrological models need 8 

to be calibrated before they can be applied to research over different regions. In this context, 9 

calibration refers to adjusting the values of the model parameters so that the model can closely 10 

match the behavior of the real system it represents. In some cases, the appropriate value for a 11 

model parameter can be determined through direct measurements conducted on the real system. In 12 

many situations, however, the model parameters are conceptual representations of abstract 13 

watershed characteristics and must be determined through calibration. In fact, model calibration is 14 

the most time-consuming step, not only for hydrological models, but also for Earth system model 15 

development, because both parametric estimation and parametric uncertainty analysis require 16 

hundreds—if not thousands—of model simulations to understand how perturbations in model 17 

parameters affect simulations of dominant physical processes and to find the optimum value of a 18 

single parameter. 19 

 20 

WRF-Hydro is a numerical model that can simulate the entire hydrological cycle using advanced 21 

high-resolution data such as satellite and radar products. Compared with the traditional land 22 

surface model (LSM) used by WRF, WRF-Hydro provides a framework for multiscale 23 

representation of surface flow, subsurface flow, channel routing, and baseflow, as well as a simple 24 

lake/reservoir routing scheme. As a physics-based model, WRF-Hydro includes many complicated 25 

physical processes that are nonlinear and must be parameterized. The default parameters given by 26 

WRF-Hydro may be valid for one region but not for another region. Hence calibration of related 27 

model parameters is often required in order to use the model in a new domain. In particular, for a 28 

large spatial domain such as the entire contiguous United States, in order to develop the optimal 29 

parameter sets in a reasonable amount of time, the calibration must be conducted on high-30 
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performance computing (HPC) systems in parallel instead of in the traditional sequential mode. 1 

To date, no such calibration tool can efficiently calibrate WRF-Hydro on HPC resources. 2 

Typically, each physics-based model needs a calibration code that is custom designed to work with 3 

that particular numerical model and its set of physics parameterizations, software architecture, and 4 

solvers. These custom-designed calibration codes are highly challenging and do not offer 5 

flexibility. Therefore, a more flexible and generic calibration tool is needed that can calibrate any 6 

code that uses Message Passing Interface/Open Multi Processing (MPI/OpenMP) for 7 

parallelization on HPC systems. 8 

 9 

One widely used generic and independent calibration tool is the parameter estimation tool (PEST). 10 

PEST (Doherty, 2016) conducts calibration automatically based on mathematical methods and 11 

thus is applicable for optimizing nonlinear parameters. Compared with manual calibration, 12 

automatic calibration is more efficient and effective because it avoids interference from human 13 

factors (Madsen, 2000; Getirana, 2010). The uniqueness of PEST is that it operates independent 14 

of models: there is no need to develop additional programs or codes for a particular model except 15 

preparing the files required by PEST (as described in Sec. 3.2). PEST has four modes of operation. 16 

One of the modes is regularization mode, which supports the use of Tikhonov regularization and 17 

is found better for serving environmental models because, if implemented properly, it supports 18 

model predictions of minimum error variance, is numerically stable, and embraces rather than 19 

eschews the heterogeneity of natural systems. Singular value decomposition (SVD) can be used as 20 

a regularization device to guarantee numerical stability of the calibration problem. Parallel PEST 21 

is able to distribute many runs across many computing nodes using master-worker parallel 22 

programing. To our best knowledge, however, no approach is available that allows users to submit 23 

jobs using PEST parallelization to a typical supercomputing facility that uses job scheduling and 24 

workload management such as Simple Linux Utility for Resource Management (SLURM), 25 

Portable Batch System (PBS), and Cobalt. A previous study (Senatore et al., 2015) used PEST to 26 

calibrate WRF-Hydro over the Crati River Basin in southern Italy. Because the study area was 27 

relatively small, the authors were able to conduct the calibration using PEST in sequential mode 28 

(Alfonso  Senatore, personal communication, 2018).  29 

 30 



 

4 

 

This study aims to (1) port parallel PEST to HPC clusters operated by the U.S. Department of 1 

Energy (DOE) and adapt it to work with WRF-Hydro, (2) evaluate the performance of HPC-2 

enabled parallel PEST linked to WRF-Hydro by calibrating a flood event, and (3) explore the 3 

scale-up capability and computational benefits of HPC-enabled parallel PEST by assigning 4 

different computing resource to the entire calibration process.  5 

2 Model description 6 

2.1 Study area 7 

The case presented here is one of the worst floods experienced by greater Chicago area in the past 8 

three decades; the storm  occurred on April 18, 2013 (Campos and Wang, 2015). According to the 9 

National Weather Service (NWS), the heaviest 24-hour accumulated rainfall during this storm 10 

reached 201.4, 171.1, and 136.4 mm across Illinois, Iowa, and Missouri, respectively. The 11 

Mississippi River crested at 10.8 m (1.7 m above flood stage), and the Illinois River crested in 12 

Peoria, Illinois, at 8.95 m; these river cresting broke the previous record of 8.78 m, set in 1943, 13 

and was 4.55 m above the historical normal river stage (NWS, 2013). Campos and Wang (2015) 14 

conducted three-domain nested WRF simulations to understand the dynamical and microphysical 15 

mechanisms of the event. Our study builds on the smallest domain of that study, which covers the 16 

majority of Illinois, Iowa, and Missouri at a spatial resolution of 3 km (Fig. 1). The domain size is 17 

750 km from west to east and 660 km from south to north. 18 

 19 

2.2 WRF-Hydro configuration 20 

This study employs WRF-Hydro version 5 with a basic configuration. This configuration does not 21 

use nudging techniques or spatially distributed soil-related parameters as used in the National 22 

Water Model configuration. WRF-Hydro has been tested in several different cases that focused on 23 

different hydrometeorological forecasting and simulation problems (e.g., Gochis et al., 2018; 24 

Yucel et al., 2015; Senatore et al., 2015; Arnault et al., 2016), and it shows reasonable accuracy in 25 

simulated streamflow after being carefully calibrated. For details of the WRF-Hydro modeling 26 

system, see Gochis et al. (2018). Currently, two LSMs are available in WRF-Hydro for 27 

representing land-surface column physics: Noah (Chen and Dudhia, 2001) and Noah Multi-28 
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parameterization (Noah-MP; Niu et al. 2011). We utilize Noah-MP LSM because compared with 1 

Noah LSM it shows obvious improvements in reproducing surface fluxes, skin temperature over 2 

dry periods, snow water equivalent, snow depth, and runoff (Niu et al. 2011). The Noah-MP is 3 

configured at a grid spacing of 3 km, and the aggregation factor is 15; that is, starting from a 3 km 4 

LSM resolution in the domain shown in Fig. 1, hydrological routing is performed at a grid 5 

resolution of 200 m, with 3285 south-north × 3735 west-east grid cells. We use a time step of 10 6 

seconds for the routing grid in order to maintain model stability and prevent numerical dispersion 7 

of overland flood waves. The time step also meets the Courant condition criteria for diffusive wave 8 

routing on a 200 m resolution grid. The WRF-Hydro is configured to be in offline or uncoupled 9 

mode―there is no online interaction between the WRF-Hydro hydrological model and the WRF 10 

atmospheric model. Overland flow, saturated subsurface flow, gridded channel routing, and a 11 

conceptual baseflow are active in this study. The gridded channel network uses an explicit, one-12 

dimensional, variable time-stepping diffusive wave. A direct output-equals-input “pass-through” 13 

relationship is adopted to estimate the baseflow. Although the baseflow module is not physically 14 

explicit, it is important because the water flow in the channel routing is contributed by both the 15 

overland flow and baseflow. If the overland flow is active as it is in this study, it passes water 16 

directly to the channel model. In this case the soil drainage is the only water resource flowing into 17 

the baseflow buckets. However, if the overland flow is deactivated but channel routing is still 18 

active, then WRF-Hydro collects excess surface infiltration water from the land model and passes 19 

this water into the baseflow bucket. This bucket then contributes the water from both overland and 20 

soil drainage to the channel flow. Therefore, the baseflow must be active if the overland flow is 21 

switched off. This study does not consider lakes and reservoirs.  22 

 23 

We use the geographic information system (GIS) tool (Sampson and Gochis, 2018) developed by 24 

the WRF-Hydro team to delineate the stream channel network, open water (i.e., lake, reservoir, 25 

and ocean) grid cells, and groundwater/baseflow basins. Meteorological input for the WRF-Hydro 26 

model system includes hourly precipitation; near-surface air temperature, humidity, and wind 27 

speed; incoming shortwave and longwave radiation; and surface pressure. In this study, the hourly 28 

precipitation is from the National Centers for Environmental Prediction (NCEP) Stage IV analysis 29 

at a spatial resolution of 4 km. The Stage IV data is based on combined radar and gauge data (Lin 30 

and Mitchell, 2005; Prat and Nelson, 2015), and has been shown to be temporally well correlated 31 
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with high-quality measurements from individual gauges (see, e.g., Sapiano and Arkin, 2009; Prat 1 

and Nelson, 2015). The other hourly meteorological inputs are from the second phase of the multi-2 

institution North American Land Data Assimilation System project, phase 2 (NLDAS‐2) (Xia et 3 

al., 2012a,b), at a spatial resolution of 12 km. NLDAS‐2 is an offline data assimilation system 4 

featuring uncoupled LSMs driven by observation‐based atmospheric forcing. 5 

 6 

During the 15-day period of this studied case, light to moderate rain occurred on April 8 through 7 

11, 2013, followed by a relatively dry period from April 12 to 15. Then a heavy rain event began 8 

on April 16 and peaked on April 18. The heaviest rain band moved east of the study area on April 9 

19. The rainy event ended over the study area on April 20 (see Fig. S1 in Supporting Information). 10 

We start the WRF-Hydro simulation on Jan. 1, 2013, and run the model for more than three months 11 

to reach equilibrium. This 3-month period is considered as spin-up time and is excluded from 12 

model calibration and evaluation. We calibrate the river discharge calculated by the WRF-Hydro 13 

model from 00UTC April 9 to 00UTC April 12, 2013, considering it long enough to achieve our 14 

objective. We then evaluate the model performance against U.S. Geological Survey (USGS) 15 

observed river discharge from 00UTC April 12 to 00UTC April 25, 2013.  16 

3 Calibration 17 

3.1 Platforms 18 

We customized parallel PEST to work on three different workload managers and job schedulers: 19 

SLURM at the National Energy Research Scientific Computing Center (NERSC), PBS at the 20 

Argonne National Laboratory Computing Resource Center, and Cobalt at the Argonne Leadership 21 

Computing Facility. The tests presented here are conducted on Edison at NERSC, which uses the 22 

SLURM workload manager and job scheduler. Edison is a Cray XC30 with a peak performance 23 

of 2.57 petaflops per second, 133,824 compute cores, 357 terabytes of memory, and 7.56 petabytes 24 

of disk storage. It has 5,586 nodes and 24 cores per node. 25 

 26 

The interface we have built between parallel PEST and the management software (SLURM here) 27 

is, in general, used for (1) setting the number of workers and the nodes for each worker to conduct 28 

a model run (WRF-Hydro here); (2) finding the nodes that are available; (3) setting up the working 29 
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directory for the workers; (4) identifying the nodes that work for each worker; (5) passing the 1 

global files (same for all the working directory) to all the workers (these files include the lookup 2 

table files that are not to be calibrated, the namelist files for both LSM and hydrological sector, 3 

and restart files that generated by the previous simulations, or  spin-up period); and (6) submitting 4 

the job for the entire calibration process, including parallel PEST and parallel WRF-hydro. This 5 

job can be submitted as a cold-start run or as a restart. The main difference for this interface on 6 

different management software is that different management software has its own way to submit 7 

jobs and identify available nodes. This difference requires some changes in the script we 8 

developed. 9 

3.2 PEST files and settings 10 

PEST requires three file types in both sequential and parallel mode. They are template files to 11 

define the parameters to be calibrated, an instruction file to define the format of model-generated 12 

output files, and a control file to supply PEST with the size of the problem and the settings for the 13 

calibration method. Parallel PEST uses a “master-worker” paradigm that starts model runs 14 

simultaneously by different workers (or in different folders). The master of parallel PEST 15 

communicates with each of its workers many times during a calibration. To run PEST in parallel 16 

mode, one also needs a management file to inform PEST where the working folder is for each 17 

worker and what the names and paths are for each model input file that PEST must write (i.e., 18 

lookup tables that come from template files) and each model output file that PEST must read (such 19 

as frsxt_pts_out.txt). The management file also set the maximum running time for each worker. 20 

For those workers that take longer than the maximum running time, PEST will stop the model run 21 

by that particular worker and assign that model run to another worker if there is one with nothing 22 

else to do.  23 

 24 

To the best of our knowledge, however, parallel PEST is not designed to run on HPCs directly. 25 

We developed scripts and an interface to enable parallel PEST to run on HPCs using SLURM, 26 

PBS, or Cobalt workload managers and job schedulers. The development involved writing scripts 27 

to modify the workflow for different workload managers and job schedulers, as well as developing 28 

code to connect parallel PEST to WRF-Hydro. These developments enable parallel PEST to run 29 

many workers at the same time; each worker runs a parallel code (here WRF-Hydro) that uses 30 
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more than one node, which could significantly reduce the wall-clock time of model calibrations. 1 

Although this master-worker parallelism may not be as efficient as a fully MPI approach, it is 2 

sufficient for model calibration and requires the least effort for the current parallel PEST to run on 3 

HPC systems.  4 

 5 

This study presents calibration results from PEST using the SVD-based regularization in 6 

regularization mode to ensure numerical stability (Tonkin and Doherty, 2005). We focus on 7 

calibrating 22 parameters (see Table 1 and detail description in Sec. 3.3) using 96 observation 8 

points and 22 items of prior information for the calibrated parameters. In each item of prior 9 

information, a value equal to its default value provided by the WRF-Hydro v5.0 (or the log of its 10 

default value) is assigned for each adjustable parameter, assuming that default values are the 11 

preferred values. All prior information equations are assigned a weight of 1.0. We assigned five 12 

different regularization groups to the prior information: Manning’s roughness coefficients 13 

specified by Strahler stream order in CHANPARM.TBL to one group; the parameters in 14 

HYDRO.TBL (Manning’s roughness coefficients for overland flow as a function of vegetation 15 

types) to another group; and three global parameters for the Noah-MP (xslop1, refdk, and refkdt) 16 

in GENPARM.TBL to the remaining three groups. The 96 observation points are given different 17 

weights based on the inversed mean of their observed discharge during the studied period (see the 18 

detailed description in Sec. 3.3 and Sec. 4.1). For a detailed description of these settings see the 19 

PEST User Manual (Doherty, 2016).  20 

 21 

3.3 Calibrated experiments 22 

The primary objective of this study is to build a bridge for linking the parallel PEST and WRF-23 

hydro on the basis of HPC clusters and to explore the computational benefits of this bridge. We 24 

do not attempt to extensively assess each individual tool or address questions in each individual 25 

domain, such as optimizing the objective functions in PEST or calibrating WRF-Hydro for a long 26 

time period considering all the relevant parameters to achieve an optimal parameter set. The 27 

calibration period thus is limited to only three days, which we believe long enough to achieve our 28 

objective and to understand WRF-Hydro’s sensitivity to the calibrated parameters. We calibrated 29 

WRF-Hydro using four USGS sites (referred to as Station 1, Station 2, Station 3, and Station 4 30 
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hereafter), as shown in Fig. 1. (More USGS sites could be included if one manually reallocated 1 

the stations that were not properly assigned to the desired location on the channel network by the 2 

GIS tool.) We then transfer the calibrated parameters to other subbasins in the study area to assess 3 

the transferability of the calibrated parameters. Although many parameters, including spatially 4 

distributed parameters and constant parameters in the lookup tables, affect the model performance, 5 

we calibrate only the parameters in lookup tables and do not consider the spatial variability of 6 

other parameters or their scaling factors. We acknowledge that some studies calibrate a single 7 

scaling factor (without considering its spatial variability, however) of overland roughness 8 

coefficients (OVROUGHRTFAC) rather than the actual value of each land type in the lookup table 9 

(e.g., Kerandi et al., 2018). Although this approach reduces the number of calibrated parameters, 10 

however, it has less flexibility because changing one factor will change all the parameters that use 11 

the same proportion.   12 

 13 

For the calibration exercises we conduct here, the retention depth factor (RETDEPRTFAC) is 14 

fixed at 0.001. This value is reasonable because the modeled discharge of our particular 15 

configuration (Sec. 2.2) using default parameters is lower than observed discharge. Reducing this 16 

factor from 1 to 0.001 keeps less water in water ponds and more water on the surface so it can 17 

contribute to river discharge. First, we calibrate 48 parameters based on a 3-day simulation from 18 

April 9 to April 11, 2013 (Table S1 in Supporting Information). This calibration uses the 19 

estimation mode in the PEST tool and considers equal weight for all four USGS stations. We 20 

calibrate Manning’s roughness coefficients for both channels and land-use types, the deep drainage 21 

(SLOPE), infiltration-scaling parameter (REFKDT), and saturated soil lateral conductivity 22 

(REFDK). Manning’s roughness coefficients control the hydrograph shape and the timing of the 23 

peaks; the SLOPE, REFKDT, and REFDK control the total water volume. Second, based on the 24 

knowledge we learn from the 48-parameter calibration (see details in Sec. 4.1), for the same 3-day 25 

period, we reduce the number of calibrated parameters from 48 to 22 according to the sensitiveness 26 

of the WRF-Hydro model to the adjustable parameters. For example, during the calibration we 27 

find that Manning’s roughness coefficients for several land types barely change because these land 28 

types (e.g., tundra, snow/ice) are not present in the study area. We also learn that even though the 29 

calibrated WRF-Hydro parameters can generate discharge results that closely resemble 30 

observations, the physical meaning of several parameters are not appropriate because of the wide 31 
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range of those parameters that we set in the PEST control file. For example, Manning’s roughness 1 

coefficient for stream order 1 (0.199) is calibrated smaller than that for stream order 2 (0.218); the 2 

overland roughness coefficients for evergreen needleleaf forest (0.043) and mixed forest (0.023) 3 

are calibrated smaller than for cropland/woodland (0.046). Neither of these is true in the real world. 4 

We therefore adjust the range of many parameters according to the literature (Soong et al., 2012) 5 

to maintain their physical meanings (Table 1). We find that by using the same absolute weight for 6 

all four stations, the calibration helps three stations (Station 2, 3, and 4) with large water volumes 7 

to generate more reasonable results than do the default parameters; however, the results for Station 8 

1, which has a relatively small volume of water, is not always better than the discharge that is 9 

modeled by using default parameters. Thus, we assign a weight of 15.0 for Station 1 versus a 10 

weight of 1.0 for the other three stations according to the inversed mean of observed discharge 11 

over these four stations in April 2013. The ratio of the weights between Station 1 and the other 12 

three stations stays similar even if the means are calculated based on different time periods.  13 

  14 

3.4 Statistics 15 

This study employs three statistical criteria: Nash–Sutcliffe efficiency (NSE; Nash and Sutcliffe, 16 

1970; Moriasi et al., 2007), root-mean-square error (RMSE), and Pearson correlation coefficient 17 

(PCC). RMSE and PCC evaluate model performance in terms of bias and temporal variation. NSE 18 

quantitatively describes the accuracy of modeled discharge compared with the mean of the 19 

observed data. Equation (1) calculates the NSE with defined variables: 20 

𝑁𝑆𝐸 = 1 −
∑ (𝑌𝑡

𝑜𝑏𝑠−𝑌𝑡
𝑠𝑖𝑚)

2𝑛
𝑡=0

∑ (𝑌𝑡
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛

𝑠𝑖𝑚 )
2𝑛

𝑡=0

,         (1) 21 

where 𝑌𝑡
𝑜𝑏𝑠 is the tth observed value from USGS sites for river discharge , 𝑌𝑡

𝑠𝑖𝑚is the tth 22 

simulated value from the WRF-Hydro output, 𝑌𝑚𝑒𝑎𝑛
𝑜𝑏𝑠  is the temporal average of USGS observed 23 

discharge, and n is the total number of observation time points. An efficiency of 1 (NSE = 1) 24 

corresponds to a perfect match between modeled discharge and observed data. An efficiency of 0 25 

(NSE = 0) indicates that the model predictions are as accurate as the mean of the observed data. 26 

An efficiency below zero (NSE < 0) occurs when the model is worse than the observed mean. 27 

Essentially, the closer the NSE is to 1, the more accurate the model is. 28 
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4 Results 1 

4.1 WRF-Hydro calibration and validation 2 

Based on the knowledge we gained from the 48-parameter 3-day calibration, we adjust the range 3 

of critical parameters in the PEST control file to main their physical meanings. For example, we 4 

set Manning’s roughness coefficient larger for stream order 1 than for stream order 2. We also 5 

adjust the parameter range of the overland roughness coefficient for multiple land covers, such as 6 

forests. We exclude the parameters that WRF-Hydro is not sensitive to for this study, in order to 7 

constrain the problem size considering the availability of computational resources. However, if the 8 

studied area is much larger with more land types than the study area here, then there would be 9 

more parameters to calibrate. Also, hundreds of constant parameters in the Noah-MP model could 10 

affect the WRF-Hydro results (Cuntz et al. 2016) and can be calibrated. Both these situations 11 

would increase the burden of WRF-Hydro calibration. We perform the same 3-day calibration 12 

from April 9 to April 11, 2013. Figure 2 shows the results of the 3-day modeled discharge (in cubic 13 

meters) using default and calibrated parameters after five iterations, as well as observed discharge. 14 

The four stations are calibrated by considering different weights. Compared with the results 15 

calibrated by using equal weights for all the stations, by giving a higher weight to Station 1 the 16 

model bias over Station 1 is significantly reduced, with a higher NSE (0.87 with higher weight 17 

versus 0.14 with equal weight) and lower RMSE (48.1 versus 123.6). Over Stations 2, 3, and 4, 18 

which sit on rivers with relatively large water volumes, the modeled discharge using the default 19 

parameter underestimates the streamflow by more than 65%. PEST detects this underestimation 20 

and immediately adjusts the parameters and increases the modeled discharge during the first 21 

iteration. After the third iteration, the difference in calibrated results between different iterations 22 

is relatively small. We allow the PEST to conduct five iterations and use the parameters obtained 23 

from the fifth iteration as our optimum parameters. As shown in Table 2, when the optimum 24 

parameters are used, the modeled discharges are much closer to the observations compared with 25 

the modeled results when the default parameters were used. The NSEs for the four stations 26 

increased from 0.73 (Station 1), -54.4 (Station 2), 157.3 (Station 3) and -1316.9 (Station 4) to 0.87, 27 

0.64, 0.05, and -58.78, respectively, being closer to 1. The RMSEs decreased from 69.3, 3925.2, 28 

3981.3, and 4391.3 m3/sec to 48.1, 318.2, 308.7, and 934.6 m3/sec, respectively. Giving a lower 29 

weight for the three large river stations does not change the calibration results much.  30 
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 1 

During the validation period, compared with the modeled discharge using default parameters, as 2 

shown in Table 2, the NSEs for all four stations are increased to be closer to 1; RMSEs are 3 

decreased by 50% or more; and the correlation coefficients between the observed and modeled 4 

discharge are increased from 0.8, 0.76, 0.21, and 0.72 to 0.98, 0.82, 0.80, and 0.75. Compared with 5 

the results of calibration using the estimation mode (no regularization) in PEST, the SVD-based 6 

regularization generates slightly better hydrograph shape with 24-hour later discharge peaks that 7 

are closer to the observations. However, a problem remains with the hydrograph shapes of the 8 

modeled discharge, especially with the modeled peak of discharge. For Station 1, the WRF-Hydro 9 

almost captures the timing of the peak of discharge, although it still underestimates the water 10 

volume by ~25%. The reason is that this study uses a direct pass-through baseflow module, which 11 

does not account for slow discharge and long-term storage of the baseflow. Therefore, the largest 12 

contribution to river discharge is from precipitation, and groundwater does not contribute much 13 

discharge to the channels in a long-term view, as is also true for the other three large river stations. 14 

Different from Station 1, for the other three large river stations, the WRF-Hydro modeled 15 

discharge increases soon after the peak of precipitation and reaches a peak on April 21, 2013, 16 

which is much earlier than the observed peak of river discharge (near April 24). The reason is that 17 

the water contributions for these stations are from a larger river basin (Mississippi River) than we 18 

included in our current study area. Thus, when a heavy precipitation event occurs over the entire 19 

river basin, there will be a significant lag time (especially at the lower part of the basin) between 20 

the peak of precipitation amount and the peak of river discharge. For example, the precipitation 21 

over the upper part of Mississippi River Basin (MRB) has a peak amount on April 18–19, but the 22 

river discharge did not reach its peak until April 24. Because our studied area covers only half of 23 

the MRB, the modeled river discharge has a shorter delay period after the peak of precipitation 24 

than does the observed river discharge. Enlarging the study area to include the entire MRB may 25 

improve this situation. Alternatively, calibrating and validating local rivers that are included in the 26 

current study area may also reduce the bias in hydrograph shape compared to calibrating and 27 

validating large rivers. On the other hand, the WRF-Hydro simulated river discharge decreases 28 

soon after it reaches the peak and much earlier than the observed discharge. The reason is again 29 

that the direct pass-through baseflow employed by this study does not account for slow discharge 30 

and long-term storage of the baseflow. As a result, the contribution from the baseflow to the river 31 
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discharge in model simulations does not stay as long as in real situations. In the observations, the 1 

river discharge decreases from the peak at a speed of ~500 m3/sec per day, while the modeled river 2 

discharge decreases from the peak at a speed of ~1667 m3/sec per day. Using exponential storage-3 

discharge function for the baseflow may improve this situation. 4 

 5 

4.2 Computational benefits of parallel PEST on HPCs 6 

The ability to scale up the calibration of WRF-Hydro by using parallel PEST on HPC systems is 7 

determined by two factors: the scale-up capability of parallel PEST and the scale-up capability of 8 

WRF-Hydro. In calibrating WRF-Hydro, PEST first makes as many model runs as there are 9 

adjustable parameters to calculate Jacobian matrix (Doherty, 2016). The Jacobian matrix has a 10 

column for each calibrated parameter and a row for each observation and each item of prior 11 

information that set in the PEST control file. These model runs are independent between workers 12 

and can be easily parallelized. Each worker runs the model with temporarily incremented 13 

parameters that are defined in the template and control files. Then, PEST needs to make additional 14 

model runs to test parameter updates. Different from the Jacobian runs, these additional runs are 15 

performed by using  different Marquardt lambdas, and the search for a Marquardt lambda that 16 

achieves the best set of parameters is a serial iterative process. The lambda to use for the next run 17 

depends on the outcome of the model run conducted using the previously chosen lambda. Although 18 

serial testing of Marquardt lambdas may quickly find the optimal Marquardt lambda in the first or 19 

second series of model runs, it is an inefficient use of computing resources because other 20 

processors are idle while only one process is searching the lambdas. This is especially true when 21 

the model domain is large and requires extensive computing resources. This study employs “partial 22 

parallelization” for the lambda-testing procedure (Doherty, 2016), so multiple workers can be used 23 

to calculate parameter upgrades based on a series of lambda values that are related to each other 24 

by a factor of RLAMFAC set in the PEST control file. We also set the value of PARLAM to -9999 25 

in the management file so only one cycle of parallel WRF-hydro runs is devoted to testing 26 

Marquardt lambdas. For additional details on these parameters and their settings see the PEST 27 

User Manual (Doherty, 2016). 28 

  29 
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In this study we test the computational performance of HPC-enabled parallel PEST using different 1 

number of workers (6, 12, and 23) for the 22-parameter calibration. As shown in Table 3, we 2 

conducted five experiments: Test 1 uses 23 workers, Test 2 uses 12 workers, and Test 3 uses 6 3 

workers. All  three tests use two nodes for each worker to run WRF-Hydro in parallel. The 4 

maximum number of lambda-testing runs undertaken per iteration is set to 15, 10, and 5 for Test 5 

1, 2, and 3, respectively, to make sure that only one cycle of WRF-hydro runs is devoted (using 6 

15, 10 and 5 workers from Tests 1, 2, and 3, respectively) to testing Marquardt lambdas. Note that 7 

the maximum number of lambda-testing runs should be set equal to or less than the workers 8 

available. Otherwise, another cycle of WRF-hydro runs needs to be conducted. In fact, generating 9 

more Marquardt lambdas does not always guarantee that the best Marquardt lambdas are 10 

generated. In contrast, it may make the model convergence slower (here, PEST) or even model 11 

failure.  12 

 13 

In order to test the trade-offs between the computing nodes used for running parallel WRF-Hydro 14 

and the workers used for running parallel PEST, Tests 4 and 5 use different number of nodes for 15 

each worker to run WRF-Hydro in parallel. Explicitly, Test 4 uses four nodes per worker, and Test 16 

5 uses six nodes per worker. Both tests use six workers for running the parallel PEST. The 17 

maximum number of lambda-testing runs undertaken per iteration is set to five for both Tests 4 18 

and 5. Note that the time costs in Table 3 are limited to only one iteration. Conducting more 19 

iterations will increase the cost of wall-clock time and computing, but will not change the 20 

conclusion for the scale-up capability and computational benefits for HPC-enabled parallel PEST 21 

linked to WRF-hydro.    22 

 23 

PEST needs to run the WRF-Hydro model at least as many times as the number of calibrated 24 

parameters (22 here). In fact, PEST runs the model 23 times in the first round (or the first iteration) 25 

with initial parameter values and for the first Jacobian matrix. From the second iteration, it runs 26 

the model 22 times to calculate Jacobian matrix. Therefore, if there are fewer than 23 workers, the 27 

time cost for the first round of Jacobian matrix calculation will increase accordingly. For example, 28 

as shown in Fig. 4a, when we assign 12 (and 6) workers to parallel PEST, the time cost for 29 

calculating the Jacobian matrix is increased by a factor of 2 (and 4) compared with the time cost 30 

of using 23 workers. The time cost for the parameter upgrade stays similar for the three 31 
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experiments because only one cycle of WRF-hydro simulation is conducted to test the Marquardt 1 

lambdas. As a result, the total time cost for Test 2 is ~1.5 times more than that for Test 1, and the 2 

total time cost for Test 3 is ~1.5 times more than that for Test 2 (Fig. 4b). By extrapolating the 3 

speedup curve shown in Fig. 4a and Fig. 4b, we expect the total time cost to be ~1516 minutes 4 

when using only one worker (or sequential mode), which is about 15 times slower compared with 5 

running the PEST in parallel mode using 23 workers. For this particular study with 22 adjustable 6 

parameters, we expect the time cost most likely to stay the same even if one increases the number 7 

of workers to more than 23, because PEST runs WRF-Hydro only 23 or 22 times for each iteration. 8 

Assigning more workers for this particular study would most likely render some workers idle and 9 

is not an efficient use of computing resources. PEST may run WRF-Hydro more than 22 times 10 

(e.g., 44 times) if higher-order finite differences are employed. In this case, assigning more 11 

workers (e.g. 45 workers) may further speed up the calibration process. On the other hand, for the 12 

same case study and using the same number of nodes for running parallel WRF-Hydro, we can 13 

estimate the computing speedup by assuming an increase in the number of calibrated parameters 14 

to 50. This would be the case, for example, to evaluate model sensitiveness to the physics in Noah-15 

MP or the spatial variabilities of certain parameters. We then expect to use 51 workers to achieve 16 

the best computing performance for parallel PEST. This would then be 28–30 times faster than 17 

running PEST using one worker (or in sequential mode). Similarly, if 100 parameters were used 18 

for the calibration for the same case study, a factor of up to 60 speedup in the calibration process 19 

would be achieved by running HPC-enabled parallel PEST.  20 

 21 

In addition, by increasing the number of nodes for each worker to conduct WRF-Hydro (Tests 3, 22 

4, and 5), the time cost for the entire calibration process is significantly reduced (Figs. 4c and 4d). 23 

Specifically, the WRF-hydro scales up well when using four and six nodes compared with using 24 

two nodes per worker for running the WRF-Hydro. Both the time spent on calculating the Jacobian 25 

matrix and the time spent on testing the parameter upgrades are decreased by 49% and 67%, 26 

respectively, when using four and six nodes. Therefore, the total time spent is also decreased when 27 

using more nodes for each worker (see Table 3). Increasing the number of nodes to eight for each 28 

worker will most likely further decrease the time cost by 70–75% compared with using only two 29 

nodes per worker. Moreover, if one has a larger study area such as the entire contiguous United 30 

States, we expect the WRF-Hydro to have an even better scale-up capability (e.g., on dozens of 31 
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nodes) than this study. Overall, based on the experiments we conduct here, using 23 workers for 1 

parallel PEST and six nodes for each worker to run parallel WRF-Hydro would cost the least wall-2 

clock time―about 32 min for one iteration for this particular study.  3 

 4 

4.3 Evaluation of spatial transferability of the calibrated parameters 5 

To assess the transferability of the calibrated parameters, we apply the optimum parameters 6 

obtained from the calibration for the four stations (black circles) in Fig. 1 to another set of  four 7 

stations (crosses in Fig. 1) in the study area. All four sites are located on relatively small rivers, so 8 

the lag time between precipitation peak and the discharge peak are much shorter than that for the 9 

stations on the lower part of MRB (e.g., Stations 2, 3, and 4). The assessment compares the 10 

observed discharge with the closest grid cells from the discharge output of WRF-Hydro. Figure 5 11 

shows the observed and modeled discharge using default and the optimum parameters. Overall, 12 

WRF-Hydro’s default parameters underestimate the discharge and misrepresent the timing of 13 

discharge peaks compared with observations over the four assessed stations (Stations 5, 6, 7, and 14 

8). By using the calibrated parameters from other sites over the area, the model results increase the 15 

discharge and shift the hydrograph shape so they are much closer to the observations than model 16 

results using default parameters. The absolute error of simulated discharge decreases by 13.1%, 17 

38.3%, and 71.6%, respectively, over Stations 6 through 8 (Station 5 shows a 6% increase of 18 

absolute error), compared with the default simulated discharge. We also find that using the SVD-19 

based regularization for the PEST calibration captures the timing of discharge peak better than 20 

using the estimation mode, which is one-day earlier than the observations reaching the discharge 21 

peak. 22 

5 Summary and discussion 23 

WRF-Hydro is a new, and perhaps the first practical, computer code that can run on HPC systems 24 

and can model the entire hydrological cycle using physics-based submodels and high-resolution 25 

input datasets (e.g., radar). The hydrological community has desired this capability for decades, 26 

although it requires intensive computing resources. Thus, the calibration of this model would 27 

ideally be conducted on HPCs in parallel as well, especially when the model covers a large domain 28 

rather than the basin scale. This study ports an independent model calibration tool, parallel PEST, 29 
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to HPC clusters and links it to WRF-Hydro to help WRF-Hydro users calibrate the model within 1 

a much shorter wall-clock time period. The bridge we build here (between parallel PEST and 2 

WRF-Hydro on the basis of HPC systems) can be applied to any other hydrological models and 3 

Earth system models that use parameterizations to represent model physics. We present the 4 

operational feasibility of the HPC-enabled parallel PEST by evaluating the performance of 5 

calibrated WRF-Hydro against observation in hydrograph features such as volume and timing of 6 

flood events. We examine the scale-up capability and computational benefits of the tool by 7 

assigning different computing resource for PEST and for WRF-Hydro. While this study presents 8 

the optimum parameters identified from the calibration of the particular flood event, the parameters 9 

can be significantly different if one uses different physics, such as exponential storage-discharge 10 

function for a groundwater model or reach-based channel routing. Our preliminary testing shows 11 

that using exponential storage-discharge function with the default parameters provided by WRF-12 

Hydro, the modeled discharge was larger than that of observations. Thus, the calibration will need 13 

to adjust the parameters to reduce the discharge. Our study finds that for calibrating 22 parameters, 14 

using the same computing resource for running WRF-hydro, the HPC-enabled PEST calibration 15 

tool can speed up WRF-Hydro calibration by a factor of 15, compared with running PEST in 16 

sequential mode. The speedup factor can be larger when the number of parameters needing 17 

calibration is higher (e.g., 50 or 100).  18 

 19 

The following are several key points that we would like to mention to inform future studies: 20 

1. In this study, we consider using the prior or regularization information only for the 21 

parameters that we calibrate. As is the case with solving inverse problems, prior 22 

information is added to improve the smoothness of the solutions. In order to build a more 23 

comprehensive calibration, an important aspect that can be considered is to enrich the prior 24 

with the available historical data. For example, in this particular case, one can use the 25 

historical observation data (e.g., April and May from the past few years) to enrich the prior 26 

information for the parameters. Hence, the regularization objective function in PEST will 27 

constitute not only the discrepancies between parameters and their “current estimates” but 28 

also the discrepancies between WRF-Hydro simulations and preferred values (which is the 29 

observed time series of historical discharge). Additionally, one can use the pilot points 30 

technique described by Doherty (2005) in conjunction with parameter estimation to add 31 
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more flexibility to the calibration process. This will be potentially beneficial in improving 1 

the predictions. 2 

2.  To focus on our main goal, we calibrate only the parameters in lookup tables. However, 3 

we acknowledge that using a single value to represent a physics for a large domain could 4 

be problematic, especially we expect the HPC-enabled parallel PEST to execute with 5 

WRF-Hydro for large domains. This situation often needs parameter regionalization. For 6 

example, WRF-Hydro v5 has many spatially distributed parameters available, such as the 7 

overland flow roughness scaling factor (OVROUGHRTFAC), the factor of maximum 8 

retention depth (RETDEPRTFAC), and the soil-related parameters (when compiled with 9 

SPATIAL_SOIL=1). Calibrating these spatial parameters based on grid scale (e.g., 10 

catchments) rather than a single value will give the model more flexibility and thus better 11 

fit the observations (Hundecha and Bardossy, 2004; Wagener and Wheater, 2006). In 12 

practice, for example, one can include regional OVROUGHRTFACs (e.g., their 13 

lower/upper bounds, and default values) in the PEST control file based on catchments. 14 

However, the selection of the locations and sizes of catchment may introduce significant 15 

uncertainties to the calibration results, which require systematic and comprehensive 16 

investigation and understanding of the study area.  17 

3. This study is limited to calibrating the observed streamflow only based on the format of 18 

one of WRF-Hydro model outputs for individual station or point (frxst_pts_out.txt). It is 19 

feasible, however, to calibrate other variables as long as the observation data is available. 20 

For example, one can either find the closest point from the gridded dataset to the 21 

observation location and then compare that model grid to observations; or one can change 22 

the WRF-Hydro input/output code to output other variables in the frxst_pts_out.txt file, so 23 

they can still use the same interface we developed here to calibrate other variables instead 24 

in addition to the discharge. 25 

4. The optimal parameter set obtained from this study is from the 5th iteration of parallel 26 

PEST by testing five Marquardt lambdas. Testing different number of lambdas or 27 

calibrating different number of parameters may generate a different set of optimal 28 

parameters. These parameter sets can all make physical sense and be equally good for 29 

reproducing observed discharges. This problem is named equifinality (Beven and Freer, 30 

2001; Savenije, 2001), which is an important source of model uncertainty. To reduce the 31 
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model uncertainty through reducing the equifinality, hydrologists carry out additional 1 

modelling objective for model evaluation to find more useful parameter sets (Mo and 2 

Beven, 2004; Gallart et al., 2007). Alternatively, inspired by No. 3 discussed above, one 3 

can calibrate the WRF-hydro model based on more than one variables, such as discharge 4 

and soil moisture (or heat flux or water table depth) to reduce the number of optimal 5 

parameter sets, and thus reduce the model uncertainty of predictions for these variables.  6 

5. While this study ported the parallel PEST to HPC system and linked it to WRF-Hydro, we 7 

note that BEOPEST is available in the PEST family. BEOPEST has the same functionality 8 

as parallel PEST but uses a different approach for communication between master and 9 

workers. Working with HPC-enabled BEOPEST may save total time cost since BEOPEST 10 

uses the Transmission Control Protocol (TCP) and the Internet Protocol (IP) instead of 11 

message files (reading input and writing output between master and works) for 12 

communication. We expect it to be relatively straightforward to use BEOPEST to calibrate 13 

WRF-hydro on HPCs since the interface remains similar, except one needs to copy the 14 

template and instruction files in addition to the global files (see Section 3.1) into each 15 

working folder.  16 

    17 

Data and Code availability. The observed river discharge is downloaded from the USGS Surface-18 

Water Data website, available at https://waterdata.usgs.gov/nwis/sw. The Stage IV precipitation 19 

data were downloaded from https://data.eol.ucar.edu/dataset/21.093. PEST was downloaded from 20 

http://www.pesthomepage.org/Downloads.php. We use the Unix PEST version 13.6. The scripts 21 

and files that are developed in this study and required by PEST for calibrating WRF-Hydro are 22 

available at http://doi.org/10.5281/zenodo.2588506. 23 
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