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Abstract. A new regional coupled ocean–atmosphere model is developed and its implementation is presented in this paper.

The coupled model is based on two open-source community model components: (1) MITgcm ocean model; (2) Weather

Research and Forecasting (WRF) atmosphere model. The coupling between these components is performed using ESMF (Earth

System Modeling Framework) and implemented according to National United Operational Prediction Capability (NUOPC)

protocols. The coupled model is named the Scripps–KAUST Regional Integrated Prediction System (SKRIPS). The SKRIPS5

is demonstrated with a real-world example by simulating a 30-day period including a series of extreme heat events occurring

on the eastern shore of the Red Sea region in June 2012. The results obtained by using the coupled model, along with those

in forced stand-alone oceanic or atmospheric simulations, are compared with observational data and reanalysis products. We

show that the coupled model is capable of performing coupled ocean–atmosphere simulation, although all configurations of

coupled and uncoupled models have good skill in modeling the heat events. In addition, a scalability test is performed to10

investigate the parallelization of the coupled model. The results indicate that the coupled model code scales well and the

ESMF/NUOPC coupler accounts for less than 5% of the total computational resources in the Red Sea test case. The coupled

model and documentation are available at https://library.ucsd.edu/dc/collection/bb1847661c, and the source code is maintained

at https://github.com/iurnus/scripps_kaust_model.

1 Introduction15

Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal

needs, including extreme weather and climate events (Kharin and Zwiers, 2000; Chen et al., 2007), environmental protection

and coastal management (Warner et al., 2010), management of fisheries (Roessig et al., 2004), marine conservation (Harley

et al., 2006), water resources (Fowler and Ekström, 2009), and renewable energy (Barbariol et al., 2013). Effective forecasting

relies on high model fidelity and accurate initialization of the models with the observed state of the coupled ocean–atmosphere20

system. Although global coupled models are now being implemented with increased resolution, higher-resolution regional
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coupled models, if properly driven by the boundary conditions, can provide an affordable way to study air–sea feedback for

frontal-scale processes.

A number of regional coupled ocean–atmosphere models have been developed for various goals in the past decades. An early

example of building a regional coupled model for realistic simulations focused on accurate weather forecasting in the Baltic

Sea (Gustafsson et al., 1998; Hagedorn et al., 2000; Doscher et al., 2002), and showed that the coupled model improved the5

SST (Sea Surface Temperature) and atmospheric circulation forecast. Enhanced numerical stability in the coupled simulation

was also observed. These early attempts were followed by other practitioners in ocean-basin-scale climate simulations (e.g.

Huang et al., 2004; Aldrian et al., 2005; Xie et al., 2007; Seo et al., 2007; Somot et al., 2008; Fang et al., 2010; Boé et al., 2011;

Zou and Zhou, 2012; Gualdi et al., 2013; Van Pham et al., 2014; Chen and Curcic, 2016; Seo, 2017). For example, Huang

et al. (2004) implemented a regional coupled model to study three major important patterns contributing to the variability and10

predictability of the Atlantic climate. The study suggested that these patterns originate from air–sea coupling within the Atlantic

Ocean or by the oceanic response to atmospheric intrinsic variability. Seo et al. (2007) studied the nature of ocean–atmosphere

feedbacks in the presence of oceanic mesoscale eddy fields in the eastern Pacific Ocean sector. The evolving SST fronts were

shown to drive an unambiguous response of the atmospheric boundary layer in the coupled model, and lead to model anomalies

of wind stress curl, wind stress divergence, surface heat flux, and precipitation that resemble observations. This study helped15

substantiate the importance of ocean–atmosphere feedbacks involving oceanic mesoscale variability features.

In addition to basin-scale climate simulations, regional coupled models are also used to study weather extremes. For exam-

ple, the COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) was applied to investigate idealized tropical

cyclone events (Hodur, 1997). This work was then followed by other realistic extreme weather studies. Another example is the

investigation of extreme bora wind events in the Adriatic Sea using different regional coupled models (Loglisci et al., 2004;20

Pullen et al., 2006; Ricchi et al., 2016). The coupled simulation results demonstrated improvements in describing the air–sea

interaction processes by taking into account oceanic surface heat fluxes and wind-driven ocean surface wave effects (Loglisci

et al., 2004; Ricchi et al., 2016). It was also found in model simulations that SST after bora wind events had a stabilizing effect

on the atmosphere, reducing the atmospheric boundary layer mixing and yielding stronger near-surface wind (Pullen et al.,

2006). Regional coupled models were also used for studying the forecasts of hurricanes, including hurricane path, hurricane25

intensity, SST variation, and wind speed (Bender and Ginis, 2000; Chen et al., 2007; Warner et al., 2010).

Regional coupled modeling systems also play important roles in studying the effect of surface variables (e.g., surface evap-

oration, precipitation, surface roughness) in the coupling processes of oceans or lakes. One example is the study conducted

by Powers and Stoelinga (2000), who developed a coupled model and investigated the passage of atmospheric fronts over the

Lake Erie region. Sensitivity analysis was performed to demonstrate that parameterization of lake surface roughness in the30

atmosphere model can improve the calculation of wind stress and heat flux. Another example is the investigation of Caspian

Sea levels by Turuncoglu et al. (2013), who compared a regional coupled model with uncoupled models and demonstrated the

improvement of the coupled model in capturing the response of Caspian Sea levels to climate variability.

In the past ten years, many regional coupled models have been developed using modern model toolkits (Zou and Zhou,

2012; Turuncoglu et al., 2013; Turuncoglu, 2019) and include waves (Warner et al., 2010; Chen and Curcic, 2016), sediment35
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transport (Warner et al., 2010), sea ice (Van Pham et al., 2014), and chemistry packages (He et al., 2015). However, this work

was motivated by the need for a coupled regional ocean–atmosphere model implemented using an efficient coupling framework

and with compatible state estimation capabilities in both ocean and atmosphere. The goal of this work is to (1) introduce

the design of the newly developed regional coupled ocean–atmosphere modeling system, (2) describe the implementation

of the modern coupling framework, (3) validate the coupled model using a real-world example, and (4) demonstrate and5

discuss the parallelization of the coupled model. In the coupled system, the oceanic model component is the MIT general

circulation model (MITgcm) (Marshall et al., 1997) and the atmospheric model component is the Weather Research and

Forecasting (WRF) model (Skamarock et al., 2019). To couple the model components in the present work, the Earth System

Modeling Framework (ESMF) (Hill et al., 2004) is used because of its advantages in conservative re-gridding capability,

calendar management, logging and error handling, and parallel communications. The National United Operational Prediction10

Capability (NUOPC) layer in ESMF (Sitz et al., 2017) is also used between model components and ESMF. Using the NUOPC

layer can simplify the implementation of component synchronization, execution, and other common tasks in the coupling. The

innovations in our work are: (1) we use ESMF/NUOPC, which is a community-supported, computationally-efficient coupling

software for earth system models, and (2) we use MITgcm together with WRF, both of which work with the Data Assimilation

Research Testbed (DART) (Anderson and Collins, 2007; Hoteit et al., 2013). The resulting coupled model is being developed15

for coupled data assimilation and subseasonal to seasonal (S2S) forecasting. By coupling WRF and MITgcm for the first time

with ESMF, we can provide an alternative regional coupled model resource to a wider community of users. These atmospheric

and oceanic model components have an active and well-supported user-base.

After implementing the new coupled model, we demonstrate it on a series of heat events that occurred on the eastern

shore of the Red Sea region in June 2012. The simulated surface variables of the Red Sea (e.g., sea surface temperature, 2-m20

temperature, and surface heat fluxes) are examined and validated against available observational data and reanalysis products.

To demonstrate that the coupled model can perform coupled ocean–atmosphere simulations the results are compared with those

obtained using stand-alone oceanic or atmospheric models. This paper focuses on the technical aspects of the SKRIPS, and

is not a full investigation of the importance of coupling for these extreme events. In addition, a scalability test of the coupled

model is performed to investigate its parallel capability.25

The rest of this paper is organized as follows. The description of the individual modeling components and the design of the

coupled modeling system are detailed in Section 2. Section 3 introduces the design of validation experiment and the validation

data. Section 4 discusses the preliminary results in the validation test. Section 5 details the parallelization test of the coupled

model. The last section concludes the paper and presents an outlook for future work.

2 Model Description30

The newly developed regional coupled modeling system is introduced in this section. The general design of the coupled model,

descriptions of individual components, and ESMF/NUOPC coupling framework are presented below.
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2.1 General Design

The schematic description of the coupled model is shown in Fig. 1. The coupled model is comprised of five components:

the oceanic component MITgcm, the atmospheric component WRF, the MITgcm–ESMF and WRF–ESMF interfaces, and the

ESMF coupler. They are to be detailed in the following sections.

The coupler component runs in both directions: (1) from WRF to MITgcm, and (2) from MITgcm to WRF. From WRF5

to MITgcm, the coupler collects the atmospheric surface variables (i.e., radiative flux, turbulent heat flux, wind velocity,

precipitation, evaporation) from WRF and updates the surface forcing (i.e., net surface heat flux, wind stress, freshwater flux)

to drive MITgcm. From MITgcm to WRF, the coupler collects oceanic surface variables (i.e., SST and ocean surface velocity)

from MITgcm and updates them in WRF as the bottom boundary condition. Re-gridding the data from either model component

is performed by the coupler, in which various coupling intervals and schemes can be specified by ESMF (Hill et al., 2004).10

Figure 1. The schematic description of the coupled ocean–atmosphere model. The yellow block is the ESMF/NUOPC coupler; the red blocks

are the implemented MITgcm–ESMF and WRF–ESMF interfaces; the white blocks are the oceanic and atmospheric components. From

WRF to MITgcm, the coupler collects the atmospheric surface variables (i.e., radiative flux, turbulent heat flux, wind velocity, precipitation,

evaporation) and updates the surface forcing (i.e., net surface heat flux, wind stress, freshwater flux) to drive MITgcm. From MITgcm to

WRF, the coupler collects oceanic surface variables (i.e., SST and ocean surface velocity) and updates them in WRF as the bottom boundary

condition.
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2.2 The Oceanic Component (MITgcm)

The MITgcm (Marshall et al., 1997) is a 3-D, finite-volume, general circulation model used by a broad community of re-

searchers for a wide range of applications at various spatial and temporal scales. The model code and documentation, which

are under continuous development, are available on the MITgcm webpage (http://mitgcm.org/). The ‘Checkpoint 66h’ (June

2017) version of MITgcm is used in the present work.5

The MITgcm is designed to run on high-performance computing (HPC) platforms and can run in non-hydrostatic and hydro-

static modes. It integrates the primitive (Navier–Stokes) equations, under the Boussinesq approximation, using finite volume

method on a staggered ‘Arakawa C-grid’. The MITgcm uses modern physical parameterizations for subgrid-scale horizon-

tal and vertical mixing and tracer properties. The code configuration includes build-time C pre-processor (CPP) options and

run-time switches, which allow for great computational modularity in MITgcm to study a variety of oceanic phenomena (Evan-10

gelinos and Hill, 2007).

To implement the MITgcm–ESMF interface, we separate the MITgcm main program into three subroutines that handle

initialization, running, and finalization, shown in Fig. 2(a). These subroutines are used by the ESMF/NUOPC coupler that

controls the oceanic component in the coupled run. The surface boundary fields are exchanged online1 via the MITgcm–

ESMF interface during the simulation. The MITgcm oceanic surface variables are the export boundary fields; the atmospheric15

surface variables are the import boundary fields (see Fig. 2(b)). These boundary fields are registered in the coupler following

NUOPC protocols with timestamps2 for the coupling. In addition, MITgcm grid information is provided to the coupler in the

initialization subroutine for online re-gridding of the exchanged boundary fields. To carry out the coupled simulation on HPC

clusters, the MITgcm–ESMF interface runs in parallel via MPI communications. The implementation of the present MITgcm–

ESMF interface is based on the baseline MITgcm–ESMF interface (Hill, 2005), but updated for compatibility with the modern20

version of ESMF/NUOPC. We also modify the baseline interface to receive atmospheric surface variables and send oceanic

surface variables.

2.3 The Atmospheric Component (WRF)

The Weather Research and Forecasting (WRF) Model (Skamarock et al., 2019) is developed by the NCAR/MMM (Mesoscale

and Microscale Meteorology Division). It is a 3-D, finite-difference atmospheric model with a variety of physical parameter-25

izations of sub-grid scale processes for predicting a broad spectrum of applications. WRF is used extensively for operational

forecasts (http://www.wrf-model.org/plots/wrfrealtime.php) as well as realistic and idealized dynamical studies. The WRF

code and documentation are under continuous development on Github (https://github.com/wrf-model/WRF).

In the present work, the Advanced Research WRF dynamic version (WRF-ARW, version 3.9.1.1, https://github.com/NCAR/

WRFV3/releases/tag/V3.9.1.1) is used. It solves the compressible Euler non-hydrostatic equations, and also includes a run-time30

1In this manuscript, ‘online’ means the manipulations are performed via subroutine calls during the execution of the simulations; ‘offline’ means the

manipulations are performed when the simulations are not executing.
2In ESMF, ‘timestamp’ is a sequence of numbers, usually based on the time, to identify ESMF fields. Only the ESMF fields having the correct timestamp

will be transferred in the coupling.
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Figure 2. The general code structure and run sequence of the coupled ocean–atmosphere model. In panel (a), the black block is the application

driver; the red block is the parent gridded component called by the application driver; the green/brown blocks are the child gridded/coupler

components called by the parent gridded component. Panel (b) and (c) shows the sequential and concurrent mode implemented in SKRIPS,

respectively. PETs (Persistent Execution Threads) are single processing units (e.g., CPU or GPU cores) defined by ESMF. OCN, ATM, and

CON denote oceanic component, atmospheric component and connector component, respectively. The blocks under PETs are the CPU cores

in the simulation; the small blocks under OCN or ATM are the small sub-domains in each core; the block under CON is the coupler. The red

arrows indicate that the model components are sending data to the connector and the yellow arrows indicate that the model components are

reading data from the connector. The horizontal arrows indicate the time axis of each component and the ticks on the time axis indicate the

coupling time steps.

hydrostatic option. The WRF-ARW uses a terrain-following hydrostatic pressure coordinate system in the vertical direction and

utilizes the ‘Arakawa C-grid’. WRF incorporates various physical processes including microphysics, cumulus parameterization,

planetary boundary layer, surface layer, land surface, and longwave/shortwave radiation, with several options available for each

process.

Similar to the implementations in MITgcm, WRF is also separated into initialization, run, and finalization subroutines to5

enable the WRF–ESMF interface to control the atmosphere model during the coupled simulation, shown in Fig. 2(a). The

implementation of the present WRF–ESMF interface is based on the prototype interface (Henderson and Michalakes, 2005).

In the present work, the prototype WRF–ESMF interface is updated to modern versions of WRF-ARW and ESMF, based on

the NUOPC layer. This prototype interface is also expanded to interact with the ESMF/NUOPC coupler to receive the oceanic

surface variables and send the atmospheric surface variables. The surface boundary condition fields are registered in the coupler10

following the NUOPC protocols with timestamps. The WRF grid information is also provided for online re-gridding by ESMF.

To carry out the coupled simulation on HPC clusters, the WRF–ESMF interface also runs in parallel via MPI communications.
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2.4 ESMF/NUOPC Coupler

The coupler is implemented using ESMF version 7.0.0. The ESMF is selected because of its high-performance and flexibility

for building and coupling weather, climate, and related Earth science applications (Collins et al., 2005; Turuncoglu et al.,

2013; Chen and Curcic, 2016; Turuncoglu and Sannino, 2017). It has a superstructure for representing the model and coupler

components and an infrastructure of commonly used utilities, including conservative grid remapping, time management, error5

handling, and data communications.

The general code structure of the coupler is shown in Fig. 2. To build the ESMF/NUOPC driver, a main program is im-

plemented to control an ESMF parent component, which controls the child components. In the present work, three child

components are implemented: (1) the oceanic component; (2) the atmospheric component; and (3) the ESMF coupler. The

coupler is used here because it performs the two-way interpolation and data transfer (Hill et al., 2004). In ESMF, the model10

components can be run in parallel as a group of Persistent Execution Threads (PETs), which are single processing units (e.g.,

CPU or GPU cores) defined by ESMF. In the present work, the PETs are created according to the grid decomposition, and each

PET is associated with an MPI process.

The ESMF allows the PETs to run in sequential mode, concurrent mode, or mixed mode (for more than three components).

We implemented both sequential and concurrent modes in SKRIPS, shown in Fig. 2(b) and 2(c). In sequential mode, a set15

of ESMF gridded/coupler components are run in sequence on the same set of PETs. At each coupling time step, the oceanic

component is executed when the atmospheric component is completed and vice versa. On the other hand, in concurrent mode,

the gridded components are created and run on mutually exclusive sets of PETs. If one component finishes earlier than the

other, its PETs are idle and have to wait for the other component, shown in Fig. 2(c). However the PETs can be optimally

distributed by the users to best achieve load balance. In this work, all simulations are run in sequential mode.20

In ESMF, the gridded components are used to represent models, and coupler components are used to connect these models.

The interfaces and data structures in ESMF have few constraints, providing the flexibility to be adapted to many modeling

systems. However, the flexibility of the gridded components can limit the interoperability across different modeling systems.

To address this issue, the NUOPC layer is developed to provide the coupling conventions and the generic representation

of the model components (e.g. drivers, models, connectors, mediators). The NUOPC layer in the present coupled model is25

implemented according to consortium documentations (Hill et al., 2004; Theurich et al., 2016), and the oceanic/atmospheric

component each has:

1. Prescribed variables for NUOPC to link the component;

2. The entry point for registration of the component;

3. An InitializePhaseMap which describes a sequence of standard initialization phases, including documenting the fields30

that a component can provide, checking and mapping the fields to each other, and initializing the fields that will be used;

4. A RunPhaseMap that checks the incoming clock of the driver, examines the timestamps of incoming fields, and runs the

component;
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5. Timestamps on exported fields consistent with the internal clock of the component;

6. The finalization method to clean up all allocations.

The subroutines that handle initialization, running, and finalization in MITgcm and WRF are included in the InitializePhaseMap,

RunPhaseMap, and finalization method in the NUOPC layer, respectively.

3 Experiment Design and Observational Datasets5

We simulate a series of heat events in the Red Sea region, with a focus on validating and assessing the technical aspects of the

coupled model. There is a desire for improved and extended forecasts in this region, and future work will investigate whether

a coupled framework can advance this goal. The extreme heat events are chosen as a test case due to their societal importance.

While these events and the analysis here may not maximize the value of coupled forecasting, these real-world events are

adequate to demonstrate the performance and physical realism of the coupled model code implementation. The simulation of10

the Red Sea extends from 0000 UTC 01 June 2012 to 0000 UTC 01 July 2012. We select this month because of the record-high

surface air temperature observed in the Makkah region, located 70 km inland from the eastern shore of the Red Sea (Abdou,

2014).

The computational domain and bathymetry are shown in Fig. 3. The model domain is centered at 20◦ N and 40◦ E, and the

bathymetry is from the 2-minute Gridded Global Relief Data (ETOPO2) (National Geophysical Data Center, 2006). WRF is15

implemented using a horizontal grid of 256× 256 points and grid spacing of 0.08◦. The cylindrical equidistant map (latitude-

longitude) projection is used. There are 40 terrain-following vertical levels, more closely spaced in the atmospheric boundary

layer. The time step for atmosphere simulation is 30 seconds, which is to avoid violating the CFL condition. The Morri-

son 2-moment scheme (Morrison et al., 2009) is used to resolve the microphysics. The updated version of the Kain–Fritsch

convection scheme (Kain, 2004) is used with the modifications to include the updraft formulation, downdraft formulation,20

and closure assumption. The Yonsei University (YSU) scheme (Hong et al., 2006) is used for the planetary boundary layer

(PBL), and the Rapid Radiation Transfer Model for GCMs (RRTMG; Iacono et al. (2008)) is used for longwave and shortwave

radiation transfer through the atmosphere. The Rapid Update Cycle (RUC) land surface model is used for the land surface

processes (Benjamin et al., 2004). The MITgcm uses the same horizontal grid spacing as WRF, with 40 vertical z-levels that

are more closely spaced near the surface. The time step of the ocean model is 120 seconds. The horizontal sub-grid mixing is25

parameterized using nonlinear Smagorinsky viscosities, and the K-profile parameterization (KPP) (Large et al., 1994) is used

for vertical mixing processes.

During coupled execution the ocean model sends SST and ocean surface velocity to the coupler, and they are used directly

as the boundary conditions in the atmosphere model. The atmosphere model sends the surface fields to the coupler, including

(1) surface radiative flux (i.e., longwave/shortwave radiation), (2) surface turbulent heat flux (i.e., latent/sensible heat), (3)30

10-m wind speed, (4) precipitation, (5) evaporation. The ocean model uses the atmospheric surface variables to compute the

surface forcing, including (1) total net surface heat flux, (2) surface wind stress, (3) freshwater flux. The total net surface heat
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flux is computed by adding latent heat flux, sensible heat flux, shortwave radiation flux, and longwave radiation flux. The

surface wind stress is computed by using the 10-m wind speed (Large and Yeager, 2004). The freshwater flux is the difference

between precipitation and evaporation. The latent and sensible heat fluxes are computed by using COARE 3.0 bulk algorithm

in WRF (Fairall et al., 2003). In the coupled code, different bulk formulae in WRF or MITgcm can also be used.

Figure 3. The WRF topography and MITgcm bathymetry in the simulations. Three major cities near the eastern shore of the Red Sea are

highlighted. The Hijaz Mountains and Ethiopian Highlands are also highlighted.

To validate the coupled model, the following sets of simulations using different surface forcings are performed according to5

the validation tests in the literature (Warner et al., 2010; Turuncoglu et al., 2013; Ricchi et al., 2016):

1. Run CPL: a two-way coupled MITgcm–WRF simulation. The coupling interval is 20 minutes to capture the diurnal

cycle (Seo et al., 2014). This run tests the implementation of the two-way coupled ocean–atmosphere model.

2. Run ATM.STA: a stand-alone WRF simulation with its initial SST kept constant throughout the simulation. This run

allows assessment of the WRF model behavior with realistic, but persistent SST. This case serves as a benchmark to10

highlight the difference between coupled and uncoupled runs, and also to demonstrate the impact of evolving SST.

3. Run ATM.DYN: a stand-alone WRF simulation with a varying, prescribed SST based on HYCOM/NCODA reanalysis

data. This allows assessing the WRF model behavior with updated SST and is used to validate the coupled model. It is

noted that in practice an accurately evolving SST would not be available for forecasting.

4. Run OCN.DYN: a stand-alone MITgcm simulation forced by the ERA5 reanalysis data. The bulk formula in MITgcm is15

used to derive the turbulent heat fluxes. This run assesses the MITgcm model behavior with prescribed lower-resolution

atmospheric surface forcing, and is also used to validate the coupled model.
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The ocean model uses the HYCOM/NCODA 1/12◦ global reanalysis data as initial and boundary conditions for ocean

temperature, salinity, and horizontal velocities (https://www.hycom.org/dataserver/gofs-3pt1/reanalysis). The boundary con-

ditions for the ocean are updated on a 3-hourly basis and linearly interpolated between two simulation time steps. A sponge

layer is applied at the lateral boundaries, with a thickness of 3 grid cells. The inner and outer boundary relaxation timescales

of the sponge layer are 10 and 0.5 days, respectively. In CPL, ATM.STA, and ATM.DYN, we use the same initial condition5

and lateral boundary condition for the atmosphere. The atmosphere is initialized using the ECMWF ERA5 reanalysis data,

which have a grid resolution of approximately 30 km (Hersbach, 2016). The same data also provide the boundary conditions

for air temperature, wind speed, and air humidity every 3 hours. The atmosphere boundary conditions are also linearly inter-

polated between two simulation time steps. The lateral boundary values are specified in WRF in the ‘specified’ zone, and the

‘relaxation’ zone is used to nudge the solution from the domain toward the boundary condition value. Here we use the default10

width of one point for the specific zone and four points for the relaxation zone. The top of the atmosphere is at the 50 hPa

pressure level. In ATM.STA, the SST from HYCOM/NCODA at the initial time is used as a constant SST. The time-varying

SST in ATM.DYN is also generated using HYCOM/NCODA data. We select HYCOM/NCODA data because the ocean model

initial condition and boundary conditions are generated using it. For OCN.DYN we select ERA5 data for the atmospheric state

because it also provides the atmospheric initial and boundary conditions in CPL. The initial conditions, boundary conditions,15

and forcing terms of all simulations are summarized in Table 1.

Table 1. The initial conditions, boundary conditions, and forcing terms used in the simulations.

initial and ocean surface
atmospheric forcings

boundary conditions conditions

CPL
ERA5 (atmosphere)

from MITgcm from WRF
HYCOM/NCODA (ocean)

ATM.STA ERA5
HYCOM/NCODA

N.A.
initial condition kept constant

ATM.DYN ERA5
HYCOM/NCODA

N.A.
updated every 3 hours

OCN.DYN HYCOM/NCODA N.A. ERA5

The validation of the coupled model focuses on temperature, heat flux, and surface wind. Our aim is to validate the coupled

model and show that the heat and momentum fluxes simulated by the coupled model are comparable to the observations or

the reanalysis data. The simulated 2-m air temperature (T2) fields are validated using ERA5. In addition, the simulated T2 for

three major cities near the eastern shore of the Red Sea are validated using ERA5 and ground observations from the NOAA20

National Climate Data Center (NCDC climate data online at https://www.ncdc.noaa.gov/cdo-web/). The simulated SST data

are validated against the OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis) system in GHRSST (Group

for High Resolution Sea Surface Temperature) (Donlon et al., 2012; Martin et al., 2012). In addition, the simulated SST
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fields are validated against HYCOM/NCODA data. Since the simulations are initialized using HYCOM/NCODA data, this

aims to show the increase of the differences. Surface heat fluxes (e.g., turbulent heat flux and radiative flux), which drive the

oceanic component in the coupled model, are validated using MERRA-2 (Modern-Era Retrospective analysis for Research

and Applications, version 2) data (Gelaro et al., 2017). We use MERRA-2 data because (1) it is an independent reanalysis

data compared to the initial and boundary conditions used in the simulations, and (2) it also provides 0.625o × 0.5o (lon ×5

lat) resolution reanalysis fields of turbulent heat fluxes (THF). The 10-m wind speed is also compared with MERRA-2 data to

validate the momentum flux in the coupled code. The validation of the freshwater flux is shown in the Appendix because (1)

the evaporation is proportional to the latent heat in the model and (2) the precipitation is zero in the cities near the coast in

Fig. 3. The validation data are summarized in Table 2.

When comparing T2 with NCDC ground observations, the simulation results and ERA5 are interpolated to the NCDC10

stations. When interpolating to NCDC stations near the coast, only the data saved on land points are used3. The maxi-

mum/minimum T2 every 24 hours from the simulations and ERA5 are compared to the observed daily maximum/minimum

T2. On the other hand, when comparing the simulation results with the analysis or reanalysis data (HYCOM, GHRSST, ERA5,

and MERRA-2), we interpolate these data onto the model grid to achieve a uniform spatial scale (Maksyutov et al., 2008;

Torma et al., 2011).15

Table 2. The observational data and reanalysis data used to validate the simulation results.

variable validation data

sea surface temperature (SST) GHRSST and HYCOM/NCODA

2-m air temperature (T2) ERA5 and NCDC climate data

turbulent heat fluxes MERRA-2

radiative fluxes MERRA-2

10-m wind speed MERRA-2

4 Results and Discussions

The Red Sea is an elongated basin covering the area between 12-30◦N and 32-43◦E. The basin is 2250 km long, extending

from the Suez and Aqaba gulfs in the north to the strait of Bab el-Mandeb in the south, which connects the Red Sea and the

Indian Ocean. In this section, the simulation results obtained by using different model configurations are presented to show

that SKRIPS is capable of performing coupled ocean–atmosphere simulations. The T2 from CPL, ATM.STA, and ATM.DYN20

are compared with the validation data to evaluate the atmospheric component of SKRIPS; the SST obtained from CPL and

3In ATM.STA, ATM.DYN, and CPL, we use land-sea mask=1 as land points because the land-sea mask is either 0 (sea) or 1 (land) in WRF. In ERA5, we

use land-sea mask > 0.9 as land points because the land-sea mask is a fractional value between 0 (sea) to 1 (land).

11



OCN.DYN are compared to validate the atmospheric component of SKRIPS; the surface heat fluxes and 10-m wind are used

to assess the coupled system.

4.1 2-m Air Temperature

We begin our analysis by examining the simulated T2 from the model experiments, aiming to validate the atmospheric com-

ponent of SKRIPS. Since the record-high temperature is observed in the Makkah region on June 2nd, the simulation results on5

June 2nd (36 or 48 hours after the initialization) are shown in Fig. 4. The ERA5 data, and the difference between CPL and ERA5

are also shown in Fig. 4. It can be seen in Fig. 4(I) that CPL captures the T2 patterns in the Red Sea region on June 2nd com-

pared with ERA5 in Fig. 4(II). Since the ERA5 T2 data are in good agreement with the NCDC ground observation data in the

Red Sea region (detailed comparisons of all stations are not shown), we use ERA5 data to validate the simulation results. The

difference between CPL and ERA5 is shown in Fig. 4(III). The ATM.STA and ATM.DYN results are close to the CPL results10

and thus are not shown, but their differences with respect to ERA5 are shown in Fig. 4(IV) and 4(V), respectively. Fig. 4(VI)

to 4(X) show the nighttime results after 48 hours. It can be seen in Fig. 4 that all simulations reproduce the T2 patterns over

the Red Sea region reasonably well compared with ERA5. The mean T2 biases and root mean square errors (RMSEs) over the

sea are shown in Table 3. The biases of the T2 are comparable with those reported in other benchmark WRF simulations (Xu

et al., 2009; Zhang et al., 2013a; Imran et al., 2018).15

The simulation results on June 10th and 24th are shown in Fig. 5 to validate the coupled model over longer periods of time. It

can be seen in Fig. 5 that the T2 patterns in CPL are generally consistent with ERA5. The differences between the simulations

(CPL, ATM.STA and ATM.DYN) and ERA5 shows that the T2 on land are consistent for all three simulations. However, the

T2 over the sea in CPL has smaller mean biases and RMSEs compared with ATM.STA, also shown in Table 3. Although the

difference in T2 is very small compared with the mean T2 (31.92 ◦C), the improvement of the coupled run on the 24th (1.02 ◦C)20

is comparable to the standard deviation of T2 (1.64 ◦C). The T2 over the water in CPL is closer to ERA5 because MITgcm in

the coupled model provides a dynamic SST which influences T2. On the other hand, when comparing CPL with ATM.DYN,

the mean difference is smaller (10th: +0.04 ◦C; 24th: -0.62 ◦C). This shows CPL is comparable to ATM.DYN which is driven

by an updated warming SST.

Table 3. The biases and RMSEs of T2 simulated in all simulations in comparison with ERA5 data.

after 36 hours after 48 hours after 9.5 days after 23.5 days

Run CPL bias: -1.36; RMSE: 1.91 bias: -0.82; RMSE: 1.19 bias: -1.24; RMSE: 1.96 bias: -0.81; RMSE: 1.80

Run ATM.STA bias: -1.48; RMSE: 2.01 bias: -0.92; RMSE: 1.27 bias: -1.56; RMSE: 2.27 bias: -1.83; RMSE: 2.59

Run ATM.DYN bias: -1.36; RMSE: 1.90 bias: -0.84; RMSE: 1.28 bias: -1.20; RMSE: 1.93 bias: -1.43; RMSE: 2.14

The mean biases and RMSEs of T2 over the Red Sea during the 30-day simulation are shown in Fig. 6 to demonstrate the25

evolution of simulation errors. It can be seen that ATM.STA can still capture the T2 patterns in the first week, but it under-
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Figure 4. The 2-m air temperature as obtained from the CPL, the ERA5 data, and their difference (CPL−ERA5). The differences between

ATM.STA and ATM.DYN with ERA5 (i.e., ATM.STA−ERA5, ATM.DYN−ERA5) are also presented. The simulation initial time is 0000

UTC Jun 01 2012 for both snapshots. Two snapshots are selected: (1) 1200 UTC Jun 02 2012 (36 hours from initial time); (2) 0000 UTC

Jun 03 2012 (48 hours from initial time). The results on Jun 02 are presented because the record-high temperature is observed in the Makkah

region.

predicts T2 by about 2 ◦C after 20 days because it has no SST evolution. On the other hand, CPL has smaller bias (-0.60 ◦C)

and RMSE (1.28 ◦C) compared with those in ATM.STA (bias: -1.19 ◦C; RMSE: 1.71 ◦C) during the 30-day simulation as

the SST evolution is considered. The ATM.DYN case also has smaller error than ATM.STA and its error is comparable with

that in CPL (bias: -0.72 ◦C; RMSE: 1.31 ◦C), indicating that the skill of the coupled model is comparable to the stand-alone

atmosphere model driven by 3-hourly reanalysis SST. The differences of the mean biases and RMSEs between model outputs5

and ERA5 data are also plotted in Fig. 6. It can be seen that CPL has smaller error than ATM.STA throughout the simulation.

The bias and RMSE between CPL and ATM.DYN are within about 0.5 ◦C. This shows the capability of the coupled model for

performing realistic regional coupled ocean–atmosphere simulations.

To validate the diurnal T2 variation of the coupled model in Fig. 4, the time series of T2 in three major cities as simulated in

CPL and ATM.STA are plotted in Fig. 7, starting from June 1st. The ERA5 data and the daily observed high/low temperature10

data from NOAA NCDC are also plotted for validation. Both coupled and uncoupled simulations generally captured the four

major heat events (i.e., June 2nd, 10th, 17th, and 24th) and the T2 variations during the 30-day simulation. For the daily high

T2, the RMSE in all simulations are close (CPL: 2.09 ◦C; ATM.STA: 2.16 ◦C; ATM.DYN: 2.06 ◦C), and the error does not

increase in the 30-day simulation. For the daily low T2, before June 20th (lead time < 19 days), all simulations have consistent

RMSEs compared with ground observation (CPL: 4.23 ◦C; ATM.STA: 4.39 ◦C; ATM.DYN: 4.01 ◦C). In Jeddah and Yanbu,15
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Figure 5. The T2 obtained in CPL, the T2 in ERA5, and their difference (CPL−ERA5). The difference between ATM.STA and ATM.DYN

with ERA5 data (i.e., ATM.STA−ERA5, ATM.DYN−ERA5) are also presented. The simulation initial time is 0000 UTC Jun 01 2012 for

both snapshots. Two snapshots are selected: (1) 1200 UTC Jun 10 2012 (9.5 days from initial time); (2) 1200 UTC Jun 24 2012 (23.5 days

from initial time).
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Figure 6. The bias and RMSE between the T2 obtained by the simulations (i.e., ATM.STA, ATM.CPL, and CPL) in comparison with ERA5

data. Only the errors over the Red Sea are considered. The differences between the simulation errors from CPL and stand-alone WRF

simulations are presented below the mean bias and the RMSE. The initial time is 0000 UTC Jun 01 2012 for all simulations.

14



CPL has better captured the daily low T2 after June 20th (Jeddah: 3.95 ◦C; Yanbu: 3.77 ◦C) than ATM.STA (Jeddah: 4.98 ◦C;

Yanbu: 4.29 ◦C) by about 1 ◦C and 0.5 ◦C, respectively. However, the T2 difference of Mecca, which is located 70-km from

the sea, is negligible (0.05 ◦C) between all simulations throughout the simulation.
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Figure 7. Temporal variation the 2-m air temperature at three major cities near the eastern shore of Red Sea (Jeddah, Mecca, Yanbu)

as resulting from CPL, ATM.STA and ATM.DYN. The temperature data are compared with the time series in ERA5 and daily high/low

temperature in the NOAA national data center dataset. Note that some gaps exist in the NCDC ground observation dataset. Four representative

heat events are highlighted in this figure.

4.2 Sea Surface Temperature

The simulated SST patterns obtained in the simulations are presented to demonstrate that the coupled model can capture the5

ocean surface state. The snapshots of SST obtained from CPL are shown in Fig. 8(I) and Fig. 8(VI). To validate the coupled

model, the SST fields obtained in OCN.DYN are shown in Fig. 8(II) and 8(VII), and the GHRSST data are shown in Fig. 8(III)

and 8(VIII). The SST obtained in the model at 0000 UTC (about 3 A.M. local time in the Red Sea region) is presented because

the GHRSST is produced with nighttime SST data (Roberts-Jones et al., 2012). It can be seen that both CPL and OCN.DYN

are able to reproduce the SST patterns reasonably well in comparison with GHRSST for both snapshots. Though CPL uses10

higher-resolution surface forcing fields, the SST patterns obtained in both simulations are very similar after two days. On June
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24th, the SST patterns are less similar, but both simulation results are still comparable with GHRSST (RMSE < 1◦C). Both

simulations under-estimate the SST in the northern Red Sea and over-estimate the SST in the central and southern Red Sea on

June 24th.

Figure 8. The SST in CPL, the SST in OCN.DYN, and GHRSST. The corresponding differences between the simulations and GHRSST are

also plotted. Two snapshots of the model outputs are selected: (1) 0000 UTC Jun 02 2012; (2) 0000 UTC Jun 24 2012. The simulation initial

time is 0000 UTC Jun 01 2012 for both snapshots.

To quantitatively compare the errors in SST, the time histories of the SST in the simulations (i.e., OCN.DYN and CPL)

and validation data (i.e., GHRSST and HYCOM/NCODA) are shown in Fig. 9. The mean biases and RMSEs between model5

outputs and validation data are also plotted. In Fig. 9(a) the snapshots of the simulated SST are compared with available

HYCOM/NCODA data every 3 hours. In Fig. 9(b) the snapshots of SST outputs every 24 hours at 0000 UTC (about 3 A.M.

local time in the Red Sea region) are compared with GHRSST. Compared with Fig. 9(b), the diurnal SST oscillation can be

observed in Fig. 9(a) because the SST is plotted every 3 hours. Generally, OCN.DYN and CPL have a similar range of error

compared to both validation datasets in the 30-day simulations. The simulation results are compared with HYCOM/NCODA10

data to show the increase of RMSE in Fig. 9(a). Compared with HYCOM/NCODA, the mean differences between CPL and

OCN.DYN are small (CPL: 0.10 ◦C; OCN.DYN: 0.03 ◦C). The RMSE increases in the first week, but does not grow after

that. On the other hand, when comparing with the GHRSST, the initial SST patterns in both runs are cooler by about 0.8 ◦C.

This is because the models are initialized by HYCOM/NCODA, which has temperature in the topmost model level cooler

than the estimated foundation SST reported by GHRSST. After the first 10 days, the difference between GHRSST data and15

HYCOM/NCODA decreases, and likewise the difference between the simulation results and GHRSST also decreases. It should

be noted that the SST simulated by CPL has smaller error (bias: -0.57 ◦C; RMSE: 0.69 ◦C) compared with OCN.DYN (bias:
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-0.66 ◦C; RMSE: 0.76 ◦C) by about 0.1 ◦C when validated using GHRSST. This indicates the coupled model can adequately

simulate the SST evolution compared with the uncoupled model forced by ERA5 reanalysis data.
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Figure 9. The bias and RMSE between the SST from the simulations (i.e., OCN.DYN and CPL) in comparison with the validation data.

Panel (a) shows the 3-hourly SST obtained in the simulations compared with 3-hourly HYCOM/NCODA data. Panel (b) shows the daily

SST at 0000 UTC (about 3 A.M. local time in the Red Sea region) obtained in the simulations compared with GHRSST. Both simulations

are initialized at 0000 UTC Jun 01 2012.

4.3 Surface Heat Fluxes

The atmospheric surface heat flux drives the oceanic component in the coupled model, hence we validate the heat fluxes in the

coupled model as compared to the stand-alone simulations. Both the turbulent heat fluxes and the net downward heat fluxes are5

compared to MERRA-2 and their differences are plotted. To validate the coupled ocean–atmosphere model, we only compare

the heat fluxes over the sea.

The turbulent heat fluxes (THF; sum of latent and sensible heat fluxes) and their differences with the validation data are

shown in Fig. 10 (the snapshots are shown in the Appendix). It can be seen that all simulations have similar mean THF over

the Red Sea compared with MERRA-2 (CPL: 119.4 W/m2; ATM.STA: 103.4 W/m2; ATM.DYN: 117.5 W/m2; MERRA-2:10

115.6 W/m2). For the first two weeks, the mean THFs obtained in all simulations are overlapping in Fig. 10. This is because all

simulations are initialized in the same way, and the SST in all simulations are similar in the first two weeks. After the second

week, CPL has smaller error (bias: -1.8 W/m2; RMSE: 69.9 W/m2) compared with ATM.STA (bias: -25.7 W/m2; RMSE:

76.4 W/m2). This is because the SST is updated in CPL and is warmer compared with ATM.STA. When forced by a warmer

SST, the evaporation increases (also see the Appendix) and thus the latent heat fluxes increase. On the other hand, the THFs15

17



in CPL are comparable with ATM.DYN during the 30-day run (bias: 1.9 W/m2), showing that SKRIPS can capture the THFs

over the Red Sea in the coupled simulation.
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Figure 10. The turbulent heat fluxes out of the sea obtained in CPL, ATM.STA, and ATM.DYN in comparison with MERRA-2. The top

panel shows the mean THF; the middle panel shows the mean bias; the bottom panel shows the RMSE. Only the hourly heat fluxes over the

sea are shown .

The net downward heat fluxes (sum of THF and radiative flux) are shown in Fig. 11 (the snapshots are shown in the Ap-

pendix). Again, for the first two weeks, the heat fluxes obtained in ATM.STA, ATM.DYN and CPL are overlapping. This is

because all simulations are initialized in the same way, and the SST in all simulations are similar in the first two weeks. After5

the second week, CPL has slightly smaller error (bias: 11.2 W/m2; RMSE: 84.4 W/m2) compared with the ATM.STA simula-

tion (bias: 36.5 W/m2; RMSE: 94.3 W/m2). It should be noted that the mean bias and RMSE of the net downward heat fluxes

can be as high as a few hundred W/m2 or 40% compared with MERRA-2. This is because WRF over-estimated the shortwave

radiation in the daytime (the snapshots are shown in the Appendix). However, the coupled model still captures the mean and

standard deviation of the heat flux compared with MERRA-2 data (CPL mean: 110.6 W/m2, standard deviation: 350.7 W/m2;10

MERRA-2 mean 104.7 W/m2, standard deviation 342.3 W/m2). The over-estimation of shortwave radiation by the RRTMG

scheme is also reported in other validation tests in the literature under all-sky conditions due to the uncertainty of cloud or

aerosol (Zempila et al., 2016; Imran et al., 2018). Although the surface heat flux is over-estimated in the daytime, the SST over

the Red Sea is not over-estimated (shown in Section 4.2).

4.4 10-m Wind Speed15

To evaluate the simulation of the surface momentum by the coupled model, the 10-m wind speed patterns obtained from

ATM.STA, ATM.DYN, and CPL are compared to the MERRA-2 reanalysis.
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Figure 11. The total surface heat fluxes into the sea obtained in CPL, ATM.STA, and ATM.DYN in comparison with MERRA-2. The top

panel shows the mean surface heat flux; the middle panel shows the mean bias; the bottom panel shows the RMSE. Only the heat fluxes over

the sea are shown.

The simulated 10-m wind velocity fields are shown in Fig. 12. The RMSE of the wind speed between CPL and MERRA-2

data is 2.23 m/s when using the selected WRF physics schemes presented in Section 3. On June 2nd, high wind speeds are

observed in the northern and central Red Sea, and both CPL and ATM.STA capture the features of the wind speed patterns.

On June 24th, high wind speeds are observed in the central Red Sea and are also captured by both CPL and ATM.STA.

The mean 10-m wind speed over the Red Sea in ATM.STA, ATM.DYN, and CPL during the 30-day simulation are shown5

in Fig. 13. The mean error of CPL (mean bias: -0.23 m/s; RMSE: 2.38 m/s) is slightly smaller than the ATM.STA (mean

bias: -0.34 m/s; RMSE: 2.43 m/s) by about 0.1 m/s. Although CPL, ATM.STA, ATM.DYN have different SST fields as the

atmospheric boundary condition, the 10-m wind speed fields obtained in the simulations are all consistent with MERRA-2

data. The comparison shows the SKRIPS is capable of simulating the surface wind speed over the Red Sea in the coupled

simulation.10

5 Scalability Test

Parallel efficiency is crucial for coupled ocean–atmosphere models when simulating large and complex problems. In this

section, the parallel efficiency in the coupled simulations is investigated. This aims to demonstrate (1) the implemented

ESMF/NUOPC driver and model interfaces can simulate parallel cases effectively and (2) the ESMF/NUOPC coupler does

not add a significant computational overhead. The parallel speed-up of the model is investigated to evaluate its performance15

for a constant size problem simulated using different numbers of CPU cores (i.e. strong scaling). Additionally, the CPU time
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Figure 12. The magnitude and direction of the 10-m wind obtained in the CPL, the MERRA-2 data, and their difference (CPL−MERRA-

2). The differences between ATM.STA and ATM.DYN with MERRA-2 (i.e., ATM.STA−MERRA-2, ATM.DYN−MERRA-2) are also

presented. Two snapshots are selected: (1) 1200 UTC Jun 02 2012; (2) 1200 UTC Jun 24 2012.
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Figure 13. The magnitude of the 10-m wind obtained in CPL, ATM.STA, and ATM.DYN in comparison with MERRA-2. The top panel

shows the mean 10-m wind; the middle panel shows the mean bias; the bottom panel shows the RMSE. Only the hourly surface wind fields

over the sea are shown to validate the coupled model.
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spent on oceanic and atmospheric components of the coupled model is detailed. The test cases are run in sequential mode. The

parallel efficiency tests are performed on the Shaheen-II cluster at KAUST (https://www.hpc.kaust.edu.sa/). The Shaheen-II

cluster is a Cray XC40 system composed of 6174 dual-socket compute nodes based on 16-core Intel Haswell processors run-

ning at 2.3GHz. Each node has 128GB DDR4 memory running at 2300MHz. Overall the system has a total of 197,568 CPU

cores (6174 nodes × 2 × 16 CPU cores) and has a theoretical peak speed of 7.2 PetaFLOPS (1015 floating point operations5

per second).

The parallel efficiency of the scalability test is Np0tp0/Npntpn, where Np0 and Npn are the numbers of CPU cores employed

in the baseline case and the test case, respectively; tp0 and tpn are the CPU times spent on the baseline case and the test case,

respectively. The speed-up is defined as tp0/tpn, which is the relative improvement of the CPU time when solving the problem.

The scalability tests are performed by running 24-hour simulations for ATM.STA, OCN.DYN, and CPL cases. There are 2.610

million atmosphere cells (256 lat×256 lon×40 vertical levels) and 0.4 million ocean cells (256 lat×256 lon×40 vertical levels,

but about 84% of the domain is land and masked out). We started using Np0 = 32 because each compute node has 32 CPU

cores. The results obtained in the scalability test of the coupled model are shown in Fig. 14. It can be seen that the parallel

efficiency of the coupled code is close to 100% when employing less than 128 cores and is still as high as 70% when using 256

cores. When using 256 cores, there are a maximum of 20480 cells (16 lat×16 lon×80 vertical levels) in each core. The decrease15

in parallel efficiency results from the increase of communication time, load imbalance, and I/O (read and write) operation per

CPU core (Christidis, 2015). From results reported in the literature, the parallel efficiency of the coupled model is comparable

to other ocean-alone or atmosphere-alone models with similar numbers of grid points per CPU core (Marshall et al., 1997;

Zhang et al., 2013b).

0 100 200 300 400 500
number of CPU cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ef
fic
ie
nc
y

(a) parallel efficiency

coupled code
WRF

MITgcm
ideal efficiency

0 100 200 300 400 500
number of CPU cores

0

100

200

300

400

500

sp
ee
d-
up

(b) speed-up

coupled code
WRF

MITgcm
ideal speed-up

Figure 14. The parallel efficiency test of the coupled model in the Red Sea region, employing up to 512 CPU cores. The simulation using 32

CPU cores is regarded as the baseline case when computing the speed-up. Tests are performed on the Shaheen-II cluster at KAUST.
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The CPU time spent on different components of the coupled run is shown in Table. 4. The time spent on the ESMF coupler is

obtained by subtracting the time spent on oceanic and atmospheric components from the total time of the coupled run. The most

time-consuming process is the atmosphere model integration, which accounts for 85% to 95% of the total. The ocean model

integration is the second most time-consuming process, which is 5% to 11% of the total computational cost. If an ocean-only

region was simulated, the costs of the ocean and atmosphere models would be more equal compared with the Red Sea case. It5

should be noted that the test cases are run in sequential mode, and the cost breakdown among the components can be used to

address load balancing in the concurrent mode. The coupling process takes less than 3% of the total cost in the coupled runs

using different numbers of CPU cores in this test. Although the proportion of the coupling process in the total cost increases

when using more CPU cores, the total time spent on the coupling process is similar. The CPU time spent on two uncoupled

runs (i.e., ATM.STA, OCN.DYN) is also shown in Table. 4. Compared with the uncoupled simulations, the ESMF-MITgcm10

and ESMF-WRF interfaces do not increase the CPU time in the coupled simulation. In summary, the scalability test results

suggest that the ESMF/NUOPC coupler does not add significant computational overhead when using SKRIPS in the coupled

regional modeling studies.

Table 4. Comparison of CPU time spent on coupled and stand-alone runs. The CPU time presented in the table is normalized by the time

spent on the coupled run using 512 CPU cores. The CPU time spent on two stand-alone simulations are presented to show the difference

between coupled and stand-alone simulations.

Np = 32 64 128 256 512

CPL run 7.27 4.04 2.02 1.39 1.00

WRF in CPL run 6.88(95%) 3.82(94%) 1.89(93%) 1.25(90%) 0.85(85%)

MITgcm in CPL run 0.37( 5%) 0.19( 5%) 0.12( 6%) 0.11( 8%) 0.11(11%)

Coupler in CPL run 0.02( 0%) 0.03( 1%) 0.02( 1%) 0.03( 2%) 0.03( 3%)

ATM.STA run 6.89 3.80 1.84 1.22 0.83

OCN.DYN run 0.38 0.19 0.13 0.09 0.08

6 Conclusion and Outlook

This paper describes the development of the Scripps–KAUST Regional Integrated Prediction System (SKRIPS). To build the15

coupled model, we implement the coupler using ESMF with its NUOPC wrapper layer. The ocean model MITgcm and the

atmosphere model WRF are split into initialize, run, and finalize sections, with each of them called by the coupler as subroutines

in the main function.

The coupled model is validated by using a realistic application to simulate the heat events during June 2012 in the Red Sea

region. Results from the coupled and stand-alone simulations are compared to a wide variety of available observational and20

reanalysis data. We focus on the comparison of the surface atmospheric and oceanic variables because they are used to drive the

22



oceanic and atmospheric components in the coupled model. From the comparison, results obtained from various configurations

of coupled and stand-alone model simulations all realistically capture the surface atmospheric and oceanic variables in the Red

Sea region over a 30-day simulation period. The coupled system gives equal or better results compared with stand-alone model

components. The 2-m air temperature in three major cities obtained in CPL and ATM.DYN are comparable and better than

ATM.STA. Other surface atmospheric fields (e.g., 2-m air temperature, surface heat fluxes, 10-m wind speed) in CPL are also5

comparable with ATM.DYN and better than ATM.STA over the simulation period. The SST obtained in CPL is also better than

that in OCN.DYN by about 0.1 ◦C when compared with GHRSST.

The parallel efficiency of the coupled model is examined by simulating the Red Sea region using increasing numbers of CPU

cores. The parallel efficiency of the coupled model is consistent with that of the stand-alone ocean and atmosphere models

using the same number of cores. The CPU time associated with different components of the coupled simulations shows that the10

ESMF/NUOPC driver does not add a significant computational overhead. Hence the coupled model can be implemented for

coupled regional modeling studies on HPC clusters with comparable performance as that attained by uncoupled stand-alone

models.

The results presented here motivate further studies evaluating and improving this new regional coupled ocean–atmosphere

model for investigating dynamical processes and forecasting applications. This regional coupled forecasting system can be15

improved by developing coupled data assimilation capabilities for initializing the forecasts. In addition, the model physics and

model uncertainty representation in the coupled system can be enhanced using advanced techniques, such as stochastic physics

parameterizations. Future work will involve exploring these and other aspects a regional coupled modeling system suited for

forecasting and process understanding.

Code and data availability. The coupled model, documentation, and the cases used in this work are available at https://library.ucsd.edu/dc/20

collection/bb1847661c, and the source code is maintained on Github https://github.com/iurnus/scripps_kaust_model. ECMWF ERA5 data

are used as the atmospheric initial and boundary conditions. The ocean model uses the assimilated HYCOM/NCODA 1/12◦ global analysis

data as initial and boundary conditions. To validate the simulated SST data, we use the OSTIA (Operational Sea Surface Temperature and

Sea Ice Analysis) system in GHRSST (Group for High Resolution Sea Surface Temperature). The simulated 2-m air temperature (T2) is

validated against the ECMWF ERA5. The observed daily maximum and minimum temperatures from NOAA National Climate Data Center25

is used to validate the T2 in three major cities. Surface heat fluxes (e.g., latent heat fluxes, sensible heat fluxes, and longwave/shortwave

radiation) are compared with MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, version 2).

Appendix A: Snapshots of Heat Fluxes

To examine the modeling of turbulent heat fluxes and radiative fluxes, the snapshots of these heat fluxes obtained from

ATM.STA, ATM.DYN, and CPL are presented and validated using the MERRA-2 data.30

The snapshots of the THFs at 1200 UTC June 2nd and 24th are presented in Fig. A1. It can be seen that all simulations

reproduce the THFs reasonably well in comparison with MERRA-2. On June 2nd, all simulations exhibit similar THF patterns.
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This is because all simulations have the same initial conditions, and the SST fields in all simulations are similar within two

days. On the other hand, for the heat event on June 24th, CPL and ATM.DYN exhibit more latent heat fluxes coming out of

the ocean (170 and 153 W/m2) than those in ATM.STA (138 W/m2). The mean biases in CPL, ATM.DYN, and ATM.STA are

23.1 w/m2, 5.1 w/m2, and -9.5 w/m2, respectively. Although CPL has larger bias at the snapshot, the averaged bias and RMSE

in CPL are smaller (shown in Fig. 10). Compared with the latent heat fluxes, the sensible heat fluxes in the Red Sea region5

are much smaller in all simulations (about 20 W/m2). It should be noted that MERRA-2 has unrealistically large sensible heat

fluxes in the coastal regions because the land points ’contaminate’ the values in the coastal region (Kara et al., 2008; Gelaro

et al., 2017), and thus the heat fluxes in the coastal regions are not shown.

The net downward shortwave and longwave radiation fluxes are shown in Fig. A2. Again, all simulations reproduce the

shortwave and longwave radiation fluxes reasonably well. For the shortwave heat fluxes, all simulations show similar patterns10

on both June 2nd and 24th. The total downward heat fluxes, which is the sum of the results in Figs. A1 and A2, are shown in

Fig. A3. It can be seen that the present simulations over-estimate the total downward heat fluxes on June 2nd (CPL: 580 W/m2;

ATM.STA: 590 W/m2; ATM.DYN: 582 W/m2) compared with MERRA-2 (525 W/m2), especially in the southern Red Sea

because of over-estimating the shortwave radiation. To improve the modeling of shortwave radiation, a better understanding

of the cloud and aerosol in the Red Sea region is required (Zempila et al., 2016; Imran et al., 2018). Again, the heat fluxes in15

the coastal regions are not shown because of the inconsistency of land-sea mask. Overall, the comparison shows the coupled

model is capable of capturing the surface heat fluxes into the ocean.

Appendix B: Evaporation

To examine the simulation of surface freshwater flux in the coupled model, the surface evaporation fields obtained from

ATM.STA, ATM.DYN, and CPL are compared with the MERRA-2 data.20

The surface evaporation fields from CPL are shown in Fig. B1. The MERRA-2 data and the difference between CPL and

MERRA-2 are also shown to validate the coupled model. The ATM.STA and ATM.DYN simulation results are not shown,

but their differences with CPL are also shown in Fig. B1. It can be seen in Fig. B1(III) and B1(VIII) that CPL reproduces

the overall evaporation patterns in the Red Sea. CPL is able to capture the relatively high evaporation in the northern Red Sea

and the relatively low evaporation in the southern Red Sea in both snapshots, shown in Fig. B1(I) and B1(VI). After 36-hours,25

the simulation results are close with each other (e.g., the RMSE between CPL and ATM.STA simulation is smaller than 10

cm/year). However, after 24 days, CPL agrees better with MERRA-2 (bias: 6 cm/year; RMSE: 59 cm/year) than ATM.STA

(bias: -25 cm/year; RMSE: 68 cm/year). In addition, the CPL results are consistent with those in ATM.DYN. This shows the

coupled ocean–atmosphere simulation can reproduce the realistic evaporation patterns over the Red Sea. Since there is no

precipitation in three major cities (Mecca, Jeddah, Yanbu) near the eastern shore of the Red Sea during the month according to30

NCDC climate data, the precipitation results are not shown.
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Figure A1. The turbulent heat fluxes out of the sea obtained in CPL, MERRA-2 data, and their difference (CPL−MERRA-2). The differ-

ences between ATM.STA and ATM.DYN with MERRA-2 (i.e., ATM.STA−MERRA-2, ATM.DYN−MERRA-2) are also presented. Two

snapshots are selected: (1) 1200 UTC Jun 02 2012; (2) 1200 UTC Jun 24 2012. The simulation initial time is 0000 UTC Jun 01 2012 for

both snapshots. Only the heat fluxes over the sea are shown to validate the coupled model.
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Figure A2. The net downward shortwave and longwave radiation obtained in CPL, MERRA-2 data, and their difference (CPL−MERRA-

2). The differences between ATM.STA and ATM.DYN with MERRA-2 (i.e., ATM.STA−MERRA-2, ATM.DYN−MERRA-2) are also

presented. Two snapshots are selected: (1) 1200 UTC Jun 02 2012; (2) 1200 UTC Jun 24 2012. The simulation initial time is 0000 UTC Jun

01 2012 for both snapshots. Only the heat fluxes over the sea are shown to validate the coupled model.
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Figure A3. Comparison of the total downward heat fluxes obtained in CPL, MERRA-2 data, and their difference (CPL−MERRA-2). The

differences between ATM.STA and ATM.DYN with ERA5 (i.e., ATM.STA−MERRA-2, ATM.DYN−MERRA-2) are also presented. Two

snapshots are selected: (1) 1200 UTC Jun 02 2012; (2) 1200 UTC Jun 24 2012. The simulation initial time is 0000 UTC Jun 01 2012 for

both snapshots. Only the heat fluxes over the sea are shown to validate the coupled model.
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Figure B1. The surface evaporation patterns obtained in CPL, the MERRA-2 data, and their difference (CPL−MERRA-2). The differences

between uncoupled atmosphere simulations with MERRA-2 (i.e., ATM.STA−MERRA-2, ATM.DYN−MERRA-2) are also presented. Two

snapshots are selected: (1) 1200 UTC Jun 02 2012; (2) 1200 UTC Jun 24 2012. Only the evaporation over the sea is shown to validate the

coupled ocean–Atmosphere model.
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