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Abstract We developed a time dependent dust source map for NMME-DREAM v1.0 model 5 

based on the satellite MODIS Normalized Difference Vegetation Index (NDVI). Areas with 6 

NDVI<0.1 are classified as active dust sources. The updated modeling system is tested for dust 7 

emission capabilities over SW Asia using a mesoscale model grid increment of 0.1°×0.1° km for 8 

a period of one year (2016). Our results indicate significant deviations in simulated Aerosol 9 

Optical Depths compared to the static dust-source approach and general increase in dustloads 10 

over the selected domain. Comparison with MODIS Aerosol Optical Depth (AOD) indicates a 11 

more realistic spatial distribution of dust in the dynamic source simulations compared to the 12 

static dust sources approach. The modeled AOD bias is improved from -0.140 to 0.083 for the 13 

case of dust events (i.e. for AOD >0.25) and from -0.933 to -0.424 for dust episodes with 14 

AOD>1. This new development can be easily applied to other time periods, models and 15 

different areas worldwide for a local fine tuning of the parameterization and assessment of its 16 

performance. 17 
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Introduction 27 

The importance of natural particles, namely desert dust, in the weather and climate has 28 

been underlined in a great number of studies. Dust is a climatic regulator, as it modifies 29 

extensively the radiative balance of the atmospheric column (e.g. Torge et al., 2011; Spyrou et 30 

al., 2013; Mahowald et al., 2014). At the same time dust aerosols modify the atmospheric water 31 

content (Spyrou 2018), the way clouds are formed by acting as cloud condensation nuclei (CCN) 32 

and ice nuclei (IN) and the precipitation process (Kumar et al., 2011; Solomos et al., 2011; 33 

Nickovic et al., 2016). In addition, there is a clear connection between dust particles and human 34 

health disorders, as the size of the produced aerosols is small enough to cause respiratory and 35 

cardiovascular diseases, as well as pathogenic conditions due to the microorganisms that they 36 

can potentially carry (Mitsakou et al., 2008; Esmaeil et al., 2014). 37 
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 The Arabian Peninsula is one of the most important sources of mineral dust worldwide and 38 

contributes together with the Saharan and Gobi Deserts in the formation of a North 39 

Hemisphere “dust belt” as described by Prospero et al. (2002). Severe dust storms over the 40 

Peninsula are quite common, especially during long periods without rain, in the spring and 41 

summer (Almazrouia et al., 2012). Particles injected into the atmosphere from arid soils, under 42 

favorable weather conditions (high wind speeds and dry soil), can affect large areasaround the 43 

sources but also remote locations like the Eastern Mediterranean (Mamouri et al., 2016; 44 

Solomos et al., 2017) and the Indian Ocean (Chakraborty et al. 2006). 45 

Due to the multitude and severe effects of dust particles not only on the weather and the 46 

ecosystem but to human health as well, the proper description of the production, transport and 47 

eventual deposition of the dust cycle, in numerical weather prediction models (NWPs) is 48 

essential. In order to be able to accurately describe the dust life-cycle in the atmosphere, we 49 

need a clear understanding of the areas which can potentially act as “dust sources”. The 50 

definition of such areas dictates the emission strength and therefore the amount of particles 51 

inserted into the atmosphere. A proper representation of dust sources is therefore an essential 52 

first step, in studying the impacts of mineral particles in the climate and human societies. 53 

Usually the definition of the areas that can act as dust sources is made using global datasets. 54 

For example Nickovic et al. (2001) used a subjective correspondence between the Olson World 55 

Ecosystems (Olson et al., 1983) and the thirteen SSib (simplified simple biosphere, Xue et al. 56 

1991) vegetation types to identify arid and semi-arid areas. Similarly, Spyrou et al., (2010) used 57 

a 30sec global land use/cover database, classified according to the 24 category U.S. Geological 58 

Survey (USGS) land use/cover system (Anderson et al., 1976), to define active areas in SKIRON 59 

dust model. Solomos et al., (2011) used the LEAF soil and vegetation sub-model of the Regional 60 

Atmospheric Modeling System (RAMS) (Walko et al., 2000) to identify the active dust sources in 61 

RAMS-ICLAMS model.  62 

However, the above-mentioned methodologies have some significant drawbacks. The 63 

datasets are usually not up-to-date, therefore recent land-use modifications are not included 64 

and not represented. In addition, such “static” databases mean that possible seasonal 65 

variations are not taken into account. Towards the direction of overcoming the above 66 

limitations and improving global dust forecasts, Kim et al., (2013) developed a dynamical dust 67 

source map for the GOCART dust model by characterizing NDVI values < 0.15 as active dust 68 

spots. Similarly Vukovic et al., (2014) combined MODIS landcover types with pixels having NDVI 69 

< 0.1 to identify the seasonal dust sources that enforced the severe Phoenix haboob of July 70 

2011 in the US. Such information can be even more relevant at meso and local scales for 71 

determining landuse changes and potential dust sources, especially in heterogeneous regions 72 

such as the Arabian Peninsula (which has more diverse soil types than e.g. the Sahara Desert) 73 

and the greater SW Asia. In this context, Solomos et al., (2017), used the Landsat-8 NDVI data 74 

(assuming also NDVI<0.1 as active sources) to identify recent changes in landuse due to the war 75 

in Iraq and Syria resulting in a significantly more realistic simulation of dust properties in the 76 

Middle East.  77 

In the current study we present the implementation of a dynamical dust source map in the 78 

well-established and widely used DREAM v1.0 dust model (Nickovic et al., 2001; Perez et al., 79 

2006). The new development is first tested here for the greater SW Asia but can be extended 80 

for use in mesoscale dust modeling applications worldwide. Two experimental simulations are 81 



performed for one month period (August 2016) over the greater SW Asia: 1) Control run, where 82 

the dust source definition is based on the Ginoux et al., (2001) dataset and 2) Dynamic source 83 

run, where the NDVI values are used to identify the dust sources. The main differences in our 84 

approach compared to the previous studies referenced above, is that we use a very high 85 

resolution NDVI product (500×500 m) in a regional modeling domain (e.g. Kim et al., 2013 used 86 

an 8×8 Km NDVI dataset extrapolated to 1°x1° global modeling domain) and our study is not 87 

limited to specific test cases (like for example Vukovic et al., 2014 and  Solomos et al., 2017), 88 

but covers an extended time period, as presented below. The model results from both runs are 89 

compared to available satellite observations and station measurements inside the modeling 90 

domain. In section 1 we describe the methodological steps regarding the model developments 91 

and remote sensing data; Section 2 includes the results of the experimental runs and section 3 92 

is a summary and discussion of the study findings. 93 

 94 

 95 

1. Methodology 96 

 97 

1.1. Model description 98 

The modeling system used in this study is NMME-DREAM v1.0. The meteorological core is 99 

the NCEP/NMME atmospheric model (Janjic et al., 2001). The Dust Regional Atmospheric Model 100 

(DREAM v1.0) is a numerical model created with the main purpose to simulate and predict the 101 

atmospheric life-cycle of mineral dust using an Euler-type nonlinear partial differential equation 102 

for dust mass continuity (Nickovic et al., 2001; Perez et al., 2006; Pejanovic et al., 2011, Nickovic 103 

et al., 2016). In DREAM the concentration approach is used for dust uplift, where surface 104 

concentration is used as a lower boundary condition and used for the calculation of surface 105 

fluxes, which in turn depends of the friction velocity (Nickovic et al., 2001). This surface 106 

concentration is calculated using equation (11) from Nickovic et al., (2001): 107 

 108 
2

2 *
1 *

*

1 t
sfc

u
C c u

u


  
 =   −  
   

 where 4

1 5 2
2.4 10

sec

Kgr
c

m

−=   a constant determined from model 109 

experiments, *u  and *tu the friction velocity and the threshold friction velocity for dust 110 

production respectively and k ka  =    , where k the ratio between the mass available for 111 

uplift and the total mass k the fractions of clay, silt and sand for each soil class, and a  the 112 

desert mask (between 0 and 1) calculated from the Ginoux et al., (2001) dataset. Soil moisture 113 

and particle size dictate the threshold friction velocity which initializes dust production. Once 114 

particles have been lifted from the ground they are driven by the atmospheric model variables 115 

and processes. Therefore turbulent parameters are used in the beginning of the process, when 116 

dust is lifted from the ground, and transported by model winds in the later phases when dust 117 

travels away from the sources. The model handles dust in eight size bins, with effective radii of 118 

0.15, 0.25, 0.45, 0.78, 1.3, 2.2, 3.8, and 7.1 mm. Dust is treated as a passive tracer and doesn`t 119 

interact with radiation or clouds. Dust is eventually settled through rainfall and/or dry 120 

deposition processes parameterized according to the scheme of Georgi (1986) which includes 121 



deposition by surface turbulent and Brownian diffusion, gravitational settling and impact on 122 

surface elements.  123 

In order to test the use of NDVI for source characterization, the model is setup with a horizontal 124 

resolution of 0.1°x0.1°, covering the Arabian Peninsula parts of SW Asia and parts of NE Africa 125 

(Figure 1). On the vertical we use 28 levels stretching from the surface to the top of the 126 

atmosphere. August 2016 has been selected as a test period for the model development due to 127 

the significant dust activity and variability in wind properties during this month. One-year runs 128 

for the entire 2016 have been conducted to evaluate the performance of the static and 129 

dynamic database emission maps .The original classification of dust sources in DREAM is based 130 

on Ginoux et al., (2001) that takes into account the preferential sources related to topographic 131 

depressions and paleolake sediments. The global mapping of dust sources in Ginoux et 132 

al.,(2001) is determined from the comparison between the elevation of surface grid points at 133 

1°×1° resolution with the surrounding hydrological basins and with the 1°×1° AVHRR (Advanced 134 

Very High Resolution Radiometer) vegetation map (DeFries and Townshend, 1994). Recent 135 

studies indicated the contribution of both natural and anthropogenic dust sources to the overall 136 

dust emissions detected in MODIS Deep Blue product (Ginoux et al., 2012) and also the 137 

relevance of local geomorphological conditions and sediment supply (Parajuli and Zender, 138 

2017) on the global dust emissions. All these advances in dust emissions are based on static 139 

map considerations. 140 

In our work, a numerical procedure has been developed to insert the NDVI satellite information 141 

into the model and to update such info each time the NDVI changes, during the simulation 142 

period. We assume that regions with NDVI values from 0 to 0.1 correspond to bare soil and 143 

therefore can be efficient sources (“dust points”; DeFries and Townshend, 1994; Solomos et al., 144 

2017). In general it is not easy to define a global threshold value for all satellite NDVI sensors 145 

and all vegetation types worldwide.  For example Kim et al. (2013) used a threshold of 0.15 to 146 

define global dust sources based on AVHRR retrievals (Tucker et al., 2005; Brown et al., 2006). 147 

Here we adopt the 0.1 NDVI threshold due to the bareness of the specific modeling domain 148 

since a higher value could overestimate the regional dust sources. The NDVI dataset is at finer 149 

resolution than the model grid (500×500 m) and in order to find the potential for dust 150 

production in each model grid box, we calculate the following ratio:  151 
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 152 
Where #_ _ _ intof dust po s is the number of points with NDVI values smaller than 0.1. This 153 

approach allows for a dynamic description of dust source areas over the model domain to 154 

replace the previously used static database. Moreover, the scaling of satellite data over model 155 

grid points allows the use of the same algorithm for different model configurations. Several 156 

mountains in the area (e.g. the Sarawat Mountains along the Red Sea coast and the Zagros 157 

Mountains in Iraq) could be misclassified as dust sources due to low NDVI values.  In order to 158 

exclude such unrealistic emissions from non-soil bare areas or snow-covered areas we have 159 

applied a limit of zero dust production above 2500 m over the entire domain. This simple 160 

approach has been selected in order to keep our straightforward NDVI mapping independent of 161 

vegetation and soil information. The threshold value of 2500 m does not suppress the 162 



emissions from lowlands and hillsides (e.g. the coastal areas of Hejaz Mountains in Red Sea that 163 

have been identified as hot dust spots by Anisimov et al., 2017). 164 

In Figure 2a we show the static sources in the original model version with a factor of 0 to 1 165 

depending on the source area strength. Accordingly in Figure 2b we show the new dynamic 166 

sources for 1-16 of August 2016. The two dust source patterns present remarkable difference 167 

especially over the western Saudi Arabia and over Iran and Pakistan where the NDVI 168 

classification results in stronger emissions. In order to test the performance of the new 169 

methodology we run the model in two different configurations: (1) Using the static Ginoux et 170 

al., (2001) dust source database, called DREAM-CTRL run from now on, and (2) using the 171 

dynamic NDVI database as described above, called DREAM-NDVI run from now on. Both setups 172 

are initialized using the NCEP GFS analysis files (0.5°×0.5° at 00, 06, 12 and 18 UTC), which were 173 

used for boundary conditions as well. The two model configurations are identical other than the 174 

dust source database. 175 

 176 

 177 

Figure 1: DREAM model domain and topography in meters 178 

1.2 NDVI description 179 

For the purposes of our study we used the 500m 16-day averaged NDVI from MODIS (Didan, 180 

2015) for the period of interest. The NDVI is a normalized transform of the near infrared to red 181 

reflectance ratio, designed to provide a standard for vegetation and takes values between -1 182 

and +1.  Since it is expressed as a ratio, the NDVI has the advantage of minimizing certain types 183 

of band-correlated noise (positively-correlated) and influences attributed to variations in 184 

irradiance, clouds, atmospheric attenuation and other parameters (Solano et al., 2010). 185 

To create an accurate time-dependent dust source map, we have utilized the Normalized 186 

Difference Vegetation Index (NDVI) derived from the MODIS/Terra instrument. NDVI is 187 

calculated as the normalized difference of reflectance in the red and near-infrared channels 188 

(Rouse et al., 1974;  Huete et al. 2002) i.e., 189 



𝑁𝐷𝑉𝐼 =  
𝑋𝑛𝑖𝑟 − 𝑋𝑟𝑒𝑑

𝑋𝑛𝑖𝑟 + 𝑋𝑟𝑒𝑑
 190 

where X represents surface reflectance as would be measured at ground level (i.e. corrected for 191 

atmospheric gas and aerosol effects).in each channel. The 16-day composite is calculated by 192 

ingesting two 8-day composite surface reflectance granules, taking into account pixel quality, 193 

presence of clouds, and viewing geometry. This procedure can lead to spatial discontinuities, as 194 

it is possible that data from different days are used for adjacent pixels, each representing 195 

different measurement conditions. If a pixel had no useful measurements during the 16-day 196 

period, historic data are used as fill values (Didan et al., 2015). For terrestrial targets, NDVI will 197 

take values near 0.8 for vegetated areas and near 0 for barren soil (Huete et al., 1999). The 198 

high-resolution dataset was used to calculate the percentage of barren land in each 0.1°x0.1° 199 

model grid cells and this percentage was used to define the effective strength of dust sources in 200 

each cell. 201 

 202 

 203 
 204 

Figure 2: Dust source strength as defined by (a) the Ginoux et al., 2001 dataset and (b) the 1-205 

16th of August 2016 mean NDVI  206 

1.3 Evaluation datasets and metrics 207 

Model evaluation is carried out two datasets. First, the MODIS monthly aerosol optical depth 208 

(AOD) is use to study the spatial distribution of dust in the model domain. For this we use the 209 

level 3 gridded atmosphere monthly product at 1x1 resolution, MOD08_ME (Platnick et al. 210 

2017). Secondly, we evaluate model performance using AERONET AOD retrievals at 8 211 

photometeric stations. AERONET is a network of sun/sky photometers that derive aerosol 212 

optical and microphysical properties at a large number of stations around the world (Holben et 213 

al., 1998). For this evaluation, we use Version 3 AOD retrievals that, in comparison with 214 

previous versions, improves automatic cloud screening (Giles et al, 2018). Level 2 datasets were 215 

used for all stations apart from Kuweit University, where only Level 1.5 data were available. 216 

Both model and AERONET AOD were calculated at 532nm; this was chosen to facilitate future 217 

intercomparing against lidar systems that frequently measure at this wavelength (e.g. 218 

Pappalardo et al., 2014). AERONET measurements were converted to this wavelength using the 219 



440-870 angstrom exponent and taking into account AOD measurements at 440nm, 675nm, 220 

and 870nm; in the cases where the 440nm AOD was not available, the 500nm (Mezaira) or 221 

443nm (KAUST campus) measurement was used instead.  222 

 223 

We evaluation model performance using five metrics: mean bias, root mean square error, 224 

correlation coefficient, mean fractional bias, and fractional gross error. Concretely, assuming 225 

we have n pairs of model values (𝑚𝑖) and observations (𝑜𝑖), the mean bias (MB) is defined as: 226 

𝑀𝐵 = 𝑚𝑖 − 𝑜𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅  227 

where the bar denotes the mean value. Root mean square error (RMSE) is defined as 228 

𝑅𝑀𝑆𝐸 =  √(𝑚𝑖 − 𝑜𝑖)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 229 

The correlation coefficient (r) is defined as  230 

𝑟 =
∑ (𝑚𝑖 − 𝑚̅)(𝑜𝑖 − 𝑜̅)𝑛

𝑖=1

√∑ (𝑚𝑖 − 𝑚̅)2𝑛
𝑖=1 √∑ (𝑜𝑖 − 𝑜̅)2𝑛

𝑖=1

 231 

The fractional gross error (FGE) is defined as 232 

𝐹𝐺𝐸 = 2 |
𝑚𝑖 − 𝑜𝑖

𝑚𝑖 + 𝑜𝑖
|

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 233 

following Boylan and Russell, 2006. Similarly, mean fractional bias (MFB) is defined as 234 

𝑀𝐹𝐵 = 2 
𝑚𝑖̅̅̅̅ − 𝑜𝑖̅

𝑚𝑖̅̅̅̅ + 𝑜𝑖̅
 235 

 236 

 237 

following Chang and Hanna, 2004. 238 

 239 

 240 

2. Results 241 

DREAM-CTRL runDREAM-NDVI runThe test simulation period is 1-31 August 2016 and the 242 

results from both simulations are compared to MODIS and AERONET AOD. A five days spin up 243 

model run, prior to the experimental period, is used for establishing the dust background over 244 

the domain. After finalizing the experimental model configuration we perform a complete one-245 

year run (2016) and evaluate the results against AERONET stations. 246 

2.1 Dust transport during August 2016 247 

The selected 1-month period is characterized by a significant variability in wind speeds and 248 

directions (Figure 3) which allows the evaluation of the new model version under different 249 

conditions. During 1-10 August, east winds prevail over the region and increased dust 250 

concentrations are found mostly along the central, east and south coastal areas of the Arabian 251 

Peninsula. An anticyclonic circulation is established during 10-15 over the Arabia Desert and 252 

increased dust concentrations are mostly found over the central desert areas. On 16-26 August 253 

the circulation is mainly from north directions and thick dust plumes are advected southwards 254 

towards the Arabian Sea. The north winds veer to east on 26-31 August and increased 255 

dustloads are found over the Gulf during these dates.  256 



 257 

Figure 3. Average wind speed (color scale) and vectors from NMME-DREAMv1.0 for August 258 

2016. 259 

2.2 Comparison with MODIS and AERONET  260 

The monthly average AOD for August 2016 is shown in Figure 4 for the two experimental runs 261 

(Figure 4a, b). The DREAM-NDVI run results in a significantly modified spatial distribution of 262 

dust presenting increased dustloads over the entire domain and most profoundly over the Red 263 

Sea and Gulf regions (Figure 4b). This dust pattern is closer to the MODIS observed AOD over 264 

the same period that is shown in Figure 4c. The MODIS AOD in this area is mostly related to 265 

dust, however it must be taken into account that other aerosols not parameterized in the 266 

model (e.g. sea salt, sulphates, nitrates) may also contribute to the observed MODIS AOD. 267 

The first step is to examine how our methodology compares against the monthly average AOD 268 

in our study area. Therefore the monthly average AOD values produced from our two 269 

simulations (DREAM-NDVI run and DREAM-CTRL run) are compared. More specifically the 270 

DREAM-NDVI run reproduces the MODIS observed AOD pattern that is in general characterized 271 

by values 0.3-0.4 at the NW parts of the Arabian Peninsula and by values 0.4-0.8 at the SE parts. 272 

Significant improvement is also evident over the Red Sea and NE Africa. The DREAM-NDVI run 273 

captures the maximum observed AOD values reaching up to 1.6 over the Red Sea and also the 274 

southwesterly extension of an AOD tongue of 0.3-0.8 towards Soudan.  At the east parts of the 275 

modeling domain the DREAM-NDVI run again outperforms the DREAM-CTRL run since it 276 

reproduces the spatial distribution of AOD 0.4-0.8 over the Arabian Sea and the maximum of 277 

0.8-1.2 at the SE edge of Arabian Peninsula. Inside the Gulf, the NDVI run correctly represents 278 

the 0.4-0.8 AOD but the dust concentration is over-predicted at the Strait of Hormuz and along 279 

the Iran - Pakistan coastline. This is mostly due to the prevailing NE winds during the last days of 280 



the August 2016 modeling period and due to a possible miss-classification of Iran and Pakistan 281 

grid points as effective dust sources thus favoring unrealistic southeasterly transport towards 282 

the Gulf of Oman.  The DREAM-NDVI AOD is also higher than MODIS AOD over western Saudi 283 

Arabia indicating a possible overprediction of dust sources at this area. 284 

As a second step we run the same model configurations (CTRL and NDVI) for the entire 2016. 285 

The modeled dust optical depth is compared with individual AERONET measurements. The 286 

model retrievals are interpolated in time to match the AERONET measurement time 287 

considering only dust relevant measurements with Angström Coefficient <0.6 (Holben et al., 288 

1998) and the results are shown in Table 1. For completeness we first consider all AERONET 289 

stations inside the modeling domain for the evaluation. However the stations that are at the 290 

margins of our domain (Cairo_EMA_2, SEDE_BOKER, AgiaMarina_Xyliatou and El_Farafra) are 291 

also affected by other dust source areas (e.g. Sahara Desert) and their statistics are not 292 

representative for Arabian and Middle East sources. Instead, the comparison with Arabian 293 

Peninsula stations (Eilat, Kuwait_University, KAUST_Campus and Mezaira) provides more 294 

insight on the effects of the new source characterization. As seen in Figure 5 and also in Table 2 295 

these stations are clearly benefited from the experimental run.  296 

In general the two runs present a significant statistical difference and more remarkably a 297 

reverse of bias (MODEL-AERONET) from negative in the DREAM-CTRL run to positive in the 298 

DREAM-NDVI run. The DREAM-NDVI run produces increased AODs that are neither linearly 299 

proportional to the DREAM-CTRL run AODs nor uniformly distributed over the domain. When 300 

considering only Arabian stations, the statistical metrics in Table 1 and especially the fractional 301 

gross error and bias are improved but the RMSE is increased due to the increase in maximum 302 

modeled AODs. In order to investigate the sensitivity of our results towards the severity of dust 303 

events we further assume two additional air quality states in Table 1: (i) dust events (AOD>0.25) 304 

and (ii) severe dust episodes (AOD>1). Both cases show an improvement in the bias values over 305 

the control simulations. When we consider AOD>1 the DREAM-NDVI run still underestimates 306 

the observed values, but with a lower RMSE (0.586 versus 0.983 of the DREAM-CTRL run).This is 307 

clearly evident in Figure 6 where the NDVI run is indeed more realistic for the Arabian stations 308 

but still does not reproduce the extreme AOD during severe episodes. For most of the cases 309 

such high AODs should be attributed to duststorms from convective downdrafts (haboobs). 310 

These processes are not resolved at mesoscale model resolutions (Solomos et al., 2012, 2017; 311 

Vukovic et al., 2014) and thus cannot be represented here.   312 



Table 1. Statistical metrics from the comparison between the annual runs and AERONET 313 

 314 

3. Summary and Discussion 315 

In this study we present the development of a dynamic dust source map for implementation in 316 

NMME-DREAM v1.0 over the Arabian Peninsula and the greater areas of Middle East, SW Asia 317 

and NE Africa. Although the major dust sources worldwide are located in permanent deserts 318 

where the NDVI is almost always <0.1 (e.g. Bodele Depression, Gobi Desert, Arabian Desert), 319 

the dynamical scaling of dust emissions presented here can be important for providing up-to-320 

date evidence of active dust sources over non-permanent deserts. These may include dried 321 

bog, marshes and semi-desert areas as well as irrigated and non-irrigated farms where landuse 322 

changes occur throughout the year. Analysis of the modeling results for one year test period 323 

(2016) over SW Asia indicated the improved performance of the new parameterization. The 324 

DREAM-NDVI run showed a significant increase in dustloads over the greater Arabian Peninsula 325 

area and a more realistic representation of the spatial distribution of AOD compared to the 326 

corresponding MODIS satellite retrievals. These findings support the previous results by Kim et 327 

al., 2013 who also showed an increase in dust emissions and a more realistic comparison with 328 

satellite observations in Saudi Arabia by the introduction of an NDVI based dynamic source 329 

mapping for GOCART model. Comparison with AERONET measurements also showed significant 330 

improvement especially at higher AODs that are also relevant to the model efficiency for air 331 

quality purposes (i.e. the model bias is reduced from -0.140 to 0.083 at AOD>0.25 and from  -332 

0.933 to -0.424 at AOD>1). However, the model statistics are not improved for all AERONET 333 

measuring stations and for all air quality states (Table2), mainly due to a possible 334 

misclassification of dust sources in the highlands of Iran and Pakistan.  335 

The main purpose of our work was the development and first testing of this new modeling 336 

version. A major advance of our study is the ability to implement the real-time properties of 337 

 
Mean bias 

(Model-Observation) 
RMSE Correlation Fractional 

gross error 
Mean  

fractional bias 

 CTRL NDVI CTRL NDVI CTRL NDVI CTRL NDVI CTRL NDVI 

AOD > 0 
(All Stations) 

-0.163 0.015 0.258 0.312 0.408 0.464 0.887 0.803 -0.639 0.043 

AOD > 0 
(Arabia Stations) 

-0.142 0.122 0.252 0.332 0.340 0.426 0.644 0.515 -0.455 -0.187 

AOD > 0.25 
( Arabia Stations ) 

-0.140 0.083 0.283 0.350 0.238 0.328 0.640 0.462 -0.527 -0.142 

AOD > 1 
( Arabia Stations ) 

-0.933 -0.424 0.983 0.586 0.032 0.009 1.230 0.481 -1.211 -0.413 

The  AERONET stations used in this study are: Eilat (29N,34E), Cairo_EMA_2 (30N,31E), Kuwait_University 
(29N,47E), KAUST_Campus (22N,39E), SEDE_BOKER (30N,34E), AgiaMarina_Xyliatou (35N,33E), Mezaira (23N,53E) 
and El_Farafra (27N,27E) 



dust sources in air quality simulations (as represented by the satellite NDVI) and thus capture 338 

local or seasonal effects. In general, one year is not sufficient for extracting robust statistical 339 

results and further analysis is required to examine the performance of the proposed 340 

methodology over longer time periods and also over different areas worldwide. For example 341 

the simple approach of employing a uniform value of NDVI<0.1 for determining the active dust 342 

sources may not be adequate to represent fine-scale land properties and further adjustments 343 

may be required depending on local-scale characteristics.  This new approach for the dynamic 344 

characterization of active dust sources based on NDVI can be easily implemented in other 345 

atmospheric dust models at different configurations and spatial coverage for improving their 346 

performance. 347 

Table 2. Statistical metrics at AERONET stations. Bold values indicate correlation coefficient with p <0.01. 348 

Station  Mean bias  RMSE  Correlation 
 Fractional  
gross error 

 Mean  
fractional bias 

 CTRL NDVI CTRL NDVI CTRL NDVI CTRL NDVI CTRL NDVI 

AgiaMarina_Xyliatou -0.188 -0.185 0.226 0.224 -0.005 0.001 1.825 1.780 -1.828 -1.767 

Cairo_EMA_2 -0.355 -0.344 0.406 0.399 -0.053 0.018 1.689 1.646 -1.687 -1.591 

Eilat -0.138 0.006 0.186 0.165 0.110 0.312 1.183 0.610 -1.166 0.034 

El_Farafra -0.186 -0.190 0.259 0.263 0.170 0.138 1.155 1.248 -1.218 -1.257 

KAUST_Campus -0.245 0.152 0.322 0.376 0.412 0.386 0.966 0.609 -1.001 0.342 

Kuwait_University -0.097 0.007 0.275 0.278 0.152 0.266 0.588 0.537 -0.290 0.018 

Mezaira -0.130 0.161 0.228 0.347 0.353 0.445 0.528 0.475 -0.382 0.332 

SEDE_BOKER -0.151 -0.125 0.198 0.201 0.030 0.034 1.202 1.209 -1.228 -0.921 

Weizmann_Institute -0.207 -0.180 0.264 0.255 -0.088 -0.100 1.494 1.323 -1.521 -1.197 

 349 



350 

351 

 352 

Figure 4. Monthly average simulated AOD during August 2016 from DREAM-CTRL run (a), 353 

DREAM-NDVI run (b) and (c) MODIS. The dashed trapezoid in (c) denotes the location of the 354 

modeling domain. 355 



356 

357 

358 

 359 

Figure 5. Correlation plots of modeled and AERONET dust AOD at the stations of Mezaira, Eilat, 360 

Kaust and Kuwait for 2016. 361 

Mezaira CTRL Mezaira NDVI 

Eilat NDVI Eilat CTRL 

Kaust NDVI Kaust CTRL 

Kuwait CTRL Kuwait NDVI 



 362 

Figure 6. Timeseries of measured and modeled dust AOD for the cases of AERONET AOD>1 363 

 364 
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