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Abstract. The increasing volume of scientific datasets imposes the use of compression to reduce the data storage or 

transmission costs, specifically for the oceanography or meteorological datasets generated by Earth observation mission 

ground segments. These data are mostly produced in NetCDF formatted files. Indeed, the NetCDF-4/HDF5 file formats are 

widely spread in the global scientific community because of the nice features they offer. Particularly, the HDF5 offers the 10 

dynamically loaded filter plugin functionality allowing users to write filters, such as compression/decompression filters, to 

process the data before reading or writing it on the disk. In this work, we evaluate the performance of lossy and lossless 

compression/decompression methods through NetCDF-4 and HDF5 tools on analytical and real scientific floating-point 

datasets. We also introduce the Digit Rounding algorithm, a new relative error bounded data reduction method inspired by 

the Bit Grooming algorithm. The Digit Rounding algorithm allows high compression ratio while preserving a given number 15 

of significant digits in the dataset. It achieves higher compression ratio than the Bit Grooming algorithm while keeping 

similar compression speed. 

1 Introduction 

Ground segments that process scientific mission data are facing challenges due to ever increasing resolution of on-board 

instruments and data volume to: process, store and transmit. This is the case for oceanographic and meteorological missions 20 

for instance. Earth observation mission ground segments produce very large files mostly in NetCDF format: it is a standard 

in the oceanography field and quite spread in the meteorological community. This file format is widely spread in the global 

scientific community because of the nice features it offers. The fourth version of the NetCDF library, denoted NetCDF-

4/HDF5 (as it is based on HDF5 layer), offers some native compression features, namely ‘Deflate’ and ‘Shuffle’ algorithms. 

However, the compression performance achieved does not fully fulfil the ground processing requirements to reduce 25 

significantly the storage and dissemination cost as well as the IO times between two modules of the processing chain. 

Facing the increasing volume of data, scientists are more disposed to compress data but with some requirements: science 

data are generally floating point data; the compression and decompression have to be fast, lossless, or lossy under some 
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conditions: the precision or data loss shall be controlled, the compression ratio higher than the ones of lossless algorithms. In 

the lossy case, there is a trade-off between the data volume and the accuracy of the compressed data.  

Nevertheless, scientists can afford for small losses under the noise level in the data. Noise is indeed hardly compressible and 

of poor interest for the scientists, thus they do not consider as loss, data alterations that are under the noise level (Baker et al., 

2016). 5 

Hence, in order to increase the compression performance within the processing chain, a degradation of the data is considered 

via the use of so-called “clipping” methods before the compression. Clipping methods allows increasing the compression 

performance by removing the least significant digits or bits in the data. Indeed, at some level, these least significant digits or 

bits may not be scientifically meaningful in datasets corrupted by noise, and this is particularly true for floating point data.  

This paper studies compression and clipping old and new methods that can be applied to scientific datasets in order to 10 

maximize the compression performance while preserving the scientific data content and the numerical accuracy. It focuses 

on methods that can be applied to scientific datasets, i.e. vectors or matrices of floating point numbers.  

First, lossless compression algorithms can be applied to any kind of data. The standard is the Deflate algorithm (Deutsch, 

1996), native in NetCDF-4/HDF5 libraries. It is widely spread and implemented in compression tools such as zip, gzip and 

zlib library. It is a reference for lossless data compression. Recently, alternatives lossless compression algorithms have 15 

emerged such as Google Snappy, LZ4 (Collet, 2013) or Zstandard (Collet and Turner, 2016). These algorithms do not make 

use of Huffman coding to achieve faster compression than Deflate. 

Second, pre-processing methods such as the Shuffle available in HDF5 or Bitshuffle (Masui et al., 2015) allow optimizing 

the lossless compression by reordering the data bytes or bits in a “more compressible” order.  

Third, some lossy compression algorithms such as FPZIP (Lindstrom and Isenburg, 2006), ZFP (Lindstrom, 2014) or Sz 20 

(Tao et al, 2017a), are specifically designed for the compression of scientific data, in particular floating-point data, and allow 

controlling the data loss. 

Fourth, data reduction methods such as Linear Packing (Caron, 2014a), Layer Packing (Silver and Zender, 2017), Bit 

Shaving (Caron, 2014b), and Bit Grooming (Zender, 2016a) introduce some loss in the data content without necessarily 

reducing the data volume. Pre-processing methods and lossless compression can then be applied to obtain higher 25 

compression ratio. 

This paper focuses on compression methods implemented for NetCDF-4 or HDF5 files. Indeed, these scientific file formats 

are widely spread across the oceanography and meteorological community. HDF5 offers the dynamically loaded filter plugin 

functionality. It allows users writing filters, such as compression/decompression filters, to process the data before reading or 

writing it on the disk. Consequently, many compression/decompression filters, such as Bitshuffle, Zstandard, LZ4, Sz, have 30 

been implemented by members of the HDF5 users’ community and are freely accessible. On the other hand, the NetCDF 

Operator toolkit (NCO) (Zender, 2016b) offers some compression features such as bit shaving and Bit Grooming. 
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This paper is organized into five more sections. Section  2 presents the lossless and lossy compression schemes for scientific 

floating point datasets and the absolute and relative error bounded compression modes. Section  3 introduces the Digit 

Rounding algorithm. This algorithm alters the data in a relative error bounded manner to make them more compressible. It is 

an alternative, inspired by the Bit Grooming algorithm. Section  4 describes the performance assessment of a selection of 

lossless and lossy compression methods on synthetic datasets. It presents the datasets, the performance metrics, the 5 

compression results, and finally provides some recommendations. Section  5 provides some compression results obtained on 

real CFOSAT and SWOT datasets. Last, section  6 provides our conclusions. 

2 Compression algorithms 

Data reduction, preprocessing and lossless coding methods can be chained as illustrated on Fig. 1. 

The lossless coding step is reversible. It does not introduce any alteration in the data but allows reducing the data volume. 10 

This step can make use of lossless compression algorithms such as Deflate, Snappy, LZ4 or Zstandard. 

In this paper, we choose to evaluate the performance of the lossless compression algorithms Deflate LZ4 and Zstandard; 

Deflate because it is the reference, LZ4 because it is a widely spread very high speed compressor and Zstandard because it is 

the new concurrent of Deflate, both on compression ratios and compression/decompression speeds.  

Deflate make use of LZ77 dictionary coding (Ziv and Lempel, 1977) and of Huffman entropy coder (Huffman, 1952). Both 15 

methods exploit different types of redundancies. This allows Deflate achieving rather high compression ratios. However, the 

computational cost of the Huffman coder is high and makes Deflate compression rather slow. 

LZ4 is a dictionary coding algorithm designed to provide high compression/decompression speeds rather than high 

compression ratio. For this, it does not make use of any entropy coder. 

Zstandard is a fast lossless compressor achieving high compression ratios. It makes use of dictionary coding (repcode 20 

modelling) and of a finite state entropy coder (tANS) (Duda, 2013). It achieves similar compression ratio than Deflate with 

high compression/decompression speeds.  

The preprocessing step is also reversible. It reorders the data bytes or bits to enhance the lossless coding step performance. It 

can make use of lossless compression algorithms such as Shuffle, or Bitshuffle. 

The data reduction step is not reversible: data losses are introduced in this step. The strategy is to remove irrelevant data such 25 

as noise or other scientifically meaningless data. Depending on the algorithm use, this step can reduce the data volume. For 

instance, the Linear Packing and Sz algorithms allow reducing the data volume but not bit shaving and Bit Grooming 

algorithm. 

One feature required for lossy the scientific data compression is the control of the amount of loss or the accuracy of the 

compressed data. Depending on the data, this accuracy can be expressed by an absolute or a relative error bound.  30 
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The maximum absolute error 𝑚𝑎𝑒 is defined by 𝑚𝑎𝑒 = max𝑖|�̂�𝑖 − 𝑠𝑖| where the 𝑠𝑖 are the samples values of the original 

dataset and the �̂�𝑖 are the samples values of the compressed dataset. An absolute error bound specifies the maximum absolute 

error 𝑒𝑎𝑏𝑠 allowed between any sample of the original and compressed data: 𝑚𝑎𝑒 ≤ 𝑒𝑎𝑏𝑠. The maximum relative error mre is 

defined by 𝑚𝑟𝑒 = max𝑖 |
�̂�𝑖−𝑠𝑖

𝑠𝑖
| A relative error bound specifies the maximum relative error 𝑒𝑟𝑒𝑙 allowed between any sample 

of the original and compressed data: 𝑚𝑟𝑒 ≤ 𝑒𝑟𝑒𝑙 . 5 

The absolute error bound can be useful for data with a unique dynamic range of interest. The relative error bound can be 

useful for data where both very small value and very high values are of same interest. 

The Decimal Rounding algorithm (also mentioned as DSD algorithm for Decimal Significant Digit) and the Bit Grooming 

algorithm (also mentioned as a NSD algorithm for Number of Significant Digits) proposed in (Zender, 2016a) address both 

cases. The Decimal Rounding algorithm respects a maximum error bound by preserving the specified number of decimal 10 

significant digits. The Bit Grooming algorithm respects a relative error bound by preserving the specified total number of 

significant digits. One interesting feature of these algorithms is the fact the accuracy of the compressed data can easily be 

interpreted: rather than defining the number of significant bits, they define the number of significant digit or the number of 

significant decimal digits. 

The Bit Grooming algorithm creates a bitmask to alter the least significant bits of the mantissa of IEEE 754 floating-point 15 

data. Given a specified total number of significant digits 𝑛𝑠𝑑, the Bit Grooming algorithm tabulates the number of mantissa 

bits that has to be preserved to guaranty the specified precision of 𝑛𝑠𝑑 digits: to guarantee preserving 1-6 digits of precision, 

Bit Grooming must retain 5, 8, 11, 15, 18, and 21 mantissa bits, respectively. The advantage is that the computation of the 

number mantissa bits that has to be preserved is very fast. However, it is not optimal. In many cases, the number of mantissa 

bits preserved is higher than what would have been strictly necessary.  20 

Table  provides the example on the value of π with a specified precision of  𝑛𝑠𝑑 = 4 digits. The Bit Grooming algorithm 

preserves 15 mantissa bits where it would have been enough to preserve only 12 bits. 

Optimizing the number of mantissa bits preserved will have a favorable impact on the compression ratios since it allows for 

zeroing more bits and thus creating longer sequences of zero bits. Thus in the next section, we propose the Digit Rounding 

algorithm to overcome this limitation of the Bit Grooming algorithm. 25 

3 The Digit Rounding algorithm 

The Digit Rounding algorithm is similar to the Decimal Rounding algorithm in the sense that it computes a quantization 

factor q, which is a power of 2 in order to set bits to zero in the binary representation of the quantized floating point value.  

The Digit Rounding algorithm makes use of a uniform scalar quantization with a reconstruction at the bins center:  

�̃�𝑖 = sign(𝑠𝑖) × (⌊
|𝑠𝑖|

𝑞𝑖
⌋ + 0.5) × 𝑞𝑖          (1) 30 

where �̃�𝑖 is the quantized value of the sample value 𝑠𝑖. The quantization error is bounded by: 
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|𝑠𝑖 − �̃�𝑖| ≤ 𝑞𝑖/2            (2) 

The number of digits 𝑑𝑖 before the decimal separator in the value 𝑠𝑖  is: 

𝑑𝑖 = ⌊log10|𝑠𝑖| + 1⌋           (3) 

We want to preserve 𝑛𝑠𝑑 significant digits of the sample value 𝑠. This is approximately equivalent to having a rounding 

error of less than half the last tenth digit preserved. The quantization error shall thus be lower or equal to: 5 

|𝑠𝑖 − �̃�𝑖| ≤ 0.5 × 10
𝑑𝑖−𝑛𝑠𝑑           (4) 

Combining Eq. (2) and Eq. (4), we look for the highest quantization factor 𝑞𝑖 such that: 

𝑞𝑖/2 ≤ 0.5 × 10
𝑑𝑖−𝑛𝑠𝑑 

or: 

log10(𝑞𝑖) ≤ 𝑑𝑖 − 𝑛𝑠𝑑 

Moreover, in order to lower the computational cost and increase the compression efficiency, we look for a quantization 

factor that is a power of two. This allows bit-masking instead of division and creates sequences of bits 0: 10 

𝑞𝑖 = 2
𝑝𝑖             (5) 

We thus look for the greatest integer 𝑝𝑖  such that: 

𝑝𝑖 ≤ (𝑑𝑖 − 𝑛𝑠𝑑) log210 

Finally, we take the value 𝑝𝑖  such that: 

𝑝𝑖 = ⌊(𝑑𝑖 − 𝑛𝑠𝑑) log210⌋           (6) 

The log computation in Eq. (3) is the more computationally demanding. Nevertheless, optimization is possible as only the 15 

integer part of the result is useful. The optimized version implemented consists in computing the number of digits before the 

decimal separator 𝑑 from the binary exponent 𝑒𝑖 of value 𝑠𝑖: the value 𝑠𝑖 in binary representation is written: 

𝑠𝑖 = sign(𝑠𝑖) × 2
𝑒𝑖 ×𝑚𝑖 

where the mantissa 𝑚𝑖 is a number between 0.5 and 1. Hence, using Eq. (3) we have: 

𝑑𝑖 = ⌊log10(2
𝑒𝑖 ×𝑚𝑖)⌋ + 1 

𝑑𝑖 = ⌊𝑒𝑖 log10(2) + log10(𝑚𝑖)⌋ + 1 

As − log10(2) < log10(𝑚𝑖) ≤ 0, we use the following approximation in our implementation: 

𝑑𝑖 ≈ ⌊(𝑒𝑖 − 1) log10(2)⌋ + 1          (7) 20 

It provides slightly under estimated values for 𝑑𝑖 but also a more conservative quantization allowing preserving the specified 

number of significant digits. This optimization slightly decreases the achievable compression ratios for strong benefits on the 

compression speed. 

The Digit Rounding algorithm is summarized in Table 2. 

Table 3 provides the result of the Digit Rounding algorithm on the value of π with a specified precision of 𝑛𝑠𝑑 = 4 digits. 25 

The Digit Rounding algorithm preserves 11 bits in the mantissa and sets the 12
th

 bit to 1. Compared to the Bit Grooming 
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algorithm, 3 more bits have been set to 0. We have implemented the Digit Rounding algorithm as a new HDF5 dynamically 

loaded filter plugin to be able to apply it on datasets formatted as NetCDF-4 or HDF5 files. 

4 Performance assessment on synthetic data 

4.1 Performance metrics 

A nearly exhaustive list of metrics for assessing the performance of lossy compression of scientific datasets is provided in 5 

Zchecker (Tao et al., 2017b). For the sake of conciseness, it has been chosen to present only a few of them in this paper. The 

following metrics have been chosen: 

 the compression ratio 𝐶𝑅(𝐹) to evaluate the size reduction as a result of the compression. It is defined by the ratio 

of the original file size over the compressed file size: 

𝐶𝑅(𝐹) =
𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒(𝐹𝑜𝑟𝑖𝑔)

𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒(𝐹𝑐𝑜𝑚𝑝)
 

 the compression speed 𝐶𝑆(𝐹) and decompression speed 𝐷𝑆(𝐹) to evaluate the speed of the compression and of the 10 

decompression. They are defined by the ratio of the original file size over the compression or decompression time: 

𝐶𝑆(𝐹) =
𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒(𝐹𝑜𝑟𝑖𝑔)

𝑡𝑐𝑜𝑚𝑝
 

𝐷𝑆(𝐹) =
𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒(𝐹𝑜𝑟𝑖𝑔)

𝑡𝑑𝑒𝑐𝑜𝑚𝑝
 

The compression speed and the decompression speed are expressed in MB/s.  

The following metrics have been chosen to assess the data degradation of the lossy compression algorithms: 

 the maximum absolute error 𝑒𝑎𝑏𝑠
𝑚𝑎𝑥 to evaluate the maximum error between the original and compressed data. It is 

defined as the maximum value of the pointwise absolute difference between the original and compressed data: 15 

𝑒𝑎𝑏𝑠
𝑚𝑎𝑥 = max

𝑖
 |𝑠𝑖 − �̃�𝑖| 

 the mean error �̅� to evaluate if any bias is introduced in the compressed data. It is defined as the mean of the 

pointwise difference between the original and compressed data: 

�̅� =
1

𝑁
∑(𝑠𝑖 − �̃�𝑖)

𝑁−1

𝑖=0

 

 the SNR to evaluate the signal to compression error ratio. It is defined by the ratio of the signal level over the root 

mean square compression error. It is expressed in decibel (dB): 

𝑆𝑁𝑅𝑑𝐵 = 20 log10

(

 
√1
𝑁
∑ 𝑠𝑖

2𝑁−1
𝑖=0

√1
𝑁
∑ (𝑠𝑖 − �̃�𝑖)

2𝑁−1
𝑖=0 )
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4.2 Analytical datasets 

Synthetic datasets with known statistics have been generated in order to test the compression algorithms under variable 

conditions. The following datasets have been generated: 

 𝑠1 a noisy sinusoid of 1 dimension, 

 s3D a noisy sinusoid pulse of 3 dimensions. 5 

The signal 𝑠1 is a noisy sinusoid defined by: 

𝑠1(𝑖) = 𝑐 + 𝑎1 × sin (2𝜋𝑖
𝑓𝑠1
𝑓𝑠
) + 𝑛(𝑖) 

Where 𝑐 is the mean value, 𝑎1 is the amplitude of the sinusoid, 𝑓𝑠1 is its frequency and 𝑛(𝑖) is a zero mean Gaussian noise of 

variance 1. The signal 𝑠1 is generated with 𝑐 = 100, 𝑎1 computed so as to obtain a SNR of 20dB, and 
𝑓𝑠1

𝑓𝑠
=

17

19×2
. It allows 

having a bit more than two samples per period with a pattern reproduced every 17 periods. It is generated over 𝑁 = 220 float 

sample values, each float value being encoded on 32bits. The volume of the dataset 𝑠1 is 4MB. The dataset and its histogram 10 

are shown in Fig. 2. 

The signal 𝑠3𝐷 a noisy sinusoid pulse of 3 dimensions defined by: 

𝑠3𝐷(𝑖1, 𝑖2, 𝑖3) = 𝑎2 ×
√𝑖1

2 + 𝑖2
2 + 𝑖3

2

√𝐿2 +𝑀2 + 𝑁2
× sin (2𝜋√𝑖1

2 + 𝑖2
2 + 𝑖3

2 𝑓𝑠3𝐷
𝑓𝑒𝑐ℎ

) + 𝑛(𝑖1, 𝑖2, 𝑖3) 

Where 𝐿,𝑀,𝑁  are the 3 dimensions of the signal 𝑠3𝐷 , 𝑎2  is the amplitude of the sinusoid, 𝑓𝑠3𝐷  is its frequency and 

𝑛(𝑖1, 𝑖2, 𝑖3) is a zero mean Gaussian noise of variance 1 

The signal 𝑠3𝐷 is generated with L = 256, M = 256, N = 2048, 𝑎2 computed to obtain a SNR of 40dB, and 
𝑓𝑠3𝐷

𝑓𝑠
=

17×8

19×𝑁
 in 15 

order to have 4 periods on the main axis. It is generated over 𝐿 × 𝑀 × 𝑁 = 227 float sample values, each float value being 

encoded on 32bits. The volume of the dataset 𝑠3𝐷 is 512MB. The dataset and its histogram are shown in Fig. 3. 

The datasets 𝑠1 and 𝑠3𝐷 datasets have been stored into NetCDF-4 formatted files. 

4.3 Performance assessment of lossless compression methods 

The lossless compression algorithms evaluated are Deflate and Zstandard with or without Shuffle or Bitshuffle preprocessing 20 

step. Moreover, LZ4 is evaluated but always with the Bitshuffle preprocessing step because the implementation of LZ4 we 

use embarks Bitshuffle. 

We run lossless compression algorithm using h5repack tool from the HDF5 library in version 1.8.19, Deflate implemented in 

zlib 1.2.11, Zstandard in version 1.3.1 with the corresponding HDF5 filter available on the HDF web portal 

(http://portal.hdfgroup.org/display/support/Filters), and the implementation of LZ4 and Bitshuffle in the python package 25 

Bitshuffle-0.3.4. 

The compression is performed calling h5repack tool with a command line formatted as follows: 
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h5repack -i in_file.nc -o compressed_file.h5 [--filter=var:params] 

where in_file.nc is the input dataset formatted as a NetCDF-4 file and compressed_file.h5 is the compressed dataset in HDF5 

file format. The input dataset contains the var variable processed by one or several HDF5 filter. Table 4 provides the list of 

filter options used. They shall replace the filter option between brackets on previous command line. 

The decompression is performed calling h5repack tool with a command line formatted as follows: 5 

h5repack -i compressed_file.h5 -o out_file.h5 --filter=var:NONE 

Compression and decompression has been performed on a Dell T1600 with an Intel Xeon E31225 4 cores CPU at 3.1GHz, 

and 4GB memory under RedHat 6.5 (64 bits) OS. Compression and decompression are run on a single core.  

In order to obtain meaningful compression and decompression speed results, we employed the following process: 

 Each compression or decompression is run 10 times. 10 

 The elapse time (real clock time) of each run is measured. 

 The minimum and maximum times measured are removed from the list of measures 

 The mean of the remaining 8 measures provides the compression or decompression time. 

Figure 4 provides the results obtained for the compression and decompression of the dataset 𝑠1 and Fig. 5 provides the 

results obtained for the compression and decompression of the dataset 𝑠3𝐷. 15 

The preprocessing steps Shuffle or Bitshuffle have a favorable impact both on the compression ratio and on the 

compression/decompression speeds in most cases. Shuffle and Bitshuffle have similar effects on the compression 

performances. 

The compression levels parameters dfl_lvl and zstd_lvl have little influence on the compression ratio. However, the 

compression/decompression speeds decrease with increasing compression levels, particularly with Zstandard compression 20 

level. 

The compression ratio obtained with Deflate and Zstandard are similar but the decompression speeds of Zstandard are 

always higher and the compression speeds of Zstandard at low compression levels are far higher. 

The compression/decompression speeds obtain with Bitshuffle and LZ4 are not in all cases higher than the 

compression/decompression speeds obtained with Bitshuffle and Zstandard at low compression level zstd_lvl. Nevertheless, 25 

the compression ratio obtained with Bitshuffle and LZ4 are only slightly lower than the compression ratio obtained with 

Bitshuffle and Zstandard at low compression level zstd_lvl. 

Finally, the compression/decompression speeds obtained with Zstandard and LZ4 for the compression of the dataset 𝑠3𝐷 are 

by far lower than the one achieved for the compression of the dataset 𝑠1. 

We conclude that for the lossless compression of scientific dataset the preprocessing by Shuffle of Bitshuffle are very helpful 30 

to increase the compression performance. Then, Zstandard can provide higher compression and decompression speeds than 

Deflate at low compression level. However, on the 𝑠3𝐷 dataset, we observe that Zstandard compression and decompression 
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speeds are lower than the one obtained with Deflate. Deflate and Zstandard are thus both option to consider for the lossless 

compression of scientific dataset but always with the Shuffle or Bitshuffle preprocessing step. 

4.4 Performance assessment of lossy compression methods 

The lossy compression algorithms evaluated are error-bounded compression algorithms. They can constrain either or both 

maximum absolute error or the maximum relative error. 5 

The compression algorithms evaluated are Sz, Bit Grooming and the Digit Rounding algorithm introduced in this paper. 

Sz compression algorithm has been designed to work in both error-bounded modes. Bit Grooming is declined in two 

algorithms: the DSD algorithm (for number of decimal significant digits) and the NSD algorithm (for number of significant 

digits). The DSD algorithm (also called decimal rounding algorithm) allows preserving a specific number of decimal digits. 

In this sense, it bounds the maximum absolute error. The NSD algorithm allows preserving a specific number of significant 10 

digits. In this sense, it bounds the maximum relative error. As the NSD algorithm, the Digit Rounding algorithm allows 

preserving a specific number of significant digits and bounds the maximum relative error. 

Bit Grooming and Digit Rounding algorithms does not compress the data. They only alter the data to make it more 

compressible. Thus, lossless compression steps are required afterward. By default, Sz algorithm embark Deflate. 

Nevertheless, it is possible to configure Sz and deactivate Deflate to use other lossless compression algorithms. 15 

We run Sz in version 1.4.11.1 using h5repack tool and call through its HDF5 filter plugin. We run Bit Grooming algorithms 

using NCO in version 4.7.0. Last, we run the Digit Rounding algorithm using h5repack tool and custom implantation of the 

algorithm in an HDF5 plugin filter. 

Sz compression is performed calling h5repack tool with a command line formatted as follows: 

h5repack -i in_file.nc -o compressed_file.h5 --filter=var:UD=32017,0 20 

Sz compression is configured via the sz.config file located in the directory from where h5repack is called. In this 

configuration file, quantization_intervals is set to 256 and the szMode is set to SZ_BEST_SPEED to achieve high speed 

compression. The gzipMode is set to Gzip_NO_COMPRESSION to deactivate Deflate compression. The errorBoundMode 

is set to ABS, or to PW_REL, to achieve respectively absolute error bounded compression, or relative error bounded 

compression. In the absolute error bounded compression mode, the absErrBound parameter is configured to achieve the 25 

desire maximum absolute error. In the relative error bounded compression mode, the parameter pw_relBoundRatio is 

configured to achieve the desire maximum relative error. 

Bit Grooming compression is performed calling the ncks tool from NCO toolkit. The DSD algorithm is run with the 

following command line (note the period before the dsd parameter): 

ncks -4 –L dfl_lvl --ppc var=.dsd in_file.nc compressed_file.nc 30 

The NSD algorithm is run with the following command line: 

ncks -4 –L dfl_lvl --ppc var=nsd in_file.nc compressed_file.nc 

In all cases, the decompression is performed calling h5repack tool with a command line formatted as follows: 
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h5repack -i compressed_file.h5 -o out_file.h5 --filter=var:NONE 

4.4.1 Performance comparison in the absolute error bounded compression mode 

In order to measure the compression ratio and the compression speeds, Zstandard with zstd_lvl = 5 has been applied after Sz 

and Shuffle and Zstandard with zstd_lvl = 5 has been applied after Bit Grooming. This compression level provides a good 

trade-off between compression speed and compression ratio. 5 

Only Shuffle is only applied after Bit Grooming. Indeed, experiments have shown that Shuffle or Bitshuffle preprocessing 

do not increase the compression ratio when applied after Sz, and Bitshuffle provide lower compression ratio than Shuffle 

when applied after Bit Grooming. 

Table 5 compares the compression performance obtained in the absolute error bounded compression mode for 𝑒𝑎𝑏𝑠 = 0.5. 

This correspond corresponding to dsd = 0 decimal significant digits preserved, or in other words, a rounding to the nearest 10 

integer. 

Sz compression is performed calling h5repack tool with a command line formatted as follows: 

h5repack -i in_file.nc -o compressed_file.h5 --filter=var:UD=32017,0 --filter=var:UD=32015,1,5 

With the absErrBound parameter set to 0.5 in the sz.config file located in the directory from where h5repack is called. 

Bit Grooming compression is performed successively calling ncks and h5repack tool with command lines formatted as 15 

follows: 

ncks -4 –L 0 --ppc var=.dsd in_file.nc bitgroomed_file.nc 

h5repack -i bitgroomed_file.nc -o compressed_file.h5 --filter=var:SHUF --filter=var:UD=32015,1,5 

Both Sz and Bit Grooming algorithms respect the specified maximum absolute error value. Moreover, none introduces a 

statistical bias: the mean absolute errors of both algorithms, not shown in this table, are very close to zero. The errors 20 

introduced by these two algorithms are similar. However, it can be shown that Bit Grooming provided higher compression 

ratio than Sz on the dataset 𝑠1, while the compression speeds are similar. On the contrary, Sz provide higher compression 

ratio and compression speed than Bit Grooming on the dataset 𝑠3𝐷.  

Figure 6 compares the performances of Sz and Bit Grooming algorithms in terms of SNR versus compression ratio. This 

figure has been obtained with the following parameters: 25 

 For Sz algorithm, the absErrBound parameter is successively set to 5e-5, 5e-4, 5e-3, 5e-2, 5e-1, 5 

 For the Bit Grooming algorithm, the dsd parameter is successively set to 4, 3, 2, 1, 0, -1 

As for the results reported in Table 5, Zstandard with zstd_lvl = 5 has been applied after Sz and Shuffle and Zstandard with 

zstd_lvl = 5 has been applied after Bit Grooming. 

On the dataset 𝑠1, the Bit Grooming algorithm provides better compression performance than Sz except for very high 30 

compression ratio (dsd ≤ -1 or absErrBound ≥ 5). On the dataset 𝑠3𝐷 , the Bit Grooming algorithm provides better 

compression performance than Sz but only for low compression ratio (dsd ≥ 2 or absErrBound ≤ 5e-3).  
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We conclude that both Sz and Bit Grooming algorithms are valuable for the compression in the absolute error bounded 

compression mode. Bit Grooming tend to provide better performance at low compression ratios while Sz tends to provide 

better performance at higher compression ratios but the limit depends on the dataset. 

4.4.2 Performance comparison in the relative error bounded compression mode 

As for the performance comparison in the absolute error bounded compression mode, Zstandard with zstd_lvl = 5 has been 5 

applied after Sz and Shuffle and Zstandard with zstd_lvl = 5 has been applied after Bit Grooming in order to measure the 

compression ratio and the compression speeds. 

We first focus on the results obtained on the dataset 𝑠1.  

Table 6 compares the compression errors obtained in the relative error bounded compression mode. The algorithms have 

been configured in order to obtain a maximum absolute error of 0.5. As the maximum absolute value in s1 dataset is 118, the 10 

pw_relBoundRatio parameter in Sz is set to 0.00424 and the number of significant digits nsd parameter in the Bit Grooming 

and in the Digit Rounding algorithm is set to 3 in Table 6. However, as the Bit Grooming algorithm is too conservative, 

results with nsd = 2 are also provided. 

Sz compression is performed calling h5repack tool with a command line formatted as follows: 

h5repack -i in_file.nc -o compressed_file.h5 --filter=var:UD=32017,0 --filter=var:UD=32015,1,5 15 

With the pw_relBoundRatio parameter set to 0.00424 in the sz.config file located in the directory from where h5repack is 

called. 

Bit Grooming compression is performed successively calling ncks and h5repack tool with command lines formatted as 

follows: 

ncks -4 –L 0 --ppc var=nsd in_file.nc bitgroomed_file.nc 20 

h5repack -i bitgroomed_file.nc -o compressed_file.h5 --filter=var:SHUF --filter=var:UD=32015,1,5 

Digit Rounding is performed calling h5repack tool with a command line formatted as follows: 

h5repack -i in_file.nc -o compressed_file.h5 --filter=var:UD=digitRoundingID,1,3 --filter=var:UD=32015,1,5 

It can be observed in Table 6 that all three algorithms respect the relative error bound specified. However, as previously 

mentioned the Bit Grooming algorithm is too conservative. The same is observed with the Digit Rounding algorithm for the 25 

compression of the dataset 𝑠1. The quality obtained with the Digit Rounding algorithm is similar to the one obtained with the 

Bit Grooming. Nevertheless, the compression ratio is higher. 

Figure 7 (left) compares the performances of Sz, Bit Grooming and Digit Rounding algorithms in terms of SNR versus 

compression ratio. This figure has been obtained with the following parameters: 

 For Sz algorithm, the pw_relBoundRatio parameter is successively set to 4.24e-6, 4.24e-5, 4.24e-4, 4.24e-3, 4.24e-30 

2, 4.24e-1 

 For the Bit Grooming algorithm, the nsd parameter is successively set to 6, 5, 4, 3, 2, 1 

 For the Digit Rounding algorithm, the nsd parameter is successively set to 6, 5, 4, 3, 2, 1 
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As for the results reported in Table 6, Zstandard with zstd_lvl = 5 has been applied after Sz and Shuffle and Zstandard with 

zstd_lvl = 5 has been applied after Bit Grooming and Digit Rounding algorithms. 

The Digit Rounding algorithm provides better compression performance than Sz or Bit Grooming. At high compression 

ratio, Sz provides similar performance as the Digit Rounding algorithm. 

Figure 8 (left) compares the compression ratio obtained as a function of the parameter nsd, which is the user specified 5 

number of significant digit. Even if the nsd is not a parameter of Sz algorithm, we made the correspondence between the 

pw_relBoundRatio and the nsd parameters for the dataset 𝑠1 (i.e. pw_relBoundRatio = 4.24e
-nsd

) and plot the compression 

ratio obtained with Sz algorithm on the same figure. 

It can be seen that, whatever the nsd specified by the user, the compression ratio obtained with the Digit Rounding are higher 

than the compression ratio obtained with the Bit Grooming algorithm. It can also be seen that the compression obtained with 10 

Sz algorithm are even higher.  

We now focus on the results obtained on the dataset 𝑠3𝐷.  

As the maximum absolute value in 𝑠3𝐷 dataset is 145, the pw_relBoundRatio parameter in Sz is set to 0.00345 and the 

number of significant digits nsd parameter in the Bit Grooming and in the Digit Rounding algorithm is set to 3 in Table 7. 

It can be observed in Table 7 that all three algorithms respect the relative error bound specified. However, on this dataset, Sz 15 

algorithm is twice too conservative. That is why, results obtained with pw_relBoundRatio = 0.0069 are also provided in 

order to obtain a maximum absolute error of 0.5. The compression ratio obtained with the Digit Rounding algorithm is 

higher than the one obtained with Sz. 

Figure 7 (right) compares the performances of Sz, Bit Grooming and Digit Rounding algorithms in terms of SNR versus 

compression ratio. This figure has been obtained with the following parameters: 20 

 For Sz algorithm, the pw_relBoundRatio parameter is successively set to 6.9e-6, 6.9e-5, 6.9e-4, 6.9e-3, 6.9e-2, 6.9e-

1 

 For the Bit Grooming algorithm, the nsd parameter is successively set to 6, 5, 4, 3, 2, 1 

 For the Digit Rounding algorithm, the nsd parameter is successively set to 6, 5, 4, 3, 2, 1 

As for the results reported in Table 7, Zstandard with zstd_lvl = 5 has been applied after Sz and Shuffle and Zstandard with 25 

zstd_lvl = 5 has been applied after Bit Grooming and Digit Rounding algorithms. 

For the dataset 𝑠3𝐷, the Bit Grooming algorithm provides better compression performance than Sz. Nevertheless, the Digit 

Rounding algorithms provides compression performance very closed to the one of the Bit Grooming algorithm. 

Figure 8 (right) compares the compression ratio obtained as a function of the parameter nsd, which is the user specified 

number of significant digit. As for dataset 𝑠1, we made the correspondence between the pw_relBoundRatio and the nsd 30 

parameters for the dataset 𝑠3𝐷 (i.e. pw_relBoundRatio = 6.9e
-nsd

) and plot the compression ratio obtained with Sz algorithm 

on the same figure. 
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On the dataset 𝑠3𝐷, and whatever the nsd specified by the user, the compression ratio obtained with the Digit Rounding 

algorithm are higher than the compression ratio obtained with the Bit Grooming algorithm or Sz.  

We conclude that in most cases, Digit Rounding is superior to the Bit Grooming and Sz in the relative error bounded 

compression mode. 

5 Application to scientific datasets 5 

Lossless and lossy algorithms are now evaluated for the compression of scientific mission data: CFOSAT and SWOT. 

5.1 Application to a CFOSAT dataset 

The CFOSAT program is carried out through cooperation between French and Chinese Space Agencies (CNES and CNSA 

respectively). CFOSAT aims at characterizing the ocean surfaces to better model and predict the ocean states, and improve 

the knowledge in ocean/atmosphere exchanges. The CFOSAT products will help for marine and weather forecast and for 10 

climate monitoring. The CFOSAT satellite will carry two scientific payloads: SCAT, a wind scatterometer, and SWIM, a 

wave scatterometer to allow a joint characterization of ocean surface winds and waves. The SWIM (Surface Wave 

Investigation and Monitoring) instrument delivered by CNES is dedicated to the measurement of the directional wave 

spectrum (density spectrum of wave slopes as a function of direction and wavenumber of the waves). CFOSAT L1A product 

contains calibrated and geocoded waveform. 15 

Currently, the baseline for the compression of CFOSAT L1A product involves a “clipping” method as a data reduction step, 

the Shuffle preprocessing and Deflate lossless coding with a compression level dfl_lvl of 3. The compression with “clipping” 

is liken to a compression in an absolute error bounded mode. It defines the least significant digit (lsd) and “clips” the data to 

keep only lsd decimal digits. The lsd is defined specifically for each variable of the dataset. 

We study the performance of the following alternative compression methods: 20 

 CFOSAT “clipping” method followed by Shuffle and Zstandard with a compression level zstd_lvl of 1 or 2 to 

achieve favor compression speeds; 

 Bit Grooming (in the absolute error bounded compression mode) followed by Shuffle and Deflate or Zstandard. 

Bit Grooming has been configured to keep the same number of decimal digits as CFOSAT “clipping” on each variable: nsd 

= lsd. 25 

Unfortunately, Sz crashes on the compression of CFOSAT or SWOT datasets. That is why, no results with Sz are provided 

in the following tables. 

The results for the compression of a CFOSAT L1A product of 7.34GB (uncompressed) are provided in Table 8. 

Compared to the CFOSAT baseline compression, Zstandard increases the compression speed of about 40% while offering 

similar compression ratio. The use of Bit Grooming instead of CFOSAT “Clipping” method increases the compression ratio 30 

by a factor of 2 but decreases the compression speed by 40%. The decompression speeds are similar for all solutions. Our 
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recommendation is thus to use the Bit Grooming algorithm with Zstandard coding rather than the CFOSAT “Clipping” 

method with Deflate coding to achieve high compression ratio on this CFOSAT dataset, at the price of a lower compression 

speed. 

5.2 Application to SWOT datasets 

The Surface Water and Ocean Topography Mission (SWOT) is a partnership between NASA and CNES and continue the 5 

long history of altimetry missions with an innovative instrument: KaRin, a Ka band synthetic aperture radar. The launch is 

foreseen for 2021. SWOT addresses both oceanography and hydrology communities, measuring with a high accuracy water 

level of the ocean, rivers, and lakes. 

SWOT has two modes of processing and thus two different types of products are generated: the high resolution products, 

dedicated to hydrology and low resolution products mostly dedicated to oceanography. The Pixel Cloud product (called 10 

L2_HR_PIXC) contains data from the high-resolution (HR) mode of the KaRIn instrument. It contains information on the 

pixels that are detected as being over water. This product is generated where the HR mask is turned on. The Pixel Cloud 

product is organized into sub-orbit tiles for each swath and each pass, and this is an intermediate product between the L1 

Single Look Complex products and the L2 lake/river ones. The product granularity is a tile of 64km long in along-track and 

it covers either the left or the right swath (~60km wide).  15 

The compression performance is evaluated on two different datasets: 

 A simplified simulated SWOT L2_HR_PIXC pixel cloud product of 460MB (uncompressed); 

 A realistic and representative SWOT L2 pixel cloud dataset in which only few attributes may be missing of 199MB 

(uncompressed). 

The current baseline for the compression of the simplified simulated SWOT L2 pixel cloud product involves the Shuffle 20 

preprocessing and Deflate lossless coding with a compression level dfl_lvl of 4. However, the compression method for the 

official SWOT L2 pixel cloud product has not yet been defined.  

We study the performance of the following compression methods: 

 Shuffle and Deflate; 

 Shuffle and Zstandard; 25 

 Bit Grooming (in the absolute error bounded compression mode) followed by Shuffle and Deflate or Zstandard. 

 Bit Grooming (in the relative error bounded compression mode) followed by Shuffle Zstandard; 

 Bit Grooming (in the relative error bounded compression mode) followed by Shuffle Zstandard; 

 Digit Rounding followed by Shuffle Zstandard. 

Bit Grooming and Digit Rounding have been configured on a per variable basis to keep the precision required by the 30 

scientists on each variable. 
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It was not possible to evaluate the compression time needed to compress the datasets using the Digit Rounding algorithm 

because h5repack only allows defining filters parameters for a small number of variables. The way around to compute the 

compression ratio has been to process each variable one after the other. Nevertheless, we observed similar speeds for the 

compression/decompression of the largest variable of this dataset using Bit Grooming algorithm in the relative error bounded 

mode or the Digit Rounding algorithm. 5 

The results for the compression of the simplified simulated SWOT L2 pixel cloud product are provided in Table 9. 

Compared to the SWOT prototype baseline compression, Zstandard increases more than 5 times the compression speed 

while offering similar compression ratio. The use of Bit Grooming in the absolute or relative error bounded mode, or the use 

of the Digit Rounding algorithm, increases the compression ratio by more than 30%, but divides by more than 3 the 

compression speed. The decompression speeds are similar for all solutions. Our recommendation for the compression of this 10 

dataset is thus to use of Shuffle and Zstandard in lossless mode to achieve very high compression speed, or either the bit-

grooming or the Digit Rounding algorithm to achieve slightly higher compression ratio at the price of lower compression 

speed. 

The results for the compression of the representative SWOT L2 pixel cloud product are provided in Table 10. 

Compared to Deflate, Zstandard increases more than 2.5 times the compression speed while offering similar compression 15 

ratio. The use of the Bit Grooming algorithm in the absolute error-bounded mode increases more than 2 times the 

compression ratio but reduces the compression speed. The compression ratios obtained in the relative error bounded mode, 

either with the Bit Grooming algorithm or the Digit Rounding algorithms, are not as high. The decompression speeds are 

similar for all solutions. Our recommendation for the compression of this dataset is thus to use the Bit Grooming algorithm 

in the absolute error bounded mode to achieve high compression, at the price of a lower compression speed than the lossless 20 

solutions, considering that for SWOT product size is a driver, and considering the ration between compression time and 

processing time. 

6 Conclusions 

We have studied the performance of lossless and lossy compression algorithms both on synthetic datasets and on realistic 

simulated datasets of future scientific satellites. The compression methods have been executed using NetCDF-4 and HDF5 25 

tools. 

It has been shown that for the lossless compression of scientific dataset the preprocessing by Shuffle of Bitshuffle is very 

helpful to increase the compression performance. The compression level options of Zstandard or Deflate have lower impacts 

on the compression ratio achieved but can significantly reduce the compression speed. Low compression levels are thus good 

choices to achieve high compression speed with satisfactory compression ratio. Zstandard can provide similar higher 30 

compression speed than Deflate or LZ4 with similar compression ratios. However, on the three dimensional dataset, we have 

observed that Zstandard compression and decompression speeds are lower than the one obtained with Deflate. Depending on 
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the dataset, Deflate and Zstandard are thus both reasonable options to consider but always with Shuffle or Bitshuffle 

preprocessing step. 

Lossy compression of scientific datasets can be achieved in two different error bounded modes: the absolute and relative 

error bounded mode. Sz and Bit Grooming algorithms can work in both modes. In the absolute error bounded mode, both Sz 

and Bit Grooming algorithms are competitive. Bit Grooming tends to provide higher SNR than Sz at low compression ratios 5 

while Sz tends to provide higher SNR than Bit Grooming at higher compression ratios. 

In the relative error bounded mode, the Digit Rounding algorithm introduced in this work provides higher compression 

efficiency than the Bit Grooming algorithm from which it derives. Moreover, it provides higher SNR than Sz in most cases. 

Extends to this work could be to modify the implementation of the HDF5 filter for Sz to allow configuring the data loss on a 

per variable basis or  to adapt the NetCDF-4 library to allow the activation of other filters, not only Shuffle and deflate. 10 

7 Code and data availability 

The Digit Rounding software source code and the data are currently only available upon request to Xavier Delaunay 

(xavier.delaunay@thalesgroup.com) or to Flavien Gouillon (Flavien.Gouillon@cnes.fr). 
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Table 1: Representation of the value of π in IEEE-754 single-precision binary representation (first row) and results preserving 4 

significant digits with the Bit Grooming algorithm (second row) or preserving 12 mantissa bits (third row). 

Sign Exponent Mantissa Decimal Notes 

0 10000000 10010010000111111011011 3.14159265 Exact value of π 

0 10000000 10010010000111100000000 3.14154053 Result of the Bit Grooming with nsd = 4, 15 mantissa bits 

preserved 

0 10000000 10010010000100000000000 3.14111328 Result preserving only 12 mantissa bits, allows preserving 

the 4 significant digits of π. 

 

 5 

Table 2: The Digit Rounding algorithm. 

Input: 

{𝑠𝑖}𝑖=0
𝑛  input sequence of samples 

Output: 

{�̃�𝑖}𝑖=0
𝑛  output sequence of quantized samples 

Parameter: 

𝑛𝑠𝑑 number of significant digits preserved in each sample 

Algorithm: 

For each input sample 𝑠𝑖 in{𝑠𝑖}𝑖=0
𝑛 : 

1. Compute the number 𝑑𝑖 of significant digit number of digits before the decimal separator in the sample 

value 𝑠𝑖 following in Eq. (7) 

2. Compute the quantization factor power 𝑝𝑖  following in Eq. (6) 

3. Compute the quantization factor 𝑞𝑖 as in Eq. (5) 

4. Compute the quantized value �̃�𝑖 as in Eq. (1) 

 

 

Table 3: Representation of the value of π in IEEE-754 single-precision binary representation (first row) and results preserving 4 

significant digits with the Digit Rounding algorithm (second row). 10 

Sign Exponent Mantissa Decimal Notes 

0 10000000 10010010000111111011011 3.14159265 Exact value of π 

0 10000000 10010010000100000000000 3.14111328 Result of the Digit Rounding algorithm with nsd = 4 
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Table 4: Command lines and parameters used for the compression with h5repack 

Compression algorithms Command line Parameters 

Deflate --filter=var:GZIP=dfl_lvl dfl_lvl from 1 to 9 

Shuffle + Deflate --filter=var:SHUF --filter=var:GZIP=dfl_lvl dfl_lvl from 1 to 9 

Zstandard --filter=var:UD=32015,1,zstd_lvl zstd_lvl from 1 to 22 

Shuffle + Zstandard --filter=var:SHUF --filter=var:UD=32015,1,zstd_lvl zstd_lvl from 1 to 22 

Bitshuffle + Zstandard --filter=var:UD=32008,1,1048576 --filter=var:UD=32015,1,zstd_lvl zstd_lvl from 1 to 22 

Bitshuffle + LZ4 --filter=var:UD=32008,2,1048576,2 - 

 

 

Table 5: Compression performance of Sz and Bit Grooming in the absolute error bounded compression mode on the datasets s1 5 
and s3D. 

 Dataset s1 Dataset s3D 

Algorithm Sz (absErrBound = 0.5) + 

Zstd (zstd_lvl = 5) 

Bit Grooming 

(dsd = .0) + Shuffle + 

Zstd (zstd_lvl = 5) 

Sz (absErrBound = 0.5) + 

Zstd (zstd_lvl = 5) 

Bit Grooming 

(dsd = .0) + Shuffle + 

Zstd (zstd_lvl = 5) 

Maximum 

absolute error 

0.5 0.5 0.5 0.5 

SNR (dB) 30.834 30.830 45.9687 45.9689 

Compression 

ratio 

5.71 8.98 8.69 7.34 

Compression 

speed (MB/s) 

50 51 25 16 

 

 

Table 6: Compression performance of Sz, Bit Grooming and Digit Rounding in the relative error bounded compression mode on 

the dataset s1. 10 

Algorithm Sz Bit Grooming Digit Rounding 

Parameter pw_relBoundRatio = 0.00424 nsd = 3 nsd = 3 

Maximum absolute error 0.5 0.0312 0.0325 

SNR (dB) 30.83 54.93 54.92 

Compression ratio 5.68 3.18 3.80 
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Compression speed (MB/s) 32 37 40 

 

 

Table 7: Compression performance of Sz, Bit Grooming and Digit Rounding in the relative error bounded compression mode on 

the dataset s3D. 

Algorithm Sz Bit Grooming 
Digit 

Rounding 

Parameter pw_relBoundRatio = 0.00345 pw_relBoundRatio = 0.0069 nsd = 3 nsd = 2 nsd = 3 

Maximum absolute error 0.256 0.5 0.0625 0.5 0.5 

SNR (dB) 68.06 62.02 73.96 55.89 63.94 

Compression ratio 2.05 2.24 2.45 3.30 2.67 

Compression speed (MB/s) 18 19 14 15 19 

 5 

 

Table 8: Performance for the compression of CFOSAT L1A products. 

Compression method 
Compression 

ratio 

Compression 

speed (MB/s) 

Decompression 

speed (MB/s) 

Baseline CFOSAT compression method: 

CFOSAT “Clipping” + Shuffle + Deflate (3) 

5.21 51 (*) 68 

CFOSAT “Clipping” + Shuffle + Zstandard (1) 5.16 75 (*) 67 

CFOSAT “Clipping” + Shuffle + Zstandard (2) 5.38 72 (*) 78 

Bit Grooming (abs) + Shuffle + Deflate (3) 11.39 27 74 

Bit Grooming (abs) + Shuffle + Zstandard (2) 12.68 35 81 

(*) The time for the CFOSAT “Clipping” method is not taken into account into the compression speed computation. 

 

 10 

Table 9: Performance for the compression of the simplified simulated SWOT L2_HR_PIXC pixel cloud product. 

Compression method 
Compression 

ratio 

Compression 

speed (MB/s) 

Decompression 

speed (MB/s) 

Baseline SWOT compression method: 

Shuffle + Deflate (4) 

14.37 107 92 

Shuffle + Zstandard (1) 14.26 583 97 

Shuffle + Zstandard (2) 14.36 589 97 
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Bit Grooming (abs) + Shuffle + Deflate (4) 20.58 34 85 

Bit Grooming (abs) + Shuffle + Zstandard (2) 20.66 79 108 

Bit Grooming (rel) + Shuffle + Zstandard (2) 18.87 50 101 

Digit Rounding + Shuffle + Zstandard (2) 21.04 N/A N/A 

 

 

Table 10: Performance for the compression of the representative SWOT L2 pixel cloud product. 

Compression method 
Compression 

ratio 

Compression 

speed (MB/s) 

Decompression 

speed (MB/s) 

Shuffle + Deflate (2) 1.98 52 83 

Shuffle + Zstandard (1) 1.98 142 91 

Shuffle + Zstandard (2) 1.99 139 90 

Bit Grooming (abs) + Shuffle + Deflate (4) 4.42 40 98 

Bit Grooming (abs) + Shuffle + Zstandard (2) 4.4 65 104 

Bit Grooming (rel) + Shuffle + Zstandard (2) 2.56 43 93 

Digit Rounding + Shuffle + Zstandard (2) 2.85 (*) N/A (*) N/A (*) 

 

 5 
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Figure 1: Compression chain in which appears data reduction, pre-processing and lossless coding steps. 

 

 5 

Figure 2: First 100 samples of the dataset s_1 (left) and histogram of the sample values (right). 
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Figure 3: Representation of the first slices 𝒔𝟑𝑫(𝒊𝟏, 𝒊𝟐, 𝟎) (left), and histogram of the sample values (right). 

 

Figure 4: Performance obtained for the lossless compression of s1 dataset with Deflate (dflt), Zstandard (zstd), Shuffle and Deflate 

(shuf+dflt), Shuffle and Zstandard (shuf+zstd), Bitshuffle and Zstandard (bshuf+zstd), Bitshuffle LZ4 (bshuf+lz4). Compression 5 
ratios (top), Compression speeds (bottom-left), decompression speeds (bottom-right). 
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Figure 5: Performance obtained for the lossless compression of s3D dataset with Deflate (dflt), Zstandard (zstd), Shuffle and 

Deflate (shuf+dflt), Shuffle and Zstandard (shuf+zstd), Bitshuffle and Zstandard (bshuf+zstd), Bitshuffle LZ4 (bshuf+lz4). 

Compression ratios (top), Compression speeds (bottom-left), decompression speeds (bottom-right). 

 5 

 

Figure 6: Comparison of the compression performance (SNR vs. compression ratio) of Sz and Bit Grooming algorithms in the 

absolute error-bounded compression mode. Compression performance obtained on s1 dataset (left) and s3D dataset (right). 
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Figure 7: Comparison of the compression performance (SNR vs. compression ratio) of Sz, Bit Grooming and Digit Rounding 

algorithms in the relative error-bounded compression mode. Compression performance obtained on s1 dataset (left) and s3D 

dataset (right). 

 5 

Figure 8: Compression ratio as a function of the user specified number of significant digit (nsd) for Sz, Bit Grooming and Digit 

Rounding algorithm. Compression performance obtained on s1 dataset (left) and s3D dataset (right). 
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