
Dear Editor,

We have included in this document the review Charlie Zender sent by e-mail. We thank the three

referees for the time spent on reviewing this manuscript again and for their suggestions. Please, find

below a detailed point-by-point reply. Referee’s comments are in blue italic; our answers are in black

and our changes to the manuscript in green.

Reply to Anonymous Referee #3 (Report #1)

We are grateful to the referee for her/his constructive and thorough criticism and suggestions to our

manuscript.

The paper studied the performance of a series of lossless and lossy compression methods/filters that

can be plugged in NetCDF-4/HDF5 data for scientific floating-point datasets. They also proposed a

Digital Rounding algorithm and compare it with Sz and Bit Grooming algorithm on two synthetic

datasets and two real-world datasets.

Comments:

- Introduction: as mentioned in this section, FPZIP and ZFP are efficient and effective lossy

compressors. Is there any reason why didn't evaluate them? I noticed that referee 1 also asked this

same question. Actually, FPZIP is not only lossless but also lossy compression with precision mode. I

suggest testing ZFP/FPZIP or briefly explain why FPZIP/ZFP are opted out (e.g., worse than Sz).

Indeed, (Tao et al, 2017a) reported better rate-distortion results for Sz than for FPZIP and ZFP. This is

why we chose to evaluate the Sz algorithm rather than the other two. We now clarify this is section 2.

We have added the following sentence:

“We chose to evaluate the Sz algorithm because it provides better rate-distortion results than FPZIP

and ZFP, see (Tao et al, 2017a).”

- Compression algorithms: the difference of Decimal Rounding and Digit Rounding algorithm seems

blurred to me. Can you explain more details about the Decimal Rounding algorithm?

The difference relies in the quantization factor. The Decimal Rounding algorithm uses the same

quantization factor to process all the samples. The Digit Rounding algorithm adapts the quantization

factor to each sample value. This has been clarified in section 3:

“The difference with the Decimal Rounding algorithm and with Sz’s error-controlled quantization is that

the Digit Rounding algorithm adapts the quantization factor to each sample value to achieve a

specified relative precision of nsd digits.”

- Application: is there any reason/motivation to compress CFOSAT and SWOT datasets? It's better to

explicitly describe the (projected) data volumes that will be produced by these missions.

Thank you for your comment. We have added a part with data volumes for each mission to better

described the datasets and better understand the objectives/motivation to compress CFOSAT and

SWOT datasets. In section 6.1:

“By the end of the mission in 2023/2024, CFOSAT will have generated about 350TB of data.

Moreover, during routine phase, the users should have access to the data less three hours after their

acquisition. The I/O and compression performance are thus critical.”

And in section 6.2:

“The SWOT mission will generate about 20PB of data during the mission lifetime. Compression

algorithms and performance are thus very critical. The mission center is currently defining files format

and structure, and thus in this section we evaluated different compression options.”

- Conclusion: This statement seems unconvincing to me: "Sz provides higher compression ratios than

Decimal Rounding on most datasets. However, for the compression of real scientific datasets, its

usability is reduced by the fact that only one error bound can be set for all the variables composing the

dataset. It cannot be easily configured to achieve the precision required variable per variable."

Actually, Sz provides value-range-based relative error bound, it can apply different absolute error

bounds to different variables in the dataset based on the value range of each variable. Please

explicitly explain if this mode can satisfy your demand.

The value-range-based relative error bound option (relBoundRatio) offered by Sz is different of the

absolute error bound (absErrBound) and is not applicable to the absolute error-bounded mode. The

value-range-based relative error bound limits the decompression errors by considering the global data

value range size, whereas the absolute error bound limits the errors to an absolute bound.

An example is provided in Sz User Guide to better understand the value-range-based relative error

bound: “Suppose relBoundRatio is set to 0.01, and the data set is {100,101,102,103,104,...,110}. In

this case, the maximum value is 110 and the minimum is 100. So, the global value range size is 110-

100=10, and the error bound will be 10*0.01=0.1, from the perspective of "relBoundRatio".”

Moreover, two variables in the dataset may have comparable value ranges, but users may require a

higher precision for one variable and thus different absolute error bounds.

Nevertheless, the text has been slightly modified:

“However for the compression of netCDF/HDF5 datasets composed of several variables, its usability is

reduced by the fact that only one absolute error bound can be set for all the variables. It cannot be

easily configured to achieve the precision required variable per variable.”

- There are still some grammatical issues that need to be fixed, e.g., "Sz provide" -> "Sz provides",

"the compressions obtained" -> "the compression ratios obtained", etc.

Thank you for finding these issues.

They have been corrected.

- The major concern of this paper is the generality and novelty of Digital Rounding algorithm. Based on

the experiments, it looks Digital Rounding algorithm is comparatively as good as other approaches

and better in some aspects, but the evaluation is only conducted on two datasets/applications. Also,

this algorithm looks very similar to Sz's linearly scaling quantization. If not, the paper should explicitly

explain the difference.

The error-controlled quantization described in (Tao et al, 2017a) is a linear quantization of the Sz’s

“first-phase prediction” error. The similarity with the Digit Rounding algorithm is that it the quantization

error is bounded. The main difference is that in the case of the Sz’s error-controlled quantization, the

error bound is a fixed value (both in the absolute error bounded mode and in the value-range-based

relative error bounded mode) whereas in the Digit Rounding algorithm, the quantization factor

depends on each sample value to achieve the specified relative precision of nsd digits. The following

explanation has been added in the text:

“The Digit Rounding algorithm […] is also similar to Sz’s error-controlled quantization (Tao et al,

2017a) in the sense that the quantization error is bounded. The difference with the Decimal Rounding

algorithm and with Sz’s error-controlled quantization is that the Digit Rounding algorithm adapts the

quantization factor to each sample value to achieve a specified relative precision of nsd digits.”

Reply to Anonymous Referee #1 (Report #2)

We are grateful to the referee for her/his constructive and thorough criticism and suggestions to our

manuscript.

The authors clearly put a lot of effort into this revision, and the quality of the manuscript has greatly

improved. I am overall satisfied with their responses to my comments and suggestions. In particular,

the additional details on the algorithms and test data are much appreciated as is the improvement in

focus. The contributions have also been clarified. Finally, I'll note that the writing quality is very much

improved for this revision. For subsequent manuscripts, I would encourage the authors to aim for this

higher quality of writing in the initial submission.

A few minor issues:

p.3, line 13: "Both algorithms..." - which two are being referred to? Or is it to all three (in which case, it

should by "All three algorithms...")

This has been replaced by:

“LZ77 and Huffman coding exploit different types of redundancies …”

p.3, line 29: "... to degrade the least significant ..." This use of "degrade" is a bit awkward - consider

rephrasing - maybe "to remove the least significant"

It has been reworded as you have suggested:

“The Bit Grooming algorithm creates a bitmask to remove the least significant bits of the mantissa of

IEEE 754 floating-point data.”

p.4, line 29: "consists in" => "consists of"

It has been corrected.

p. 5: Section 3 (line 16) refers to Table 3. Note that Table 3 lists mean error, mean absolute error, and

maximum absolute error. However, these metrics are not defined until Section 4. Should section 3 and

4 be switched? Or a forward reference added?

A forward reference has been added to section 4 and in the caption of Table 3:

“Table 3 provides the maximum absolute errors, the mean absolute errors and the mean errors

(defined in section 4) obtained with varying nsd values …”

“Table 3: Maximum absolute errors, mean absolute errors and mean errors of the Digit Rounding

algorithm preserving a varying number of significant digits (nsd) on an artificial dataset composed of

1,000,000 values evenly spaced over the interval [1.0, 2.0). The error metrics are defined in section 4.”

p.5: Section 3 also refers to Table 4, which uses CR -- which is not defined until Section 4. Though it

seems that in Table 4, CR is a percentage as opposed to a ratio as defined in Section 4, so this needs

to be clarified.

Clarification has been added in the caption of Table 4:

“Table 4: Comparison of the Bit Grooming and Digit Rounding algorithms for the compression of a

MERRA dataset. Shuffle and Deflate (level 1) are applied. The compression ratio (CR) is defined by

the ratio of the compressed file size over the reference data size (244.3MB) obtained with Deflate

(level 5) compression. Bit Grooming results are extracted from (Zender, 2016a).”

p.5, line 19: "...a relative error ..." I think you mean "absolute error"

You are right. We mean an absolute error here.

It has been corrected.

p.10, line 10: "compressions" => "compression ratios"

p. 13, line 27: "was configured: => "were configured"

p.13, line 34: "provides" => "provide"

p. 14, line 23: "fails achieving" => "fails to achieve"

Thank you for finding these issues.

They have all been corrected.

Reply to Charlie Zender

We are grateful to the referee for her/his constructive and thorough criticism and suggestions to our

manuscript.

First, thank you for addressing my concerns. I have never seen more changes made to a manuscript

in review! The manuscript is significantly improved and more readable.

I have two minor suggestions I hope you will incorporate:

1. NetCDF should only be capitalized when it begins a sentence. This affects the manuscript title and

dozens of instances in the body. The authoritative spelling guide to netCDF is at the bottom of this:

https://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.html

Thank you for pointing this spelling out. It has been corrected all over the manuscript.

2. The NCO/ncks commands shown in the supplementary materials could be significantly shortened

by using regular expressions for the variable names, e.g.,

 ncks --ppc incidence_.?=.5

instead of

 ncks --ppc incidence_1=.5 --ppc incidence_2=.5 --ppc incidence_3=.5 --ppc incidence_4=.5 --ppc

incidence_5=.5

Moreover, one can set a default precision and only give per-variable exceptions to that precision. Also

most people shorten --overwrite to -O because it is used so frequently.

The option --overwrite has been replaced by -O in all the calls to ncks that are given in the

supplement. The calls to ncks for the compression of COSAT and SWOT datasets given in the

supplement have been shorten using the default precision option “--pcc default=” and “.?” for regular

expressions in the variable names:

ncks -O -4 -L 1 --ppc default=.3 --ppc cycle_duration=.7 --ppc echo_l1_0.?=.12 \

--ppc elevation_.?=.5 --ppc incidence_.?=.5 --ppc ly=.2 --ppc mispointing=.14 \

--ppc pri=.1 --ppc pseudo_misp=.14 \

TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc \

TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500_dr.nc)

ncks -4 -L 1 -O SWOT_L2_HR_PIXC_decomp.nc SWOT_L2_HR_PIXC_bg.nc --ppc default=8 \

--ppc azimuth_index=4 --ppc classification=3 --ppc cross_track=15 \

--ppc dheight_.?=6 --ppc dlook_dphase_.?=6 --ppc dphase=6 \

--ppc dry_tropo_range_correction=4 --ppc height=6 --ppc ifgram_imag=15 \

--ppc ifgram_real=15 --ppc illumination_time=15 --ppc instrument_.?=6 \

--ppc ionosphere_range_correction=6 --ppc latitude=15 --ppc longitude=15 \

--ppc num_rare_looks=2 --ppc phase_screen=6 --ppc pixel_area=11 --ppc range_index=4

\

--ppc sensor_s=11 --ppc solid_earth_tide_height_correction=4 \

--ppc wet_tropo_range_correction=4 --ppc xover_roll_correction=4

ncks -4 -L 1 -O pixel_cloud_decomp.nc –o pixel_cloud_bg.nc --ppc default=8 \

--ppc azimuth_index=4 --ppc classification=3 --ppc cross_track=15 \

--ppc dlatitude_dphase=5 --ppc dlongitude_dphase=5 --ppc height=6 --ppc ifgram=7 \

--ppc illumination_time=15 --ppc latitude=15 --ppc longitude=15 \

--ppc num_med_looks=3 --ppc num_rare_looks=2 --ppc phase_noise_std=7 \

--ppc pixel_area=11 --ppc power_left=7 --ppc range_index=4 --ppc regions=7 \

--ppc sigma0=7 --ppc x_factor.?=7

1

Evaluation of lossless and lossy algorithms for the compression of

scientific datasets in NetCDFnetCDF-4 or HDF5 files

Xavier Delaunay
1
, Aurélie Courtois

1
, Flavien Gouillon

2

1
Thales, 290 allée du Lac, 31670 Labège, France

2
CNES, Centre Spatial de Toulouse, 18 avenue Edouard Belin, 31401 Toulouse, France 5

Correspondence to: Xavier Delaunay (xavier.delaunay@thalesgroup.com)

Abstract. The increasing volume of scientific datasets requires the use of compression to reduce data storage and

transmission costs, especially for the oceanographic or meteorological datasets generated by Earth observation mission

ground segments. These data are mostly produced in NetCDFnetCDF files. Indeed, the NetCDFnetCDF-4/HDF5 file formats

are widely used throughout the global scientific community because of the useful features they offer. HDF5 in particular 10

offers a dynamically loaded filter plugin so that users can write compression/decompression filters, for example, and process

the data before reading or writing them to disk. This study evaluates lossy and lossless compression/decompression methods

through NetCDFnetCDF-4 and HDF5 tools on analytical and real scientific floating-point datasets. We also introduce the

Digit Rounding algorithm, a new relative error-bounded data reduction method inspired by the Bit Grooming algorithm. The

Digit Rounding algorithm offers a high compression ratio while keeping a given number of significant digits in the dataset. It 15

achieves a higher compression ratio than the Bit Grooming algorithm with slightly lower compression speed.

1 Introduction

Ground segments processing scientific mission data are facing challenges due to the ever-increasing resolution of on-board

instruments and the volume of data to be processed, stored and transmitted. This is the case for oceanographic and

meteorological missions, for instance. Earth observation mission ground segments produce very large files mostly in 20

NetCDFnetCDF format, which is standard in the oceanography field and widely used by the meteorological community.

This file format is widely used throughout the global scientific community because of its useful features. The fourth version

of the NetCDFnetCDF library, denoted NetCDFnetCDF-4/HDF5 (as it is based on the HDF5 layer), offers ‘Deflate’ and

‘Shuffle’ algorithms as native compression features. However, the compression ratio achieved does not fully meet ground

processing requirements, which are to significantly reduce the storage and dissemination cost as well as the I/O times 25

between two modules in the processing chain.

In response to the ever-increasing volume of data, scientists are keen to compress data. However, they have certain

requirements: both compression and decompression have to be fast. Lossy compression is acceptable only if the compression

ratios are higher than those of lossless algorithms and if the precision, or data loss, can be controlled. There is a trade-off

2

between the data volume and the accuracy of the compressed data. Nevertheless, scientists can accept small losses if they

remain below the data’s noise level. Noise is difficult to compress and of little interest to scientists, so they do not consider

data degradation that remains under the noise level as a loss (Baker et al., 2016). In order to increase the compression ratio

within the processing chain, ‘clipping’ methods may be used to degrade the data before compression. These methods

increase the compression ratio by removing the least significant digits in the data. Indeed, at some level, these least 5

significant digits may not be scientifically meaningful in datasets corrupted by noise.

This paper studies compression and clipping methods that can be applied to scientific datasets in order to maximize the

compression ratio while preserving scientific data content and numerical accuracy. It focuses on methods that can be applied

to scientific datasets, i.e. vectors or matrices of floating-point numbers. First, lossless compression algorithms can be applied

to any kind of data. The standard is the ‘Deflate’ algorithm (Deutsch, 1996) native in NetCDFnetCDF-4/HDF5 libraries. It is 10

widely used in compression tools such as zip, gzip, and zlib libraries, and has become a benchmark for lossless data

compression. Recently, alternative lossless compression algorithms have emerged. These include Google Snappy, LZ4

(Collet, 2013) or Zstandard (Collet and Turner, 2016). To achieve faster compression than the Deflate algorithm, none of

these algorithms use Huffman coding. Second, preprocessing methods such as Shuffle, available in HDF5, or Bitshuffle

(Masui et al., 2015) are used to optimize lossless compression by rearranging the data bytes or bits into a “more 15

compressible” order. Third, some lossy/lossless compression algorithms, such as FPZIP (Lindstrom and Isenburg, 2006),

ZFP (Lindstrom, 2014) or Sz (Tao et al, 2017a), are specifically designed for scientific data—and in particular floating-point

data—and can control data loss. Fourth, data reduction methods such as Linear Packing (Caron, 2014a), Layer Packing

(Silver and Zender, 2017), Bit Shaving (Caron, 2014b), and Bit Grooming (Zender, 2016a) lose some data content without

necessarily reducing its volume. Preprocessing methods and lossless compression can then be applied to obtain a higher 20

compression ratio.

This paper focuses on compression methods implemented for NetCDFnetCDF-4 or HDF5 files. These scientific file formats

are widespread among the oceanographic and meteorological communities. HDF5 offers a dynamically loaded filter plugin

that allows users to write compression/decompression filters (among others), and to process data before reading or writing

them to disk. Consequently, many compression/decompression filters—such as Bitshuffle, Zstandard, LZ4, and Sz—have 25

been implemented by members of the HDF5 user community and are freely available. The NetCDFnetCDF Operator toolkit

(NCO) (Zender, 2016b) also offers some compression features, such as Bit Shaving, Decimal Rounding and Bit Grooming.

The rest of this paper is divided into five sections. Section 2 presents the lossless and lossy compression schemes for

scientific floating-point datasets. Section 3 introduces the Digit Rounding algorithm, which is an improvement of the Bit

Grooming algorithm that optimizes the number of mantissa bits preserved. Section 4 defines the performance metrics used in 30

this paper. Section 5 describes the performance assessment of a selection of lossless and lossy compression methods on

synthetic datasets. It presents the datasets and compression results before making some recommendations. Section 6 provides

some compression results obtained with real CFOSAT and SWOT datasets. Finally, section 7 provides our conclusions.

3

2 Compression algorithms

Compression schemes for scientific floating-point datasets usually entail several steps: data reduction, preprocessing, and

lossless coding. These three steps can be chained as illustrated in Fig. 1. The lossless coding step is reversible. It does not

degrade the data while reducing its volume. It can be implemented by lossless compression algorithms such as Deflate,

Snappy, LZ4 or Zstandard. The preprocessing step is also reversible. It rearranges the data bytes or bits to enhance lossless 5

coding efficiency. It can be implemented by algorithms such as Shuffle or Bitshuffle. The data reduction step is not

reversible because it entails data losses. The goal is to remove irrelevant data such as noise or other scientifically

meaningless data. Data reduction can reduce data volume, depending on the algorithm used. For instance, the Linear Packing

and Sz algorithms reduce data volume, but Bit Shaving and Bit Grooming algorithms do not.

This paper evaluates lossless compression algorithms Deflate, LZ4, and Zstandard; Deflate because it is the benchmark 10

algorithm, LZ4 because it is a widely-used, very-high-speed compressor, and Zstandard because it provides better results

than Deflate both in terms of compression ratios and of compression/decompression speeds. The Deflate algorithm uses

LZ77 dictionary coding (Ziv and Lempel, 1977) and Huffman entropy coding (Huffman, 1952). Both methodsLZ77 and

Huffman coding exploit different types of redundancies to enable Deflate to achieve high compression ratios. However, the

computational cost of the Huffman coder is high and makes Deflate compression rather slow. LZ4 is a dictionary coding 15

algorithm designed to provide high compression/decompression speeds rather than a high compression ratio. It does this

without an entropy coder. Zstandard is a fast lossless compressor offering high compression ratios. It makes use of dictionary

coding (repcode modeling) and a finite-state entropy coder (tANS) (Duda, 2013). It offers a compression ratio similar to that

of Deflate coupled with high compression/decompression speeds.

This paper also evaluates Shuffle and Bitshuffle. The Shuffle groups all the data samples’ first bytes together, all the second 20

bytes together, etc. In smooth datasets, or datasets with highly correlated consecutive sample values, this rearrangement

creates long runs of similar bytes, improving the dataset’s compression. Bitshuffle extends the concept of Shuffle to the bit

level by grouping together all the data samples’ first bits, second bits, etc.

Last, we evaluate the lossy compression algorithms Sz, Decimal Rounding and Bit Grooming. We chose to evaluate the Sz

algorithm because it provides better rate-distortion results than FPZIP and ZFP, see (Tao et al, 2017a). The Sz algorithm 25

predicts data samples using an n-layers prediction model and performs an error-control quantization of the data before

variable length encoding. Unpredictable data samples are encoded after a binary representation analysis: the insignificant bits

are truncated after computation of the smallest number of mantissa bits required to achieve the specified error bound. The

Decimal Rounding algorithm achieves a uniform scalar quantization of the data. The quantization step is a power of 2 pre-

computed so as to preserve a specific number of decimal digits. The Bit Grooming algorithm creates a bitmask to degrade 30

remove the least significant bits of the mantissa of IEEE 754 floating-point data. Given a specified total number of

significant digits, !"# , the Bit Grooming algorithm tabulates the number of mantissa bits that has to be preserved to

guarantee the specified precision of !"# digits: to guarantee 1-6 digits of precision, Bit Grooming must retain 5, 8, 11, 15,

4

18, and 21 mantissa bits respectively. The advantage is that the number of mantissa bits that must be preserved is computed

very quickly. The disadvantage is that this computation is not optimal. In many cases, more mantissa bits are preserved than

strictly necessary. Table 1 provides an example using the value of π with a specified precision of !"# = 4 digits. This table

reproduces some of the results from Table 1 in (Zender, 2016a). The Bit Grooming algorithm preserves 15 mantissa bits.

Table 1 shows that only 12 bits were actually necessary. Optimizing the number of mantissa bits preserved has a favorable 5

impact on the compression ratios since it allows more bits to be zeroed, thus creating longer sequences of zero bits. In the

next section, we propose the Digit Rounding algorithm to overcome this limitation of the Bit Grooming algorithm.

3 The Digit Rounding algorithm

The Digit Rounding algorithm is similar to the Decimal Rounding algorithm in the sense that it computes a quantization

factor q, which is a power of 2, in order to set bits to zero in the binary representation of the quantized floating-point value. It 10

is also similar to Sz’s error-controlled quantization (Tao et al, 2017a) in the sense that the quantization error is bounded. The

difference with the Decimal Rounding algorithm and with Sz’s error-controlled quantization is that the Digit Rounding

algorithmBut it adapts the quantization factor to each sample value to achieve a specified relative precision of nsd digits.

The Digit Rounding algorithm uses uniform scalar quantization with reconstruction at the bin center:

"$% = sign("%) × &'|*+|,+ - . 0/51 × 2% (1) 15

where "$% is the quantized value of sample value "%. The quantization error is bounded by:

|"% 3 "$%| 6 2%78 (2)

The number of digits #% before the decimal separator in value9"% is:

#% = :log;<|"%| . >? (3)

We want to preserve !"# significant digits of sample value ". This is approximately equivalent to having a rounding error of 20

less than half the last tenth digit preserved. The quantization error shall thus be lower than or equal to:

|"% 3 "$%| 6 0/5 × >0@+AB*@ (4)

This condition guarantees that the Digit Rounding algorithm always preserves a relative error lower than or equal to half the

value of the least significant digit. Combining Eq. (2) and Eq. (4), we look for the highest quantization factor 2% such that:

2%78 6 0/5 × >0@+AB*@ or log;<(2%) 6 #% 3 !"# 25

Moreover, in order to lower the computational cost and increase compression efficiency, we seek a quantization factor that is

a power of two. This allows bit-masking instead of division, and creates sequences of zero bits:

2% = 8C+ (5)

We thus look for the greatest integer D% such that9D% 6 (#% 3 !"#)9logE>0. Finally, we take value D% such that:

D% = :(#% 3 !"#)9logE>0? (6) 30

5

The log computation in Eq. (3) is the more computationally intensive, but optimization is possible because only the integer

part of the result is useful. The optimization consists in of computing the number of digits before decimal separator # from

binary exponent9F% and mantissa G% of value9"% , which in binary representation is written:

"% = sign("%) × 8H+ ×G% (7)

The mantissa G% is a number between 0.5 and 1. Hence, using Eq. (3) we obtain: 5

#% = :log;<(8H+ ×G%)? . > or #% = :F% log;<(8) . log;<(G%)? . >

The log;<(G%) value is tabulated. Only 5 tabulated values are used in our implementation, enough to provide a good

precision. The tabulated values v for log;<(G%) are such that I 6 log;<(G%). They are provided in the Supplement. Number

#% of significant digits before the decimal separator in sample value9"% is thus approximated with the following equation:

#% J :F% log;<(8) . I? . > (8) 10

This computation slightly underestimates the values for #% but provides a more conservative quantization, guaranteeing the

specified number of significant digits. The optimization slightly decreases the achievable compression ratios in exchange for

a much higher compression speed.

The Digit Rounding algorithm is summarized in Fig. 2. We have developed an HDF5 dynamically loaded filter plugin so as

to apply the Digit Rounding algorithm to NetCDFnetCDF-4 or HDF5 datasets. It should be noted that data values rounded 15

by the Digit Rounding algorithm can be read directly: there is no reverse operation to Digit Rounding, and users do not need

any software to read the rounded data. Table 2 provides the results of the Digit Rounding algorithm on the value of π with

specified precisions !"# varying from 1 to 8 digits. It can be compared to the Bit Grooming results provided in Table 2 in

(Zender, 2016a). For a specified precision of !"# = 4 digits, the Digit Rounding algorithm preserves 11 bits in the mantissa

and sets the 12
th

 bit to 1. Compared to the Bit Grooming algorithm, 3 more bits have been set to 0. Table 3 provides the 20

maximum absolute errors, the mean absolute errors and the mean errors (defined in section 4) obtained with varying !"#

values on an artificial dataset composed of 1,000,000 values evenly spaced over the interval [1.0, 2.0). This is the same

artificial dataset used in Table 3 in (Zender, 2016a). It shows that Digit Rounding always preserves a relativean absolute

error lower than or equal to half the value of the least significant digit, i.e. |"% 3 "$%| 6 0/5 × >0@+AB*@. We compare the

compression ratio obtained with the Digit Rounding algorithm to that obtained with the Bit Grooming algorithm for the same 25

meteorological data from MERRA re-analysis studied in (Zender, 2016a). Table 4 reports the Bit Grooming results extracted

from Table 6 in (Zender, 2016a) and provides the results of the Digit Rounding algorithm. The same lossless compression is

employed: Shuffle and Deflate with level 1 compression. From !"# = K to !"# = 5, Digit Rounding and Bit Grooming

provide similar compression ratios with a slight advantage for the Bit Grooming algorithm. However, from !"# = 4 to

!"# = >, the compression ratios obtained with Digit Rounding are clearly better. 30

The following section first defines the various performance metrics used hereinafter, then studies the performance of various

lossless and lossy compression algorithms—including Digit Rounding—when applied to both synthetic and real scientific

datasets.

6

4 Performance metrics

One of the features required for lossy scientific data compression is control over the amount of loss, or the accuracy, of the

compressed data. Depending on the data, this accuracy can be expressed by an absolute or a relative error bound. The

maximum absolute error is defined by FLM*NLO = max|"$% 3 "% 9| where "% are the sample values of the original dataset and "$% are

the sample values of the compressed dataset. An absolute error bound specifies the maximum absolute error, FLM*, allowed 5

between any sample of the original and compressed data: FLM*NLO 6 FLM*. The maximum relative error is defined by FPHQNLO =
max R*$+A*+*+ R. A relative error bound specifies the maximum relative error, FPHQ, allowed between any sample of the original

and compressed data: FPHQNLO 6 FPHQ. The absolute error bound can be useful for data with a single dynamic range of interest.

The relative error bound can be useful for data where both very low and very high values are pertinent.

A near-nearly exhaustive list of metrics for assessing the performance of lossy compression of scientific datasets is provided 10

in (Tao et al., 2017b). For the sake of conciseness, only a few of them are presented in this paper. The following metrics

were chosen for this study:

· compression ratio ST(U) to evaluate the reduction in size as a result of the compression. It is defined by the ratio of

the original file size over the compressed file size:

ST(U) = VWXF"WYF(UZP%[)VWXF"WYF(U\ZNC)
· compression speed S](U) and decompression speed ^](U) to evaluate the speed of the compression and 15

decompression. They are defined by the ratio of the original file size over the compression or decompression time:

S](U) = VWXF"WYF(UZP%[)_\ZNC

^](U) = VWXF"WYF(UZP%[)_@H\ZNC

The compression and decompression speeds are expressed in MB/s. Those reported in this paper were obtained on a Dell

T1600 with an Intel Xeon E31225 4-core CPU at 3.1GHz, and a 4GB memory under the RedHat 6.5 (64-bit) OS with

compression and decompression run on a single core. Parallel compression has not been considered in this work.

The following metrics were chosen to assess the data degradation of the lossy compression algorithms: 20

· maximum absolute error FLM*NLO defined previously. It is used to evaluate the maximum error between the original

and compressed data;

· mean error F̀ to evaluate if any bias is introduced into the compressed data. It is defined as the mean of the

pointwise difference between the original and compressed data:

F̀ = >bc("% 39"$%)
dA;

%e<

7

· mean absolute error FLM*fffff to evaluate the mean data degradation. It is defined as the mean of the pointwise absolute

difference between the original and compressed data:

FLM*fffff = >bc|"% 39"$%|
dA;

%e<

· SNR to evaluate the signal to compression error ratio. It is defined by the ratio of the signal level over the root mean

square compression error and is expressed in decibels (dB):

]bT@h = 809log;<
j
k p>bq "%EdA;%e<
p>bq ("% 39"$%)EdA;%e< r

t

These metrics are used in the following sections to evaluate various lossless and lossy compression algorithms, including 5

Digit Rounding.

5 Performance assessment with synthetic data

5.1 Analytical datasets

Synthetic datasets "> and su^ with known statistics were generated in order to test the compression algorithms under

variable conditions. Dataset "> is a noisy sinusoid of 1 dimension with a maximum absolute value of 118. The data volume 10

of this dataset is 4MB. Dataset su^ is a noisy sinusoid pulse of 3 dimensions with a maximum absolute value of 145. The

data volume of this dataset is 512MB. The Supplement describes these datasets in greater detail.

5.2 Performance assessment of lossless compression methods

The lossless compression algorithms evaluated are Deflate and Zstandard with or without the Shuffle or Bitshuffle

preprocessing step. LZ4 is always evaluated with the Bitshuffle preprocessing step because it was imposed in the LZ4 15

implementation we used. We ran a lossless compression algorithm using the h5repack tool from the HDF5 library, version

1.8.19, Deflate implemented in zlib 1.2.11, Zstandard version 1.3.1 with the corresponding HDF5 filter available on the HDF

web portal (http://portal.hdfgroup.org/display/support/Filters), and the implementation of LZ4 and Bitshuffle in python

package Bitshuffle-0.3.4. The compression was performed by calling the h5repack tool. The Supplement provides the

command lines and options used. 20

Figures 3 and 4 provide the results obtained for the compression and decompression of dataset "> and dataset "u^

respectively. The vertical bars represent the results for different compression levels: from 1 to 9 for Deflate level dfl_lvl,

from 1 to 22 for Zstandard level zstd_lvl, and only one level for LZ4. First, it can be observed that preprocessing steps

Shuffle or Bitshuffle have a similarly favorable impact both on the compression ratio and on the compression/decompression

speeds. Second, the compression level parameters dfl_lvl and zstd_lvl have little influence on the compression ratio. 25

8

However, the compression/decompression speeds decrease as compression levels increase, particularly with Zstandard

compression levels. Third, the compression ratios obtained with Deflate and Zstandard are similar, but the compression

speeds of Zstandard at low compression levels are far higher, and the decompression speeds of Zstandard are always higher.

Fourth, Bitshuffle+LZ4 provides a slightly lower compression ratio than Shuffle+Deflate or Shuffle+Zstandard, with a

compression speeds similar to Shuffle+Deflate or Shuffle+Zstandard at low compression level parameters dfl_lvl or zstd_lvl. 5

Finally, the compression/decompression speeds obtained with Zstandard and LZ4 for the compression of dataset "u^ are

much lower than that achieved for the compression of dataset ">. Further investigations are required to understand why the

compression/decompression speeds are lower, but it might be related to HDF5 chunking.

To summarize, these results show that preprocessing by Shuffle or Bitshuffle is very helpful in increasing compression

efficiency. They also show that Zstandard can provide higher compression and decompression speeds than Deflate at low 10

compression levels. However, on the "u^ dataset, we observed that Zstandard compression and decompression speeds are

lower than those obtained with Deflate. Therefore, Deflate and Zstandard are both options to consider for the lossless

compression of scientific datasets as long as they follow the Shuffle or Bitshuffle preprocessing step.

5.3 Performance assessment of lossy compression methods

The lossy compression algorithms evaluated are error-bounded compression algorithms. They can constrain either the 15

maximum absolute error or the maximum relative error, or both. The compression algorithms evaluated are Sz, Decimal

Rounding, Bit Grooming and the Digit Rounding algorithm introduced in this paper. The Sz compression algorithm works in

both error-bounded modes. Decimal Rounding allows a specific number of decimal digits to be preserved. In this sense, it

bounds the maximum absolute error. Bit Grooming allows a specific number of significant digits to be preserved. In this

sense, it bounds the maximum relative error. Like the Bit Grooming algorithm, Digit Rounding preserves a specific number 20

of significant digits and bounds the maximum relative error.

We ran Sz version 2.1.1 using the h5repack tool and Sz HDF5 filter plugin, applying the Deflate lossless compression

algorithm integrated in the Sz software. We ran the Decimal Rounding and Bit Grooming algorithms using NCO version

4.7.9, applying Shuffle and Deflate compression in the call to the NCO tool. Last, we ran the Digit Rounding algorithm

using the h5repack tool and custom implantation of the algorithm in an HDF5 plugin filter. The Supplement provides the 25

command lines and options used.

5.3.1 Performance comparison in absolute error-bounded compression mode

This section compares the performance of the absolute error-bounded compression algorithms: Sz and Decimal Rounding.

The results reported were obtained by applying Sz configured with the options SZ_BEST_SPEED and Gzip_BEST_SPEED.

Shuffle and Deflate with dflt_lvl = 1 were applied after Decimal Rounding. 30

Table 5 compares the results obtained in absolute error-bounded compression mode for FLM* = 0/5. This corresponds to

dsd = 0 significant decimal digits preserved, or in other words, a rounding to the nearest integer. Both Sz and Decimal

9

Rounding algorithms respect the specified maximum absolute error value. Moreover, none introduces a statistical bias: the

mean absolute errors of both algorithms—not shown in this table—are very close to zero. The errors introduced by these two

algorithms are similar. However, it can be seen that Decimal Rounding providesd a higher compression ratio than Sz for

dataset ">. On the other hand, Sz providesd a higher compression ratio for dataset "u^. Sz may perform better on dataset

"u^ because it is smoother than dataset ">. Indeed, Sz integrates a prediction step. This prediction might often fail because 5

dataset "> is very noisy. This may explain the lower compression ratio for "> dataset. Decimal Rounding, however, does not

make any predictions, which may explain why it achieves a better compression than Sz for dataset "> . The lower

compression/decompression speeds obtained with Sz on the dataset "u^ are not well understood and might be related to

HDF5 chunking as previously mentioned.

Figure 5 compares Sz and Bit Grooming algorithms in terms of SNR versus compression ratio. This figure was obtained with 10

the following parameters:

· For the Sz algorithm, the absErrBound parameter was successively set to 5e-5, 5e-4, 5e-3, 5e-2, 5e-1, 5;

· For the Decimal Rounding algorithm, the dsd parameter was successively set to 4, 3, 2, 1, 0, -1.

For dataset ">, Decimal Rounding has a higher SNR than Sz for a given compression ratio. On the contrary, for dataset "u^,

Sz has a higher SNR than Decimal Rounding for a given compression ratio. Both Sz and Bit Grooming algorithms seem 15

valuable for error-bounded compression.

5.3.2 Performance comparison in relative error-bounded compression mode

This section compares the performance of the relative error-bounded compression algorithms: Sz, Bit Grooming, and Digit

Rounding. The results reported were obtained by applying Sz configured with the options SZ_DEFAULT_COMPRESSION

and Gzip_BEST_SPEED. Shuffle and Deflate with dflt_lvl=1 were applied after the Bit Grooming and Decimal Rounding 20

algorithms.

We first focus on the results obtained with dataset "> . The number of significant digits—nsd parameter—in the Bit

Grooming and Digit Rounding algorithms was set to 3. As the maximum absolute value in the s1 dataset is 118, the

maximum absolute error should be lower than 0.5. In order to be able to compare Sz configured with a relative error bound

with those algorithms, we configured the relative error bound to obtain a maximum absolute error of 0.5: the 25

pw_relBoundRatio parameter in Sz was set to 0.00424. The results are provided in Table 6. It can be observed that all three

algorithms respect the maximum absolute error of 0.5, which corresponds for dataset 9"> to a relative error of 0.00424. On

this dataset, Sz provides higher compression ratio and compression speed than the other two algorithms. Bit Grooming is too

conservative. It preserves more mantissa bits than strictly necessary to achieve the required precision. This behavior is

illustrated in Table 1 with the value of π. In contrast, Digit Rounding adapts the quantization step to each value of the input 30

dataset. Doing so, it can achieve the required precision while preserving less mantissa bits than Bit Grooming does. This

results both in a higher compression ratio but also in higher errors than Bit Grooming. Results obtained for Bit Grooming

10

with nsd = 2 are also provided for completeness. With this parameter, Bit Grooming provides slightly higher compression

ratio and compression speed than Digit Rounding does.

Figure 6 (left) compares Sz, Bit Grooming, and Digit Rounding algorithms in terms of SNR versus compression ratio. This

figure has been obtained with the following parameters:

· For the Sz algorithm, the pw_relBoundRatio parameter was successively set to 4.24e-5, 4.24e-4, 4.24e-3; 5

· For the Bit Grooming algorithm, the nsd parameter was successively set to 6, 5, 4, 3, 2, 1;

· For the Digit Rounding algorithm, the nsd parameter was successively set to 6, 5, 4, 3, 2, 1.

All three algorithms provide similar SNR versus compression ratio results, with a slight advantage for the Bit Grooming

algorithm. Figure 7 (left) compares the compression ratio obtained as a function of parameter nsd, which is the user-specified

number of significant digits. Even though nsd is not a parameter of the Sz algorithm, we related the pw_relBoundRatio to the 10

nsd parameters for dataset "> (i.e. pw_relBoundRatio = 4.24e
-nsd

) and plotted the compression ratio obtained with the Sz

algorithm on the same figure. It can be seen that, whatever the nsd specified by the user, the compression ratios obtained

with Digit Rounding are higher than the compression ratio obtained with the Bit Grooming algorithm. It can also be seen that

the compressions compression ratios obtained with the Sz algorithm are even higher.

We now focus on the results obtained with dataset "u^ . The number of significant digits—nsd parameter—in the Bit 15

Grooming and Digit Rounding algorithms was set to 3. As the maximum absolute value in the "u^ dataset is 145, the

pw_relBoundRatio parameter in Sz was set to 0.00345. Results are provided in Table 7. It can be observed that all three

algorithms comply with the relative error bound specified. However, as previously mentioned, the Bit Grooming algorithm is

too conservative. This is why results obtained with nsd = 2 are also provided. On this dataset, Sz provides higher

compression ratio than the other two algorithms but lower compression speed than Bit Grooming. At nsd = 3, Digit 20

Rounding provides slightly higher compression ratio than Bit Grooming but with lower compression speed.

Figure 6 (right) compares Sz, Bit Grooming, and Digit Rounding algorithms in terms of SNR versus compression ratio. This

figure has been obtained with the following parameters:

· For the Sz algorithm, the pw_relBoundRatio parameter was successively set to 3.45e-5, 3.45e-4, 3.45e-3;

· For the Bit Grooming algorithm, the nsd parameter was successively set to 6, 5, 4, 3, 2, 1; 25

· For the Digit Rounding algorithm, the nsd parameter was successively set to 6, 5, 4, 3, 2, 1.

The Bit Grooming and Digit Rounding algorithms provide similar compression ratios, but even higher compression ratios

are obtained with Sz. Figure 7 (right) compares the compression ratio obtained as a function of the nsd parameter, which is

the user-specified number of significant digits. As for dataset ">, we related pw_relBoundRatio to the nsd parameters for

dataset "u^ (i.e. pw_relBoundRatio = 3.45e45
-nsd

) and plotted the compression ratio obtained with the Sz algorithm on the 30

same figure. Whatever the nsd specified by the user, the compression ratios obtained with the Digit Rounding algorithm are

higher than the compression ratio obtained with the Bit Grooming algorithm. The compression ratios obtained with Sz are

even higher.

11

Those results show that the Digit Rounding algorithm can be competitive with the Bit Grooming and Sz algorithms in

relative error-bounded compression mode. It is thus applied to real scientific datasets in the next section.

6 Application to scientific datasets

6.1 Application to a CFOSAT dataset

CFOSAT is a cooperative program between the French and Chinese space agencies (CNES and CNSA respectively). 5

CFOSAT is designed to characterize the ocean surfaces to better model and predict ocean states, and improve knowledge of

ocean/atmosphere exchanges. CFOSAT products will help marine and weather forecasting and will also be used to monitor

the climate. The CFOSAT satellite will carry two scientific payloads—SCAT, a wind scatterometer; and SWIM, a wave

scatterometer—for the joint characterization of ocean surface winds and waves. The SWIM (Surface Wave Investigation and

Monitoring) instrument delivered by CNES is dedicated to measuring the directional wave spectrum (density spectrum of 10

wave slopes as a function of direction and wavenumber of the waves). The CFOSAT L1A product contains calibrated and

geocoded waveforms. By the end of the mission in 2023/2024, CFOSAT will have generated about 350TB of data.

Moreover, during routine phase, the users should have access to the data less three hours after their acquisition. The I/O and

compression performance are thus critical.

Currently, the baseline for compression of the CFOSAT L1A product involves a clipping method as a data reduction step, 15

with Shuffle preprocessing and Deflate lossless coding with a compression level dfl_lvl of 3. Compression with a clipping

method is like compression in an absolute error-bounded mode. It defines the least significant digit (lsd) and ‘clips’ the data

to keep only lsd decimal digits. The lsd is defined specifically for each dataset variable. The full list is provided in the

Supplement with all the command lines and parameters used for running the compression methods described in this section.

We studied the following compression methods: 20

· CFOSAT clipping followed by Shuffle and Deflate (dflt_lvl = 3): the baseline for the compression of CFOSAT

datasets;

· CFOSAT clipping followed by Shuffle and Zstandard (zstd_lvl = 2) for higher compression speeds;

· Sz followed by Deflate in the absolute error bounded mode;

· Decimal Rounding followed by Shuffle and Deflate (dflt_lvl = 1); 25

· Bit Grooming (nsd = 8) followed by Shuffle and Deflate (dflt_lvl = 1);

· Digit Rounding (nsd = 8) followed by Shuffle and Deflate (dflt_lvl = 1).

We first focused on the ground_range_5 variable of the CFOSAT L1A product. This variable is an array of 18451×3215

values in double precision. The data volume is 452.58MB (uncompressed). The CFOSAT clipping method defines an lsd of

3 for this variable. In absolute error-bounded mode, Decimal Rounding is configured to keep the same number of decimal 30

digits as CFOSAT clipping: dsd = .3; Sz is configured with absErrBound = 5e-4. In relative error-bounded mode, Bit

12

Grooming and Digit Rounding are configured with nsd = 8. The compression results are provided in Table 8. Compared to

the CFOSAT baseline compression, Zstandard compression is more than twice faster while offering a similar compression

ratio. On this dataset, the use of Sz instead of the CFOSAT Clipping method increases the compression ratio by a factor of

11. Sz prediction step seems to be very efficient on this dataset. Decimal Rounding increases the compression ratio by a

factor of 2.5 “only”, but provides the fastest decompression. In the relative error-bounded mode, Digit Rounding provides a 5

higher compression ratio than Bit Grooming but lower compression/decompression speeds.

The results for the compression of the full CFOSAT L1A product of 7.34GB (uncompressed) are provided in Table 9. The

maximum absolute error and the mean absolute error are not provided because this dataset contains several variables

compressed with different parameters. Compared to the CFOSAT baseline compression, Zstandard increases the

compression speed by about 40% while offering a similar compression ratio. It was not possible to apply Sz compression on 10

the full dataset since Sz configuration file has to be modified to adapt the absErrBound to the lsd defined for each dataset

variable. The way around this entails processing each variable one after the other. Sz provides a compression ratio almost 3

times higher than the baseline with faster compression and decompression. Decimal Rounding is configured on a per-

variable basis to keep the precision required by the scientists on each variable. It increases the compression ratio by a factor

of 1.8 with twice faster compression and decompression compared to the baseline. The compression ratios achieved with Bit 15

Grooming or Digit Rounding in the relative error-bounded mode are lower. This is not the mode targeted for the

compression of CFOSAT datasets. The usability of Sz being reduced by the fact that the error bound cannot be easily

configured to achieve the precision required variable per variable, our recommendation is to use the Decimal Rounding

algorithm. It achieves faster and more effective compression than CFOSAT Clipping method and bounds the absolute errors.

6.2 Application to SWOT datasets 20

The Surface Water and Ocean Topography Mission (SWOT) is a partnership between NASA and CNES, and continues the

long history of altimetry missions with an innovative instrument known as KaRin, which is a Ka band synthetic aperture

radar. The launch is foreseen for 2021. SWOT addresses both oceanographic and hydrological communities, accurately

measuring the water level of oceans, rivers, and lakes.

SWOT has two processing modes, so two different types of products are generated: high-resolution products dedicated to 25

hydrology, and low-resolution products mostly dedicated to oceanography. The Pixel Cloud product (called L2_HR_PIXC)

contains data from the KaRin instrument’s high-resolution (HR) mode. It contains information on the pixels that are detected

as being over water. This product is generated when the HR mask is turned on. The Pixel Cloud product is organized into

sub-orbit tiles for each swath and each pass, and this is an intermediate product between the L1 Single Look Complex

products and the L2 lake/river ones. The product granularity is a tile 64 km long in the along-track direction, and it covers 30

either the left or right swath (~60 km wide). The SWOT mission will generate about 20PB of data during the mission

lifetime. Compression algorithms and performance are thus very critical. The mission center is currently defining files

format and structure, and thus in this section we evaluated different compression options.

13

The compression of two different datasets was evaluated:

· A simplified simulated SWOT L2_HR_PIXC pixel cloud product of 460MB (uncompressed);

· A realistic and representative SWOT L2 pixel cloud dataset of 199MB (uncompressed).

The current baseline for the compression of the simplified simulated SWOT L2 pixel cloud product involves Shuffle 5

preprocessing and Deflate lossless coding with a compression level dfl_lvl of 4. However, the compression method for the

official SWOT L2 pixel cloud product has not yet been defined. A required precision is defined by the scientists as a number

of significant digits (nsd) for each dataset variable. The full list is provided in the Supplement. We studied the following

lossless or relative error bounded compression methods:

· Shuffle and Deflate (dflt_lvl = 4): the current baseline for the compression of SWOT datasets; 10

· Shuffle and Zstandard (zstd_lvl = 2) lossless alternative;

· Sz with Deflate in the relative error bounded mode;

· Bit Grooming followed by Shuffle and Deflate (dflt_lvl = 1);

· Digit Rounding followed by Shuffle and Deflate (dflt_lvl = 1).

We first focused on the height variable of the SWOT L2_HR_PIXC pixel cloud product. This variable is a list of 1,421,888 15

values in double precision. The data volume is 10.85MB (uncompressed). A precision of 6 significant digits is required for

this variable (nsd = 6). Sz is configured in the relative error bounded mode with pw_relBoundRatio = 5e-6. Bit Grooming

and Digit Rounding are configured with nsd = 6. The results are provided in Table 10. Compared to the SWOT baseline

compression, Zstandard compression is more than 10 times faster while offering a similar compression ratio. On this dataset,

Digit Rounding provides the highest compression ratio with compression/decompression speeds similar to the one obtained 20

with Bit Grooming. The lowest errors are obtained with Bit Grooming but with a compression ratio slightly lower than Digit

Rounding. The compression ratio obtained with Sz is even lower.

Next we focused on the pixel_area variable of the representative SWOT L2 pixel cloud product. This variable is a list of

1,300,111 values in double precision. The data volume is 9.92MB (uncompressed). A precision of 11 significant digits is

required for this variable (nsd = 11). Sz is configured in the relative error bounded mode with pw_relBoundRatio = 5e-9 only 25

because it cannot achieve higher precision. Bit Grooming and Digit Rounding are configured with nsd = 11. The results are

provided in Table 11. Compared to the SWOT baseline compression, Zstandard compression is more than 7 times faster

while offering a similar compression ratio. Sz provides the highest compression ratio but does not allow achieving the

required precision of 11 digits. Moreover, in this configuration Sz compression is very slow. As for the height variable, Digit

Rounding provides the highest compression ratio with compression/decompression speeds similar to the one obtained with 30

Bit Grooming. The lowest errors are obtained with Bit Grooming but with a compression ratio lower than Digit Rounding.

Table 12 provides the results of the compression of the full simulated SWOT L2_HR_PIXC pixel cloud product. The

maximum absolute error and the mean absolute error are not provided because this dataset contains several variables

14

compressed with different parameters. Compared to the SWOT baseline compression, Zstandard increases the compression

speed by over 5 times, while offering a similar compression ratio. Sz compression was not applied because it does not allow

achieving the high precision required on some variables. Bit Grooming and Digit Rounding was were configured on a per-

variable basis to keep the precision required by the scientists on each variable. Compared to the baseline, Bit Grooming and

Digit Rounding increase the compression respectively by 20% and 30% with similar compression speeds and faster 5

decompression.

The results for the compression of the representative SWOT L2 pixel cloud product are provided in Table 13. Compared to

the baseline, Zstandard compression is nearly 4 times faster while offering a similar compression ratio. Bit Grooming

increases the compression ratio by 29% with higher compression speed. And Digit Rounding increases the compression ratio

by 34% with slightly lower compression speed than Bit Grooming. Bit Grooming and Digit Rounding provides the fastest 10

decompression. Our recommendation for the compression of SWOT datasets is thus to use the Digit Rounding algorithm to

achieve high compression, at the price of a lower compression speed than the lossless solutions, considering that for SWOT

the driver is product size, and taking into account the ratio between compression time and processing time.

7 Conclusions

This study evaluated lossless and lossy compression algorithms both on synthetic datasets and on realistic simulated datasets 15

of future science satellites. The compression methods were applied using NetCDFnetCDF-4 and HDF5 tools. It has been

shown that the impact of the compression level options of Zstandard or Deflate on the compression ratio achieved is not

significant compared to the impact of the Shuffle or Bitshuffle preprocessing. However, high compression levels can

significantly reduce the compression speed. Deflate and Zstandard with low compression levels are both reasonable options

to consider for the compression of scientific datasets, but must always follow a Shuffle or Bitshuffle preprocessing step. It 20

has been shown that Zstandard can speed-up the compression of CFOSAT and SWOT datasets compared to the baseline

solution based on Deflate.

The lossy compression of scientific datasets can be achieved in two different error-bounded modes: absolute and relative

error-bounded. Four algorithms have been studied: Sz, Decimal Rounding, Bit Grooming and Digit Rounding. One useful

feature of the last three is that the accuracy of the compressed data can easily be interpreted: rather than defining an absolute 25

or a relative error bound, they define the number of significant decimal digits or the number of significant digits. In absolute

error-bounded mode, Sz provides higher compression ratios than Decimal Rounding on most datasets. However for the

compression of netCDF/HDF5 real scientific datasets composed of several variables, its usability is reduced by the fact that

only one absolute error bound can be set for all the variables composing the dataset. It cannot be easily configured to achieve

the precision required variable per variable. This is why we rather recommend the Decimal Rounding algorithm to achieve 30

fast and effective compression of the CFOSAT dataset. In relative error-bounded mode, the Digit Rounding algorithm

introduced in this work provides higher compression ratios than the Bit Grooming algorithm from which it derives, but with

15

lower compression speed. Sz can provide even higher compression ratios but fails achieving to achieve the high precision

required for some variables. This is why we rather recommend the Digit Rounding algorithm to achieve relative error

bounded compression of SWOT datasets with a compression ratio 30% higher than the baseline solution for SWOT

compression.

8 Code and data availability 5

The Digit Rounding software source code is available from CNES GitHub at https://github.com/CNES/Digit_Rounding. The

datasets are available upon request to Xavier Delaunay (xavier.delaunay@thalesgroup.com) or to Flavien Gouillon

(Flavien.Gouillon@cnes.fr). The Supplement details the datasets and provides the command lines used for running the

compression tools.

 10

Author contributions. Xavier Delaunay designed and implemented the Digit Rounding software and wrote most of the

manuscript. Aurélie Courtois performed most of the compression experiments and generated the analytical datasets. Flavien

Gouillon provided the scientific datasets used in the experiments, supervised the study, and contributed both to its design and

to the writing of the manuscript.

 15

Acknowledgments. This work was funded by CNES under contract 170850/00 and carried out at Thales Services. We would

like to thank Hélène Vadon, Damien Desroches, Claire Pottier and Delphine Libby-Claybrough for their contributions to the

SWOT section and for their help in proofreading. We also thank Charles S. Zender and the anonymous reviewers their

comments, which helped improving the quality of this paper.

References 20

Baker, A. H., Hammerling, D. M., Mickelson, S. A., Xu, H., Stolpe, M. B., Naveau, P., Sanderson, B., Ebert-Uphoff, I.,

Samarasinghe, S., De Simone, F., Carbone, F., Gencarelli, C. N., Dennis, J. M., Kay, J. E., Lindstrom, P., “Evaluating lossy

data compression on climate simulation data within a large ensemble”, Geosci. Model Dev., 9, 4381–4403,

doi:10.5194/gmd-9-4381-2016, 2016.

Caron, J.: Compression by Scaling and Offset, available at: 25

http://www.unidata.ucar.edu/blogs/developer/en/entry/compression_by_scaling_and_offfset (last access: 27 September

2018), 2014a.

Caron, J.: Compression by bit shaving, available at:

http://www.unidata.ucar.edu/blogs/developer/entry/compression_by_bit_shaving (last access: 27 September 2018), 2014b.

Collet, Y.: LZ4 lossless compression algorithm, available at: http://lz4.org (last access: 27 September 2018), 2013. 30

16

Collet, Y. and Turner, C.: Smaller and faster data compression with Zstandard, available at: https://code.fb.com/core-

data/smaller-and-faster-data-compression-with-zstandard/ (last access: 27 September 2018), 2016

Deutsch, L. P.: DEFLATE compressed data format specification version 1.3, Tech. Rep. IETF RFC1951, Internet

Engineering Task Force, Menlo Park, CA, USA, doi:10.17487/RFC1951, 1996.

Duda, J.: Asymmetric numeral systems: entropy coding combining speed of Huffman coding with compression rate of 5

arithmetic coding, arXiv:1311.2540v2 [cs.IT], 2013.

Huffman, D. A.: A method for the construction of minimum redundancy codes, Proceedings of the IRE, 40(9), 1098-1101,

doi:10.1109/JRPROC.1952.273898, 1952.

Lindstrom, P.: Fixed-Rate Compressed Floating-Point Arrays, IEEE Transactions on Visualization and Computer Graphics,

20(12), 2674–2683, doi:10.1109/TVCG.2014.2346458, 2014. 10

Lindstrom, P., and Isenburg, M.: Fast and Efficient Compression of Floating-Point Data, IEEE Transactions on Visualization

and Computer Graphics, 12(5), 1245–1250, doi:10.1109/TVCG.2006.143, 2006.

Masui, K., Amiri, M., Connor, L., Deng, M., Fandino, M., Höfer, C., Halpern, M., Hanna, D., Hincks, A. D., Hinshaw, G.,

Parra, J. M., Newburgh, L. B., Shaw, J. R., and Vanderlinde, K.: A compression scheme for radio data in high performance

computing, Elsevier Astronomy and Computing, 12, 181–190, doi:10.1016/j.ascom.2015.07.002, 2015. 15

Silver, J. D. and Zender, C. S.: The compression–error trade-off for large gridded data sets, Geosci. Model Dev., 10, 413-

423, doi:10.5194/gmd-10-413-2017, 2017.

Tao, D., Di, S., Chen, Z., and Cappello, F.: Significantly Improving Lossy Compression for Scientific Data Sets Based on

Multidimensional Prediction and Error-Controlled Quantization. IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 1129–1139, doi:10.1109/IPDPS.2017.115, 2017a. 20

Tao, D., Di, S., Guo, H., Chen, Z., and Cappello F.: Z-checker: A Framework for Assessing Lossy Compression of Scientific

Data. The International Journal of High Performance Computing Application, doi:10.1177/1094342017737147, 2017b

Zender, C. S.: Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the

netCDF Operators (NCO, v4.4.8+), Geosci. Model Dev., 9, 3199-3211, doi:10.5194/gmd-9-3199-2016, 2016a.

Zender, C. S.: netCDF Operators (NCO), version 4.6.1, Zenodo, doi:10.5281/zenodo.61341, 2016b. 25

Ziv, J. and Lempel, A.: A universal algorithm for sequential data compression, IEEE T. Inform. Theory, 23, 337–343, doi:

10.1109/TIT.1977.1055714, 1977.

17

Table 1: Representation of the value of π in IEEE-754 single-precision binary representation (first row) and results preserving 4

significant digits with the Bit Grooming algorithm (second row) or preserving 12 mantissa bits (third row). This table builds on

Table 1 in (Zender, 2016a).

Sign Exponent Mantissa Decimal Notes

0 10000000 10010010000111111011011 3.14159265 Exact value of π

0 10000000 10010010000111100000000 3.14154053 Result of Bit Grooming with nsd = 4, 15 mantissa bits

preserved

0 10000000 10010010000100000000000 3.14111328 Result preserving only 12 mantissa bits, allows the 4

significant digits of π to be preserved.

Table 2: Representation of the value of π in IEEE-754 single-precision binary representation (first row) and results preserving a 5
varying number of significant digits (nsd) with the Digit Rounding algorithm. This table can be compared to Table 2 in (Zender,

2016a) providing the Bit Grooming results for π.

Sign Exponent Mantissa Decimal Notes

0 10000000 10010010000111111011011 3.14159265 Exact value of π

0 10000000 10010010000111111011011 3.14159265 nsd = 8

0 10000000 10010010000111111011010 3.14159250 nsd = 7

0 10000000 10010010000111111010000 3. 14159012 nsd = 6

0 10000000 10010010000111110000000 3. 14157104 nsd = 5

0 10000000 10010010000100000000000 3.14111328 nsd = 4

0 10000000 10010010100000000000000 3. 14453125 nsd = 3

0 10000000 10010100000000000000000 3. 15625000 nsd = 2

0 10000000 11000000000000000000000 3. 50000000 nsd = 1

0 10000000 00000000000000000000000 4.00000000 nsd = 0

Table 3: Maximum absolute errors, and mean absolute errors and mean errors of the Digit Rounding algorithm preserving a

varying number of significant digits (nsd) on an artificial dataset composed of 1,000,000 values evenly spaced over the interval [1.0, 10
2.0). The error metrics are defined in section 4.

nsd Maximum absolute error Mean absolute error Mean error

1 0.4999999999 0.1732423125 -0.0796879687

2 0.0312500000 0.0127722254 -0.0003056211

3 0.0039062500 0.0016125222 -0.0000074545

4 0.0004882812 0.0001983929 -0.0000001013

5 0.0000305176 0.0000125886 -0.0000000017

6 0.0000038147 0.0000015736 -0.0000000002

18

7 0.0000004768 0.0000001937 0.0000000000

Table 4: Comparison between the compression ratio obtained with the Digit Rounding algorithm and the compression ratio

obtained with the Bit Grooming algorithm reported in (Zender, 2016a) on a MERRA dataset. Shuffle and Deflate with level 1

lossless compression is applied. The reference for the CR computation is Deflate (level 5) compressed data size of 244.3MB.

Comparison of the Bit Grooming and Digit Rounding algorithms for the compression of a MERRA dataset. Shuffle and Deflate 5
(level 1) are applied. The compression ratio (CR) is defined by the ratio of the compressed file size over the reference data size

(244.3MB) obtained with Deflate (level 5) compression. Bit Grooming results are extracted from (Zender, 2016a).

 Bit Grooming Digit Rounding

NSD Size (MB) CR (%) Size (MB) CR (%)

~7 223.1 91.3 226.1 92.6

6 225.1 92.1 225.8 92.4

5 221.4 90.6 222.0 90.9

4 201.4 82.4 191.1 78.2

3 185.3 75.9 165.1 67.6

2 150.0 61.4 111.1 45.5

1 100.8 41.3 64.9 26.6

Table 5: Compression results of the absolute error-bounded compression algorithms Sz and Decimal Rounding on datasets s1 and

s3D. 10

Dataset Compression method CR CS (MB/s) FLM*NLO FLM*fffff SNR (dB)

s1 Sz (absErrBound = 0.5, Gzip_BEST_SPEED) 5.39 133 0.5 0.2499 30.84

s1 Decimal Rounding (dsd = .0, dflt_lvl=1) 7.50 100 0.5 0.2501 30.83

s3D Sz (absErrBound = 0.5, Gzip_BEST_SPEED) 12.97 29 0.5 0.2500 45.97

s3D Decimal Rounding (dsd = .0, dflt_lvl=1) 5.56 80 0.5 0.2500 45.97

Table 6: Compression results of the relative error-bounded compression algorithms Sz, Bit Grooming, and Digit Rounding on

dataset s1.

Compression method CR CS (MB/s) FLM*NLO FLM*fffff SNR (dB)

Sz (pw_relBoundRatio = 0.00424, Gzip_BEST_SPEED) 5.08 100 0.484 0.199 32.78

Bit Grooming (nsd = 3, dflt_lvl=1) 3.09 57 0.0312 0.0156 54.93

Bit Grooming (nsd = 2, dflt_lvl=1) 4.38 57 0.250 0.125 36.54

Digit Rounding (nsd = 3, dflt_lvl=1) 4.02 40 0.5 0.195 34.51

 15

19

Table 7: Compression results of Sz, Bit Grooming, and Digit Rounding in relative error-bounded compression mode on dataset

s3D.

Compression method CR CS (MB/s) FLM*NLO FLM*fffff SNR (dB)

Sz (pw_relBoundRatio = 0.00345, Gzip_BEST_SPEED) 4.32 26 0.487 0.0737 54.56

Bit Grooming (nsd = 3, dflt_lvl=1) 2.35 46 0.0625 0.0079 73.96

Bit Grooming (nsd = 2, dflt_lvl=1) 3.04 51 0.5 0.0629 55.89

Digit Rounding (nsd = 3, dflt_lvl=1) 2.60 18 0.5 0.0239 58.87

Table 8: Compression results for the ground_range_5 variable in the CFOSAT L1A product.

Compression method CR CS (MB/s) DS (MB/s) FLM*NLO FLM*fffff
CFOSAT Clipping + Shuffle + Deflate (3) 2.34 38 (*) 123 1.00e-3 5.00e-4

CFOSAT Clipping + Zstd (2) 2.20 108 (*) 84 1.00e-3 5.00e-4

Sz (absErrBound = 1e-3, Gzip_BEST_SPEED) 26.53 60 42 1.00e-3 4.99e-4

Decimal Rounding (dsd = .3) + Shuffle + Deflate (1) 5.85 74 187 4.88e-4 2.36e-4

Bit Grooming (nsd = 8) + Shuffle + Deflate (1) 4.78 67 190 2.44e-4 1.22e-4

Digit Rounding (nsd = 8) + Shuffle + Deflate (1) 5.83 37 38 4.88e-4 2.44e-4

(*) The time taken for the CFOSAT Clipping method is not taken into account in the compression speed computation. 5

Table 9: Compression results for the CFOSAT L1A product.

Compression method CR CS (MB/s) DS (MB/s)

CFOSAT Clipping + Shuffle + Deflate (3) 5.21 51 (*) 68

CFOSAT Clipping + Shuffle + Zstd (2) 5.38 72 (*) 78

Sz (absErrBound, Gzip_BEST_SPEED) 15.45 88 89

Decimal Rounding + Shuffle + Deflate (1) 9.53 101 268

Bit Grooming (nsd = 8) + Shuffle + Deflate (1) 4.16 75 262

Digit Rounding (nsd = 8) + Shuffle + Deflate (1) 4.32 37 85

(*) The time taken for the CFOSAT Clipping method is not taken into account in the compression speed computation.

 10

20

Table 10: Compression results for the height variable in the simplified simulated SWOT L2_HR_PIXC pixel cloud product.

Compression method CR CS (MB/s) DS (MB/s) FLM*NLO FLM*fffff
Shuffle + Deflate (4) 1.12 24 212 0 0

Shuffle + Zstd (2) 1.12 271 181 0 0

Sz (pw_relBoundRatio = 5e-6, Gzip_BEST_SPEED) 2.06 35 155 3.16e-5 1.19e-7

Bit Grooming (nsd = 6) + Shuffle + Deflate (1) 2.34 33 217 7.58e-6 2.53e-7

Digit Rounding (nsd = 6) + Shuffle + Deflate (1) 2.38 35 217 3.05e-5 7.95e-7

Table 11: Compression results for the pixel_area variable in the representative SWOT L2 pixel cloud product.

Compression method CR CS (MB/s) DS (MB/s) FLM*NLO FLM*fffff
Shuffle + Deflate (4) 1.50 32 248 0 0

Shuffle + Zstd (2) 1.50 237 165 0 0

Sz (pw_relBoundRatio = 5e-9, Gzip_BEST_SPEED) 3.24 0.3 165 2.51e-6 4.56e-7

Bit Grooming (nsd = 11) + Shuffle + Deflate (1) 2.11 43 245 1.86e-9 3.16e-10

Digit Rounding (nsd = 11) + Shuffle + Deflate (1) 2.40 40 240 3.73e-9 1.86e-9

Table 12: Compression results for the simplified simulated SWOT L2_HR_PIXC pixel cloud product. 5

Compression method CR CS (MB/s) DS (MB/s)

Shuffle + Deflate (4) 14.37 107 92

Shuffle + Zstd (2) 14.36 589 97

Bit Grooming + Shuffle + Deflate (1) 17.44 141 336

Digit Rounding + Shuffle + Deflate (1) 18.92 100 393

Table 13: Compression results for the representative SWOT L2 pixel cloud product.

Compression method CR CS (MB/s) DS (MB/s)

Shuffle + Deflate (4) 1.99 35 258

Shuffle + Zstd (2) 1.99 139 90

Bit Grooming + Shuffle + Deflate (1) 2.55 52 276

Digit Rounding + Shuffle + Deflate (1) 2.65 42 228

 10

21

Figure 1: Compression chain showing the data reduction, preprocessing and lossless coding steps.

Input:

{"%}%e<B input sequence of samples

Output:

{"$%}%e<B output sequence of quantized samples

Parameter:

!"# number of significant digits preserved in each sample

Algorithm:

For each input sample "% in {"%}%e<B :

1. Get binary exponent9vw and mantissa mw of value9sw according to Eq. (7)

2. Tabulate value v for log;<(mw)
3. Compute the approximated number of digits before the decimal separator in sample value9"%

following Eq. (8)

4. Compute quantization factor power D% following Eq. (6)

5. Compute quantization factor 2% as in Eq. (5)

6. Compute quantized value "$% as in Eq. (1)

Figure 2: The Digit Rounding algorithm. 5

22

Figure 3: Results obtained for the lossless compression of the s1 dataset with Deflate (dflt), Zstandard (zstd), Shuffle and Deflate

(shuf+dflt), Shuffle and Zstandard (shuf+zstd), Bitshuffle and Zstandard (bshuf+zstd), Bitshuffle and LZ4 (bshuf+lz4).

Compression ratios (top), compression speeds (bottom left), and decompression speeds (bottom right). Vertical bars represent the

results for different compression levels: from 1 to 9 for Deflate, from 1 to 22 for Zstandard, only one level for LZ4. 5

23

Figure 4: Results obtained for the lossless compression of the s3D dataset with Deflate (dflt), Zstandard (zstd), Shuffle and Deflate

(shuf+dflt), Shuffle and Zstandard (shuf+zstd), Bitshuffle and Zstandard (bshuf+zstd), Bitshuffle and LZ4 (bshuf+lz4).

Compression ratios (top), compression speeds (bottom left), and decompression speeds (bottom right).

 5

Figure 5: Comparison of the compression results (SNR vs. compression ratio) of the Sz and Decimal Rounding algorithms in

absolute error-bounded compression mode, on the s1 dataset (left) and s3D dataset (right).

24

Figure 6: Comparison of the compression results (SNR vs. compression ratio) of the Sz, Bit Grooming and Digit Rounding

algorithms in relative error-bounded compression mode, on the s1 dataset (left) and s3D dataset (right).

 5

Figure 7: Compression ratio as a function of the user-specified number of significant digits (nsd) for the Sz, Bit Grooming and

Digit Rounding algorithms, on the s1 dataset (left) and s3D dataset (right).

1

Supplement of

Evaluation of lossless and lossy algorithms for the compression of

scientific datasets in NetCDFnetCDF-4 or HDF5 formatted files

Xavier Delaunay
1
, Aurélie Courtois

1
, Flavien Gouillon

2

1
Thales, 290 allée du Lac, 31670 Labège, France 5

2
CNES, Centre spatial de Toulouse, 18 avenue Edouard Belin, 31401 Toulouse, France

Correspondence to: Xavier Delaunay (xavier.delaunay@thalesgroup.com)

Introduction

This supplement details the commands and datasets necessary to reproduce the results tabulated in the paper.

The Digit Rounding algorithm 10

The table below provides tabulated values for the approximation of log!"(#$) in the implementation of the Digit Rounding

algorithm. Only 5 tabulated values are used in our implementation, enough to provide a good precision. The tabulated v

values for log!"(#$) are such that % & log!"(#$).
Table 1: Tabulated values for the approximation of '*+,-(./) in the implementation of the Digit Rounding algorithm

#$
Approximated value0%

for log!"(#$)
125 & #$ < 126 -0.301029996

126 & #$ < 127 -0.221848749

127 & #$ < 128 -0.154901959

128 & #$ < 129 -0.096910013

129 & #$ < 321 -0.045757490

 15

The results reported in Table 2 and Table 3 of the paper can be reproduced compiling the Digit Rounding software in test

and debug mode with the following command lines:

cd digiround/
make clean
make test DEBUG=1 20

The results reported in Table 4 can be reproduced using the following script:

for nsd in $(seq 7); do

2

 # Compress applying Digit Rounding, Shuffle and Deflate with dflt_lvl=1
 h5repack -i MERRA300.prod.assim.inst3_3d_asm_Cp.20130601.nc -o foo.h5 \

--filter=UD=47987,0,1,$nsd --filter=SHUF --filter=GZIP=1
done

Synthetic datasets 5

Synthetic datasets with known statistics have been generated in order to test the compression algorithms under variable

conditions. The following datasets have been generated:

· 43 a noisy sinusoid of 1 dimension,

· s:D a noisy sinusoid pulse of 3 dimensions.

The signal 43 is a noisy sinusoid defined by: 10

43(;) = > ? @! × sin ABC; EF!EF G ? H(;)
Where > is the mean value, @! is the amplitude of the sinusoid, EF! is its frequency and H(;) is a zero mean Gaussian noise of

variance 1. The signal 43 is generated with > = 311, @! computed so as to obtain a SNR of 20dB, and
IJK
IJ = !L

!M×N. It allows

having a bit more than two samples per period with a pattern reproduced every 17 periods. It is generated over O = BN" float

sample values, each float value being encoded on 32bits. The volume of the dataset 43 is 4MB. The dataset and its histogram

are shown in Fig. 1. 15

The signal 4:P a noisy sinusoid pulse of 3 dimensions defined by:

4:P(;!Q ;NQ ;R) = @N × S;!
N ? ;NN ? ;RN

TUN ?VN ? ON × sin WBCX;!N ? ;NN ? ;RN
EFRYEZ[\] ? H(;!Q ;NQ ;R)

Where UQVQO are the 3 dimensions of the signal 4:P , @N is the amplitude of the sinusoid, EFRY is its frequency and

H(;!Q ;NQ ;R) is a zero mean Gaussian noise of variance 1

The signal 4:P is generated with L = 256, M = 256, N = 2048, @N computed to obtain a SNR of 40dB, and
IJ^_
IJ = !L×`

!M×a in

order to have 4 periods on the main axis. It is generated over U × V × O = BNL float sample values, each float value being 20

encoded on 32bits. The volume of the dataset 4:P is 512MB. The dataset and its histogram are shown in Fig. 2.

The datasets 43 and 4:P have been stored into NetCDFnetCDF-4 formatted files.

3

Figure 1: First 100 samples of the dataset s1 (left) and histogram of the sample values (right).

Figure 2: Representation of the first slices bcd(/,Q /eQ -) (left), and histogram of the sample values (right).

Performance assessment of lossless compression methods 5

We ran lossless compression algorithm using h5repack tool from the HDF5 library in version 1.8.19, Deflate implemented in

zlib 1.2.11, Zstandard in version 1.3.1 with the corresponding HDF5 filter available on the HDF web portal

(http://portal.hdfgroup.org/display/support/Filters), and the implementation of LZ4 and Bitshuffle in the python package

Bitshuffle-0.3.4. The compression is performed calling h5repack tool with a command line formatted as follows:

h5repack -i in_file.nc -o compressed_file.h5 [--filter=var:params] 10

where in_file.nc is the input dataset formatted as a NetCDFnetCDF-4 file and compressed_file.h5 is the compressed dataset

in HDF5 file format. The input dataset contains the var variable processed by one or several HDF5 filter. Each HDF5 filter is

identified by a unique ID: 32015 for Zstandard and 32008 for Bitshuffle. The following table provides the list of filter

options used. They shall replace the filter option between brackets on previous command line.

4

Table 2: Command lines and parameters used for the compression with h5repack.

Compression algorithms Command line Parameters

Deflate --filter=var:GZIP=dfl_lvl dfl_lvl from 1 to 9

Shuffle + Deflate --filter=var:SHUF --filter=var:GZIP=dfl_lvl dfl_lvl from 1 to 9

Zstandard --filter=var:UD=32015,1,zstd_lvl zstd_lvl from 1 to 22

Shuffle + Zstandard --filter=var:SHUF --filter=var:UD=32015,1,zstd_lvl zstd_lvl from 1 to 22

Bitshuffle + Zstandard --filter=var:UD=32008,1,1048576 --filter=var:UD=32015,1,zstd_lvl zstd_lvl from 1 to 22

Bitshuffle + LZ4 --filter=var:UD=32008,2,1048576,2 -

The decompression has been performed calling h5repack tool with a command line formatted as follows:

h5repack -i compressed_file.h5 -o out_file.h5 --filter=var:NONE

Compression and decompression has been performed on a Dell T1600 with an Intel Xeon E31225 4 cores CPU at 3.1GHz, 5

and 4GB memory under RedHat 6.5 (64 bits) OS. Compression and decompression were run on a single core.

Performance assessment of lossy compression methods

Performance comparison in the absolute error bounded compression mode

The command lines provided in this section allow reproducing the results provided in Table 5 of the paper.

Sz compression is performed calling h5repack tool with the following command lines: 10

h5repack -i s1.nc -o s1_sz.h5 --filter=signal:UD=32017,0
h5repack –i s3D.nc -o s3D_sz.h5 --filter=signal:UD=32017,0

Sz compression filter is identified by its ID (32017) provided on the command line. The following “0” is the number of filter

parameters. In the case of Sz, the filter does not have any parameter to set. That is why there are 0 parameters. Sz is

configured via the sz.config file located in the directory from where h5repack is called. sz.config file content is reproduced 15

below:

[ENV]
dataEndianType = LITTLE_ENDIAN_DATA
sol_name = SZ
[PARAMETER] 20
quantization_intervals = 256
szMode = SZ_BEST_SPEED
gzipMode = Gzip_BEST_SPEED
errorBoundMode = ABS
absErrBound = 0.5 25

Decimal Rounding is performed calling the ncks tool from NCO toolkit. The algorithm is run with the following command

lines (note the period before the dsd parameter):

5

ncks --overwrite-O -4 -L 1 --ppc signal=.0 s1.nc s1_bg.nc
ncks --overwrite-O -4 -L 1 --ppc signal=.0 s3D.nc s3D_bg.nc

Performance comparison in the relative error bounded compression mode

Dataset s1

The command lines provided in this section allow reproducing the results provided in Table 6 of the paper. 5

Sz compression is performed calling h5repack tool with a command line formatted as follows:

h5repack -i s1.nc -o s1_sz.h5 --filter=signal:UD=32017,0

Sz compression is configured via the sz.config file located in the directory from where h5repack is called. sz.config file

content is reproduced below:

[ENV] 10
dataEndianType = LITTLE_ENDIAN_DATA
sol_name = SZ
[PARAMETER]
quantization_intervals = 256
szMode = SZ_DEFAULT_COMPRESSION 15
gzipMode = Gzip_BEST_SPEED
errorBoundMode = PW_REL
pw_relBoundRatio = 0.00424
pwr_type = MAX

Bit Grooming is performed calling the ncks with the following command lines: 20

ncks --overwrite-O -4 -L 1 --ppc signal=3 s1.nc s1_bg_3.nc
ncks --overwrite-O -4 -L 1 --ppc signal=2 s1.nc s1_bg_2.nc

Digit Rounding is performed calling h5repack tool with the following command line:

h5repack -i s1.nc -o s1_dr_3.h5 --filter=signal:UD=47987,1,1,3
--filter=signal:SHUF --filter=signal:GZIP=1 25

Dataset s3D

The command lines provided in this section allow reproducing the results provided in Table 7 of the paper.

Sz compression is performed calling h5repack tool with a command line formatted as follows:

h5repack -i s3D.nc -o s3D_sz.h5 --filter=signal:UD=32017,0

Sz compression is configured via the sz.config file located in the directory from where h5repack is called. sz.config file 30

content is reproduced below:

[ENV]
dataEndianType = LITTLE_ENDIAN_DATA
sol_name = SZ
[PARAMETER] 35
quantization_intervals = 256
szMode = SZ_DEFAULT_COMPRESSION
gzipMode = Gzip_BEST_SPEED

6

errorBoundMode = PW_REL
pw_relBoundRatio = 0.00345
pwr_type = MAX

Bit Grooming is performed calling the ncks with the following command lines:

ncks --overwrite-O -4 -L 1 --ppc signal=3 s3D.nc s3D_bg_3.nc 5
ncks --overwrite-O -4 -L 1 --ppc signal=2 s3D.nc s3D_bg_2.nc

Digit Rounding is performed calling h5repack tool with the following command line:

h5repack -i s3D.nc -o s3D_dr_3.h5 --filter=signal:UD=47987,1,1,3 \
--filter=signal:SHUF --filter=signal:GZIP=1

CFOSAT dataset 10

We used two version of the same dataset:

- TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc is the ‘raw’ dataset.

- CFO_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc is the same dataset after clipping and

Shuffle + Deflate (3) compression.

Table 3 provides the least significant digit (lsd) of each variable of this dataset. 15

Table 3: Variables and least significant digit (lsd) in CFOSAT dataset.

Variable lsd Variable lsd Variable lsd Variable lsd

altitude 3 elevation_0 5 lat_l1a_0 3 phi_geo 3

cal_ratio_0 3 elevation_1 5 lat_l1a_1 3 pri 1

cal_ratio_1 3 elevation_2 5 lat_l1a_2 3 projected_velocity 3

cal_ratio_2 3 elevation_3 5 lat_l1a_3 3 pseudo_misp 14

cal_ratio_3 3 elevation_4 5 lat_l1a_4 3 radar_range_0 3

cal_ratio_4 3 elevation_5 5 lat_l1a_5 3 radar_range_1 3

cal_ratio_5 3 ground_range_0 3 lon_l1a_0 3 radar_range_2 3

cycle_duration 7 ground_range_1 3 lon_l1a_1 3 radar_range_3 3

earth_radius 3 ground_range_2 3 lon_l1a_2 3 radar_range_4 3

echo_l1_0 12 ground_range_3 3 lon_l1a_3 3 radar_range_5 3

echo_l1_0_nt 12 ground_range_4 3 lon_l1a_4 3

echo_l1_0_std_nt 12 ground_range_5 3 lon_l1a_5 3

echo_l1a_0 3 incidence_0 5 ly 2

echo_l1a_1 3 incidence_1 5 mispointing 14

echo_l1a_2 3 incidence_2 5 nesig0 3

echo_l1a_3 3 incidence_3 5 orbital_velocity 3

echo_l1a_4 3 incidence_4 5 phi 3

echo_l1a_5 3 incidence_5 5 phi_azimuth 3

7

The following command lines allow reproducing the results provided in Table 8 of the paper.

We first extract the ground_range_5 variable from the ‘clipped’ dataset and decompress it:

ncks --overwrite-O -4 -C -v ground_range_5 \
CFO_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc \
ground_range_5_clipped_tmp.nc 5

nccopy -d 0 round_range_5_clipped_tmp.nc ground_range_5_clipped.nc

Then, CFOSAT Clipping + Shuffle + Deflate (3) compression is performed using the following command line:

nccopy -s -d 3 ground_range_5_clipped.nc ground_range_5_clipped_dfl3.nc

CFOSAT Clipping + Zstd (2) compression is performed using the following command line:

nccopy -F "ground_range_5,32015,2" ground_range_5_clipped.nc ground_range_5_clipped_zstd2.nc 10

For the other compression methods, we first extract the ground_range_5 variable from the ‘raw’ dataset:

ncks --overwrite-O -4 -C -v ground_range_5 \
TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc ground_range_5.nc

Then, Sz (absErrBound = 1e-3, Gzip_BEST_SPEED) compression is performed using the following command line after

having correctly configured the sz.config file: 15

h5repack --filter=ground_range_5:UD=32017,0 -i ground_range_5.nc -o ground_range_5_sz.h5

Decimal Rounding (dsd = .3) + Shuffle + Deflate (1) compression is performed using the following command line:

ncks --overwrite-O -4 -L 1 --ppc ground_range_5=.3 ground_range_5.nc ground_range_5_dr.nc

Bit Grooming (nsd = 8) + Shuffle + Deflate (1) compression is performed using the following command line:

ncks --overwrite-O -4 -L 1 --ppc ground_range_5=8 ground_range_5.nc ground_range_5_bg.nc 20

Digit Rounding (nsd = 8) + Shuffle + Deflate (1) compression is performed using the following command line:

h5repack h5 --filter=ground_range_5:UD=47987,1,1,8 --filter=ground_range_5:SHUF \
--filter=ground_range_5:GZIP=1 -i ground_range_5.nc -o ground_range_5_dr.h5

The following command lines allow reproducing the results provided in Table 9 of the paper. 25

We first decompress the ‘clipped’ dataset:

nccopy -d 0 CFO_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc \
CFO_TEST_SWI_L1A____F_20160830T150000_20160830T164500_decompressed.nc

Then, CFOSAT Clipping + Shuffle + Deflate (3) compression is performed using the following command line:

nccopy -s -d 3 CFO_TEST_SWI_L1A____F_20160830T150000_20160830T164500_decompressed.nc \ 30
CFO_TEST_SWI_L1A____F_20160830T150000_20160830T164500_dfl3.nc

CFOSAT Clipping + Shuffle + Zstd (2) compression is performed using the following command line:

8

h5repack --filter=SHUF --filter=UD=32015,0,1,2 \
–i CFO_TEST_SWI_L1A____F_20160830T150000_20160830T164500_decompressed.nc \
-o CFO_TEST_SWI_L1A____F_20160830T150000_20160830T164500_zstd2.h5

For the other compression methods, we used the ‘raw’ dataset.

Decimal Rounding + Shuffle + Deflate (1) compression is performed using the following command line, setting the dsd 5

parameter on a per variable basis and corresponding to the lsd parameters of CFOSAT clipping (see Table 3):

ncks --overwrite-O -4 -L 1 --ppc default=.3 --ppc altitude=.3 --ppc cal_ratio_0=.3 --ppc
cal_ratio_1=.3 \
--ppc cal_ratio_2=.3 --ppc cal_ratio_3=.3 --ppc cal_ratio_4=.3 --ppc cal_ratio_5=.3 \
--ppc cycle_duration=.7 --ppc echo_l1_0.?=.12 --ppc earth_radius=.3 --ppc 10
echo_l1_0=.12 \
\
--ppc echo_l1_0_nt=.12 --ppc echo_l1_0_std_nt=.12 --ppc elevation_.?=.5 --ppc
incidence_.?=.5 --ppc echo_l1a_0=.3 \
--ppc echo_l1a_1=.3 --ppc echo_l1a_2=.3 --ppc echo_l1a_3=.3 --ppc echo_l1a_4=.3 \ 15
--ppc echo_l1a_5=.3 --ppc elevation_0=.5 --ppc elevation_1=.5 --ppc elevation_2=.5 \
--ppc elevation_3=.5 --ppc elevation_4=.5 --ppc elevation_5=.5 \
--ppc ground_range_0=.3 --ppc ground_range_1=.3 --ppc ground_range_2=.3 \
--ppc ground_range_3=.3 --ppc ground_range_4=.3 --ppc ground_range_5=.3 \
--ppc incidence_0=.5 --ppc incidence_1=.5 --ppc incidence_2=.5 --ppc incidence_3=.5 \ 20
--ppc incidence_4=.5 --ppc incidence_5=.5 --ppc lat_l1a_0=.3 --ppc lat_l1a_1=.3 \
--ppc lat_l1a_2=.3 --ppc lat_l1a_3=.3 --ppc lat_l1a_4=.3 --ppc lat_l1a_5=.3 \
--ppc lon_l1a_0=.3 --ppc lon_l1a_1=.3 --ppc lon_l1a_2=.3 --ppc lon_l1a_3=.3 \
--ppc lon_l1a_4=.3 --ppc lon_l1a_5=.3 --ppc ly=.2 --ppc mispointing=.14 \
\ 25
--ppc nesig0=.3 --ppc orbital_velocity=.3 --ppc phi=.3 --ppc phi_azimuth=.3 \
--ppc phi_geo=.3 --ppc pri=.1 --ppc projected_velocity=.3 --ppc pseudo_misp=.14 \
--ppc radar_range_0=.3 --ppc radar_range_1=.3 --ppc radar_range_2=.3 \
--ppc radar_range_3=.3 --ppc radar_range_4=.3 --ppc radar_range_5=.3 \
TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc \ 30
TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500_dr.nc)

Bit Grooming (nsd = 8) + Shuffle + Deflate (1) compression is performed using the following command line:

ncks --overwrite-O -4 -L 1 --ppc 8 TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc
\
TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500_bg.nc) 35

Digit Rounding (nsd = 8) + Shuffle + Deflate (1) compression is performed using the following command line:

h5repack h5 --filter=UD=47987,1,1,8 --filter=SHUF --filter=GZIP=1 \
-i TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc \
-o TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500_dr.h5

Sz compression has been applied variable per variable using the following command lines: 40

Get the list of variables in the dataset
var_list=$(h5ls TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc | awk '{print $1}')
Loop over the variables
for var in $var_list;
do 45
 # Extract the variable from the dataset
 ncks --overwrite-O -4 -C -v $var \

TMP_TEST_SWI_L1A____F_20160830T150000_20160830T164500.nc tmp.nc

9

 # Read the lsd attribute from the input file
 lsd=$(h5ls -v tmp.nc/$var | sed -n '/least_significant_digit.*/,/Data.*/p' \

| tail -1 | awk '{print $2}')
 # modify sz.config according to the lsd
 5
 sed -i "s/^absErrBound.*=.*/absErrBound = 1e-${lsd}/g" sz.config
 # Compress
 h5repack -i tmp.nc -o ${var}.h5 --filter=${var}:UD=32017,0
done

SWOT datasets 10

We used two different SWOT datasets:

- SWOT_L2_HR_PIXC_000_210_46N-R_main.nc is a simplified simulated SWOT L2_HR_PIXC pixel cloud

product;

- pixel_cloud.nc is a realistic and representative SWOT L2 pixel cloud product

Table 4 provides the precision in number of significant digits (nsd) required for each variable of the 15

SWOT_L2_HR_PIXC_000_210_46N-R_main.nc dataset.

Table 4: Precision in number of significant digits (nsd) required for each variable of the SWOT_L2_HR_PIXC_000_210_46N-

R_main.nc dataset.

Variable nsd Variable nsd Variable nsd

azimuth_index 4 dlook_dphase_z 6 look_unit_x 8

classification 3 dphase 6 look_unit_y 8

coherent_power 8 dry_tropo_range_correction 4 look_unit_z 8

continuous_classification 8 height 6 num_rare_looks 2

cross_track 15 ice_flag 8 phase_screen 6

dark_water_flag 8 ifgram_imag 15 pixel_area 11

delta_x 8 ifgram_real 15 power_left 8

delta_y 8 illumination_time 15 power_right 8

delta_z 8 instrument_attitude_correction 6 range_index 4

dheight_dbaseline 6 instrument_baseline_correction 6 reference_layover_flag 8

dheight_dphase 8 instrument_phase_correction 6 reference_layover_height_error 8

dheight_drange 6 instrument_range_correction 6 sensor_s 11

dheight_droll 8 ionosphere_range_correction 6 solid_earth_tide_height_correction 4

dlook_dphase_x 6 latitude 15 wet_tropo_range_correction 4

dlook_dphase_y 6 longitude 15 xover_roll_correction 4

10

Table 5 provides the precision in number of significant digits (nsd) required for each variable of the pixel_cloud.nc dataset.

Table 5: Precision in number of significant digits (nsd) required for each variable of the pixel_cloud.nc dataset.

Variable nsd Variable nsd Variable nsd

azimuth_index 4 ifgram 7 power_left 8

classification 3 illumination_time 15 power_right 8

coherent_power 8 incidence_angle 8 range_index 4

continuous_classification 8 latitude 15 regions 7

cross_track 15 longitude 15 sigma0 7

dheight_dphase 8 num_med_looks 3 x_factor_left 7

dlatitude_dphase 5 num_rare_looks 2 x_factor_right 7

dlongitude_dphase 5 phase_noise_std 7

height 6 pixel_area 11

The following command lines allow reproducing the results provided in Table 10 of the paper.

We first extract the height variable from SWOT dataset and decompress it: 5

ncks --overwrite-O -v height SWOT_L2_HR_PIXC_000_210_46N-R_main.nc height_tmp.nc
nccopy -d 0 height_tmp.nc height.nc

Then, Shuffle + Deflate (4) compression is performed using the following command line:

nccopy -s -d 4 height.nc height_dfl4.nc

Shuffle + Zstd (2) compression is performed using the following command line: 10

h5repack --filter=height:SHUF --filter=height:UD=32015,1,1,2 \
–i height.nc -o height_zstd2.h5

Sz (pw_relBoundRatio = 5e-6, Gzip_BEST_SPEED) compression is performed using the following command line after

having correctly configured the sz.config file:

h5repack --filter=ground_range_5:UD=32017,0 -i height.nc -o height_sz.h5 15

Bit Grooming (nsd = 6) + Shuffle + Deflate (1) compression is performed using the following command line:

ncks --overwrite-O -4 -L 1 --ppc height=6 height.nc height_bg.nc

Digit Rounding (nsd = 6) + Shuffle + Deflate (1) compression is performed using the following command line:

h5repack h5 --filter=height:UD=47987,1,1,6 --filter=height:SHUF --filter=height:GZIP=1 \
-i height.nc -o height_dr.h5 20

11

The following command lines allow reproducing the results provided in Table 11 of the paper.

We first extract the pixel_area variable from SWOT dataset and decompress it:

ncks --overwrite-O -v pixel_area pixel_cloud.nc pixel_area_tmp.nc
nccopy -d 0 pixel_area_tmp.nc pixel_area.nc

Then, Shuffle + Deflate (4) compression is performed using the following command line: 5

nccopy -s -d 4 pixel_area.nc pixel_area_dfl4.nc

Shuffle + Zstd (2) compression is performed using the following command line:

h5repack --filter=pixel_area:SHUF --filter=pixel_area:UD=32015,1,1,2 \
–i pixel_area.nc -o pixel_area_zstd2.h5

Sz (pw_relBoundRatio = 5e-9, Gzip_BEST_SPEED) compression is performed using the following command line after 10

having correctly configured the sz.config file:

h5repack --filter=ground_range_5:UD=32017,0 -i pixel_area.nc -o pixel_area_sz.h5

Bit Grooming (nsd = 11) + Shuffle + Deflate (1) compression is performed using the following command line:

ncks --overwrite-O -4 -L 1 --ppc pixel_area=11 pixel_area.nc pixel_area_bg.nc

Digit Rounding (nsd = 11) + Shuffle + Deflate (1) compression is performed using the following command line: 15

h5repack h5 --filter=pixel_area:UD=47987,1,1,11 --filter=pixel_area:SHUF \
--filter=pixel_area:GZIP=1 -i pixel_area.nc -o pixel_area_dr.h5

The following command lines allow reproducing the results provided in Table 12 of the paper.

We first decompress SWOT dataset: 20

nccopy -d 0 SWOT_L2_HR_PIXC_000_210_46N-R_main.nc SWOT_L2_HR_PIXC_decomp.nc

Then, Shuffle + Deflate (4) compression is performed using the following command line:

nccopy -s -d 4 SWOT_L2_HR_PIXC_decomp.nc SWOT_L2_HR_PIXC_dfl4.nc

Clipping + Shuffle + Zstd (2) compression is performed using the following command line:

h5repack --filter=SHUF --filter=UD=32015,0,1,2 \ 25
–i SWOT_L2_HR_PIXC_decomp.nc -o SWOT_L2_HR_PIXC_zstd2.h5

Bit Grooming + Shuffle + Deflate (1) compression is performed using the following command line, setting the nsd parameter

on a per variable basis corresponding to the required precision (see Table 4):

ncks -4 -L 1 --overwrite-O SWOT_L2_HR_PIXC_decomp.nc SWOT_L2_HR_PIXC_bg.nc --ppc default=8 \
--ppc azimuth_index=4 --ppc classification=3 --ppc coherent_power=8 \ 30
--ppc continuous_classification=8 --ppc cross_track=15 --ppc dark_water_flag=8 \
--ppc delta_x=8 --ppc delta_y=8 --ppc delta_z=8 \
--ppc dheight_dbaseline=6 \
--ppc dheight_dphase=8 --ppc dheight_.?=6 --ppc dlook_dphase_.?=6 --ppc
dheight_drange=6 --ppc dheight_droll=8 \ 35

12

--ppc dlook_dphase_x=6 --ppc dlook_dphase_y=6 --ppc dlook_dphase_z=6 --ppc dphase=6 \
--ppc dry_tropo_range_correction=4 --ppc height=6 --ppc ice_flag=8 \
--ppc ifgram_imag=15 \
--ppc ifgram_real=15 --ppc illumination_time=15 \
--ppc instrument_.?=6 \ 5
--ppc instrument_attitude_correction=6 --ppc instrument_baseline_correction=6 \
--ppc instrument_phase_correction=6 --ppc instrument_range_correction=6 \
--ppc ionosphere_range_correction=6 --ppc latitude=15 --ppc longitude=15 \
--ppc look_unit_x=8 --ppc look_unit_y=8 --ppc look_unit_z=8 --ppc num_rare_looks=2 \
--ppc phase_screen=6 --ppc pixel_area=11 --ppc power_left=8 --ppc power_right=8 \ 10
--ppc range_index=4 \
--ppc reference_layover_flag=8 \
--ppc reference_layover_height_error=8 --ppc sensor_s=11 \
--ppc solid_earth_tide_height_correction=4 \
--ppc wet_tropo_range_correction=4 \ 15
--ppc xover_roll_correction=4

Digit Rounding + Shuffle + Deflate (1) compression is performed using the following command line, setting the nsd

parameter on a per variable basis corresponding to the required precision (see Table 4):

h5repack -i SWOT_L2_HR_PIXC_decomp.nc –o SWOT_L2_HR_PIXC_dr.h5 \
--filter=azimuth_index:UD=47987,0,1,4 --filter=azimuth_index:SHUF --20
filter=azimuth_index:GZIP=1 --filter=classification:UD=47987,0,1,3 --
filter=classification:SHUF --filter=classification:GZIP=1 --
filter=coherent_power:UD=47987,0,1,8 --filter=coherent_power:SHUF --
filter=coherent_power:GZIP=1 --filter=continuous_classification:UD=47987,0,1,8 --
filter=continuous_classification:SHUF --filter=continuous_classification:GZIP=1 --25
filter=cross_track:UD=47987,0,1,15 --filter=cross_track:SHUF --
filter=cross_track:GZIP=1 --filter=dark_water_flag:UD=47987,0,1,8 --
filter=dark_water_flag:SHUF --filter=dark_water_flag:GZIP=1 --
filter=delta_x:UD=47987,0,1,8 --filter=delta_x:SHUF --filter=delta_x:GZIP=1 --
filter=delta_y:UD=47987,0,1,8 --filter=delta_y:SHUF --filter=delta_y:GZIP=1 --30
filter=delta_z:UD=47987,0,1,8 --filter=delta_z:SHUF --filter=delta_z:GZIP=1 --
filter=dheight_dbaseline:UD=47987,0,1,6 --filter=dheight_dbaseline:SHUF --
filter=dheight_dbaseline:GZIP=1 --filter=dheight_dphase:UD=47987,0,1,8 --
filter=dheight_dphase:SHUF --filter=dheight_dphase:GZIP=1 --
filter=dheight_drange:UD=47987,0,1,6 --filter=dheight_drange:SHUF --35
filter=dheight_drange:GZIP=1 --filter=dheight_droll:UD=47987,0,1,8 --
filter=dheight_droll:SHUF --filter=dheight_droll:GZIP=1 --
filter=dlook_dphase_x:UD=47987,0,1,6 --filter=dlook_dphase_x:SHUF --
filter=dlook_dphase_x:GZIP=1 --filter=dlook_dphase_y:UD=47987,0,1,6 --
filter=dlook_dphase_y:SHUF --filter=dlook_dphase_y:GZIP=1 --40
filter=dlook_dphase_z:UD=47987,0,1,6 --filter=dlook_dphase_z:SHUF --
filter=dlook_dphase_z:GZIP=1 --filter=dphase:UD=47987,0,1,6 --filter=dphase:SHUF --
filter=dphase:GZIP=1 --filter=dry_tropo_range_correction:UD=47987,0,1,4 --
filter=dry_tropo_range_correction:SHUF --filter=dry_tropo_range_correction:GZIP=1 --
filter=height:UD=47987,0,1,6 --filter=height:SHUF --filter=height:GZIP=1 --45
filter=ice_flag:UD=47987,0,1,8 --filter=ice_flag:SHUF --filter=ice_flag:GZIP=1 --
filter=ifgram_imag:UD=47987,0,1,15 --filter=ifgram_imag:SHUF --
filter=ifgram_imag:GZIP=1 --filter=ifgram_real:UD=47987,0,1,15 --
filter=ifgram_real:SHUF --filter=ifgram_real:GZIP=1 --
filter=illumination_time:UD=47987,0,1,15 --filter=illumination_time:SHUF --50
filter=illumination_time:GZIP=1 --filter=instrument_attitude_correction:UD=47987,0,1,6
--filter=instrument_attitude_correction:SHUF --
filter=instrument_attitude_correction:GZIP=1 --
filter=instrument_baseline_correction:UD=47987,0,1,6 --

13

filter=instrument_baseline_correction:SHUF --
filter=instrument_baseline_correction:GZIP=1 --
filter=instrument_phase_correction:UD=47987,0,1,6 --
filter=instrument_phase_correction:SHUF --filter=instrument_phase_correction:GZIP=1 --
filter=instrument_range_correction:UD=47987,0,1,6 --5
filter=instrument_range_correction:SHUF --filter=instrument_range_correction:GZIP=1 --
filter=ionosphere_range_correction:UD=47987,0,1,6 --
filter=ionosphere_range_correction:SHUF --filter=ionosphere_range_correction:GZIP=1 --
filter=latitude:UD=47987,0,1,15 --filter=latitude:SHUF --filter=latitude:GZIP=1 --
filter=longitude:UD=47987,0,1,15 --filter=longitude:SHUF --filter=longitude:GZIP=1 --10
filter=look_unit_x:UD=47987,0,1,8 --filter=look_unit_x:SHUF --
filter=look_unit_x:GZIP=1 --filter=look_unit_y:UD=47987,0,1,8 --
filter=look_unit_y:SHUF --filter=look_unit_y:GZIP=1 --
filter=look_unit_z:UD=47987,0,1,8 --filter=look_unit_z:SHUF --
filter=look_unit_z:GZIP=1 --filter=num_rare_looks:UD=47987,0,1,2 --15
filter=num_rare_looks:SHUF --filter=num_rare_looks:GZIP=1 --
filter=phase_screen:UD=47987,0,1,6 --filter=phase_screen:SHUF --
filter=phase_screen:GZIP=1 --filter=pixel_area:UD=47987,0,1,11 --
filter=pixel_area:SHUF --filter=pixel_area:GZIP=1 --filter=power_left:UD=47987,0,1,8 -
-filter=power_left:SHUF --filter=power_left:GZIP=1 --filter=power_right:UD=47987,0,1,8 20
--filter=power_right:SHUF --filter=power_right:GZIP=1 --
filter=range_index:UD=47987,0,1,4 --filter=range_index:SHUF --
filter=range_index:GZIP=1 --filter=reference_layover_flag:UD=47987,0,1,8 --
filter=reference_layover_flag:SHUF --filter=reference_layover_flag:GZIP=1 --
filter=reference_layover_height_error:UD=47987,0,1,8 --25
filter=reference_layover_height_error:SHUF --
filter=reference_layover_height_error:GZIP=1 --filter=sensor_s:UD=47987,0,1,11 --
filter=sensor_s:SHUF --filter=sensor_s:GZIP=1 --
filter=solid_earth_tide_height_correction:UD=47987,0,1,4 --
filter=solid_earth_tide_height_correction:SHUF --30
filter=solid_earth_tide_height_correction:GZIP=1 --
filter=wet_tropo_range_correction:UD=47987,0,1,4 --
filter=wet_tropo_range_correction:SHUF --filter=wet_tropo_range_correction:GZIP=1 --
filter=xover_roll_correction:UD=47987,0,1,4 --filter=xover_roll_correction:SHUF --
filter=xover_roll_correction:GZIP=1) 35

The following command lines allow reproducing the results provided in Table 13 of the paper.

Shuffle + Deflate (4) compression is performed using the following command line:

nccopy -s -d 4 pixel_cloud.nc PIXEL_CLOUD_dfl4.nc

Clipping + Shuffle + Zstd (2) compression is performed using the following command line: 40

h5repack --filter=SHUF --filter=UD=32015,0,1,2 \
–i pixel_cloud_decomp.nc -o pixel_cloud_zstd2.h5

Bit Grooming + Shuffle + Deflate (1) compression is performed using the following command line, setting the nsd parameter

on a per variable basis corresponding to the required precision (see Table 5):

ncks -4 -L 1 --overwrite-O pixel_cloud_decomp.nc –o pixel_cloud_bg.nc --ppc default=8 \ 45
--ppc azimuth_index=4 --ppc classification=3 \
--ppc coherent_power=8 --ppc continuous_classification=8 --ppc cross_track=15 \
--ppc dheight_dphase=8 \
--ppc dlatitude_dphase=5 --ppc dlongitude_dphase=5 \

14

--ppc height=6 --ppc ifgram=7 \
--ppc illumination_time=15 --ppc incidence_angle=8 \
--ppc latitude=15 --ppc longitude=15 \
--ppc num_med_looks=3 --ppc num_rare_looks=2 \
--ppc phase_noise_std=7 \ 5
--ppc pixel_area=11 --ppc power_left=7 --ppc power_right=8 \
--ppc range_index=4 --ppc regions=7 \
--ppc sigma0=7 --ppc x_factor_left.?=7 \
--ppc x_factor_right=7

Digit Rounding + Shuffle + Deflate (1) compression is performed using the following command line, setting the nsd 10

parameter on a per variable basis corresponding to the required precision (see Table 5):

h5repack -i pixel_cloud_decomp.nc –o pixel_cloud_dr.h5 \
--filter=azimuth_index:UD=47987,0,1,4 --filter=azimuth_index:SHUF --
filter=azimuth_index:GZIP=1 --filter=classification:UD=47987,0,1,3 --
filter=classification:SHUF --filter=classification:GZIP=1 --15
filter=coherent_power:UD=47987,0,1,8 --filter=coherent_power:SHUF --
filter=coherent_power:GZIP=1 --filter=continuous_classification:UD=47987,0,1,8 --
filter=continuous_classification:SHUF --filter=continuous_classification:GZIP=1 --
filter=cross_track:UD=47987,0,1,15 --filter=cross_track:SHUF --
filter=cross_track:GZIP=1 --filter=dheight_dphase:UD=47987,0,1,8 --20
filter=dheight_dphase:SHUF --filter=dheight_dphase:GZIP=1 --
filter=dlatitude_dphase:UD=47987,0,1,5 --filter=dlatitude_dphase:SHUF --
filter=dlatitude_dphase:GZIP=1 --filter=dlongitude_dphase:UD=47987,0,1,5 --
filter=dlongitude_dphase:SHUF --filter=dlongitude_dphase:GZIP=1 --
filter=height:UD=47987,0,1,6 --filter=height:SHUF --filter=height:GZIP=1 --25
filter=ifgram:UD=47987,0,1,7 --filter=ifgram:SHUF --filter=ifgram:GZIP=1 --
filter=illumination_time:UD=47987,0,1,15 --filter=illumination_time:SHUF --
filter=illumination_time:GZIP=1 --filter=incidence_angle:UD=47987,0,1,8 --
filter=incidence_angle:SHUF --filter=incidence_angle:GZIP=1 --
filter=latitude:UD=47987,0,1,15 --filter=latitude:SHUF --filter=latitude:GZIP=1 --30
filter=longitude:UD=47987,0,1,15 --filter=longitude:SHUF --filter=longitude:GZIP=1 --
filter=num_med_looks:UD=47987,0,1,3 --filter=num_med_looks:SHUF --
filter=num_med_looks:GZIP=1 --filter=num_rare_looks:UD=47987,0,1,2 --
filter=num_rare_looks:SHUF --filter=num_rare_looks:GZIP=1 --
filter=phase_noise_std:UD=47987,0,1,7 --filter=phase_noise_std:SHUF --35
filter=phase_noise_std:GZIP=1 --filter=pixel_area:UD=47987,0,1,11 --
filter=pixel_area:SHUF --filter=pixel_area:GZIP=1 --filter=power_left:UD=47987,0,1,8 -
-filter=power_left:SHUF --filter=power_left:GZIP=1 --filter=power_right:UD=47987,0,1,8
--filter=power_right:SHUF --filter=power_right:GZIP=1 --
filter=range_index:UD=47987,0,1,4 --filter=range_index:SHUF --40
filter=range_index:GZIP=1 --filter=regions:UD=47987,0,1,7 --filter=regions:SHUF --
filter=regions:GZIP=1 --filter=sigma0:UD=47987,0,1,7 --filter=sigma0:SHUF --
filter=sigma0:GZIP=1 --filter=x_factor_left:UD=47987,0,1,7 --filter=x_factor_left:SHUF
--filter=x_factor_left:GZIP=1 --filter=x_factor_right:UD=47987,0,1,7 --
filter=x_factor_right:SHUF --filter=x_factor_right:GZIP=1 45

Example usage with NetCDFnetCDF-4 tools

From version 4.6.0 - January 24, 2018, NetCDFnetCDF supports HDF5 dynamic filters. It is now possible to make use of

compression filters through nccopy tool. However, currently it supports only one filter: it does not yet allow chaining several

15

filters such as Shuffle, Digit Rounding and Deflate. Nevertheless, below is provided an example of command line calling the

Digit Rounding algorithm with nsd = 3 on the dataset ground_range_5_clipped.nc.

nccopy -F "ground_range_5,47987,3" ground_range_5_clipped.nc ground_range_5_clipped_dr.nc

 5

