
Dear Editor, 

Thank you so much for extending our time for the revision of the manuscript. We also like to thank 

both reviewers for their thorough review of the manuscript. Below, find the main modifications made to 

the manuscript which covers all the remarks. 

 As suggested by the reviewers, the manuscript has been reworked to focus more on the 

application to CFOSAT and SWOT datasets. We have also moved the details concerning the 

synthetic datasets in the Supplement which is now provided with the paper. 

 The term “Bit Grooming” was employed both for the absolute and the relative error bounded 

compression modes. But the algorithms are different. In the revised version of the paper we 

employ the term “Decimal Rounding” in the absolute error bounded mode and the term “Bit 

Grooming” in the relative absolute error bounded mode to remove any ambiguities. 

 Thanks to a remark from C. Zender, we found that the Digit Rounding algorithm was 

sometimes too conservative. We thus slightly modified the implementation. The compression 

results reported in the new version of the paper have been obtained with the new version of 

the Digit Rounding algorithm.  

 In the previous version of the paper, we cascaded a call to ncks with a call to h5repack to 

perform Bit Grooming followed by Zstandard compression. For fairer comparisons on the 

compression speed, we modified our approach and now only employ ncks tool to run Decimal 

Rounding and Bit Grooming. However, we could not call Zstandard compression via the ncks 

tool, but only Deflate compression. Consequently, we now provide results for Decimal 

Rounding, Bit Grooming, Sz and Digit Rounding followed by Deflate compression. 

 The Digit Rounding software source code is now available from CNES GitHub at 

https://github.com/CNES/Digit_Rounding. 

 We now provide a Supplement which details the datasets and provides the command lines 

used for running the compression tools. 

 The grammar and English of the paper has been dramatically improved by reviews from native 

English speakers. 

 

  



Reply to Anonymous Referee #1 

We are grateful to the referee for her/his constructive and thorough criticism and suggestions to our 

manuscript. Please, find below a detailed point-by-point reply. Referee’s comments are in blue italic; 

our answers are in black and our changes to the manuscript in green.  

 

- This manuscript needs a lot of improvement in terms of the grammar and writing. There are many 

awkward phrases and incorrect word choices that need to be improved (a subset are listed below). 

The paragraph structures are also in need of modification (many paragraphs contain only 1 or 2 

sentences). 

We will improve grammar and writing of the manuscript by contacting a native English speaker/writer. 

Thank you for pointing out the subset of incorrect word choices. We will also modify the paragraph 

structures to avoid too small paragraphs. 

The grammar and writing have been improved throughout the manuscript. Short paragraphs have also 

been modified. 

 

-Section 2: I’d be helpful to include more detail for the preprocessing algorithms: shuffle and bitshuffle. 

Also this section in general needs improvement. It’s a bit "choppy" to read (needs smoother and better 

transitions between topics) and feels like more details would be helpful on the methods (especially the 

ones that the digit rounding algorithm builds on). 

More details will be added on the shuffle and bitshuffle algorithms. More details will also be added on 

the bit-grooming and decimal rounding algorithm, algorithm on which the digit rounding algorithm is 

built. We will do what is needed to improve this section in general. 

Section 2 has been restructured so as to make the reading smoother. Details have been added on the 

shuffle and bitshuffle algorithms as well as on the bit-grooming and decimal rounding algorithm. 

“The Shuffle algorithm groups all the data samples’ first bytes together, all the second bytes together, 

etc. In smooth datasets, or datasets with highly correlated consecutive sample values, this 

rearrangement creates long runs of similar bytes, improving the dataset’s compression. Bitshuffle 

extends the concept of Shuffle to the bit level by grouping together all the data samples’ first bits, 

second bits, etc. 

… 

The Decimal Rounding algorithm achieves a uniform scalar quantization of the data. The quantization 

step is a power of 2 pre-computed so as to preserve a specific number of decimal digits. The Bit 

Grooming algorithm creates a bitmask to degrade the least significant bits of the mantissa of IEEE 754 

floating-point data. Given a specified total number of significant digits, nsd, the Bit Grooming algorithm 

tabulates the number of mantissa bits that has to be preserved to guarantee the specified precision of 

nsd digits: to guarantee 1-6 digits of precision, Bit Grooming must retain 5, 8, 11, 15, 18, and 21 

mantissa bits respectively. The advantage is that the number of mantissa bits that must be preserved 

is computed very quickly. The disadvantage is that this computation is not optimal. In many cases, 

more mantissa bits are preserved than strictly necessary.” 

-Section 4: Why does using the synthetic data in 4.1 to assess performance make sense - it seems 

unrelated to the application area of interest. I’d argue that the metrics used in 4.1 are really minimal 

requirements as well. Also take care when referring to "performance" as it is overloaded term...do you 

mean speed or effectiveness (it’s used both ways) 



The objective of using synthetic data was to control the data parameters, such as the SNR, to be able 

to assess the impact of these parameters on the compression ratios. The results are not reported in 

this paper which rather focuses on providing a comparison of the compression ratio and speed of 

different algorithms. It has also been chosen to present only the minimal set of relevant metrics to 

avoid overloading the paper. We will be more rigorous and replace the term “performance” by 

“compression ratio” or “compression speed” in the text. 

All the occurrences of the term “performance” have been checked and corrected when needed. The 

Mean Absolute Error metric has been added to the list of metrics: 

“mean absolute error eabs̅̅ ̅̅ ̅ to evaluate the mean data degradation. It is defined as the mean of the 

pointwise absolute difference between the original and compressed data: 

eabs̅̅ ̅̅ ̅ =
1

N
∑ |si − s̃i|

N−1
i=0 ” 

 

-fpzip is a fast and effective lossless method that would have been nice to compare (I *think* there is 

an fpzip filter available). Also I believe that any hdf5 filter can be accessed through NetCDF4 (see last 

sentence in conclusion) - consider contacting the Unidata folks. 

Thank you for the suggestion. Indeed a HDF5 filter is accessible for fpzip. However, many lossless 

compression algorithms exist. In our paper, we chose to evaluate the most “popular”, i.e. the lossless 

compression algorithms the most used in applications. Thank you for pointing this evolution of the 

NetCDF-4 library: from version 4.6.0 - January 24, 2018, NetCDF fully supports HDF5 dynamic filters. 

The text of the paper will be modified so as to provide the example usage using the new NetCDF-4 

features. 

An example using the new NetCDF-4 features with nccopy tool has been provided in the supplement 

and the conclusion has been modified to remove the last sentence. However, nccopy tool does not 

allow yet linking together different filters. 

 

-Comments on doing compression in parallel? 

We do not consider running compression algorithm in parallel in this work and will make it clear in the 

manuscript. It is a possible extension of this study. 

The following sentence has been added in section 4: 

“Parallel compression has not been considered in this work.” 

 

-When reading the conclusion, it’s hard to see what the main contributions of this paper are. It’s fairly 

well known already that preprocessing of scientific data (e.g., bit shuffle or shuffle) improves lossy 

compression. Also the statements in the conclusion aren’t specific to a particular type of data set, but 

are presented as more general conclusions. 

Given that the effectiveness and performance (speed) of lossy and lossless compression are very 

data, application, and variable dependent, the general statements here are not well justified by the 

small sample of data in the paper. I’d suggest focusing the paper more heavily on the data in Section 

5 (if it’s of interest) and tailoring the discussion in that manner. Or maybe the focus was to be more on 

speeds than quality, in which case it’s be important to work to get sz and fpzip working, particularly via 

netcdf-4... 



Thank you for the suggestion that will help highlighting the main contributions of our work. As 

suggested, the paper will be reworked to focus more on the application to the CFOSAT and SWOT 

datasets. We will also avoid general statements but attach our conclusions to our application case.  

The paper has been reworked to focus more on the application to the CFOSAT and SWOT datasets. 

Sz compression has been run on CFOSAT dataset and on some parts of SWOT datasets. The 

NetCDF-4 tool nccopy does not allow yet linking together different filters. This restrains its usability 

and this is why we prefer using h5repack tool. 

 

—————————- Specific items: —————————- 

 

-p2, line 20: note that fpzip can also be lossless 

Thank you for the remark. Fpzip will be presented both as a lossless and lossy compression algorithm. 

The text has been modified as follows:  

“Third, some lossy/lossless compression algorithms, such as FPZIP (Lindstrom and Isenburg, 2006), 

…” 

 

-p. 8: discussion of figure 5: is the width of the bars related to the compression levels? (e.g. line 20 

statement is unclear) 

No. All the bars have the same width. Each vertical bar represents a compression level. For instance, 

the 9 compression levels of Deflate are represented by 9 vertical bars. This will be clarified in the text 

p.8. 

Clarifications have been added to the text: 

“The vertical bars represent the results for different compression levels: from 1 to 9 for the Deflate 

level dfl_lvl, from 1 to 22 for Zstandard level zstd_lvl, and only one level for LZ4.” 

 

-p.8, lines 28-29: Why is this the case? (Add some discussion beyond describing the figure.) 

These lower compression/decompression speeds are not well understood and would require further 

investigation to be fully understood. It might be related to HDF5 chunking. Indeed, HDF5 split the data 

into chunks of small size that are independently compressed. This allows HDF5 to improve partial I/O 

for big datasets but can sometimes reduce the compression/decompression speeds. This discussion 

will be added to the text. 

The following sentence has been added to the text: 

“Further investigations are required to understand why the compression/decompression speeds are 

lower, but it might be related to HDF5 chunking.” 

 



-p.8, line 20: I feel like the parameters should be better explained for –filter so that the reader can try 

them more easily. For example, what does the "32017" mean? I think that the following 0 is for sz, but 

this is not stated either. 

We will add the meaning of each parameters. Each HDF5 filter is identified by a unique ID. “32017” is 

the identifier of Sz filter. The following “0” is the number of filter parameters. In the case of Sz, the filter 

does not have any parameter to set. That is why there are 0 parameters. Sz compressor is configured 

via the sz.config file. The same explanations will be added for the other filters used in the paper. 

All the command lines have been moved to the Supplement with the explanation above to avoid 

overloading the manuscript. 

 

-p. 10, line 6: re: "experiments have shown" - whose or which experiments (cite?) 

It is based on our own experiments that haven’t been published. The sentence will be reworked as 

follows: “We have found that Shuffle or Bitshuffle preprocessing do not increase the compression ratio 

when applied after Sz. We have also found that and Bitshuffle provide lower compression ratio than 

Shuffle when applied after Bit Grooming. That is why only Shuffle is applied after Bit Grooming.” 

This sentence has been removed since the results have not been published.  

 

-Table 5 : Why is the speed faster for 1d? 

As previously, the lower compression/decompression speeds obtained with the dataset s3D are not 

well understood and might be related to HDF5 chunking. This discussion will be added to the text. 

The following sentence has been added to the text: 

“The lower compression/decompression speeds obtained with Sz on the dataset s3D are not well 

understood and might be related to HDF5 chunking as previously mentioned.” 

 

-Section 4.4.1, line 21-24: Any idea why you get these results? 

Sz performs better on smooth signals since it makes use of a prediction step. The signal s1 being 

highly noisy, Sz prediction might often fail. This can explain the lower compression ratio on the signal 

s1. On the contrary, Bit-grooming does not makes any prediction. This can explain why it achieves 

better compression than Sz on the signal s1. This hypothesis will be added to the text. 

The following sentences have been added to the text: 

“Sz may perform better on dataset s3D because it is smoother than dataset s1. Indeed, Sz integrates a 

prediction step. This prediction might often fail because dataset s1 is very noisy. This may explain the 

lower compression ratio for this dataset. Decimal Rounding, however, does not make any predictions, 

which may explain why it achieves a better compression than Sz for dataset s1.” 

 

-Section 4.4.1, last sentences: It’s unclear to me what the value of these synthetic data sets is - 

especially given the statement on p. 11, line 3, about the dependence on the dataset 



As suggested previously, the paper will be reworked to focus more on the application to CFOSAT and 

SWOT datasets without drawing general conclusions based on the results obtained on the synthetic 

datasets. 

We modified the last sentence of this section as follows:  

“Both Sz and Bit Grooming algorithms seem valuable for compression in absolute error-bounded 

compression mode.” 

 

-page 11, line 9-10: I’d include characteristics of the data (e.g., maximum abs. value) earlier in the text 

when the two datasets are introduced. 

Your suggestion will be taken into account: the characteristics of the data will be introduced in section 

4.2. 

We have added the characteristics of the data in section 4: 

“Datasets s1 and s3D were generated,  s1 being a noisy sinusoid of 1 dimension with a maximum 

absolute value of 118. The data volume of the s1 dataset is 4MB. Dataset s3D is a noisy sinusoid 

pulse of 3 dimensions with a maximum absolute value of 145. The data volume of the s3D dataset is 

512MB.” 

 

-page 11, line 24: I don’t see relative error mentioned in Table 6 - it seems to just be absolute error 

The text will be modified to make it clearer: “…all three algorithms respect the maximum absolute error 

of 0.5 which, for the signal s1, corresponds to a relative error of 0.00424.” 

The text has been modified as follows: 

“… all three algorithms respect the maximum absolute error of 0.5, which corresponds for dataset s1 

to a relative error of 0.00424.” 

 

-p.11-12: Need more of a discussion of the results in Figure 7. For 3D, it looks like bit grooming and 

digit rounding are similar - I don’t see a clear advantage. 

More discussion on the results will be added to the text. For the s3D you are right, there is no clear 

advantage. It is written “the Digit Rounding algorithm provides compression performance very closed 

to the one of the Bit Grooming algorithm”. 

The text has been modified as follows: 

“All three algorithms provide similar SNR versus compression ratio results, with a slight advantage for 

the Bit Grooming algorithm.” 

 

-p.12, lines 16-17: SZ compression can be controlled with an absolute error bound, so why is the 

relative error bound adjusted to get the desired abs. error? 

The objective was to see if Sz compression configured with a relative error bound respect the error 

bound specified. As the digit rounding and bit-grooming algorithm can only be configured on a number 



of significant digits, they can only “produce” absolute error in 0.5, 0.05, 0.005, etc. In order to be able 

to compare Sz configured with a relative error bound with those algorithms, we have configured the 

relative error bound to obtain a maximum absolute error of 0.5. These explanations will be added to 

the text. 

The following sentence has been added in the text: 

In order to be able to compare Sz configured with a relative error bound with those algorithms, we 

configured the relative error bound to obtain a maximum absolute error of 0.5: the pw_relBoundRatio 

parameter in Sz was set to 0.00424. 

 

-Section 5.1: It is disappointing not to have SZ results on the real data of interest. Were the SZ authors 

contacted? I would think that they could have helped resolve this issue. 

Yes, we had some exchanges. The issue is still under investigation. 

A more recent version of Sz has been used and results on CFOSAT and SWOT datasets are now 

provided. 

 

-p. 15, line 18: "which only a few attributes may be missing" - It’s unclear what this means. It’s super 

helpful to really detail the data being compressed so that one can make sense of the results. 

Details on the datasets will be added to the text. 

This part of the sentence has been removed has it is not relevant in the frame of this study. Details on 

the CFOSAT and SWOT datasets have been added in the Supplement, particularly the precision 

required for the compression of each variable. 

 

-p. 14, line 30: Please share more specific information about the precision required by the scientists for 

the data. Again, more information is useful for interpreting results. 

The configuration and the precision of each variable will be made available. 

These details have been added in the Supplement. 

 

-Section 5 seems like it should be the highlight of the paper as here we are seeing the results on the 

real data. But it feels like more detail is needed on the data and more discussion of the implications of 

the results. 

Section 5 will be developed to add more details on the data and more discussion on the results 

obtained. 

Section 5 has been reworked. It now provides results on particular variables of the CFOSAT and 

SWOT datasets. Details on the data have been added in the Supplement. 

————————– Typos, etc.: ————————– 

-abstract, line 7: incorrect use of "imposes" 

-p.1, line 22: "quite spread"=> "quite prevalent" or "quite popular" , "widely spread" => "widely used" 



-p.1., line 26: "reduce significantly" => "significantly reduce" 

-p.1. line 27: This sentence (that continues to page 2) is too long. 

-p.2, line 3: "can afford for" is awkward 

-p2, lines 10-24: this region is 5 paragraphs 

-p.3, lines 3-4: awkwardly worded 

-p. 3, line 9: one sentence paragraph 

-p.3, line 12: missing "," after "Deflate" 

-p.3 line 14: not sure what is meant by "new concurrent" 

-p.3, line 13: "widely spread" => "widely used" 

-p.3, line 16: awkward sentence: "This allows Deflate achieving rather high compression ratios" 

-P.3, section 3: again, there are too many tiny paragraphs 

-p.4, line 7: "are of same interest" is awkward 

-p.4, line 21: Table number is not given 

-p.5, line 15: awkwardly worded 

-p.5, line 24: One sentence paragraph 

-p.7, section 4.2: define f_s, f_ech 

-p.7, line 22: "use embarks" is awkward 

-p.8, line 7: "declined" doesn’t make sense 

-p.8, line 14: "embark" - incorrect usage 

-p.10, line 10: "This correspond corresponding" needs to be fixed 

-p. 10, line 24: Note sure I’d use "performances" here as earlier it was used to indicate speed. 

-p. 15, line 21: "ration" => "ratio" 

-p.15, line 14: another one sentence paragraph 

-p.16, line 9: "Extends to this work" - awkwardly worded 

Response: we thank you for highlighting typos that will help us to improve the manuscript. 

All these points have been corrected. 

 

  



Reply to Zender (Referee) 

We are grateful to the referee for his constructive and thorough criticism and suggestions to our 

manuscript. Please find below a detailed point-by-point reply (referee’s comment in italic). 

General Comments 

This manuscript presents a new lossy compression algorithm called “Digit Rounding” (DR), and 

evaluates its performance against and with other lossy and lossless compression algorithms on 

idealized and remote sensing datasets. The manuscript addresses the growing need to archive 

meaningful data rather than noise, and to do so reliably and quickly. The study presents an original 

advance in lossy compression whose implementation unfortunately hampers its utility. The study is 

understandable yet poorly written. This potentially useful study of lossy compression techniques needs 

a thorough overhaul before publication. 

We will improve the writing of the manuscript by contacting a native English speaker/writer. As 

suggested by the Anonymous Referee #1, the paper will be reworked to highlight the main 

contributions of our work and focus more on the application to CFOSAT and SWOT datasets. 

The grammar and writing have been improved throughout the manuscript and the paper has been 

reworked to highlight our main contribution and to focus more on the application to CFOSAT and 

SWOT datasets. 

 

Specific Comments 

Originality: DR is an improvement on “Bit Grooming” (BG) which I invented as an improvement on “Bit 

Shaving”. In that sense I am qualified to comment on its originality. The heart of DR is essentially a 

continuous version of BG: Whereas BG fixes the number of bits masked for each specified precision, 

and masks these bits for every value, DR recomputes the number of bits masked for each quantized 

value to achieve the same precision. BG did not implement the continuous method because I thought 

that computing the logarithm of each value would be expensive, inelegant, and yield only marginally 

more compression. However, DR cleverly uses the exponent field instead of computing logarithms, 

and so deciphers the correct number of bits to mask while avoiding expensive floating point math. This 

results in significantly more compressibility that (apparently) incurs no significant speed penalty 

(possibly because it compresses better and thus the lossless step is faster?). Hence DR appears to be 

a significant algorithmic advance and I congratulate the authors for their insight. 

Thank you for your congratulations. They are much appreciated. Indeed, the speed penalty of DR is 

compensated by the fact that the lossless step is faster. 

In the previous version, we cascaded a call to ncks with a call to h5repack to perform Bit Grooming 

followed by Zstandard compression. For fairer comparisons on the compression speed, we modified 

our approach and now only employ ncks tool to run Decimal Rounding and Bit Grooming. However, 

we could not call Zstandard compression via the ncks tool, but only Deflate compression. 

Consequently, we now provide results for Decimal Rounding, Bit Grooming, Sz and Digit Rounding 

followed by Deflate compression. 

 

The manuscript stumbles in places due to low quality English, and cries out for more fluent editing. Not 

only is the word choice often awkward, but the manuscript is like a continuously choppy sea of 

standalone sentences with few well developed paragraphs that swell with meaning then yield gently to 

the next idea. GMD readers deserve and expect better. 



We will improve the grammar and writing (see first answer). We will also modify the paragraph 

structures to avoid too small paragraphs and better take care of the transitions. 

The grammar and writing have been improved throughout the manuscript. Short paragraphs have also 

been modified and sentence transitions improved. 

 

Does DR guarantee that it will never create a relative error greater than half the value of the least 

significant digit? BG chooses the number of digits to mask conservatively, so it can and does 

guarantee that it always preserves the specified precision. Equations (1)-(7) imply that DR can make 

the same claim, but this claim is never explicitly tested or made. The absence of this guarantee is 

puzzling because it would strengthen the confidence of users in the algorithm. However, the 

guarantee must be explicitly tested, because it undergirds the premise that the comparison between 

DR and BG is fair. In any case, clearly state whether DR ever violates the desired precision, even if 

that happens only rarely. 

Equations (1)-(7) imply that DR guarantees that it always preserves the specified precision. We will 

explicitly add that claim in the text and show that DR always provides the desired precision on the 

number Pi with nsd varying from 1 to 8. We will also provide the maximum absolute error on artificial 

data of 1 000 000 values spanning [1.0, 2.0) in equal-increment steps of 1e-6. 

We have added the following sentence below Eq. 4. 

“This condition guarantees that the Digit Rounding algorithm to always preserves a relative error lower 

than or equal to half the value of the least significant digit.” 

We have also added results of DR algorithm on the number Pi in Table 2: 

“Table 2 provides the result of the Digit Rounding algorithm on the value of π with specified precisions 

nsd varying from 1 to 8 digits. It can be compared to the Bit Grooming results provided in Table 2 in 

(Zender, 2016a).” 

We also provide the maximum absolute error on artificial data of 1 000 000 values spanning [1.0, 2.0) 

in equal-increment steps of 1e-6 in Table 3 

“Table 3 provides the maximum absolute error obtained with varying nsd values on an artificial dataset 

composed of 1,000,000 values evenly spaced over the interval [1.0, 2.0). This is the same artificial 

dataset used in Table 3 in (Zender, 2016a). It shows that Digit Rounding always preserves a relative 

error lower than or equal to half the value of the least significant digit, i.e. |si − s̃i| ≤ 0.5 × 10di−nsd. ” 

 

p. 16 L13: “Code and data availability: The Digit Rounding software source code and the data are 

currently only available upon request to Xavier Delaunay (xavier.delaunay@thalesgroup.com) or to 

Flavien Gouillon (Flavien.Gouillon@cnes.fr).” The GMD policy on code and data is here: 

https://www.geoscientific-model-development.net/about/code_and_data_policy.html. This manuscript 

provides no code access nor explanation, and no dataset access, and thus appears to violate GMD 

policy in these areas. 

The code and the datasets will be made publicly available on the CNES gitlab. 

The code is now publicly available on CNES GitHub at https://github.com/CNES/Digit_Rounding and 

the dataset are available on demand. 

https://www.geoscientific-model-development.net/about/code_and_data_policy.html


“The Digit Rounding software source code is available from CNES GitHub at 

https://github.com/CNES/Digit_Rounding. The datasets are available upon request to Xavier Delaunay 

(xavier.delaunay@thalesgroup.com) or to Flavien Gouillon (Flavien.Gouillon@cnes.fr). The 

Supplement details the datasets and provides the command lines used for running the compression 

tools.” 

 

Common comparisons would help build confidence in your results. It would have been more 

synergistic to evaluate the algorithms on at least one of the same datasets as Zender (2016), which 

are all publicly available. I am glad the authors used the publicly available NCO executables. Why not 

release the DR software in the same spirit so that the geoscience community can use (and possibly 

improve) it? 

Comparisons with BG will be provided on the same MERRA dataset used in Zender (2016). The DR 

software will be released under MIT-style open source license. 

We have added results of DR on the same MERRA dataset used in Zender (2016). 

“We compare the compression ratio obtained with the Digit Rounding algorithm to that obtained with 

the Bit Grooming algorithm for the same meteorological data from MERRA re-analysis studied in 

(Zender, 2016a). Table 4 reports the Bit Grooming results extracted from Table 6 in (Zender, 2016a) 

and provides the results of the Digit Rounding algorithm. The same lossless compression is employed: 

Shuffle and Deflate with level 1 compression. From nsd = 7 to nsd = 5, Digit Rounding and Bit 

Grooming provide similar compression ratios with a slight advantage for the Bit Grooming algorithm. 

However, from nsd = 4 to nsd = 1, the compression ratios obtained with Digit Rounding are clearly 

better.” 

The DR software is released under LGPL-v3 open source license. 

 

The lossless and lossy compression algorithms analyzed seem like a fairly balanced collection of 

those most relevant to GMD readers. Most methods that were omitted are, to my knowledge, either 

non-competitive (e.g., Packing) or not user-friendly, e.g., research grade but not widely available (e.g., 

Layer Packing) and too hard to independently implement. 

Table 6 on p. 19 shows the maximum absolute error (MAE) of BG is quite similar to DR, as I would 

expect. However, Table 7 on p. 20 shows the maximum absolute error (MAE) of BG is nearly 10x less 

than DR. Why are the MAEs similar for dataset s1 and significantly different for dataset s3D? I expect 

DR has a greater mean error (and lower SNR) than BG due to the algorithms, yet the difference in 

MAEs surprises me. Zender (2016) Table 3 shows that BG is tuned to have an MAE just shy of 

violating the precision guarantee. An MAE that is nearly 10x larger seems like it might violate the 

precision guarantee. 

These results show that BG can sometimes be too conservative. As shown in Table 1 on the value Pi, 

BG sometimes preserves more bits in the mantissa than what is strictly necessary to achieve the 

required precision. This is what happens on the dataset s3D.  On the contrary, DR adapts the 

quantization step to each value of the input dataset. Doing so, it can achieve the required precision 

while preserving less mantissa bits than DR does. This results both in a higher mean absolute error 

and in a higher MAE than BG. This explanation will be added to the text. 

Thanks to you remark on the MAE on s1 dataset, it has been observed that DR algorithm was also too 

conservative on some values. It has been enhance in order to provide a MAE closer to what was 

expected. For this, the value log10(mi) is now tabulated with a few values. 



“The log10(mi) value is tabulated. Only 5 tabulated values are used in our implementation, enough to 

provide a good precision. The tabulated v values for log10(mi) are such that v ≤ log10(mi). They are 

provided in the Supplement. This computation slightly underestimates the values for di but provides a 

more conservative quantization, thus guaranteeing the specified number of significant digits.” 

The following sentence has also been added in the text: 

“Bit Grooming is too conservative. It preserves more mantissa bits than strictly necessary to achieve 

the required precision. This behavior is illustrated in Table 1 with the value of π. In contrast, Digit 

Rounding adapts the quantization step to each value of the input dataset. Doing so, it can achieve the 

required precision while preserving less mantissa bits than Bit Grooming does. This results both in a 

higher maximal absolute error and in a higher mean absolute error than Bit Grooming, but also in a 

higher compression ratio.” 

 

The preceding comment is a request to more carefully analyze the underlying cause of the behaviors 

reported in the data. The next two comments are to report more results to deepen the analyses and 

explain the behavior of DR more robustly. 

Please include the maximum absolute error or maximum absolute relative error (which normalizes the 

error by the original value) to Tables 5–10. 

MeanAE is an important statistic that is complementary to MaxAE. MeanAE is the average absolute 

(no compensation between positive and negative) bias in the dataset, and is more familiar and 

relevant than SNR to at least some geophysicists. Please consider including MeanAE in Tables 5–10. 

As suggested, the maximum absolute error and the mean absolute error (MeanAE) will be added to 

the tables allowing deeper analysis of DR behavior. 

The maximum absolute error and the mean absolute error have been added to tables 5, 6 and 7. 

Tables 9, 12 and 13 provide compression results on CFOSAT and SWOT which are composed of 

several different datasets. The maximum absolute error and the mean absolute error could only be 

computed variable per variable. We thus now provide the results obtained on the ground_range_5 

variable of the CFOSAT dataset in Table 8, the results obtained on the height variable of the SWOT 

dataset in Table 10, and the results obtained on the pixel_area variable of the other SWOT dataset in 

Table 11. 

 

Zender (2016) and Silver and Zender (2017) consider four primary criteria to evaluate compression 

algorithms: Compression Ratio, Accuracy, Speed, and User-friendliness. This manuscript neglects 

explicit consideration of the last, though usability seems (in addition to performance) seems to be an 

implicit reason why they recommend BG not DR for the “real world” use cases in Sections 5.1 and 5.2. 

The manuscript would benefit from a more explicit consideration of usability throughout. Examples 

include software availability, flexibility, and complexity of invocation, as well as transparency (will users 

have all the necessary software required to read the compressed data?), and instructions to mitigate 

these issues for DR. 

As for BG, there is no “decompression” associated to DR.  DR does not require any software to read 

the rounded data. This argument will be added into the text. The reason why BG is recommended 

rather than DR for the compression of CFOSAT dataset in section 5.1 is that this dataset is 

compressed in absolute error bounded compression mode. DR only works for relative error bounded 

compression mode. Nevertheless, some results using DR on this dataset will be provided for 

completeness. In section 5.2, BG (in the absolute error bounded compression mode) is recommended 



rather than DR for the compression SWOT L2 pixel cloud product. This recommendation is based on 

the compression ratio obtained. We will add the maximum absolute error and the mean absolute error 

(MeanAE) to Tables 8 to 10 for fairer comparisons. Moreover, we will provide a supplement to the 

article with the commands and datasets necessary to reproduce the results. 

We have added the following sentences in the text: 

“We have developed an HDF5 dynamically loaded filter plugin so as to apply the Digit Rounding 

algorithm to NetCDF-4 or HDF5 datasets. It should be noted that data values rounded by the Digit 

Rounding algorithm can be read directly: there is no reverse operation to Digit Rounding, and users do 

not need any software to read the rounded data.” 

Moreover, we have added some results using DR on the CFOSAT dataset for completeness.  

The maximum absolute error and the mean absolute error have not been added to Tables 9, 12 and 

13, because, as explained in the previous answer, CFOSAT and SWOT dataset are composed of 

several different variable.  

We also now provide a supplement to the article with the commands and datasets necessary to 

reproduce the results. 

 

Tables 1 and 3 follow Tables 1 and 2 of Zender (2016). This should be noted in the text and/or caption 

of the tables.  

The reference to Zender (2016) will be added in the caption of Tables 1 and 3. 

The captions have been modified as follows: 

“Table 1: Representation of the value of π in IEEE-754 single-precision binary representation (first 

row) and results preserving 4 significant digits with the Bit Grooming algorithm (second row) or 

preserving 12 mantissa bits (third row). This table builds on Table 1 in (Zender, 2016a).” 

“Table 2: Representation of the value of π in IEEE-754 single-precision binary representation (first 

row) and results preserving a varying number of significant digits (nsd) with the Digit Rounding 

algorithm. This table can be compared to Table 2 in (Zender, 2016a) providing the Bit Grooming 

results for π.” 

 

It seems like Table 2, the algorithm description, should be a figure rather than a table. 

This will be corrected as suggested. 

The algorithm description is now provided in Figure 2. 

 

The manuscript is awkward in that it introduces a demonstrably superior lossy compression algorithm 

but recommends a different algorithm (BG) for “real world” cases (Section 5), partly because DR is 

unavailable in software that potential users have easy access to, and its implementation appears to be 

too inflexible to use on generic datasets. The recommendation of BG not DR does attest to the 

objectivity of the study, yet it seems to be an unsatisfying conclusion to what was clearly a time-

consuming study. In this sense the manuscript seems premature, since if DR were “ready for 

primetime” then the authors could have recommended it rather than BG in Section 5. Perhaps the 

authors should re-evaluate whether the manuscript is premature, i.e., whether it should both introduce 



a new lossy algorithm before it is ready to use in optimized workflows for generic geoscientific data 

compression. 

As previously answered, the manuscript will be reworked to highlight the main contributions of our 

work and focus on the applications to the CFOSAT and the SWOT datasets. The maximum absolute 

error and the mean absolute error (MeanAE) will be added to Tables 5 to 10 for fairer comparisons 

that will allow mitigating the previous conclusions that were based on the compression ratio only. 

Moreover, some results using DR on CFOSAT dataset will be provided for completeness of the 

manuscript. 

We have added some results using DR on the CFOSAT dataset for completeness, but also maximum 

and mean absolute error in the tables (see previous answers). 

The conclusion has been reworked to make it clearer that we recommend Decimal Rounding for 

absolute error bounded compression of CFOSAT data but Digit Rounding for relative error bounded 

compression of SWOT data. 

 

 

 

Minor Suggestions 

p. 1 L22: “well spread” 

p. 2 L22: DEFLATE 

p. 4 L1: maxi is redundant. Just use max. 

p. 4 L21: Table 1 

p. 9 L7: “declined”? 

p. 9 L14: “By default, Sz algorithm embark Deflate.” is awkward. 

p. 14 L27–28: These lines are identical 

p. 18 L8: “the number di of significant digit number of digits”???  

p. 18 L8: “following Eq.” not “following in Eq.” 

p. 23 Figure 4: Clarify the meaning of the distinct vertical bars. 

Response: we thank you for these suggestions that will help us to improve the manuscript. 

All these points have been corrected. 

 

 



Dear Editor, 

Thank you so much for extending our time for the revision of the manuscript. We also like to thank 

both reviewers for their thorough review of the manuscript. Below, find the main modifications made to 

the manuscript which covers all the remarks. 

· As suggested by the reviewers, the manuscript has been reworked to focus more on the 

application to CFOSAT and SWOT datasets. We have also moved the details concerning the 

synthetic datasets in the Supplement which is now provided with the paper. 

· The term “Bit Grooming” was employed both for the absolute and the relative error bounded 

compression modes. But the algorithms are different. In the revised version of the paper we 

employ the term “Decimal Rounding” in the absolute error bounded mode and the term “Bit 

Grooming” in the relative absolute error bounded mode to remove any ambiguities. 

· Thanks to a remark from C. Zender, we found that the Digit Rounding algorithm was 

sometimes too conservative. We thus slightly modified the implementation. The compression 

results reported in the new version of the paper have been obtained with the new version of 

the Digit Rounding algorithm.  

· In the previous version of the paper, we cascaded a call to ncks with a call to h5repack to 

perform Bit Grooming followed by Zstandard compression. For fairer comparisons on the 

compression speed, we modified our approach and now only employ ncks tool to run Decimal 

Rounding and Bit Grooming. However, we could not call Zstandard compression via the ncks 

tool, but only Deflate compression. Consequently, we now provide results for Decimal 

Rounding, Bit Grooming, Sz and Digit Rounding followed by Deflate compression. 

· The Digit Rounding software source code is now available from CNES GitHub at 

https://github.com/CNES/Digit_Rounding. 

· We now provide a Supplement which details the datasets and provides the command lines 

used for running the compression tools. 

· The grammar and English of the paper has been dramatically improved by reviews from native 

English speakers. 

 

  



Reply to Anonymous Referee #1 

We are grateful to the referee for her/his constructive and thorough criticism and suggestions to our 

manuscript. Please, find below a detailed point-by-point reply. Referee’s comments are in blue italic; 

our answers are in black and our changes to the manuscript in green.  

 

- This manuscript needs a lot of improvement in terms of the grammar and writing. There are many 

awkward phrases and incorrect word choices that need to be improved (a subset are listed below). 

The paragraph structures are also in need of modification (many paragraphs contain only 1 or 2 

sentences). 

We will improve grammar and writing of the manuscript by contacting a native English speaker/writer. 

Thank you for pointing out the subset of incorrect word choices. We will also modify the paragraph 

structures to avoid too small paragraphs. 

The grammar and writing have been improved throughout the manuscript. Short paragraphs have also 

been modified. 

 

-Section 2: I’d be helpful to include more detail for the preprocessing algorithms: shuffle and bitshuffle. 

Also this section in general needs improvement. It’s a bit "choppy" to read (needs smoother and better 

transitions between topics) and feels like more details would be helpful on the methods (especially the 

ones that the digit rounding algorithm builds on). 

More details will be added on the shuffle and bitshuffle algorithms. More details will also be added on 

the bit-grooming and decimal rounding algorithm, algorithm on which the digit rounding algorithm is 

built. We will do what is needed to improve this section in general. 

Section 2 has been restructured so as to make the reading smoother. Details have been added on the 

shuffle and bitshuffle algorithms as well as on the bit-grooming and decimal rounding algorithm. 

“The Shuffle algorithm groups all the data samples’ first bytes together, all the second bytes together, 

etc. In smooth datasets, or datasets with highly correlated consecutive sample values, this 

rearrangement creates long runs of similar bytes, improving the dataset’s compression. Bitshuffle 

extends the concept of Shuffle to the bit level by grouping together all the data samples’ first bits, 

second bits, etc. 

… 

The Decimal Rounding algorithm achieves a uniform scalar quantization of the data. The quantization 

step is a power of 2 pre-computed so as to preserve a specific number of decimal digits. The Bit 

Grooming algorithm creates a bitmask to degrade the least significant bits of the mantissa of IEEE 754 

floating-point data. Given a specified total number of significant digits, nsd, the Bit Grooming algorithm 

tabulates the number of mantissa bits that has to be preserved to guarantee the specified precision of 

nsd digits: to guarantee 1-6 digits of precision, Bit Grooming must retain 5, 8, 11, 15, 18, and 21 

mantissa bits respectively. The advantage is that the number of mantissa bits that must be preserved 

is computed very quickly. The disadvantage is that this computation is not optimal. In many cases, 

more mantissa bits are preserved than strictly necessary.” 

-Section 4: Why does using the synthetic data in 4.1 to assess performance make sense - it seems 

unrelated to the application area of interest. I’d argue that the metrics used in 4.1 are really minimal 

requirements as well. Also take care when referring to "performance" as it is overloaded term...do you 

mean speed or effectiveness (it’s used both ways) 



The objective of using synthetic data was to control the data parameters, such as the SNR, to be able 

to assess the impact of these parameters on the compression ratios. The results are not reported in 

this paper which rather focuses on providing a comparison of the compression ratio and speed of 

different algorithms. It has also been chosen to present only the minimal set of relevant metrics to 

avoid overloading the paper. We will be more rigorous and replace the term “performance” by 

“compression ratio” or “compression speed” in the text. 

All the occurrences of the term “performance” have been checked and corrected when needed. The 

Mean Absolute Error metric has been added to the list of metrics: 

“mean absolute error e!"#$$$$$ to evaluate the mean data degradation. It is defined as the mean of the 

pointwise absolute difference between the original and compressed data: 

e!"#$$$$$ =
%

&
' |s( )*s+(|
&,%
(-. ” 

 

-fpzip is a fast and effective lossless method that would have been nice to compare (I *think* there is 

an fpzip filter available). Also I believe that any hdf5 filter can be accessed through NetCDF4 (see last 

sentence in conclusion) - consider contacting the Unidata folks. 

Thank you for the suggestion. Indeed a HDF5 filter is accessible for fpzip. However, many lossless 

compression algorithms exist. In our paper, we chose to evaluate the most “popular”, i.e. the lossless 

compression algorithms the most used in applications. Thank you for pointing this evolution of the 

NetCDF-4 library: from version 4.6.0 - January 24, 2018, NetCDF fully supports HDF5 dynamic filters. 

The text of the paper will be modified so as to provide the example usage using the new NetCDF-4 

features. 

An example using the new NetCDF-4 features with nccopy tool has been provided in the supplement 

and the conclusion has been modified to remove the last sentence. However, nccopy tool does not 

allow yet linking together different filters. 

 

-Comments on doing compression in parallel? 

We do not consider running compression algorithm in parallel in this work and will make it clear in the 

manuscript. It is a possible extension of this study. 

The following sentence has been added in section 4: 

“Parallel compression has not been considered in this work.” 

 

-When reading the conclusion, it’s hard to see what the main contributions of this paper are. It’s fairly 

well known already that preprocessing of scientific data (e.g., bit shuffle or shuffle) improves lossy 

compression. Also the statements in the conclusion aren’t specific to a particular type of data set, but 

are presented as more general conclusions. 

Given that the effectiveness and performance (speed) of lossy and lossless compression are very 

data, application, and variable dependent, the general statements here are not well justified by the 

small sample of data in the paper. I’d suggest focusing the paper more heavily on the data in Section 

5 (if it’s of interest) and tailoring the discussion in that manner. Or maybe the focus was to be more on 

speeds than quality, in which case it’s be important to work to get sz and fpzip working, particularly via 

netcdf-4... 



Thank you for the suggestion that will help highlighting the main contributions of our work. As 

suggested, the paper will be reworked to focus more on the application to the CFOSAT and SWOT 

datasets. We will also avoid general statements but attach our conclusions to our application case.  

The paper has been reworked to focus more on the application to the CFOSAT and SWOT datasets. 

Sz compression has been run on CFOSAT dataset and on some parts of SWOT datasets. The 

NetCDF-4 tool nccopy does not allow yet linking together different filters. This restrains its usability 

and this is why we prefer using h5repack tool. 

 

—————————- Specific items: —————————- 

 

-p2, line 20: note that fpzip can also be lossless 

Thank you for the remark. Fpzip will be presented both as a lossless and lossy compression algorithm. 

The text has been modified as follows:  

“Third, some lossy/lossless compression algorithms, such as FPZIP (Lindstrom and Isenburg, 2006), 

…” 

 

-p. 8: discussion of figure 5: is the width of the bars related to the compression levels? (e.g. line 20 

statement is unclear) 

No. All the bars have the same width. Each vertical bar represents a compression level. For instance, 

the 9 compression levels of Deflate are represented by 9 vertical bars. This will be clarified in the text 

p.8. 

Clarifications have been added to the text: 

“The vertical bars represent the results for different compression levels: from 1 to 9 for the Deflate 

level dfl_lvl, from 1 to 22 for Zstandard level zstd_lvl, and only one level for LZ4.” 

 

-p.8, lines 28-29: Why is this the case? (Add some discussion beyond describing the figure.) 

These lower compression/decompression speeds are not well understood and would require further 

investigation to be fully understood. It might be related to HDF5 chunking. Indeed, HDF5 split the data 

into chunks of small size that are independently compressed. This allows HDF5 to improve partial I/O 

for big datasets but can sometimes reduce the compression/decompression speeds. This discussion 

will be added to the text. 

The following sentence has been added to the text: 

“Further investigations are required to understand why the compression/decompression speeds are 

lower, but it might be related to HDF5 chunking.” 

 



-p.8, line 20: I feel like the parameters should be better explained for –filter so that the reader can try 

them more easily. For example, what does the "32017" mean? I think that the following 0 is for sz, but 

this is not stated either. 

We will add the meaning of each parameters. Each HDF5 filter is identified by a unique ID. “32017” is 

the identifier of Sz filter. The following “0” is the number of filter parameters. In the case of Sz, the filter 

does not have any parameter to set. That is why there are 0 parameters. Sz compressor is configured 

via the sz.config file. The same explanations will be added for the other filters used in the paper. 

All the command lines have been moved to the Supplement with the explanation above to avoid 

overloading the manuscript. 

 

-p. 10, line 6: re: "experiments have shown" - whose or which experiments (cite?) 

It is based on our own experiments that haven’t been published. The sentence will be reworked as 

follows: “We have found that Shuffle or Bitshuffle preprocessing do not increase the compression ratio 

when applied after Sz. We have also found that and Bitshuffle provide lower compression ratio than 

Shuffle when applied after Bit Grooming. That is why only Shuffle is applied after Bit Grooming.” 

This sentence has been removed since the results have not been published.  

 

-Table 5 : Why is the speed faster for 1d? 

As previously, the lower compression/decompression speeds obtained with the dataset s3D are not 

well understood and might be related to HDF5 chunking. This discussion will be added to the text. 

The following sentence has been added to the text: 

“The lower compression/decompression speeds obtained with Sz on the dataset s3D are not well 

understood and might be related to HDF5 chunking as previously mentioned.” 

 

-Section 4.4.1, line 21-24: Any idea why you get these results? 

Sz performs better on smooth signals since it makes use of a prediction step. The signal s1 being 

highly noisy, Sz prediction might often fail. This can explain the lower compression ratio on the signal 

s1. On the contrary, Bit-grooming does not makes any prediction. This can explain why it achieves 

better compression than Sz on the signal s1. This hypothesis will be added to the text. 

The following sentences have been added to the text: 

“Sz may perform better on dataset s3D because it is smoother than dataset s1. Indeed, Sz integrates a 

prediction step. This prediction might often fail because dataset s1 is very noisy. This may explain the 

lower compression ratio for this dataset. Decimal Rounding, however, does not make any predictions, 

which may explain why it achieves a better compression than Sz for dataset s1.” 

 

-Section 4.4.1, last sentences: It’s unclear to me what the value of these synthetic data sets is - 

especially given the statement on p. 11, line 3, about the dependence on the dataset 



As suggested previously, the paper will be reworked to focus more on the application to CFOSAT and 

SWOT datasets without drawing general conclusions based on the results obtained on the synthetic 

datasets. 

We modified the last sentence of this section as follows:  

“Both Sz and Bit Grooming algorithms seem valuable for compression in absolute error-bounded 

compression mode.” 

 

-page 11, line 9-10: I’d include characteristics of the data (e.g., maximum abs. value) earlier in the text 

when the two datasets are introduced. 

Your suggestion will be taken into account: the characteristics of the data will be introduced in section 

4.2. 

We have added the characteristics of the data in section 4: 

“Datasets s1 and s3D were generated, *s1 being a noisy sinusoid of 1 dimension with a maximum 

absolute value of 118. The data volume of the s1 dataset is 4MB. Dataset s3D is a noisy sinusoid 

pulse of 3 dimensions with a maximum absolute value of 145. The data volume of the s3D dataset is 

512MB.” 

 

-page 11, line 24: I don’t see relative error mentioned in Table 6 - it seems to just be absolute error 

The text will be modified to make it clearer: “…all three algorithms respect the maximum absolute error 

of 0.5 which, for the signal s1, corresponds to a relative error of 0.00424.” 

The text has been modified as follows: 

“… all three algorithms respect the maximum absolute error of 0.5, which corresponds for dataset s1 

to a relative error of 0.00424.” 

 

-p.11-12: Need more of a discussion of the results in Figure 7. For 3D, it looks like bit grooming and 

digit rounding are similar - I don’t see a clear advantage. 

More discussion on the results will be added to the text. For the s3D you are right, there is no clear 

advantage. It is written “the Digit Rounding algorithm provides compression performance very closed 

to the one of the Bit Grooming algorithm”. 

The text has been modified as follows: 

“All three algorithms provide similar SNR versus compression ratio results, with a slight advantage for 

the Bit Grooming algorithm.” 

 

-p.12, lines 16-17: SZ compression can be controlled with an absolute error bound, so why is the 

relative error bound adjusted to get the desired abs. error? 

The objective was to see if Sz compression configured with a relative error bound respect the error 

bound specified. As the digit rounding and bit-grooming algorithm can only be configured on a number 



of significant digits, they can only “produce” absolute error in 0.5, 0.05, 0.005, etc. In order to be able 

to compare Sz configured with a relative error bound with those algorithms, we have configured the 

relative error bound to obtain a maximum absolute error of 0.5. These explanations will be added to 

the text. 

The following sentence has been added in the text: 

In order to be able to compare Sz configured with a relative error bound with those algorithms, we 

configured the relative error bound to obtain a maximum absolute error of 0.5: the pw_relBoundRatio 

parameter in Sz was set to 0.00424. 

 

-Section 5.1: It is disappointing not to have SZ results on the real data of interest. Were the SZ authors 

contacted? I would think that they could have helped resolve this issue. 

Yes, we had some exchanges. The issue is still under investigation. 

A more recent version of Sz has been used and results on CFOSAT and SWOT datasets are now 

provided. 

 

-p. 15, line 18: "which only a few attributes may be missing" - It’s unclear what this means. It’s super 

helpful to really detail the data being compressed so that one can make sense of the results. 

Details on the datasets will be added to the text. 

This part of the sentence has been removed has it is not relevant in the frame of this study. Details on 

the CFOSAT and SWOT datasets have been added in the Supplement, particularly the precision 

required for the compression of each variable. 

 

-p. 14, line 30: Please share more specific information about the precision required by the scientists for 

the data. Again, more information is useful for interpreting results. 

The configuration and the precision of each variable will be made available. 

These details have been added in the Supplement. 

 

-Section 5 seems like it should be the highlight of the paper as here we are seeing the results on the 

real data. But it feels like more detail is needed on the data and more discussion of the implications of 

the results. 

Section 5 will be developed to add more details on the data and more discussion on the results 

obtained. 

Section 5 has been reworked. It now provides results on particular variables of the CFOSAT and 

SWOT datasets. Details on the data have been added in the Supplement. 

————————– Typos, etc.: ————————– 

-abstract, line 7: incorrect use of "imposes" 

-p.1, line 22: "quite spread"=> "quite prevalent" or "quite popular" , "widely spread" => "widely used" 



-p.1., line 26: "reduce significantly" => "significantly reduce" 

-p.1. line 27: This sentence (that continues to page 2) is too long. 

-p.2, line 3: "can afford for" is awkward 

-p2, lines 10-24: this region is 5 paragraphs 

-p.3, lines 3-4: awkwardly worded 

-p. 3, line 9: one sentence paragraph 

-p.3, line 12: missing "," after "Deflate" 

-p.3 line 14: not sure what is meant by "new concurrent" 

-p.3, line 13: "widely spread" => "widely used" 

-p.3, line 16: awkward sentence: "This allows Deflate achieving rather high compression ratios" 

-P.3, section 3: again, there are too many tiny paragraphs 

-p.4, line 7: "are of same interest" is awkward 

-p.4, line 21: Table number is not given 

-p.5, line 15: awkwardly worded 

-p.5, line 24: One sentence paragraph 

-p.7, section 4.2: define f_s, f_ech 

-p.7, line 22: "use embarks" is awkward 

-p.8, line 7: "declined" doesn’t make sense 

-p.8, line 14: "embark" - incorrect usage 

-p.10, line 10: "This correspond corresponding" needs to be fixed 

-p. 10, line 24: Note sure I’d use "performances" here as earlier it was used to indicate speed. 

-p. 15, line 21: "ration" => "ratio" 

-p.15, line 14: another one sentence paragraph 

-p.16, line 9: "Extends to this work" - awkwardly worded 

Response: we thank you for highlighting typos that will help us to improve the manuscript. 

All these points have been corrected. 

 

  



Reply to Zender (Referee) 

We are grateful to the referee for his constructive and thorough criticism and suggestions to our 

manuscript. Please find below a detailed point-by-point reply (referee’s comment in italic). 

General Comments 

This manuscript presents a new lossy compression algorithm called “Digit Rounding” (DR), and 

evaluates its performance against and with other lossy and lossless compression algorithms on 

idealized and remote sensing datasets. The manuscript addresses the growing need to archive 

meaningful data rather than noise, and to do so reliably and quickly. The study presents an original 

advance in lossy compression whose implementation unfortunately hampers its utility. The study is 

understandable yet poorly written. This potentially useful study of lossy compression techniques needs 

a thorough overhaul before publication. 

We will improve the writing of the manuscript by contacting a native English speaker/writer. As 

suggested by the Anonymous Referee #1, the paper will be reworked to highlight the main 

contributions of our work and focus more on the application to CFOSAT and SWOT datasets. 

The grammar and writing have been improved throughout the manuscript and the paper has been 

reworked to highlight our main contribution and to focus more on the application to CFOSAT and 

SWOT datasets. 

 

Specific Comments 

Originality: DR is an improvement on “Bit Grooming” (BG) which I invented as an improvement on “Bit 

Shaving”. In that sense I am qualified to comment on its originality. The heart of DR is essentially a 

continuous version of BG: Whereas BG fixes the number of bits masked for each specified precision, 

and masks these bits for every value, DR recomputes the number of bits masked for each quantized 

value to achieve the same precision. BG did not implement the continuous method because I thought 

that computing the logarithm of each value would be expensive, inelegant, and yield only marginally 

more compression. However, DR cleverly uses the exponent field instead of computing logarithms, 

and so deciphers the correct number of bits to mask while avoiding expensive floating point math. This 

results in significantly more compressibility that (apparently) incurs no significant speed penalty 

(possibly because it compresses better and thus the lossless step is faster?). Hence DR appears to be 

a significant algorithmic advance and I congratulate the authors for their insight. 

Thank you for your congratulations. They are much appreciated. Indeed, the speed penalty of DR is 

compensated by the fact that the lossless step is faster. 

In the previous version, we cascaded a call to ncks with a call to h5repack to perform Bit Grooming 

followed by Zstandard compression. For fairer comparisons on the compression speed, we modified 

our approach and now only employ ncks tool to run Decimal Rounding and Bit Grooming. However, 

we could not call Zstandard compression via the ncks tool, but only Deflate compression. 

Consequently, we now provide results for Decimal Rounding, Bit Grooming, Sz and Digit Rounding 

followed by Deflate compression. 

 

The manuscript stumbles in places due to low quality English, and cries out for more fluent editing. Not 

only is the word choice often awkward, but the manuscript is like a continuously choppy sea of 

standalone sentences with few well developed paragraphs that swell with meaning then yield gently to 

the next idea. GMD readers deserve and expect better. 



We will improve the grammar and writing (see first answer). We will also modify the paragraph 

structures to avoid too small paragraphs and better take care of the transitions. 

The grammar and writing have been improved throughout the manuscript. Short paragraphs have also 

been modified and sentence transitions improved. 

 

Does DR guarantee that it will never create a relative error greater than half the value of the least 

significant digit? BG chooses the number of digits to mask conservatively, so it can and does 

guarantee that it always preserves the specified precision. Equations (1)-(7) imply that DR can make 

the same claim, but this claim is never explicitly tested or made. The absence of this guarantee is 

puzzling because it would strengthen the confidence of users in the algorithm. However, the 

guarantee must be explicitly tested, because it undergirds the premise that the comparison between 

DR and BG is fair. In any case, clearly state whether DR ever violates the desired precision, even if 

that happens only rarely. 

Equations (1)-(7) imply that DR guarantees that it always preserves the specified precision. We will 

explicitly add that claim in the text and show that DR always provides the desired precision on the 

number Pi with nsd varying from 1 to 8. We will also provide the maximum absolute error on artificial 

data of 1 000 000 values spanning [1.0, 2.0) in equal-increment steps of 1e-6. 

We have added the following sentence below Eq. 4. 

“This condition guarantees that the Digit Rounding algorithm to always preserves a relative error lower 

than or equal to half the value of the least significant digit.” 

We have also added results of DR algorithm on the number Pi in Table 2: 

“Table 2 provides the result of the Digit Rounding algorithm on the value of π with specified precisions 

nsd varying from 1 to 8 digits. It can be compared to the Bit Grooming results provided in Table 2 in 

(Zender, 2016a).” 

We also provide the maximum absolute error on artificial data of 1 000 000 values spanning [1.0, 2.0) 

in equal-increment steps of 1e-6 in Table 3 

“Table 3 provides the maximum absolute error obtained with varying nsd values on an artificial dataset 

composed of 1,000,000 values evenly spaced over the interval [1.0, 2.0). This is the same artificial 

dataset used in Table 3 in (Zender, 2016a). It shows that Digit Rounding always preserves a relative 

error lower than or equal to half the value of the least significant digit, i.e. |s( ) s+(| / 025 × 1046,7#4. ” 

 

p. 16 L13: “Code and data availability: The Digit Rounding software source code and the data are 

currently only available upon request to Xavier Delaunay (xavier.delaunay@thalesgroup.com) or to 

Flavien Gouillon (Flavien.Gouillon@cnes.fr).” The GMD policy on code and data is here: 

https://www.geoscientific-model-development.net/about/code_and_data_policy.html. This manuscript 

provides no code access nor explanation, and no dataset access, and thus appears to violate GMD 

policy in these areas. 

The code and the datasets will be made publicly available on the CNES gitlab. 

The code is now publicly available on CNES GitHub at https://github.com/CNES/Digit_Rounding and 

the dataset are available on demand. 



“The Digit Rounding software source code is available from CNES GitHub at 

https://github.com/CNES/Digit_Rounding. The datasets are available upon request to Xavier Delaunay 

(xavier.delaunay@thalesgroup.com) or to Flavien Gouillon (Flavien.Gouillon@cnes.fr). The 

Supplement details the datasets and provides the command lines used for running the compression 

tools.” 

 

Common comparisons would help build confidence in your results. It would have been more 

synergistic to evaluate the algorithms on at least one of the same datasets as Zender (2016), which 

are all publicly available. I am glad the authors used the publicly available NCO executables. Why not 

release the DR software in the same spirit so that the geoscience community can use (and possibly 

improve) it? 

Comparisons with BG will be provided on the same MERRA dataset used in Zender (2016). The DR 

software will be released under MIT-style open source license. 

We have added results of DR on the same MERRA dataset used in Zender (2016). 

“We compare the compression ratio obtained with the Digit Rounding algorithm to that obtained with 

the Bit Grooming algorithm for the same meteorological data from MERRA re-analysis studied in 

(Zender, 2016a). Table 4 reports the Bit Grooming results extracted from Table 6 in (Zender, 2016a) 

and provides the results of the Digit Rounding algorithm. The same lossless compression is employed: 

Shuffle and Deflate with level 1 compression. From nsd = 8 to nsd = 5, Digit Rounding and Bit 

Grooming provide similar compression ratios with a slight advantage for the Bit Grooming algorithm. 

However, from nsd = 9 to nsd = 1, the compression ratios obtained with Digit Rounding are clearly 

better.” 

The DR software is released under LGPL-v3 open source license. 

 

The lossless and lossy compression algorithms analyzed seem like a fairly balanced collection of 

those most relevant to GMD readers. Most methods that were omitted are, to my knowledge, either 

non-competitive (e.g., Packing) or not user-friendly, e.g., research grade but not widely available (e.g., 

Layer Packing) and too hard to independently implement. 

Table 6 on p. 19 shows the maximum absolute error (MAE) of BG is quite similar to DR, as I would 

expect. However, Table 7 on p. 20 shows the maximum absolute error (MAE) of BG is nearly 10x less 

than DR. Why are the MAEs similar for dataset s1 and significantly different for dataset s3D? I expect 

DR has a greater mean error (and lower SNR) than BG due to the algorithms, yet the difference in 

MAEs surprises me. Zender (2016) Table 3 shows that BG is tuned to have an MAE just shy of 

violating the precision guarantee. An MAE that is nearly 10x larger seems like it might violate the 

precision guarantee. 

These results show that BG can sometimes be too conservative. As shown in Table 1 on the value Pi, 

BG sometimes preserves more bits in the mantissa than what is strictly necessary to achieve the 

required precision. This is what happens on the dataset s3D.  On the contrary, DR adapts the 

quantization step to each value of the input dataset. Doing so, it can achieve the required precision 

while preserving less mantissa bits than DR does. This results both in a higher mean absolute error 

and in a higher MAE than BG. This explanation will be added to the text. 

Thanks to you remark on the MAE on s1 dataset, it has been observed that DR algorithm was also too 

conservative on some values. It has been enhance in order to provide a MAE closer to what was 

expected. For this, the value log%.:m(; is now tabulated with a few values. 



“The log%.:m(; value is tabulated. Only 5 tabulated values are used in our implementation, enough to 

provide a good precision. The tabulated v values for log%.:m(; are such that v / log%.:m(;. They are 

provided in the Supplement. This computation slightly underestimates the values for d( but provides a 

more conservative quantization, thus guaranteeing the specified number of significant digits.” 

The following sentence has also been added in the text: 

“Bit Grooming is too conservative. It preserves more mantissa bits than strictly necessary to achieve 

the required precision. This behavior is illustrated in Table 1 with the value of π. In contrast, Digit 

Rounding adapts the quantization step to each value of the input dataset. Doing so, it can achieve the 

required precision while preserving less mantissa bits than Bit Grooming does. This results both in a 

higher maximal absolute error and in a higher mean absolute error than Bit Grooming, but also in a 

higher compression ratio.” 

 

The preceding comment is a request to more carefully analyze the underlying cause of the behaviors 

reported in the data. The next two comments are to report more results to deepen the analyses and 

explain the behavior of DR more robustly. 

Please include the maximum absolute error or maximum absolute relative error (which normalizes the 

error by the original value) to Tables 5–10. 

MeanAE is an important statistic that is complementary to MaxAE. MeanAE is the average absolute 

(no compensation between positive and negative) bias in the dataset, and is more familiar and 

relevant than SNR to at least some geophysicists. Please consider including MeanAE in Tables 5–10. 

As suggested, the maximum absolute error and the mean absolute error (MeanAE) will be added to 

the tables allowing deeper analysis of DR behavior. 

The maximum absolute error and the mean absolute error have been added to tables 5, 6 and 7. 

Tables 9, 12 and 13 provide compression results on CFOSAT and SWOT which are composed of 

several different datasets. The maximum absolute error and the mean absolute error could only be 

computed variable per variable. We thus now provide the results obtained on the ground_range_5 

variable of the CFOSAT dataset in Table 8, the results obtained on the height variable of the SWOT 

dataset in Table 10, and the results obtained on the pixel_area variable of the other SWOT dataset in 

Table 11. 

 

Zender (2016) and Silver and Zender (2017) consider four primary criteria to evaluate compression 

algorithms: Compression Ratio, Accuracy, Speed, and User-friendliness. This manuscript neglects 

explicit consideration of the last, though usability seems (in addition to performance) seems to be an 

implicit reason why they recommend BG not DR for the “real world” use cases in Sections 5.1 and 5.2. 

The manuscript would benefit from a more explicit consideration of usability throughout. Examples 

include software availability, flexibility, and complexity of invocation, as well as transparency (will users 

have all the necessary software required to read the compressed data?), and instructions to mitigate 

these issues for DR. 

As for BG, there is no “decompression” associated to DR.  DR does not require any software to read 

the rounded data. This argument will be added into the text. The reason why BG is recommended 

rather than DR for the compression of CFOSAT dataset in section 5.1 is that this dataset is 

compressed in absolute error bounded compression mode. DR only works for relative error bounded 

compression mode. Nevertheless, some results using DR on this dataset will be provided for 

completeness. In section 5.2, BG (in the absolute error bounded compression mode) is recommended 



rather than DR for the compression SWOT L2 pixel cloud product. This recommendation is based on 

the compression ratio obtained. We will add the maximum absolute error and the mean absolute error 

(MeanAE) to Tables 8 to 10 for fairer comparisons. Moreover, we will provide a supplement to the 

article with the commands and datasets necessary to reproduce the results. 

We have added the following sentences in the text: 

“We have developed an HDF5 dynamically loaded filter plugin so as to apply the Digit Rounding 

algorithm to NetCDF-4 or HDF5 datasets. It should be noted that data values rounded by the Digit 

Rounding algorithm can be read directly: there is no reverse operation to Digit Rounding, and users do 

not need any software to read the rounded data.” 

Moreover, we have added some results using DR on the CFOSAT dataset for completeness.  

The maximum absolute error and the mean absolute error have not been added to Tables 9, 12 and 

13, because, as explained in the previous answer, CFOSAT and SWOT dataset are composed of 

several different variable.  

We also now provide a supplement to the article with the commands and datasets necessary to 

reproduce the results. 

 

Tables 1 and 3 follow Tables 1 and 2 of Zender (2016). This should be noted in the text and/or caption 

of the tables.  

The reference to Zender (2016) will be added in the caption of Tables 1 and 3. 

The captions have been modified as follows: 

“Table 1: Representation of the value of π in IEEE-754 single-precision binary representation (first 

row) and results preserving 4 significant digits with the Bit Grooming algorithm (second row) or 

preserving 12 mantissa bits (third row). This table builds on Table 1 in (Zender, 2016a).” 

“Table 2: Representation of the value of π in IEEE-754 single-precision binary representation (first 

row) and results preserving a varying number of significant digits (nsd) with the Digit Rounding 

algorithm. This table can be compared to Table 2 in (Zender, 2016a) providing the Bit Grooming 

results for π.” 

 

It seems like Table 2, the algorithm description, should be a figure rather than a table. 

This will be corrected as suggested. 

The algorithm description is now provided in Figure 2. 

 

The manuscript is awkward in that it introduces a demonstrably superior lossy compression algorithm 

but recommends a different algorithm (BG) for “real world” cases (Section 5), partly because DR is 

unavailable in software that potential users have easy access to, and its implementation appears to be 

too inflexible to use on generic datasets. The recommendation of BG not DR does attest to the 

objectivity of the study, yet it seems to be an unsatisfying conclusion to what was clearly a time-

consuming study. In this sense the manuscript seems premature, since if DR were “ready for 

primetime” then the authors could have recommended it rather than BG in Section 5. Perhaps the 

authors should re-evaluate whether the manuscript is premature, i.e., whether it should both introduce 



a new lossy algorithm before it is ready to use in optimized workflows for generic geoscientific data 

compression. 

As previously answered, the manuscript will be reworked to highlight the main contributions of our 

work and focus on the applications to the CFOSAT and the SWOT datasets. The maximum absolute 

error and the mean absolute error (MeanAE) will be added to Tables 5 to 10 for fairer comparisons 

that will allow mitigating the previous conclusions that were based on the compression ratio only. 

Moreover, some results using DR on CFOSAT dataset will be provided for completeness of the 

manuscript. 

We have added some results using DR on the CFOSAT dataset for completeness, but also maximum 

and mean absolute error in the tables (see previous answers). 

The conclusion has been reworked to make it clearer that we recommend Decimal Rounding for 

absolute error bounded compression of CFOSAT data but Digit Rounding for relative error bounded 

compression of SWOT data. 

 

 

 

Minor Suggestions 

p. 1 L22: “well spread” 

p. 2 L22: DEFLATE 

p. 4 L1: maxi is redundant. Just use max. 

p. 4 L21: Table 1 

p. 9 L7: “declined”? 

p. 9 L14: “By default, Sz algorithm embark Deflate.” is awkward. 

p. 14 L27–28: These lines are identical 

p. 18 L8: “the number di of significant digit number of digits”???  

p. 18 L8: “following Eq.” not “following in Eq.” 

p. 23 Figure 4: Clarify the meaning of the distinct vertical bars. 

Response: we thank you for these suggestions that will help us to improve the manuscript. 

All these points have been corrected. 
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Abstract. The increasing volume of scientific datasets imposes enforces requires the use of compression to reduce the data 

storage andor transmission costs, specifically especially for the oceanographicyoceanography or meteorological datasets 

generated by Earth observation mission ground segments. These data are mostly produced in NetCDF formatted files. 

Indeed, the NetCDF-4/HDF5 file formats are widely spread used throughoutin the global scientific community because of 10 

the nice useful features they offer. Particularly, the HDF5 in particular offers the a dynamically loaded filter plugin 

functionality allowing so that users canto write filters, such as compression/decompression filters, for example, andto 

process the data before reading or writing it them on to the disk. In tThis workstudythis work, we evaluatesevaluate the 

performance of lossy and lossless compression/decompression methods through NetCDF-4 and HDF5 tools on analytical 

and real scientific floating-point datasets. We also introduce the Digit Rounding algorithm, a new relative error br-bounded 15 

data reduction method inspired by the Bit Grooming algorithm. The Digit Rounding algorithm allows offers a high 

compression ratio while preserving keeping a given number of significant digits in the dataset. It achieves a higher 

compression ratio than the Bit Grooming algorithm while keeping similarwith slightly lower compression speed. 

1 Introduction 

Ground segments that processingprocess scientific mission data are facing challenges due to the ever- increasing resolution 20 

of on-board instruments and the volume of data volume to be: processed, stored: process, store and transmittedtransmit. This 

is the case for oceanographic and meteorological missions, for instance. Earth observation mission ground segments produce 

very large files mostly in NetCDF format, which: it is a standard in the oceanography field and quite spreadwidely used in by 

the meteorological community. This file format is widely spread used throughoutin the global scientific community because 

of the its usefulnice features it offers. The fourth version of tsame thehe NetCDF library, denoted NetCDF-4/HDF5 (as it is 25 

based on the HDF5 layer), offers ‘Deflate’ and ‘Shuffle’ algorithms assome native compression features, namely ‘Deflate’ 

and ‘Shuffle’ algorithms. However, the compression performance ratio achieved does not fully fulfil meet the ground 

processing requirements, which are to reduce significantly reduce the storage and dissemination cost as well as the I/OIO 

times between two modules of in the processing chain. 
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Facing In response to the ever-increasing volume of data, scientists are more disposedkeen to compress data. However, they 

have certain but with some requirements: science data are generally floating point data; the both compression and 

decompression have to be fast and either, lossless, or lossy under depending on thesome conditions. :Lossy compression is 

acceptable only if the compression ratios are higher than those of lossless algorithms and if the precision, or data loss, shall 

can be controlled. There, the compression ratio higher than the ones of lossless algorithms. In the lossy case, there is a trade-5 

off between the data volume and the accuracy of the compressed data.  

Nevertheless, scientists can afford foraccept small losses if they remain below under the data’s noise level in the data. Noise 

is indeed difficult tohardly compressible and of poor little interest for tothe scientists, thus so they do not consider as loss, 

data degradationalterations that are remains under the noise level as a loss (Baker et al., 2016). 

 Hence, iInin order to increase the compression performance ratio within the processing chain, ‘clipping’ methods may be 10 

used toa degradeationa degradation of the data is considered via the use of so-called “clipping” methods before the 

compression. Clipping These methods allows increaseingincreasing the compression performance  ratio by removing the 

least significant digits or bits in the data. Indeed, at some level, these least significant digits or bits may not be scientifically 

meaningful in datasets corrupted by noise, and this is particularly true for floating- point data.  

This paper studies compression and clipping old and new methods that can be applied to scientific datasets in order to 15 

maximize the compression performance ratio while preserving the scientific data content and the numerical accuracy. It 

focuses on methods that can be applied to scientific datasets, i.e. vectors or matrices of floating- point numbers.  

First, lossless compression algorithms can be applied to any kind of data. The standard is the ‘Deflate’Deflate algorithm 

(Deutsch, 1996), native in NetCDF-4/HDF5 libraries. It is widely spread usedand implemented in compression tools such as 

zip, gzip, and zlib librariesy, and has become.library. It is a reference benchmark for lossless data compression. Recently, 20 

alternatives lossless compression algorithms have emerged. These include such as Google Snappy, LZ4 (Collet, 2013) or 

Zstandard (Collet and Turner, 2016). None of tThese algorithms do not make use of Huffman coding tTo achieve faster 

compression than the Deflate algorithm, none of these algorithms use Huffman coding.. 

 Second, pre-processing methods such as the Shuffle, available in HDF5, or Bitshuffle (Masui et al., 2015) allow are used to 

optimizeingoptimizing the lossless compression by rearrangingorderingreordering the data bytes or bits intoin a “more 25 

compressible” order.  

Third, some lossy/lossless lossy compression algorithms, such as FPZIP (Lindstrom and Isenburg, 2006), ZFP (Lindstrom, 

2014) or Sz (Tao et al, 2017a), are specifically designed for the compression of scientific data—, and, in particular floating-

point data—, and allow can controlling the data loss. 

 Fourth, data reduction methods such as Linear Packing (Caron, 2014a), Layer Packing (Silver and Zender, 2017), Bit 30 

Shaving (Caron, 2014b), and Bit Grooming (Zender, 2016a) introduce some losslose some in the data content without 

necessarily reducing the dataits volume. Pre-processing methods and lossless compression can then be applied to obtain a 

higher compression ratio.  
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This paper focuses on compression methods implemented for NetCDF-4 or HDF5 files. Indeed, tThesethese scientific file 

formats are widely spread across among the oceanographicyoceanography and meteorologicalical 

communitiesy.meteorological community. HDF5 offers the a dynamically loaded filter plugin functionalitythat. It allows 

users to writeingwriting filters, such as compression/decompression filters (among others), and, to process the data before 

reading or writing it them toon the disk. Consequently, many compression/decompression filters—, such as Bitshuffle, 5 

Zstandard, LZ4, and Sz—, have been implemented by members of the HDF5 users’ community and are freely 

accessibleavailable. On the other handT, the NetCDF Operator toolkit (NCO) (Zender, 2016b) also offers some compression 

features, such as Bbit sShaving, Decimal Roundingbit shaving and Bit Grooming. 

The rest of thisThis paper is organized divided into five more sections. Section  2 presents the lossless and lossy compression 

schemes for scientific floating- point datasets. and the absolute and relative error bounded compression modes. Section  3 10 

introduces the Digit Rounding algorithm, which. This algorithm alters the data in a relative error bounded manner to make 

them more compressible. It is an alternative,is  an inspired improvement of by the Bit Grooming algorithm that optimizes the 

number of mantissa bits preserved. Section 4 defines the performance metrics used in this paper. Section  54 describes the 

performance assessment of a selection of lossless and lossy compression methods on synthetic datasets. It presents the 

datasets and , the performance metrics, the compression results before, and finally providesmaking some recommendations. 15 

Section  65 provides some compression results obtained on with real CFOSAT and SWOT datasets. LastFinally, section  76 

provides our conclusions. 

2 Compression algorithms 

Compression schemes for scientific floating- point datasets can be composed ofusually entail several steps: a dataData 

reduction step, a preprocessing step, and aand lossless coding step. These three steps methods can be chained as illustrated 20 

ion Fig. 1. 

 The lossless coding step is reversible. It does not introduce any alteration degradein the data but while allows reducing 

itsing the data volume. It can be implemented by This step can make use of lossless compression algorithms such as Deflate, 

Snappy, LZ4 or Zstandard. The preprocessing step is also reversible. It rearrangesordersreorders the data bytes or bits to 

enhance the lossless coding step performanceefficiency. It can bemake use of lossless compression implemented by 25 

algorithms such as Shuffle, or Bitshuffle. The data reduction step is not reversible because it entails: data losses are 

introduced in this step. The strategy goal is to remove irrelevant data such as noise or other scientifically meaningless data. 

Data reduction can reduce data volume, dependingDepending on the algorithm useduse, this step can reduce the data 

volume. For instance, the Linear Packing and Sz algorithms allow reduceingreducing the data volume, but not Bbit Sbit 

shaving and Bit Grooming algorithms do not. 30 
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In tThisthis paper, we chosechoose to evaluatesevaluate the performance of the lossless compression algorithms Deflate, 

LZ4, and Zstandard; Deflate because it is the referencebenchmark algorithm, LZ4 because it is a widely- spread used, very- 

high- speed compressor, and Zstandard because it providesis the new concurrent of better results than Deflate, both in terms 

ofon compression ratios and on of compression/decompression speeds. The  

Deflate algorithm make usesuse of LZ77 dictionary coding (Ziv and Lempel, 1977) and of Huffman entropy codingercoder 5 

(Huffman, 1952). Both methods exploit different types of redundancies to enableallowing. This allows Deflate to achieve 

ingachieving rather high compression ratios. However, the computational cost of the Huffman coder is high and makes 

Deflate compression rather slow.  

LZ4 is a dictionary coding algorithm designed to provide high compression/decompression speeds rather than a high 

compression ratio. For this, Iit does not this withoutmake use of  any entropy coder.  10 

Zstandard is a fast lossless compressor offeringachieving high compression ratios. It makes use of dictionary coding 

(repcode modelling) and of a finite- state entropy coder (tANS) (Duda, 2013). It achieves offers similar a compression ratio 

similar to that ofthan Deflate coupled with high compression/decompression speeds.  

 

We alsoThis paper also evaluates Shuffle and Bitshuffle. The ShuffleThe preprocessing step is also reversible. It reorders the 15 

data bytes or bits to enhance the lossless coding step performance. It can make use of lossless compression algorithms such 

as Shuffle algorithm , or Bitshuffle. groups together all the data samples’ first bytes together, all the  second bytes together, 

etc., bytes of the data samples. On In smooth datasets, or datasets with highly correlated consecutive samples values, this 

rearrangementordering creates long runs of similar bytes, improving the dataset’s compression of the dataset. Bitshuffle 

extends the concept of Shuffle to the bit level by grouping: it groups together all the data samples’ first bits, second bits, etc., 20 

bits of the data samples. 

 

Last, we evaluate the lossy compression algorithms Sz, Decimal Rounding and Bit Grooming. The Sz algorithm predictss 

data samples using an n-layers prediction model and performs an error-control quantization of the data before a variable 

length encoding. Unpredictable data samples are encoded after a binary representation analysis: the insignificant bits are 25 

truncated after a computation of the smallest number of mantissa bits required to achieve the specified error bound. The 

Decimal Rounding algorithm achievesperforms a uniform scalar quantization of the data. The quantization step is a power of 

2 pre-computed so as to preserve a specific number of decimal digits. The data reduction step is not reversible: data losses 

are introduced in this step. The strategy is to remove irrelevant data such as noise or other scientifically meaningless data. 

Depending on the algorithm use, this step can reduce the data volume. For instance, the Linear Packing and Sz algorithms 30 

allow reducing the data volume but not bit shaving and Bit Grooming algorithm. 

One feature required for lossy the scientific data compression is the control of the amount of loss or the accuracy of the 

compressed data. Depending on the data, this accuracy can be expressed by an absolute or a relative error bound.  
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The maximum absolute error !"# is defined by !"# = max$|%&$ ' %$| where the %$ are the samples values of the original 

dataset and the %&$ are the samples values of the compressed dataset. An absolute error bound specifies the maximum absolute 

error #()* allowed between any sample of the original and compressed data: !"# + #()*. The maximum relative error mre is 

defined by !,# = max$ -*&./*.*. - A relative error bound specifies the maximum relative error #012 allowed between any sample 

of the original and compressed data: !,# + #012 . 5 

The absolute error bound can be useful for data with a unique dynamic range of interest. The relative error bound can be 

useful for data where both very small value and very high values are of same interest. 

The Decimal Rounding algorithm (also mentioned as DSD algorithm for Decimal Significant Digit) and the Bit Grooming 

algorithm (also mentioned as a NSD algorithm for Number of Significant Digits) proposed in (Zender, 2016a) address both 

cases. The Decimal Rounding algorithm respects a maximum error bound by preserving the specified number of decimal 10 

significant digits. The Bit Grooming algorithm respects a relative error bound by preserving the specified total number of 

significant digits. One interesting feature of these algorithms is the fact the accuracy of the compressed data can easily be 

interpreted: rather than defining the number of significant bits, they define the number of significant digit or the number of 

significant decimal digits. 

The Bit Grooming algorithm creates a bitmask to alter degrade the least significant bits of the mantissa of IEEE 754 floating-15 

point data. Given a specified total number of significant digits, 3%4, the Bit Grooming algorithm tabulates the number of 

mantissa bits that has to be preserved to guaranteeyguaranty the specified precision of 3%4 digits: to guarantee preserving 1-

6 digits of precision, Bit Grooming must retain 5, 8, 11, 15, 18, and 21 mantissa bits, respectively. The advantage is that the 

computation of the number of mantissa bits that has tmustoto be preserved is computed very quickly. The disadvantage is 

that this computationfast.fast. However, it is not optimal. In many cases, the number ofmore mantissa bits are preserved is 20 

higher than what would have been strictly necessary.  

Table Table 1 provides the an example on using the value of π with a specified precision of   3%4 = 5 digits. This table 

reproduces some of the results extracted from Table 1 in (Zender, 2016a). The Bit Grooming algorithm preserves 15 

mantissa bits. Table 1 shows that  where it would have been enough to preserve only 12 bits were actually necessary.. 

 Optimizing the number of mantissa bits preserved will havehas a favorable impact on the compression ratios since it allows 25 

for more bits to be zeroed,ingzeroing more bits and thus creating longer sequences of zero bits. InThus in the next section, 

we propose the Digit Rounding algorithm to overcome this limitation of the Bit Grooming algorithm. 

3 The Digit Rounding algorithm 

The Digit Rounding algorithm is similar to the Decimal Rounding algorithm in the sense that it computes a quantization 

factor q, which is a power of 2, in order to set bits to zero in the binary representation of the quantized floating- point value. 30 

But it adapts the quantization factor to each sample value.  
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 The Digit Rounding algorithm makes usesuse of a uniform scalar quantization with a reconstruction at the bins center:  

%6$ = sign7%$8 × 9:|*.|;. < > ?@AB × C$          (1) 

where %6$ is the quantized value of the sample value %$. The quantization error is bounded by: 

|%$ ' %6$| + C$DE            (2) 

The number of digits 4$ before the decimal separator in the valueF%$  is: 5 

4$ = GlogHI|%$| > JK           (3) 

We want to preserve 3%4 significant digits of the sample value %. This is approximately equivalent to having a rounding 

error of less than half the last tenth digit preserved. The quantization error shall thus be lower than or equal to: 

|%$ ' %6$| + ?@A × J?L./M*L           (4) 

This condition guarantees that the Digit Rounding algorithm to always preserves a relative error lower than or equal to half 10 

the value of the least significant digit. 

 Combining Eq. (2) and Eq. (4), we look for the highest quantization factor C$ such that: 

C$DE + ?@A × J?L./M*L  

or : 

logHI7C$8 + 4$ ' 3%4 

Moreover, in order to lower the computational cost and increase the compression efficiency, we look forseek a quantization 15 

factor that is a power of two. This allows bit-masking instead of division, and creates sequences of zero bits 0: 

C$ = EN.             (5) 

We thus look for the greatest integer O$  such that: 

FO$ + 74$ ' 3%48FlogPJ?.  

Finally, we take the value O$  such that: 20 

O$ = G74$ ' 3%48FlogPJ?K           (6) 

The log computation in Eq. (3) is the more computationally inexptensive, but.demanding. Nevertheless, optimization is 

possible becauseas only the integer part of the result is useful. The optimized version implementedoptimization consists in 

computing the number of digits before the decimal separator 4 from the binary exponentF#$  and mantissa !$  of valueF%$ , 
which:: the value %$ in binary representation is written: 25 

%$ = sign7%$8 × E1. ×!$           (7) 

where The the mantissa !$ is a number between 0.5 and 1. Hence, using Eq. (3) we haveobtain: 

4$ = GlogHI7E1. ×!$8K > J or  

4$ = G#$ logHI7E8 > logHI7!$8K > J 

The value logHI7!$8 value is tabulated. Only 5 tabulated values are used in our implementation, enough to provide a good 

precision. The tabulated values values v for logHI7!$8 are such that Q + logHI7!$8. They are provided in the Supplement. It 30 

This computation, thus guaranteeing. The nNumber 4$  of significant digits before the decimal separator in the sample 
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value F%$  is thus approximated with the following equation:As ' logHI7E8 R logHI7!$8 + ? , we use the following 

approximation in our implementation: 

4$ S G7#$ ' J8 logHI7E8K > J          (7) 

It provides slightly under estimated values for 4$ but also a more conservative quantization allowing preserving the specified 

number of significant digits. 5 

4$ S G#$ logHI7E8 > QK > J          (8) 

This computation slightly underestimates the values for 4$ but provides a more conservative quantization, guaranteeing the 

specified number of significant digits.  ThisThe optimization slightly decreases the achievable compression ratios in 

exchange for a much higherstrong benefits on the compression speed. 

  10 

Finally, tTheThe Digit Rounding algorithm is summarized in FigureTable 2Fig. 2. We have developed an HDF5 

dynamically loaded filter plugin for so as to apply the Digit Rounding algorithm to be able to apply it onto NetCDF-4 or 

HDF5 datasets formatted as NetCDF-4 or HDF5 files. It has shouldto be noted that data values that have been rounded by 

the Digit Rounding algorithm can be read directly read: there is no reverse operation to the Digit Rounding, and users do not 

need any software to read the rounded data. 15 

 Table 23 provides the results of the Digit Rounding algorithm on the value of π with a specified precisions of 3%4 = 5 

varying from 1 to 8 digits. It can be compared to the results of the Bit Grooming results provided in Table 2 in (Zender, 

2016a). For a specified precision of 3%4 = 5 digits, theThe Digit Rounding algorithm preserves 11 bits in the mantissa and 

sets the 12
th

 bit to 1. Compared to the Bit Grooming algorithm, 3 more bits have been set to 0. Table 3 provides the 

maximum absolute error obtained with varying 3%4 values on an artificial dataset composed of 1, 000, 000 values evenly 20 

spaced overn the interval [1.0, 2.0). This is the same artificial dataset as the one used in Table 3 in (Zender, 2016a). It shows 

that Digit Rounding always preserves a relative error lower than or equal to half the value of the least significant digit, i.e. 

|%$ ' %6$| + ?@A × J?L./M*L . We compare the compression ratio obtained with the Digit Rounding algorithm to thate 

compression ratio obtained with the Bit Grooming algorithm on for the same meteorological data from MERRA re-analysis 

studied in (Zender, 2016a). Table 4 reports the Bit Grooming results extracted from Table 6 in (Zender, 2016a) and provides 25 

the results of the Digit Rounding algorithm. In both cases, tThe same lossless compression is employed: Shuffle and Deflate 

with level 1 compression. From 3%4 = T to 3%4 = A, Digit Rounding and Bit Grooming provide similar compression ratios 

with a slight advantage for the Bit Grooming algorithm. However, from 3%4 = 5  to 3%4 = J , the compression ratios 

obtained with Digit Rounding are clearly better. 

The next following sections first provides the definesition of the various performance metrics used hereinafterin the 30 

remaining of this paper, then studies the performance of various lossless and lossy compression algorithms—, including the 

Digit Rounding—, when applied toon both synthetic datasets and on real scientific datasets. 
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4 Performance metrics 

We have implemented the Digit Rounding algorithm as a new HDF5 dynamically loaded filter plugin to be able to apply it 

on datasets formatted as NetCDF-4 or HDF5 files. 

One of the features required for lossy the scientific data compression is the control of over the amount of loss, or the 

accuracy, of the compressed data. Depending on the data, this accuracy can be expressed by an absolute or a relative error 5 

bound. The maximum absolute error is defined by #()*U(V = max|%6$ ' %$ F| where the %$ are the samples values of the original 

dataset and the %6$ are the samples values of the compressed dataset. An absolute error bound specifies the maximum absolute 

error, #()*, allowed between any sample of the original and compressed data: #()*U(V + #()*. The maximum relative error is 

defined by #012U(V = max -*6./*.*. -. A relative error bound specifies the maximum relative error, #012 , allowed between any 

sample of the original and compressed data: #012U(V + #012. The absolute error bound can be useful for data with a unique 10 

single dynamic range of interest. The relative error bound can be useful for data where both very small lowvalue and very 

high values are pertinent. 

A near-lynearly  exhaustive list of metrics for assessing the performance of lossy compression of scientific datasets is 

provided in (Tao et al., 2017b). For the sake of conciseness, it has been chosen to present only a few of them are presented in 

this paper. The following metrics have beenwere chosen for this study: 15 

· the compression ratio WX7Y8 to evaluate the reduction in size reduction as a result of the compression. It is defined 

by the ratio of the original file size over the compressed file size: 

WX7Y8 = Z[\#%[]#7Ŷ 0$_8Z[\#%[]#7Ỳ ^UN8 
· the compression speed Wb7Y8 and decompression speed cb7Y8 to evaluate the speed of the compression and of the 

decompression. They are defined by the ratio of the original file size over the compression or decompression time: 

Wb7Y8 = Z[\#%[]#7Ŷ 0$_8d`^UN  

cb7Y8 = Z[\#%[]#7Ŷ 0$_8dL1`^UN  

The compression speed and the decompression speeds are expressed in MB/s. Those compression and decompression speed 20 

reported in this paper have beenwere obtained on a Dell T1600 with an Intel Xeon E31225 4- cores CPU at 3.1GHz, and a 

4GB memory under the RedHat 6.5 (64- bits) OS with compression and decompression run on a single core. Parallel 

compression has not been considered in this work. 

The following metrics werehave been chosen to assess the data degradation of the lossy compression algorithms: 

· the maximum absolute error #()*U(V defined previously. It is used to evaluate the maximum error between the original 25 

and compressed data; 
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· the mean error #e to evaluate if any bias is introduced into the compressed data. It is defined as the mean of the 

pointwise difference between the original and compressed data: 

#e = Jfh7%$ 'F%6$8
j/H
$kI

 

· the mean absolute error #()*ppppp to evaluate the mean data degradation. It is defined as the mean of the pointwise 

absolute difference between the original and compressed data: 

#()*ppppp = Jfh|%$ 'F%6$|
j/H
$kI

 

· SNR to evaluate the signal to compression error ratio. It is defined by the ratio of the signal level over the root mean 5 

square compression error and. It is expressed in decibels (dB): 

bfXLq = E?FlogHI
r
t uJfv %$Pj/H$kI
uJfv 7%$ 'F%6$8Pj/H$kI w

y 

These metrics are used in the next following sections to evaluate various lossless and lossy compression algorithms, 

including the Digit Rounding. 

5 4 Performance assessment on with synthetic data 

4.1 Performance metrics 10 

A nearly exhaustive list of metrics for assessing the performance of lossy compression of scientific datasets is provided in 

Zchecker (Tao et al., 2017b). For the sake of conciseness, it has been chosen to present only a few of them in this paper. The 

following metrics have been chosen: 

· the compression ratio WX7Y8 to evaluate the size reduction as a result of the compression. It is defined by the ratio 

of the original file size over the compressed file size: 15 

WX7Y8 = Z[\#%[]#7Ŷ 0$_8Z[\#%[]#7Ỳ ^UN8 
· the compression speed Wb7Y8 and decompression speed cb7Y8 to evaluate the speed of the compression and of the 

decompression. They are defined by the ratio of the original file size over the compression or decompression time: 

Wb7Y8 = Z[\#%[]#7Ŷ 0$_8d`^UN  

cb7Y8 = Z[\#%[]#7Ŷ 0$_8dL1`^UN  

The compression speed and the decompression speed are expressed in MB/s.  
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The following metrics have been chosen to assess the data degradation of the lossy compression algorithms: 

· the maximum absolute error #()*U(V to evaluate the maximum error between the original and compressed data. It is 

defined as the maximum value of the pointwise absolute difference between the original and compressed data: 

#()*U(V = max$ F|%$ 'F%6$| 
· the mean error #e to evaluate if any bias is introduced in the compressed data. It is defined as the mean of the 

pointwise difference between the original and compressed data: 5 

#e = Jfh7%$ 'F%6$8
j/H
$kI

 

· the SNR to evaluate the signal to compression error ratio. It is defined by the ratio of the signal level over the root 

mean square compression error. It is expressed in decibel (dB): 

bfXLq = E?FlogHI
r
t uJfv %$Pj/H$kI
uJfv 7%$ 'F%6$8Pj/H$kI w

y 

5.14.2 Analytical datasets 

Synthetic datasets %J and szc with known statistics have beenwere generated in order to test the compression algorithms 

under variable conditions.  The dDatasetsfollowing datasets have beenwere generated,. : 10 

%Jbeingis  Dataset %J is a noisy sinusoid of 1 dimension with a maximum absolute value of 118. ,The data volume of 

the this dataset is 4MB. Dataset szc s 

szcz{ a is a noisy sinusoid pulse of 3 dimensions with a maximum absolute value of 145. The data volume of this dataset 

is 512MB. The Ssupplement further describes these datasets in greater detail. 

5The signal %J is a noisy sinusoid defined by: 15 

%J7[8 = } > "H × sin ~E�[ Z*HZ* � > 37[8 
Where } is the mean value, "H is the amplitude of the sinusoid, Z*H is its frequency and 37[8 is a zero mean Gaussian noise of 

variance 1. The signal %J is generated with } = J??, "H computed so as to obtain a SNR of 20dB, and 
����� = H�H�×P. It allows 

having a bit more than two samples per period with a pattern reproduced every 17 periods. It is generated over f = EPI float 

sample values, each float value being encoded on 32bits. The volume of the dataset %J is 4MB. The dataset and its histogram 

are shown in Fig. 2. 20 

The signal %zc a noisy sinusoid pulse of 3 dimensions defined by: 

%zc7[H� [P� [�8 = "P × �[HP > [PP > [�P��P >�P > fP × sin �E�u[HP > [PP > [�P Z*��Z1`�� > 37[H� [P� [�8 
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Where ����f  are the 3 dimensions of the signal %zc , "P  is the amplitude of the sinusoid, Z*��  is its frequency and 

37[H� [P� [�8 is a zero mean Gaussian noise of variance 1 

The signal %zc is generated with L = 256, M = 256, N = 2048, "P computed to obtain a SNR of 40dB, and 
������ = H�×�H�×j in 

order to have 4 periods on the main axis. It is generated over � × � × f = EP� float sample values, each float value being 

encoded on 32bits. The volume of the dataset %zc is 512MB. The dataset and its histogram are shown in Fig. 3. 5 

The datasets %J and %zc datasets have been stored into NetCDF-4 formatted files. 

4.35.2 Performance assessment of lossless compression methods 

The lossless compression algorithms evaluated are Deflate and Zstandard with or without the Shuffle or Bitshuffle 

preprocessing step. Moreover, LZ4 is always evaluated but always with the Bitshuffle preprocessing step because it was 

imposed in the LZ4 implementation of LZ4 we used. embarks Bitshuffle. 10 

 We raun arun lossless compression algorithm using the h5repack tool from the HDF5 library, in version 1.8.19, Deflate 

implemented in zlib 1.2.11, Zstandard in version 1.3.1 with the corresponding HDF5 filter available on the HDF web portal 

(http://portal.hdfgroup.org/display/support/Filters), and the implementation of LZ4 and Bitshuffle in the python package 

Bitshuffle-0.3.4. The compression is was performed by calling the h5repack tool. The Ssupplement provides the command 

lines and options that have been used.  15 

 

Figures The compression is performed calling h5repack tool with a command line formatted as follows: 

h5repack -i in_file.nc -o compressed_file.h5 [--filter=var:params] 

where in_file.nc is the input dataset formatted as a NetCDF-4 file and compressed_file.h5 is the compressed dataset in HDF5 

file format. The input dataset contains the var variable processed by one or several HDF5 filter. Table 4 provides the list of 20 

filter options used. They shall replace the filter option between brackets on previous command line. 

The decompression is performed calling h5repack tool with a command line formatted as follows: 

h5repack -i compressed_file.h5 -o out_file.h5 --filter=var:NONE 

Compression and decompression has been performed on a Dell T1600 with an Intel Xeon E31225 4 cores CPU at 3.1GHz, 

and 4GB memory under RedHat 6.5 (64 bits) OS. Compression and decompression are run on a single core.  25 

In order to obtain meaningful compression and decompression speed results, we employed the following process: 

· Each compression or decompression is run 10 times. 

· The elapse time (real clock time) of each run is measured. 

· The minimum and maximum times measured are removed from the list of measures 

· The mean of the remaining 8 measures provides the compression or decompression time. 30 

Figure 34 and Fig 4 provides the results obtained for the compression and decompression of the dataset %J and Fig. 5 

provides the results obtained for the compression and decompression of the dataset %zc  respectively. The vertical bars 
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represent the results for different compression levels: from 1 to 9 for the Deflate level dfl_lvl, from 1 to 22 for Zstandard 

level zstd_lvl, and only one level for LZ4.  

First, it can be observed that theThe preprocessing steps Shuffle or Bitshuffle have a similarly  favorable impact both on the 

compression ratio and on the compression/decompression speeds in most cases.. Shuffle and Bitshuffle have similar effects 

on the compression performances. 5 

 Second, the The cCcompressioncompression levels parameters dfl_lvl and zstd_lvl have little influence on the compression 

ratio. However, the compression/decompression speeds decrease with increasingas compression levels increase, particularly 

with Zstandard compression levels.level. 

 Third, Tthe compression ratiosratio obtained with Deflate and Zstandard are similar, but the compression speeds of 

Zstandard at low compression levels are far higher, but and the decompression speeds of Zstandard are always higher, and 10 

the compression speeds of Zstandard at low compression levels are far higher. 

 Fourth, The compression/decompression speeds obtainedobtain with Bitshuffle and+ LZ4 provides a slightly lower 

compression ratio than Shuffle+Deflate or Shuffle+Zstandard, with a compression speeds similar to Shuffle+Deflate or 

Shuffle+Zstandard at low compression level parameters dfl_lvl or zstd_lvlare not in all casesalways higher than the 

compression/decompression speeds obtained with Bitshuffle and Zstandard at low compression level zstd_lvl. Nevertheless, 15 

the compression ratiosratio obtained with Bitshuffle and LZ4 are only slightly lower than the compression ratio obtained 

with Bitshuffle and Zstandard at low compression level zstd_lvl. 

 Finally, the compression/decompression speeds obtained with Zstandard and LZ4 for the compression of the dataset %zc are 

by farmuch lower than thatethe one achieved for the compression of the dataset %J. Further investigations are required to 

understand why the compression/decompression speeds are lower, but it. This might be related to HDF5 chunking. 20 

To summarize, TtheseWe conclude that for results show that the lossless compression of scientific dataset the preprocessing 

by Shuffle or of Bitshuffle are is very helpful to in increasingeincrease the compression performanceefficiency. Then,They 

also show that Zstandard can provide higher compression and decompression speeds than Deflate at low compression 

levelslevel. However, on the %zc dataset, we observedobserve that Zstandard compression and decompression speeds are 

lower than thoseethe one obtained with Deflate. Therefore, Deflate and Zstandard are thus both optionsoption to consider for 25 

the lossless compression of scientific datasets as long as they followdataset but always with the Shuffle or Bitshuffle 

preprocessing step. 

5.334.4 Performance assessment of lossy compression methods 

 

The lossy compression algorithms evaluated are error-bounded compression algorithms. They can constrain either or both 30 

the maximum absolute error or the maximum relative error, or both. The compression algorithms evaluated are Sz, Decimal 

Rrounding, Bit Grooming and the Digit Rounding algorithm introduced in this paper. 

Sz compression algorithms evaluated are Sz, Bit Grooming and the Digit Rounding algorithm introduced in this paper. 
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Sz compression algorithm has been designed to work in both error-bounded modes. Bit Grooming is declined in two 

algorithms: the DSD algorithm (for number of decimal significant digits) and the NSD algorithm (for number of significant 

digits). The DSD algorithm (also called decimal rounding algorithm) The Sz compression algorithm works in both error-

bounded modes. Decimal Rounding allows preserving a specific number of decimal digits to be preserved. In this sense, it 

bounds the maximum absolute error. The NSD Bit Grooming algorithm allows preserving a specific number of significant 5 

digits to be preserved.. In this sense, it bounds the maximum relative error. As Like the the NSD Bit Grooming algorithm, 

the Digit Rounding algorithm allows preservesingpreserving a specific number of significant digits and bounds the 

maximum relative error. 

. 

Bit Grooming and Digit Rounding algorithms does not compress the data. They only alter the data to make it more 10 

compressible. Thus, lossless compression steps are required afterward. By default, Sz algorithm embark Deflate. 

Nevertheless, it is possible to configure Sz and deactivate Deflate to use other lossless compression algorithms. 

We urun ran Sz in version 1.4.11.12.1.1 using the h5repack tool and call through its Sz HDF5 filter plugin, and applying the 

Deflate lossless compression algorithm integrated to in the Sz software. We urunran the Decimal Rounding and Bit 

Grooming algorithms using NCO in version 4.7.9, applying Shuffle and Deflate compression in the call to the NCO tool0.  15 

Last, we urun ran the Digit Rounding algorithm using the h5repack tool and custom implantation of the algorithm in an 

HDF5 plugin filter. The Ssupplement provides the command lines and options that have been used. 

 

Sz compression is performed calling h5repack tool with a command line formatted as follows: 

h5repack -i in_file.nc -o compressed_file.h5 --filter=var:UD=32017,0 20 

Sz compression is configured via the sz.config file located in the directory from where h5repack is called. In this 

configuration file, quantization_intervals is set to 256 and the szMode is set to SZ_BEST_SPEED to achieve high speed 

compression. The gzipMode is set to Gzip_NO_COMPRESSION to deactivate Deflate compression. The errorBoundMode 

is set to ABS, or to PW_REL, to achieve respectively absolute error bounded compression, or relative error bounded 

compression. In the absolute error bounded compression mode, the absErrBound parameter is configured to achieve the 25 

desire maximum absolute error. In the relative error bounded compression mode, the parameter pw_relBoundRatio is 

configured to achieve the desire maximum relative error. 

Bit Grooming compression is performed calling the ncks tool from NCO toolkit. The DSD algorithm is run with the 

following command line (note the period before the dsd parameter): 

ncks -4 –L dfl_lvl --ppc var=.dsd in_file.nc compressed_file.nc 30 

The NSD algorithm is run with the following command line: 

ncks -4 –L dfl_lvl --ppc var=nsd in_file.nc compressed_file.nc 

In all cases, the decompression is performed calling h5repack tool with a command line formatted as follows: 

h5repack -i compressed_file.h5 -o out_file.h5 --filter=var:NONE 
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4.45.3.1 Performance comparison in the absolute error- bounded compression mode 

This section compares the performance of the absolute error-bounded compression algorithms: Sz and Decimal Rounding. 

The results reported were obtained by applying In order to measure the compression ratio and the compression speeds, Sz 

has beenwasconfigured with the options SZ_BEST_SPEED and Gzip_BEST_SPEED., Shuffle and Deflate with dflt_lvl = 1 

are were applied after the Decimal Rounding.Zstandard with zstd_lvl = 5 has been applied after Sz and Shuffle and 5 

Zstandard with zstd_lvl = 5 has been applied after Bit Grooming. This compression level provides a good trade-off between 

compression speed and compression ratio. 

 

Only Shuffle is only applied after Bit Grooming. Indeed, experiments have shown that Shuffle or Bitshuffle preprocessing 

do not increase the compression ratio when applied after Sz, and Bitshuffle provide lower compression ratio than Shuffle 10 

when applied after Bit Grooming. 

Table 5 compares the compression performance results obtained in the absolute error- bounded compression mode for 

#()* = ?@A. This corresponds  corresponding to dsd = 0 decimal significant decimal digits preserved, or in other words, a 

rounding to the nearest integer.  

Sz compression is performed calling h5repack tool with a command line formatted as follows: 15 

h5repack -i in_file.nc -o compressed_file.h5 --filter=var:UD=32017,0 --filter=var:UD=32015,1,5 

With the absErrBound parameter set to 0.5 in the sz.config file located in the directory from where h5repack is called. 

Bit Grooming compression is performed successively calling ncks and h5repack tool with command lines formatted as 

follows: 

ncks -4 –L 0 --ppc var=.dsd in_file.nc bitgroomed_file.nc 20 

h5repack -i bitgroomed_file.nc -o compressed_file.h5 --filter=var:SHUF --filter=var:UD=32015,1,5 

Both Sz and Decimal Rounding Bit Grooming algorithms respect the specified maximum absolute error value. Moreover, 

none introduces a statistical bias: the mean absolute errors of both algorithms—, not shown in this table—, are very close to 

zero. The errors introduced by these two algorithms are similar. However, it can be shown seen that DecimalBit Grooming 

Rounding provided a higher compression ratio than Sz on forthe dataset %J.� ��il�F���F�om���ssionFs����sFa��Fsimila�. On 25 

the contraryother hand, Sz provided aprovide higher compression ratio and than Bit Grooming on for the dataset %zc. Sz 

may perform better on the dataset %zc because it is smoother than the dataset %J. Indeed, Sz integratesmakes use of a 

prediction step. The This prediction might often fail because dataset %J beingis highly very noisy, Sz prediction might often 

fail. This can may explain the lower compression ratio on for %J  dataset. On the contrary, Decimal Rounding, however, does 

not makes any predictions, which may. This can explain why it achieves a better compression than Sz on forthe dataset %J. 30 

The lower compression/decompression speeds obtained with Sz on the dataset %zc are not well understood and might be 

related to HDF5 chunking as previously mentioned.  
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Figure 56 compares the performances of Sz and Bit Grooming algorithmsalgorithms in terms of SNR versus compression 

ratio. This figure has beenwas obtained with the following parameters: 

· For the Sz algorithm, the absErrBound parameter is was successively set to 5e-5, 5e-4, 5e-3, 5e-2, 5e-1, 5; 

· For the Decimal Rounding Bit Grooming algorithm, the dsd parameter is was successively set to 4, 3, 2, 1, 0, -1. 

As for the results reported in Table 5, Zstandard with zstd_lvl = 5 has been applied after Sz and Shuffle and Zstandard with 5 

zstd_lvl = 5 has been applied after Bit Grooming. 

On theFor dataset %J, the Decimal Rounding provideshas a Bit Grooming algorithm provides better higher compression 

performance SNR than Sz for a given compression ratio. except for very high compression ratio (dsd ≤ -1 or absErrBound ≥ 

5). On the contrary, on forthe dataset %zc , Szthe Bit Grooming algorithm provides has a higher SNR than Decimal 

Rounding for a given compression ratio. Both better compression performance than Sz but only for low compression ratio 10 

(dsd ≥ 2 or absErrBound ≤ 5e-3).  

We conclude that both Sz and Bit Grooming algorithms  are seems valuable for the compression in the absolute error- 

bounded compression mode. Bit Grooming tend to provide better performance at low compression ratios while Sz tends to 

provide better performance at higher compression ratios but the limit depends on the dataset. 

5.3.234.4.2 Performance comparison in the relative error- bounded compression mode 15 

This section compares the performance of the relative error-bounded compression algorithms: Sz, Bit Grooming, and Digit 

Rounding. The results reported have beenwere obtained by applying Sz configured with the options 

SZ_DEFAULT_COMPRESSION and Gzip_BEST_SPEED. Shuffle and Deflate with dflt_lvl=1 have beenwere applied after 

the Bit Grooming and Decimal Rounding algorithms. 

As for the performance comparison in the absolute error bounded compression mode, Zstandard with zstd_lvl = 5 has been 20 

applied after Sz and Shuffle and Zstandard with zstd_lvl = 5 has been applied after Bit Grooming in order to measure the 

compression ratio and the compression speeds. 

We first focus on the results obtained on thewith dataset %J.  

Table 6 compares the compression errors obtained in the relative error- bounded compression mode.The number of 

significant digits— nsd parameter— in the Bit Grooming and in the Digit Rounding algorithms is was set to 3. As the 25 

maximum absolute value in the s1 dataset is 118, the maximum absolute error should be lower than 0.5. In order to be able to 

compare Sz configured with a relative error bound with those algorithms, we configured the relative error bound to obtain a 

maximum absolute error of 0.5: the pw_relBoundRatio parameter in Sz was set to 0.00424. The results are provided in Table 

6. It can be observed that all three algorithms respect the maximum absolute error of 0.5, which corresponds for datasetF%J to 

a relative error of 0.00424. On this dataset, Sz provides higher compression ratio and compression speed than the other two 30 

algorithms. Bit Grooming is too conservative. It preserves more mantissa bits than strictly necessary to achieve the required 

precision. This behavior is illustrated in Table 1 with the value of π. In contrast, Digit Rounding adapts the quantization step 

to each value of the input dataset. Doing so, it can achieve the required precision while preserving less mantissa bits than Bit 
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Grooming does. This results both in a higher compression ratio but also in higher errors than Bit Grooming. Results obtained 

for Bit Grooming with nsd = 2 are also provided for completeness. With this parameter, Bit Grooming provides slightly 

higher compression ratio and compression speed than Digit Rounding does. 

The algorithms have been configured in order to obtain a maximum absolute error of 0.5. As the maximum absolute value in 

s1 dataset is 118, the pw_relBoundRatio parameter in Sz is was set to 0.00424It can be observed that all three algorithms 5 

respect the maximum absolute error of 0.5, which, for and the dataset s1,  corresponds for dataset s1 to a relative 

errornumber of 0.00424. However, as previously mentioned,significant digits nsd parameter in the Bit Grooming and in the 

Digit Rounding algorithm is set to 3 in Table 6. However, as the Bit Grooming algorithm is too conservative. , results with 

nsd = 2 are also provided. 

Sz compression is performed calling h5repack tool with a command line formatted as follows: 10 

h5repack -i in_file.nc -o compressed_file.h5 --filter=var:UD=32017,0 --filter=var:UD=32015,1,5 

With the pw_relBoundRatio parameter set to 0.00424 in the sz.config file located in the directory from where h5repack is 

called. 

Bit Grooming compression is performed successively calling ncks and h5repack tool with command lines formatted as 

follows: 15 

ncks -4 –L 0 --ppc var=nsd in_file.nc bitgroomed_file.nc 

h5repack -i bitgroomed_file.nc -o compressed_file.h5 --filter=var:SHUF --filter=var:UD=32015,1,5 

Digit Rounding is performed calling h5repack tool with a command line formatted as follows: 

h5repack -i in_file.nc -o compressed_file.h5 --filter=var:UD=digitRoundingID,1,3 --filter=var:UD=32015,1,5 

It can be observed in Table 6 that all three algorithms respect the relative error bound specified. However, as previously 20 

mentioned the Bit Grooming algorithm is too conservative. The same is observed with the Digit Rounding algorithm for the 

compression of the dataset %J. The quality obtained with the Digit Rounding algorithm is similar to the one obtained with the 

Bit Grooming. Nevertheless, the compression ratio is higher. 

Figure 67 (left) compares the performances of Sz, Bit Grooming, and Digit Rounding algorithms in terms of SNR versus 

compression ratio. This figure has been obtained with the following parameters: 25 

· For the Sz algorithm, the pw_relBoundRatio parameter is was successively set to 4.24e-6, 4.24e-5, 4.24e-4, 4.24e-3, 

4.24e-2, 4.24e-1; 

· For the Bit Grooming algorithm, the nsd parameter is was successively set to 6, 5, 4, 3, 2, 1; 

· For the Digit Rounding algorithm, the nsd parameter is was successively set to 6, 5, 4, 3, 2, 1. 

AllAs for the results reported in Table 6, Zstandard with zstd_lvl = 5 has been applied after Sz and Shuffle and Zstandard 30 

with zstd_lvl = 5 has been applied after Bit Grooming and Digit Rounding algorithms. 

The Digit RoundingAll three algorithms provideprovides similar SNR versus better compression performance ratios results, 

than Sz or Bit Groomingwith a slight advantage for the Bit Grooming algorithm.. At high compression ratio, Sz provides 

similar performance as the Digit Rounding algorithm. 
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 Figure 87 (left) compares the compression ratio obtained as a function of the parameter nsd, which is the user- specified 

number of significant digitsdigit. Even thoughif the nsd is not a parameter of the Sz algorithm, we made the correspondence 

between related the pw_relBoundRatio and to the nsd parameters for the dataset %J (i.e. pw_relBoundRatio = 4.24e
-nsd

) and 

plottedplot the compression ratio obtained with the Sz algorithm on the same figure. 

 It can be seen that, whatever the nsd specified by the user, the compression ratiosratio obtained with the Digit Rounding are 5 

higher than the compression ratio obtained with the Bit Grooming algorithm. It can also be seen that the 

compressionscompression obtained with the Sz algorithm are even higher.  

We now focus on the results obtained withon the dataset %zc. The number of significant digits— nsd parameter— in the Bit 

Grooming and in the Digit Rounding algorithms is was set to 3.  

As the maximum absolute value in the %zc dataset is 145, the pw_relBoundRatio parameter in Sz is was set to 0.00345. 10 

Results are provided in Table 7.  and the number of significant digits nsd parameter in the Bit Grooming and in the Digit 

Rounding algorithm is set to 3 in Table 7. 

It can be observed  in Table 7. in Table 7 that all three algorithms respect comply with the relative error bound specified. 

However,  on this dataset, Sz algorithm is twice too conservative. That is why, results obtained with 

pw_relBoundRatio = 0.0069 are also provided in order to obtain a maximum absolute error of 0.5.However, as previously 15 

mentioned, the Bit Grooming algorithm is too conservative.iswith of  Thisat is why results obtained with nsd = 2 are also 

provided. On this dataset, Sz provides higher compression ratio than the other two algorithms but lower compression speed 

than Bit Grooming. At nsd = 3, Digit Rounding provides slightly higher compression ratio than Bit Grooming but with lower 

compression speed. On the contraryIn contrast The compression ratio obtained with the Digit Rounding algorithm is higher 

than the one obtained with Sz. 20 

 

Figure 67 (right) compares  the performances of Sz, Bit Grooming, and Digit Rounding algorithms in terms of SNR versus 

compression ratio. This figure has been obtained with the following parameters: 

· For the Sz algorithm, the pw_relBoundRatio parameter is was successively set to  6.9e-6, 3.456.9e-5, 6.9 3.45e-4, 

6.93.45e-3;, 6.9e-2, 6.9e-1 25 

· For the Bit Grooming algorithm, the nsd parameter is was successively set to 6, 5, 4, 3, 2, 1; 

· For the Digit Rounding algorithm, the nsd parameter is was successively set to 6, 5, 4, 3, 2, 1. 

TheAs for the results reported in Table 7, Zstandard with zstd_lvl = 5 has been applied after Sz and Shuffle and Zstandard 

with zstd_lvl = 5 has been applied after Bit Grooming and Digit Rounding algorithms. 

For the dataset %zc, the Bit Grooming and Digit Rounding algorithms provide similar compression ratios, but even higher 30 

compression ratios are obtained with Sz. algorithm provides better compression performance than Sz. Nevertheless, the Digit 

Rounding algorithms provides compression performance very closed to the one of the Bit Grooming algorithm. 

Figure 78 (right) compares the compression ratio obtained as a function of the parameter nsd parameter, which is the user- 

specified number of significant digitsdigit. As for dataset %J , we made relatedthe correspondence between the 
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pw_relBoundRatio and to the nsd parameters for the dataset %zc (i.e. pw_relBoundRatio = 3.45e456.9e
-nsd

) and plottedplot 

the compression ratio obtained with the Sz algorithm on the same figure. 

 On the dataset %zc, and wWhatever the nsd specified by the user, the compression ratios obtained with the Digit Rounding 

algorithm are higher than the compression ratio obtained with the Bit Grooming algorithm. The compression ratios obtained 

with Sz are even higher. or Sz.  5 

  

Those results show that the We conclude that in most cases, Digit Rounding algorithm can be competitive with is superior to 

the Bit Grooming and Sz algorithms in the relative error- bounded compression mode. It is thus applied to real scientific 

datasets in the next section. 

65 Application to scientific datasets 10 

losslessLossless and lossy algorithms are now evaluated for the compression of scientific mission data from: CFOSAT and 

SWOT. 

65.1 Application to a CFOSAT dataset 

The CFOSAT is a cooperative program is carried out through cooperation between the French and Chinese sSpace aSpace 

Agencies (CNES and CNSA respectively). CFOSAT is designed toaims at characterizeingcharacterizing the ocean surfaces 15 

to better model and predict the ocean states, and improve the knowledge in of ocean/atmosphere exchanges. The CFOSAT 

products will help for marine and weather forecastingforecast and will also be used to monitor thefor climate monitoring. 

The CFOSAT satellite will carry two scientific payloads—: SCAT, a wind scatterometer;, and SWIM, a wave 

scatterometer—for the to allow a joint characterization of ocean surface winds and waves. The SWIM (Surface Wave 

Investigation and Monitoring) instrument delivered by CNES is dedicated to the measuringementmeasurement of the 20 

directional wave spectrum (density spectrum of wave slopes as a function of direction and wavenumber of the waves). The 

CFOSAT L1A product contains calibrated and geocoded waveformswaveform. 

Currently, the baseline for the compression of the CFOSAT L1A product involves a “clipping” method as a data reduction 

step, the with Shuffle preprocessing and Deflate lossless coding with a compression level dfl_lvl of 3. The 

cCompressioncompression with a clipping method“clipping” is liken to a compression in an absolute error- bounded mode. 25 

It defines the least significant digit (lsd) and ‘“clips’“clips” the data to keep only lsd decimal digits. The lsd is defined 

specifically for each dataset variable. The full list is provided in the Supplement with all the command lines and parameters 

used for running the compression methods described in this section of the dataset.. 

We studiedystudy the performance of the following alternative br-compression methods: 

· CFOSAT clipping followed by Shuffle and Deflate (dflt_lvl = 3): the baseline for the compression of CFOSAT 30 

datasets; 
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· CFOSAT “clipping”  method followed by Shuffle and Zstandard (with a compression level zstd_lvl = 2) 

compression level of 1 or 2 for highertoto achieve favor compression speeds; 

· Bit Grooming (in the absolute error bounded compression mode) followed by Shuffle and Deflate or Zstandard.Sz 

br-followed by Deflate in the absolute error bounded mode; 

· Decimal Rounding followed by Shuffle and Deflate (dflt_lvl = 1); 5 

· Bit Grooming (nsd = 8) (in the absolute error bounded compression mode) followed by Shuffle and Deflate or 

ZstandardDeflate (dflt_lvl = 1);. 

·  

· Digit Rounding (nsd = 8) br-followed by Shuffle and Deflate (dflt_lvl = 1). 

We first focused on the ground_range_5 variable of the CFOSAT L1A product. This variable is an array of 18451×3215 10 

values in double precision. The data volume is 452.58 MB (uncompressed). The CFOSAT “clipping” method defines an lsd 

of 3 for thisat variable. In the absolute error- bounded mode, Bit GroomingDecimal Rounding ishas been configured to keep 

the same number of decimal digits as CFOSAT “clipping”: dsd = .3;  on each variable: nsd = lsd.Sz is configured with 

absErrBound = 5e-4. In the relative error- bounded mode, Bit Grooming and Digit Rounding are configured with nsd = 8 

while. The cCompression results are provided in Table 8.   15 

Compared to the CFOSAT baseline compression, Zstandard compression is more than twice faster while offering a similar 

compression ratio. On this dataset, the use of Sz instead of the CFOSAT Clipping method increases the compression ratio by 

a factor of 11. Sz prediction step seems to be very efficient on this dataset. Decimal Rounding increases the compression 

ratio by a factor of 2.5 “only”, but provides the fastest decompression. In the relative error-bounded mode, Digit Rounding 

provides a higher compression ratio than Bit Grooming but lower compression/decompression speeds.  20 

 

Bit Grooming has been configured to keep the same number of decimal digits as CFOSAT “clipping” on each variable: nsd 

= lsd. 

Unfortunately, Sz crashes on the compression of CFOSAT or SWOT datasets. That is why, no results with Sz are provided 

in the following tables. 25 

The results for the compression of the fulla CFOSAT L1A product of 7.34GB (uncompressed) are provided in Table 98. 

 The maximum absolute error and the mean absolute error are not provided because this dataset contains several variables 

compressed with different parameters.  Supplementthe br-Compared to the CFOSAT baseline compression, Zstandard 

increases the compression speed of by about 40% while offering a similar compression ratio. It was not possible to apply Sz 

compression on the full dataset since Sz configuration file has to be modified to adapt the absErrBound to the lsd defined for 30 

each dataset variable. The way around this entails processing each variable one after the other. Sz provides a compression 

ratio almost 3 times higher than the baseline with faster compression and decompression. Decimal Rounding is configured 

on a per-variable basis to keep the precision required by the scientists on each variable. The use of Bit Grooming instead of 
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the CFOSAT “Clipping” method It increases the compression ratio by a factor of 1.82, with twice faster compression and 

decompression compared to the baselinebut decreases the compression speed by 40%. The compression ratios achieved with 

Bit Grooming or Digit Rounding in the relative error-bounded mode are lower. This is not the mode targeted for the 

compression of CFOSAT datasets. The usability of Sz being reduced by the fact that the error bound cannot be easily 

configured to achieve the precision required variable per variable, our recommendation is to use the Decimal Rounding 5 

algorithm. It achieves faster and more effective compression than CFOSAT Clipping method and bounds the absolute errors. 

The decompression speeds are similar for all the solutions tested. Our recommendation is thus to use the Bit Grooming 

algorithm with Zstandard coding rather than the CFOSAT “Clipping” method with Deflate coding to achieve a high 

compression ratio on for this CFOSAT dataset, at the price of a lower compression speed. 

65.2 Application to SWOT datasets 10 

The Surface Water and Ocean Topography Mission (SWOT) is a partnership between NASA and CNES, and 

continuescontinue the long history of altimetry missions with an innovative instrument known as: KaRin, which is a Ka band 

synthetic aperture radar. The launch is foreseen for 2021. SWOT addresses both oceanographicyoceanography and 

hydrologicalyhydrology communities, accurately measuring with a high accuracythe water level of the oceansocean, rivers, 

and lakes. 15 

SWOT has two processing modes, of processing and thusso two different types of products are generated: the high- 

resolution products, dedicated to hydrology, and low- resolution products mostly dedicated to oceanography. The Pixel 

Cloud product (called L2_HR_PIXC) contains data from the KaRiIn instrument’s high-resolution (HR) mode of the KaRIn 

instrument. It contains information on the pixels that are detected as being over water. This product is generated 

whenrewhere the HR mask is turned on. The Pixel Cloud product is organized into sub-orbit tiles for each swath and each 20 

pass, and this is an intermediate product between the L1 Single Look Complex products and the L2 lake/river ones. The 

product granularity is a tile of 64 km64km long in the along-track direction, and it covers either the left or the right swath 

(~60 km60km wide).  

The compression performance is was evaluated on twoof two different datasets was evaluated: 

· A simplified simulated SWOT L2_HR_PIXC pixel cloud product of 460MB (uncompressed); 25 

· A realistic and representative SWOT L2 pixel cloud dataset of 199MB (uncompressed). in which only few 

attributes may be missing of 199MB (uncompressed). 

The current baseline for the compression of the simplified simulated SWOT L2 pixel cloud product involves the Shuffle 

preprocessing and Deflate lossless coding with a compression level dfl_lvl of 4. However, the compression method for the 

official SWOT L2 pixel cloud product has not yet been defined. A required precision is defined by the scientists as a number 30 

of significant digits (nsd) for each dataset variable. The full list is provided in the Supplement.  

 We studied the following lossless or relative error bounded compression methods: 

· Shuffle and Deflate (dflt_lvl = 4): the current baseline for the compression of SWOT datasets; 
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We studiedystudy the performance of the following compression methods: 

· Shuffle and Deflate; 

· Shuffle and Zstandard (zstd_lvl = 2) lossless alternative; 

· Sz with Deflate in the relative error bounded mode; 

· Bit Grooming followed by Shuffle and Deflate (dflt_lvl = 1); 5 

· Digit Rounding followed by Shuffle and Deflate (dflt_lvl = 1). 

We first focused on the height variable of the SWOT L2_HR_PIXC pixel cloud product. This variable is a list of 1,421,888 

values in double precision. The data volume is 10.85MB (uncompressed). A precision of 6 significant digits is required for 

this variable (nsd = 6). Sz is configured in the relative error bounded mode with pw_relBoundRatio = 5e-6. Bit Grooming 

and Digit Rounding are configured with nsd = 6. The results are provided in Table 10. Compared to the SWOT baseline 10 

compression, Zstandard compression is more than 10 times faster while offering a similar compression ratio. On this dataset, 

Digit Rounding provides the highest compression ratio with compression/decompression speeds similar to the one obtained 

with Bit Grooming. The lowest errors are obtained with Bit Grooming but with a compression ratio slightly lower than Digit 

Rounding. The compression ratio obtained with Sz is even lower.  

Next we focused on the pixel_area variable of the representative SWOT L2 pixel cloud product. This variable is a list of 15 

1,300,111 values in double precision. The data volume is 9.92MB (uncompressed). A precision of 11 significant digits is 

required for this variable (nsd = 11). Sz is configured in the relative error bounded mode with pw_relBoundRatio = 5e-9 only 

because it cannot achieve higher precision. Bit Grooming and Digit Rounding are configured with nsd = 11. The results are 

provided in Table 11. Compared to the SWOT baseline compression, Zstandard compression is more than 7 times faster 

while offering a similar compression ratio. Sz provides the highest compression ratio but does not allow achieving the 20 

required precision of 11 digits. Moreover, in this configuration Sz compression is very slow. As for the height variable, Digit 

Rounding provides the highest compression ratio with compression/decompression speeds similar to the one obtained with 

Bit Grooming. The lowest errors are obtained with Bit Grooming but with a compression ratio lower than Digit Rounding.  

Table 12 provides the results of the compression of the full simulated SWOT L2_HR_PIXC pixel cloud product. The 

maximum absolute error and the mean absolute error are not provided because this dataset contains several variables 25 

compressed with different parameters.Bit Grooming (in the absolute error- bounded compression mode) followed by Shuffle 

and Deflate or Zstandard;. 

Bit Grooming (in the relative error- bounded compression mode) followed by Shuffle Zstandard;; 

Bit Grooming (in the relative error bounded compression mode) followed by Shuffle Zstandard;-;. 

Digit Rounding followed by Shuffle Zstandard. 30 

-Bit Grooming and Digit Rounding have been configured on a per- variable basis to keep the precision required by the 

scientists on each variable. 

 It was not possible to evaluate the compression time needed to compress the datasets using the Digit Rounding algorithm 

because h5repack only allows defining filters parameters to be defined for a small number of variables. The way around this, 
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in order to compute the compression ratio, has entailsbeen to processingprocess each variable one after the other. 

Nevertheless, we observed similar speeds for the compression/decompression of the largest variable of in this dataset using 

the Bit Grooming algorithm in the relative error br-bounded mode or the Digit Rounding algorithm. 

The results for the compression of the simplified simulated SWOT L2 pixel cloud product are provided in Table 9. 

Compared to the SWOT prototype baseline compression, Zstandard increases more than 5 times the compression speed by 5 

over 5 times, while offering a similar compression ratio. Sz compression was not applied because it does not allow achieving 

the high precision required on some variables. Bit Grooming and Digit Rounding was configured on a per-variable basis to 

keep the precision required by the scientists on each variable. Compared to the baseline, Bit Grooming and The use of Bit 

Grooming in the absolute or relative error br-bounded mode, or the use of the Digit Rounding algorithm, increasesincrease 

the compression respectively by  ratio by more20% and  than 30% with similar compression speeds and faster 10 

decompression. , but divides the compression speed by more than 3 the compression speed. The decompression speeds are 

similar for all the solutions tested. Our recommendation for the compression of this dataset is thus to use of Shuffle and 

Zstandard in lossless mode to achieve a very high compression speed, or either the Bbit- bit-grooming Grooming or the Digit 

Rounding algorithm to achieve a slightly higher compression ratio at the price of a lower compression speed. 

The results for the compression of the representative SWOT L2 pixel cloud product are provided in Table 130. 15 

 Compared to Deflatethe baseline, Zstandard compression is nearly 4 times fasterincreases by more than 2.5 times the 

compression speed while offering a similar compression ratio. The use of the Bit Grooming increases the compression ratio 

by 29% with higher compression speed. And Digit Rounding increases the compression ratio by 34% with slightly lower 

compression speed than Bit Grooming.  Bit Grooming and Digit Rounding provides the Bit Grooming algorithm in the 

absolute error -bounded mode increases more than 2 times the compression ratio by over twice but reduces the compression 20 

speed. The compression ratios obtained in the relative error- bounded mode, either with the Bit Grooming algorithm or the 

Digit Rounding algorithms, are not as high. Thefastest decompression decompression speeds are similar for all the solutions 

tested. Our recommendation for the compression of this datasetSWOT datasets is thus to use the Bit GroomingDigit 

Rounding algorithm in the absolute error- bounded mode to achieve high compression, at the price of a lower compression 

speed than the lossless solutions, considering that for SWOT the driver is product size is a driver, and considering taking into 25 

account the ratioration between compression time and processing time. 

76 Conclusions 

We have studiedThis study investigatedevaluated the performance of lossless and lossy compression algorithms both on 

synthetic datasets and on realistic simulated datasets of future sciencetificscientific satellites. The compression methods have 

beenwere executed applied using NetCDF-4 and HDF5 tools. 30 

 It has been shown that for the lossless compression of scientific datasets,dataset the compression performance is increased 

when preprocessing by Shuffle orfof Bitshuffle are used for preprocessingis very helpful to increase the compression 
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performance. It has been shown that the impact of Tthe compression level options of Zstandard or Deflate have lower 

impacts on the compression ratio achieved is not significant compared to the impact of the Shuffle or Bitshuffle 

preprocessing. However, high compression levels but can significantly reduce the compression speed. Low compression 

levels are thus a good choices if the goal is to achieve a high compression speed with a satisfactory compression ratio. 

Zstandard can provide similar as higher a compression speed than as Deflate or LZ4 with similar compression ratios. 5 

However, on the three 3-dimensional dataset, we have observed that Zstandard compression and decompression speeds are 

lower than the one obtained with Deflate. Depending on the dataset, Deflate and Zstandard with low compression levels are 

thus both reasonable options to consider for the compression of scientific datasets, but must always follow awith Shuffle or 

Bitshuffle preprocessing step. It has been shown that Zstandard can speed-up the compression of CFOSAT and SWOT 

datasets compared to the baseline solution based on Deflate. 10 

The lLossy compression of scientific datasets can be achieved in two different error- bounded modes: the absolute and 

relative error- bounded. Four algorithms have been studied: Sz, Decimal Rounding, Bit Grooming and Digit Rounding. One 

useful feature of the last three is that the accuracy of the compressed data can easily be interpreted: rather than defining an 

absolute or a relative error bound, they define the number of significant decimal digits or the number of significant digits.  

mode. Sz and Bit Grooming algorithms can work in both modes. In the absolute error- bounded mode, Sz provide higher 15 

compression ratios than Decimal Rounding on most datasets. However for the compression of real scientific datasets, its 

usability is reduced by the fact that only one error bound can be set for all the variables composing the dataset. It cannot be 

easily configured to achieve the precision required variable per variable.both Sz and DecimalBit Grooming algorithms are 

competitive. This is why we rather recommend the Decimal Rounding algorithm to achieve fast and effective compression of 

the CFOSAT dataset. Bit Grooming tends to provide higher SNR than Sz at low compression ratios while Sz tends to 20 

provide higher SNR than Bit Grooming at higher compression ratios. 

In the relative error- bounded mode, the Digit Rounding algorithm introduced in this work is more efficient inprovides 

higher provides higher compression ratios efficiency than the Bit Grooming algorithm from which it derives, but with lower 

compression speed. Sz can provide even higher compression ratios but fails achieving the high precision required for some 

variables. This is why we rather recommend the Digit Rounding algorithm to achieve relative error bounded compression of 25 

SWOT datasets with a compression ratio 30% higher than the baseline solution for SWOT compression. 

. Moreover, it provides higher SNR than Sz in most cases. 

A follow-upnExtends to this work could be entailto modifyingto modify the implementation of the HDF5 filter for Sz to 

allow the data loss to be configuredingconfiguring the data loss on a per- variable basis or  to adapt the NetCDF-4 library to 

allow the activation of other filters, not only Shuffle and deflate. usefuldigits, 30 
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87 Code and data availability 

The Digit Rounding software source code is available from CNES GitHub at https://github.com/CNES/Digit_Rounding. and 

The the datasets are currently only available upon request to Xavier Delaunay (xavier.delaunay@thalesgroup.com) or to to 

Flavien Gouillon (Flavien.Gouillon@cnes.frFlavien.Gouillon@cnes.fr). The Supplement details the datasets and provides 

the command lines used for running the compression tools. 5 
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Table 1: Representation of the value of π in IEEE-754 single-precision binary representation (first row) and results preserving 4 

significant digits with the Bit Grooming algorithm (second row) or preserving 12 mantissa bits (third row). This table builds 

onfollows with Table 1 in (Zender, 2016a). 

Sign Exponent Mantissa Decimal Notes 

0 10000000 10010010000111111011011 3.14159265 Exact value of π 

0 10000000 10010010000111100000000 3.14154053 Result of the Bit Grooming with nsd = 4, 15 mantissa bits 

preserved 

0 10000000 10010010000100000000000 3.14111328 Result preserving only 12 mantissa bits, allows preserving 

the 4 significant digits of π to be preserved. 

 5 

 

Table 2: The Digit Rounding algorithm. 

Input: 

�%$�$kIM  input sequence of samples 

Output: 

�%6$�$kIM  output sequence of quantized samples 

Parameter: 

3%4 number of significant digits preserved in each sample 

Algorithm: 

For each input sample %$ in�%$�$kIM : 

1. Compute the number 4$ of significant digit number of digits before the decimal separator in the sample 

valueF%$ following in Eq. (7) 

2. Compute the quantization factor power O$  following in Eq. (6) 

3. Compute the quantization factor C$ as in Eq. (5) 

4. Compute the quantized value %6$ as in Eq. (1) 

 

 

Table  10 

Table 23: Representation of the value of π in IEEE-754 single-precision binary representation (first row) and results preserving a 

varying number of 4 significant digits (nsd) with the Digit Rounding algorithm. (second row). This table can be compared with to 

Table 2 in (Zender, 2016a) providing the Bit Grooming results for of π. 

Sign Exponent Mantissa Decimal Notes 

0 10000000 10010010000111111011011 3.14159265 Exact value of π 
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0 10000000 10010010000111111011011 3.14159265 nsd  = 8 

0 10000000 10010010000111111011010 3.14159250 nsd  = 7 

0 10000000 10010010000111111010000 3. 14159012 nsd  = 6 

0 10000000 10010010000111110000000 3. 14157104 nsd  = 5 

0 10000000 10010010000100000000000 3.14111328 Result of the 

Digit Rounding 

algorithm with 

nsd = 4 

0 10000000 10010010100000000000000 3. 14453125 nsd  = 3 

0 10000000 10010100000000000000000 3. 15625000 nsd  = 2 

0 10000000 11000000000000000000000 3. 50000000 nsd  = 1 

0 10000000 00000000000000000000000 4.00000000 nsd  = 0 

 

Table 3: Maximum absolute errors and mean absolute errors of the Digit Rounding algorithm preserving a varying number of 

significant digits (nsd) on an artificial dataset composed of 1, 000, 000 values evenly spaced overn the interval [1.0, 2.0). 

nsd Maximum absolute error Mean absolute error Mean error 

1 0.4999999999 0.1732423125 -0.0796879687 

2 0.0312500000 0.0127722254 -0.0003056211 

3 0.0039062500 0.0016125222 -0.0000074545 

4 0.0004882812 0.0001983929 -0.0000001013 

5 0.0000305176 0.0000125886 -0.0000000017 

6 0.0000038147 0.0000015736 -0.0000000002 

7 0.0000004768 0.0000001937 0.0000000000 

 

Table 4: Comparison of between the compression ratio obtained with the Digit Rounding algorithm to and the compression ratio 5 
obtained with the Bit Grooming algorithm reported in (Zender, 2016a) on a MERRA dataset. Shuffle and Deflate with level 1 

lossless compression is applied. The reference for the CR computation is Deflate (level 5) compressed data size of 244.3MB.  

 Bit Grooming Digit Rounding 

NSD Size (MB) CR (%) Size (MB) CR (%) 

~7 223.1 91.3 226.1 92.6 

6 225.1 92.1 225.8 92.4 

5 221.4 90.6 222.0 90.9 

4 201.4 82.4 191.1 78.2 

3 185.3 75.9 165.1 67.6 
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2 150.0 61.4 111.1 45.5 

1 100.8 41.3 64.9 26.6 

 

 

Table 4: Command lines and parameters used for the compression with h5repack 

Compression algorithms Command line Parameters 

Deflate --filter=var:GZIP=dfl_lvl dfl_lvl from 1 to 9 

Shuffle + Deflate --filter=var:SHUF --filter=var:GZIP=dfl_lvl dfl_lvl from 1 to 9 

Zstandard --filter=var:UD=32015,1,zstd_lvl zstd_lvl from 1 to 22 

Shuffle + Zstandard --filter=var:SHUF --filter=var:UD=32015,1,zstd_lvl zstd_lvl from 1 to 22 

Bitshuffle + Zstandard --filter=var:UD=32008,1,1048576 --filter=var:UD=32015,1,zstd_lvl zstd_lvl from 1 to 22 

Bitshuffle + LZ4 --filter=var:UD=32008,2,1048576,2 - 
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Table 5: Compression performance results of the absolute error-bounded compression algorithms Sz and Bit GroomingDecimal 

Rounding in the absolute error br-bounded compression mode on the datasets s1 and s3D. 

 Dataset s1 Dataset s3D 

Algorithm Sz (absErrBound = 0.5) 

+ Zstd (zstd_lvl = 5) 

Bit Grooming (dsd = .0) 

+ Shuffle + Zstd 

(zstd_lvl = 5) 

Sz (absErrBound = 0.5) 

+ Zstd (zstd_lvl = 5) 

Bit Grooming (dsd = .0) 

+ Shuffle + Zstd 

(zstd_lvl = 5) 

Maximum 

absolute 

error 

0.5 0.5 0.5 0.5 

SNR (dB) 30.834 30.830 45.9687 45.9689 

Compressi

on ratio 

5.71 8.98 8.69 7.34 

Compressi

on speed 

(MB/s) 

50 51 25 16 

 

Dataset Compression method CR CS (MB/s) #()*U(V #()*ppppp SNR (dB) 

s1 Sz (absErrBound = 0.5, Gzip_BEST_SPEED) 5.39 133 0.5 0.2499 30.84 
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s1 Decimal Rounding (dsd = .0, dflt_lvl=1) 7.50 100 0.5 0.2501 30.83 

s3D Sz (absErrBound = 0.5, Gzip_BEST_SPEED) 12.97 29 0.5 0.2500 45.97 

s3D Decimal Rounding (dsd = .0, dflt_lvl=1) 5.56 80 0.5 0.2500 45.97 

 

 

Table 6: Compression performance results of the relative error-bounded compression algorithms Sz, Bit Grooming, and Digit 

Rounding in the relative error- bounded compression mode on the dataset s1. 

Algorithm Sz Bit Grooming  Digit Rounding 

Parameter pw_relBoundRatio = 0.00424 nsd = 3  nsd = 3 

Maximum 

absolute 

error 

0.5 0.0312  0.0325 

SNR (dB) 30.83 54.93  54.92 

Compressi

on ratio 
5.68 3.18  3.80 

Compressi

on speed 

(MB/s) 

32 37  40 

 5 

Compression method CR CS (MB/s) #()*U(V #()*ppppp SNR (dB) 

Sz (pw_relBoundRatio = 0.00424, Gzip_BEST_SPEED) 5.08 100 0.484 0.199 32.78 

Bit Grooming (nsd = 3, dflt_lvl=1) 3.09 57 0.0312 0.0156 54.93 

Bit Grooming (nsd = 2, dflt_lvl=1) 4.38 57 0.250 0.125 36.54 

Digit Rounding (nsd = 3, dflt_lvl=1) 4.02 40 0.5 0.195 34.51 

 

 

 

 

Table 7: Compression performance results of Sz, Bit Grooming, and Digit Rounding in the relative error- bounded compression 10 
mode on the dataset s3D. 

Compression method CR CS (MB/s) #()*U(V #()*ppppp SNR (dB) 

Sz (pw_relBoundRatio = 0.00345, Gzip_BEST_SPEED) 4.32 26 0.487 0.0737 54.56 

Bit Grooming (nsd = 3, dflt_lvl=1) 2.35 46 0.0625 0.0079 73.96 
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Bit Grooming (nsd = 2, dflt_lvl=1) 3.04 51 0.5 0.0629 55.89 

Digit Rounding (nsd = 3, dflt_lvl=1) 2.60 18 0.5 0.0239 58.87 

 

 

Algorithm Sz Bit Grooming Digit Rounding  

Parameter pw_relBoundRatio = 0.00345 nsd = 3 nsd = 2 nsd = 3 

Maximum 

absolute 

error 

0.256 0.0625 0.5 0.5 

SNR (dB) 68.06 73.96 55.89 63.94 

Compressi

on ratio 
2.05 2.45 3.30 2.67 

Compressi

on speed 

(MB/s) 

18 14 15 19 

 

Table 8: Performance Compression performanceresults for the compression of the ground_range_5 variable in the CFOSAT L1A 

product. 5 

Compression method CR CS (MB/s) DS (MB/s) #()*U(V #()*ppppp 
CFOSAT “Clipping” + Shuffle + Deflate (3) 2.34 38 (*) 123 1.00e-3 5.00e-4 

CFOSAT “Clipping” + Zstd (2) 2.20 108 (*) 84 1.00e-3 5.00e-4 

Sz (absErrBound = 1e-3, Gzip_BEST_SPEED) 26.53 60 42 1.00e-3 4.99e-4 

Decimal Rounding (dsd = .3) + Shuffle + Deflate (1) 5.85 74 187 4.88e-4 2.36e-4 

Bit Grooming (nsd = 8) + Shuffle + Deflate (1) 4.78 67 190 2.44e-4 1.22e-4 

Digit Rrounding (nsd = 8) + Shuffle + Deflate (1) 5.83 37 38 4.88e-4 2.44e-4 

(*) The time taken for the CFOSAT “Clipping” method is not taken into account into the compression speed computation. 

 

Table 89: Compression pPerformanceresults for the compression of the CFOSAT L1A productproducts. 

Compression method 

CRCo

mpres

sion 

ratio 

CS 

(MB/s)Co

mpression 

speed 

(MB/s) 

DS 

(MB/s)Dec

ompressio

n speed 

(MB/s) 
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Baseline CFOSAT compression method: 

CFOSAT “Clipping” +  Shuffle +  Deflate  (3) 
5.21 51 (*) 68 

CFOSAT “Clipping” + Shuffle + Zstandard (1) 67 

CFOSAT “Clipping” +  Shuffle 

+  ZstdZstandard  (2) 
5.38 72 (*) 78 

Sz (absErrBound, Gzip_BEST_SPEED) 15.45 88 89 

Bit Grooming (abs) + Shuffle + Deflate (3) 74 

Bit Grooming (abs) + Shuffle + ZstdZstandard 

(2) 
12.68 35 81 

Decimal Rounding + Shuffle + Deflate (1) 9.53 101 268 

Bit Grooming (nsd = 8) + Shuffle + Deflate (1) 4.16 75 262 

Digit Rounding (nsd = 8) + Shuffle 

+ Deflate (1)R 
4.32 37 85 

(*) The time taken for the CFOSAT “Clipping” method is not taken into account into the compression speed computation. 
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Table 10: Compression results for the height variable in the simplified simulated SWOT L2_HR_PIXC pixel cloud product. 

Compression method CR CS (MB/s) DS (MB/s) #()*U(V #()*ppppp 
Shuffle + Deflate (4) 1.12 24 212 0 0 

Shuffle + Zstd (2) 1.12 271 181 0 0 

Sz (pw_relBoundRatio = 5e-6, Gzip_BEST_SPEED) 2.06 35 155 3.16e-5 1.19e-7 

Bit Grooming (nsd = 6) + Shuffle + Deflate (1) 2.34 33 217 7.58e-6 2.53e-7 

Digit Rounding (nsd = 6) + Shuffle + Deflate (1) 2.38 35 217 3.05e-5 7.95e-7 

 

Table 11: Compression results for the pixel_area variable in the representative SWOT L2 pixel cloud product. 

Compression method CR CS (MB/s) DS (MB/s) #()*U(V #()*ppppp 
Shuffle + Deflate (4) 1.50 32 248 0 0 

Shuffle + Zstd (2) 1.50 237 165 0 0 

Sz (pw_relBoundRatio = 5e-9, Gzip_BEST_SPEED) 3.24 0.3 165 2.51e-6 4.56e-7 

Bit Grooming (nsd = 11) + Shuffle + Deflate (1) 2.11 43 245 1.86e-9 3.16e-10 
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Digit Rounding (nsd = 11) + Shuffle + Deflate (1) 2.40 40 240 3.73e-9 1.86e-9 

 

 

Table 129: Compression pPerformanceresults for the compression of the simplified simulated SWOT L2_HR_PIXC pixel cloud 

product. 

Compression method 

CRCo

mpressi

on ratio 

CS 

(MB/s)Co

mpression 

speed 

(MB/s) 

DS 

(MB/s)Dec

ompressio

n speed 

(MB/s) 

Baseline SWOT compression method: 

Shuffle + Deflate (4) 

14.37 107 92 

Shuffle + Zstandard (1) 

Shuffle + ZstandardZstd (2) 14.36 589 97 

Bit Grooming + Shuffle + Deflate (1) 17.44 141 336 

Digit Rounding + Shuffle + Deflate (1) 18.92 100 393 

Bit Grooming (abs) + Shuffle + Deflate (4) 

Bit Grooming (abs) + Shuffle + 

ZstdZstandard (2) 

20.66 79 108 

Bit Grooming (rel) + Shuffle + ZstdZstandard 

(2) 

18.87 50 101 

RDigit Rounding + Shuffle + Zstandard (2) 21.04 N/A N/A 

 5 

 

 

Table 130: Compression pPerformanceresults for the compression of the representative SWOT L2 pixel cloud product. 

Compression method 

CRCom

pressio

n ratio 

CS 

(MB/s)Co

mpression 

speed 

(MB/s) 

DS 

(MB/s)Dec

ompressio

n speed 

(MB/s) 

Shuffle + Deflate (42) 1.91.99

8 
3552 25883 
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Shuffle + Zstandard (1) 91 

Shuffle + ZstdZstandard (2) 1.99 139 90 

Bit Grooming + Shuffle + Deflate (1) 2.55 52 276 

Digit Rounding + Shuffle + Deflate (1) 2.65 42 228 

Bit Grooming (abs) + Shuffle + Deflate (4) 98 

Bit Grooming (abs) + Shuffle + 

ZstdZstandard (2) 

4.4 65 104 

Bit Grooming (rel) + Shuffle + Zstandard (2) 2.56 43 93 

RDigit Rounding + Shuffle + Zstandard (2) 2.85 (*) N/A (*) N/A (*) 
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Figure 1: Compression chain in which appearsshowing the data reduction, pre-processing and lossless coding steps. 

 

Input: 

�%$�$kIM  input sequence of samples 

Output: 

�%6$�$kIM  output sequence of quantized samples 

Parameter: 

3%4 number of significant digits preserved in each sample 

Algorithm: 

For each input sample %$ in �%$�$kIM : 

1. Get the binary exponentF�� and mantissa m� of valueFs� according to Eq. (7) 

2. Tabulate the value v for logHI7m�8 
3. Compute the approximated number of digits before the decimal separator in the sample valueF%$ 

following Eq. (8) 

4. Compute the quantization factor power O$  following Eq. (6) 

5. Compute the quantization factor C$ as in Eq. (5) 

6. Compute the quantized value %6$ as in Eq. (1) 

Figure 2: The Digit Rounding algorithm. 5 

 



35 

 

 

Figure 2: First 100 samples of the dataset s_1 (left) and histogram of the sample values (right). 

 

Figure 3: Representation of the first slices �� 7¡¢� ¡£� ¤8 (left), and histogram of the sample values (right). 
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Figure 4Figure 3: Performance Results obtained for the lossless compression of the s1 dataset with Deflate (dflt), Zstandard (zstd), 

Shuffle and Deflate (shuf+dflt), Shuffle and Zstandard (shuf+zstd), Bitshuffle and Zstandard (bshuf+zstd), Bitshuffle and LZ4 

(bshuf+lz4). Compression ratios (top), cCompression speeds (bottom- left), and decompression speeds (bottom -right). Vertical 

bars represent the results for different compression levels: from 1 to 9 for Deflate, from 1 to 22 for Zstandard, only one level for LZ4 5 

. 
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Figure 5Figure 4: Performance Results obtained for the lossless compression of the s3D dataset with Deflate (dflt), Zstandard 

(zstd), Shuffle and Deflate (shuf+dflt), Shuffle and Zstandard (shuf+zstd), Bitshuffle and Zstandard (bshuf+zstd), Bitshuffle and 

LZ4 (bshuf+lz4). Compression ratios (top), cCompression speeds (bottom- left), and decompression speeds (bottom -right). 

 5 
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Figure 56: Comparison of the compression performance results (SNR vs. compression ratio) of the Sz and Bit GroomingDecimal 

Rounding algorithms in the absolute error-bounded compression mode, on. Compression performance obtained on the s1 dataset 

(left) and s3D dataset (right). 5 
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Figure 67: Comparison of the compression performance results (SNR vs. compression ratio) of the Sz, Bit Grooming and Digit 

Rounding algorithms in the relative error-bounded compression mode. , on the Compression performance obtained on the s1 

dataset (left) and s3D dataset (right). 

 5 
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Figure 78: Compression ratio as a function of the user- specified number of significant digitsdigit (nsd) for the Sz, Bit Grooming 

and Digit Rounding algorithms, on algorithm. Compression performance the obtained on the s1 dataset (left) and s3D dataset 

(right). 
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