Dear Editor,

Thank you so much for extending our time for the revision of the manuscript. We also like to thank
both reviewers for their thorough review of the manuscript. Below, find the main modifications made to
the manuscript which covers all the remarks.

As suggested by the reviewers, the manuscript has been reworked to focus more on the
application to CFOSAT and SWOT datasets. We have also moved the details concerning the
synthetic datasets in the Supplement which is now provided with the paper.

The term “Bit Grooming” was employed both for the absolute and the relative error bounded
compression modes. But the algorithms are different. In the revised version of the paper we
employ the term “Decimal Rounding” in the absolute error bounded mode and the term “Bit
Grooming” in the relative absolute error bounded mode to remove any ambiguities.

Thanks to a remark from C. Zender, we found that the Digit Rounding algorithm was
sometimes too conservative. We thus slightly modified the implementation. The compression
results reported in the new version of the paper have been obtained with the new version of
the Digit Rounding algorithm.

In the previous version of the paper, we cascaded a call to ncks with a call to h5repack to
perform Bit Grooming followed by Zstandard compression. For fairer comparisons on the
compression speed, we modified our approach and now only employ ncks tool to run Decimal
Rounding and Bit Grooming. However, we could not call Zstandard compression via the ncks
tool, but only Deflate compression. Consequently, we now provide results for Decimal
Rounding, Bit Grooming, Sz and Digit Rounding followed by Deflate compression.

The Digit Rounding software source code is now available from CNES GitHub at
https://github.com/CNES/Digit_Rounding.

We now provide a Supplement which details the datasets and provides the command lines
used for running the compression tools.

The grammar and English of the paper has been dramatically improved by reviews from native

English speakers.



Reply to Anonymous Referee #1

We are grateful to the referee for her/his constructive and thorough criticism and suggestions to our
manuscript. Please, find below a detailed point-by-point reply. Referee’s comments are in blue italic;
our answers are in black and our changes to the manuscript in green.

- This manuscript needs a lot of improvement in terms of the grammar and writing. There are many
awkward phrases and incorrect word choices that need to be improved (a subset are listed below).
The paragraph structures are also in need of modification (many paragraphs contain only 1 or 2
sentences).

We will improve grammar and writing of the manuscript by contacting a native English speaker/writer.
Thank you for pointing out the subset of incorrect word choices. We will also modify the paragraph
structures to avoid too small paragraphs.

The grammar and writing have been improved throughout the manuscript. Short paragraphs have also
been modified.

-Section 2: I'd be helpful to include more detail for the preprocessing algorithms: shuffle and bitshuffle.
Also this section in general needs improvement. It’s a bit "choppy" to read (needs smoother and better
transitions between topics) and feels like more details would be helpful on the methods (especially the
ones that the digit rounding algorithm builds on).

More details will be added on the shuffle and bitshuffle algorithms. More details will also be added on
the bit-grooming and decimal rounding algorithm, algorithm on which the digit rounding algorithm is
built. We will do what is needed to improve this section in general.

Section 2 has been restructured so as to make the reading smoother. Details have been added on the
shuffle and bitshuffle algorithms as well as on the bit-grooming and decimal rounding algorithm.

“The Shuffle algorithm groups all the data samples’ first bytes together, all the second bytes together,
etc. In smooth datasets, or datasets with highly correlated consecutive sample values, this
rearrangement creates long runs of similar bytes, improving the dataset's compression. Bitshuffle
extends the concept of Shuffle to the bit level by grouping together all the data samples’ first bits,
second bits, etc.

The Decimal Rounding algorithm achieves a uniform scalar quantization of the data. The quantization
step is a power of 2 pre-computed so as to preserve a specific number of decimal digits. The Bit
Grooming algorithm creates a bitmask to degrade the least significant bits of the mantissa of IEEE 754
floating-point data. Given a specified total number of significant digits, nsd, the Bit Grooming algorithm
tabulates the number of mantissa bits that has to be preserved to guarantee the specified precision of
nsd digits: to guarantee 1-6 digits of precision, Bit Grooming must retain 5, 8, 11, 15, 18, and 21
mantissa bits respectively. The advantage is that the number of mantissa bits that must be preserved
is computed very quickly. The disadvantage is that this computation is not optimal. In many cases,
more mantissa bits are preserved than strictly necessary.”

-Section 4: Why does using the synthetic data in 4.1 to assess performance make sense - it seems
unrelated to the application area of interest. I'd argue that the metrics used in 4.1 are really minimal
requirements as well. Also take care when referring to "performance” as it is overloaded term...do you
mean speed or effectiveness (it’'s used both ways)



The objective of using synthetic data was to control the data parameters, such as the SNR, to be able
to assess the impact of these parameters on the compression ratios. The results are not reported in
this paper which rather focuses on providing a comparison of the compression ratio and speed of
different algorithms. It has also been chosen to present only the minimal set of relevant metrics to
avoid overloading the paper. We will be more rigorous and replace the term “performance” by
“compression ratio” or “compression speed” in the text.

All the occurrences of the term “performance” have been checked and corrected when needed. The
Mean Absolute Error metric has been added to the list of metrics:

“‘mean absolute error &, to evaluate the mean data degradation. It is defined as the mean of the
pointwise absolute difference between the original and compressed data:
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-fpzip is a fast and effective lossless method that would have been nice to compare (I *think* there is
an fpzip filter available). Also | believe that any hdf5 filter can be accessed through NetCDF4 (see last
sentence in conclusion) - consider contacting the Unidata folks.

Thank you for the suggestion. Indeed a HDF5 filter is accessible for fpzip. However, many lossless
compression algorithms exist. In our paper, we chose to evaluate the most “popular”, i.e. the lossless
compression algorithms the most used in applications. Thank you for pointing this evolution of the
NetCDF-4 library: from version 4.6.0 - January 24, 2018, NetCDF fully supports HDF5 dynamic filters.
The text of the paper will be modified so as to provide the example usage using the new NetCDF-4
features.

An example using the new NetCDF-4 features with nccopy tool has been provided in the supplement
and the conclusion has been modified to remove the last sentence. However, nccopy tool does not
allow yet linking together different filters.

-Comments on doing compression in parallel?

We do not consider running compression algorithm in parallel in this work and will make it clear in the
manuscript. It is a possible extension of this study.

The following sentence has been added in section 4:

“Parallel compression has not been considered in this work.”

-When reading the conclusion, it’s hard to see what the main contributions of this paper are. It's fairly
well known already that preprocessing of scientific data (e.g., bit shuffle or shuffle) improves lossy
compression. Also the statements in the conclusion aren’t specific to a particular type of data set, but
are presented as more general conclusions.

Given that the effectiveness and performance (speed) of lossy and lossless compression are very
data, application, and variable dependent, the general statements here are not well justified by the
small sample of data in the paper. I'd suggest focusing the paper more heavily on the data in Section
5 (if it’s of interest) and tailoring the discussion in that manner. Or maybe the focus was to be more on
speeds than quality, in which case it’s be important to work to get sz and fpzip working, particularly via
netcdf-4...



Thank you for the suggestion that will help highlighting the main contributions of our work. As
suggested, the paper will be reworked to focus more on the application to the CFOSAT and SWOT
datasets. We will also avoid general statements but attach our conclusions to our application case.

The paper has been reworked to focus more on the application to the CFOSAT and SWOT datasets.
Sz compression has been run on CFOSAT dataset and on some parts of SWOT datasets. The
NetCDF-4 tool nccopy does not allow yet linking together different filters. This restrains its usability
and this is why we prefer using h5repack tool.

Specific items:

-p2, line 20: note that fpzip can also be lossless
Thank you for the remark. Fpzip will be presented both as a lossless and lossy compression algorithm.
The text has been modified as follows:

“Third, some lossyl/lossless compression algorithms, such as FPZIP (Lindstrom and Isenburg, 2006),

”

-p. 8: discussion of figure 5: is the width of the bars related to the compression levels? (e.g. line 20
statement is unclear)

No. All the bars have the same width. Each vertical bar represents a compression level. For instance,
the 9 compression levels of Deflate are represented by 9 vertical bars. This will be clarified in the text
p.8.

Clarifications have been added to the text:

“The vertical bars represent the results for different compression levels: from 1 to 9 for the Deflate
level dfl_Ivl, from 1 to 22 for Zstandard level zstd_Ivl, and only one level for LZ4.”

-p.8, lines 28-29: Why is this the case? (Add some discussion beyond describing the figure.)

These lower compression/decompression speeds are not well understood and would require further
investigation to be fully understood. It might be related to HDF5 chunking. Indeed, HDF5 split the data
into chunks of small size that are independently compressed. This allows HDF5 to improve partial 1/0
for big datasets but can sometimes reduce the compression/decompression speeds. This discussion
will be added to the text.

The following sentence has been added to the text:

“Further investigations are required to understand why the compression/decompression speeds are
lower, but it might be related to HDF5 chunking.”



-p.8, line 20: | feel like the parameters should be better explained for —filter so that the reader can try
them more easily. For example, what does the "32017" mean? | think that the following O is for sz, but
this is not stated either.

We will add the meaning of each parameters. Each HDF5 filter is identified by a unique ID. “32017” is
the identifier of Sz filter. The following “0” is the number of filter parameters. In the case of Sz, the filter
does not have any parameter to set. That is why there are 0 parameters. Sz compressor is configured
via the sz.config file. The same explanations will be added for the other filters used in the paper.

All the command lines have been moved to the Supplement with the explanation above to avoid
overloading the manuscript.

-p. 10, line 6: re: "experiments have shown" - whose or which experiments (cite?)

It is based on our own experiments that haven’'t been published. The sentence will be reworked as
follows: “We have found that Shuffle or Bitshuffle preprocessing do not increase the compression ratio
when applied after Sz. We have also found that and Bitshuffle provide lower compression ratio than
Shuffle when applied after Bit Grooming. That is why only Shuffle is applied after Bit Grooming.”

This sentence has been removed since the results have not been published.

-Table 5 : Why is the speed faster for 1d?

As previously, the lower compression/decompression speeds obtained with the dataset s3D are not
well understood and might be related to HDF5 chunking. This discussion will be added to the text.

The following sentence has been added to the text:

“The lower compression/decompression speeds obtained with Sz on the dataset s3D are not well
understood and might be related to HDF5 chunking as previously mentioned.”

-Section 4.4.1, line 21-24: Any idea why you get these results?

Sz performs better on smooth signals since it makes use of a prediction step. The signal s1 being
highly noisy, Sz prediction might often fail. This can explain the lower compression ratio on the signal
s1. On the contrary, Bit-grooming does not makes any prediction. This can explain why it achieves
better compression than Sz on the signal s1. This hypothesis will be added to the text.

The following sentences have been added to the text:

“Sz may perform better on dataset s3D because it is smoother than dataset s1. Indeed, Sz integrates a
prediction step. This prediction might often fail because dataset s1 is very noisy. This may explain the
lower compression ratio for this dataset. Decimal Rounding, however, does not make any predictions,
which may explain why it achieves a better compression than Sz for dataset s1.”

-Section 4.4.1, last sentences: It's unclear to me what the value of these synthetic data sets is -
especially given the statement on p. 11, line 3, about the dependence on the dataset



As suggested previously, the paper will be reworked to focus more on the application to CFOSAT and
SWOT datasets without drawing general conclusions based on the results obtained on the synthetic
datasets.

We modified the last sentence of this section as follows:

“Both Sz and Bit Grooming algorithms seem valuable for compression in absolute error-bounded
compression mode.”

-page 11, line 9-10: I'd include characteristics of the data (e.g., maximum abs. value) earlier in the text
when the two datasets are introduced.

Your suggestion will be taken into account: the characteristics of the data will be introduced in section
4.2.

We have added the characteristics of the data in section 4:

“Datasets s1 and s3D were generated, s1 being a noisy sinusoid of 1 dimension with a maximum
absolute value of 118. The data volume of the s1 dataset is 4MB. Dataset s3D is a noisy sinusoid
pulse of 3 dimensions with a maximum absolute value of 145. The data volume of the s3D dataset is
512MB.”

-page 11, line 24: | don’t see relative error mentioned in Table 6 - it seems to just be absolute error

The text will be modified to make it clearer: “...all three algorithms respect the maximum absolute error
of 0.5 which, for the signal s1, corresponds to a relative error of 0.00424.”

The text has been modified as follows:

“... all three algorithms respect the maximum absolute error of 0.5, which corresponds for dataset s1
to a relative error of 0.00424.”

-p.11-12: Need more of a discussion of the results in Figure 7. For 3D, it looks like bit grooming and
digit rounding are similar - | don’t see a clear advantage.

More discussion on the results will be added to the text. For the s3D you are right, there is no clear
advantage. It is written “the Digit Rounding algorithm provides compression performance very closed
to the one of the Bit Grooming algorithm”.

The text has been modified as follows:

“All three algorithms provide similar SNR versus compression ratio results, with a slight advantage for
the Bit Grooming algorithm.”

-p.12, lines 16-17: SZ compression can be controlled with an absolute error bound, so why is the
relative error bound adjusted to get the desired abs. error?

The objective was to see if Sz compression configured with a relative error bound respect the error
bound specified. As the digit rounding and bit-grooming algorithm can only be configured on a number



of significant digits, they can only “produce” absolute error in 0.5, 0.05, 0.005, etc. In order to be able
to compare Sz configured with a relative error bound with those algorithms, we have configured the
relative error bound to obtain a maximum absolute error of 0.5. These explanations will be added to
the text.

The following sentence has been added in the text:

In order to be able to compare Sz configured with a relative error bound with those algorithms, we
configured the relative error bound to obtain a maximum absolute error of 0.5: the pw_relBoundRatio
parameter in Sz was set to 0.00424.

-Section 5.1: It is disappointing not to have SZ results on the real data of interest. Were the SZ authors
contacted? | would think that they could have helped resolve this issue.

Yes, we had some exchanges. The issue is still under investigation.

A more recent version of Sz has been used and results on CFOSAT and SWOT datasets are now
provided.

-p. 15, line 18: "which only a few attributes may be missing" - It's unclear what this means. It's super
helpful to really detail the data being compressed so that one can make sense of the results.

Details on the datasets will be added to the text.

This part of the sentence has been removed has it is not relevant in the frame of this study. Details on
the CFOSAT and SWOT datasets have been added in the Supplement, particularly the precision
required for the compression of each variable.

-p. 14, line 30: Please share more specific information about the precision required by the scientists for
the data. Again, more information is useful for interpreting results.

The configuration and the precision of each variable will be made available.

These details have been added in the Supplement.

-Section 5 seems like it should be the highlight of the paper as here we are seeing the results on the
real data. But it feels like more detail is needed on the data and more discussion of the implications of
the results.

Section 5 will be developed to add more details on the data and more discussion on the results
obtained.

Section 5 has been reworked. It now provides results on particular variables of the CFOSAT and
SWOT datasets. Details on the data have been added in the Supplement.

Typos, etc.:

-abstract, line 7: incorrect use of "imposes”

-p.1, line 22: "quite spread"=> "quite prevalent" or "quite popular", "widely spread” => "widely used"



-p.1., line 26: "reduce significantly" => "significantly reduce”

-p.1. line 27: This sentence (that continues to page 2) is too long.

-p.2, line 3: "can afford for" is awkward

-p2, lines 10-24: this region is 5 paragraphs

-p.3, lines 3-4: awkwardly worded

-p. 3, line 9: one sentence paragraph

-p.3, line 12: missing "," after "Deflate”

-p.3 line 14: not sure what is meant by "new concurrent”

-p.3, line 13: "widely spread" => "widely used"

-p.3, line 16: awkward sentence: "This allows Deflate achieving rather high compression ratios"
-P.3, section 3: again, there are too many tiny paragraphs

-p.4, line 7: "are of same interest" is awkward

-p.4, line 21: Table number is not given

-p.5, line 15: awkwardly worded

-p.5, line 24: One sentence paragraph

-p.7, section 4.2: define f_s, f_ech

-p.7, line 22: "use embarks" is awkward

-p.8, line 7: "declined"” doesn’t make sense

-p.8, line 14: "embark" - incorrect usage

-p.10, line 10: "This correspond corresponding” needs to be fixed

-p. 10, line 24: Note sure I'd use "performances” here as earlier it was used to indicate speed.
-p. 15, line 21: "ration" => "ratio"

-p.15, line 14: another one sentence paragraph

-p.16, line 9: "Extends to this work" - awkwardly worded

Response: we thank you for highlighting typos that will help us to improve the manuscript.

All these points have been corrected.



Reply to Zender (Referee)

We are grateful to the referee for his constructive and thorough criticism and suggestions to our
manuscript. Please find below a detailed point-by-point reply (referee’s comment in italic).

General Comments

This manuscript presents a new lossy compression algorithm called “Digit Rounding” (DR), and
evaluates its performance against and with other lossy and lossless compression algorithms on
idealized and remote sensing datasets. The manuscript addresses the growing need to archive
meaningful data rather than noise, and to do so reliably and quickly. The study presents an original
advance in lossy compression whose implementation unfortunately hampers its utility. The study is
understandable yet poorly written. This potentially useful study of lossy compression techniques needs
a thorough overhaul before publication.

We will improve the writing of the manuscript by contacting a native English speaker/writer. As
suggested by the Anonymous Referee #1, the paper will be reworked to highlight the main
contributions of our work and focus more on the application to CFOSAT and SWOT datasets.

The grammar and writing have been improved throughout the manuscript and the paper has been
reworked to highlight our main contribution and to focus more on the application to CFOSAT and
SWOT datasets.

Specific Comments

Originality: DR is an improvement on “Bit Grooming” (BG) which | invented as an improvement on “Bit
Shaving’. In that sense | am qualified to comment on its originality. The heart of DR is essentially a
continuous version of BG: Whereas BG fixes the number of bits masked for each specified precision,
and masks these bits for every value, DR recomputes the number of bits masked for each quantized
value to achieve the same precision. BG did not implement the continuous method because | thought
that computing the logarithm of each value would be expensive, inelegant, and yield only marginally
more compression. However, DR cleverly uses the exponent field instead of computing logarithms,
and so deciphers the correct number of bits to mask while avoiding expensive floating point math. This
results in significantly more compressibility that (apparently) incurs no significant speed penalty
(possibly because it compresses better and thus the lossless step is faster?). Hence DR appears to be
a significant algorithmic advance and | congratulate the authors for their insight.

Thank you for your congratulations. They are much appreciated. Indeed, the speed penalty of DR is
compensated by the fact that the lossless step is faster.

In the previous version, we cascaded a call to ncks with a call to h5repack to perform Bit Grooming
followed by Zstandard compression. For fairer comparisons on the compression speed, we modified
our approach and now only employ ncks tool to run Decimal Rounding and Bit Grooming. However,
we could not call Zstandard compression via the ncks tool, but only Deflate compression.
Consequently, we now provide results for Decimal Rounding, Bit Grooming, Sz and Digit Rounding
followed by Deflate compression.

The manuscript stumbles in places due to low quality English, and cries out for more fluent editing. Not
only is the word choice often awkward, but the manuscript is like a continuously choppy sea of
standalone sentences with few well developed paragraphs that swell with meaning then yield gently to
the next idea. GMD readers deserve and expect better.



We will improve the grammar and writing (see first answer). We will also modify the paragraph
structures to avoid too small paragraphs and better take care of the transitions.

The grammar and writing have been improved throughout the manuscript. Short paragraphs have also
been modified and sentence transitions improved.

Does DR guarantee that it will never create a relative error greater than half the value of the least
significant digit? BG chooses the number of digits to mask conservatively, so it can and does
guarantee that it always preserves the specified precision. Equations (1)-(7) imply that DR can make
the same claim, but this claim is never explicitly tested or made. The absence of this guarantee is
puzzling because it would strengthen the confidence of users in the algorithm. However, the
guarantee must be explicitly tested, because it undergirds the premise that the comparison between
DR and BG is fair. In any case, clearly state whether DR ever violates the desired precision, even if
that happens only rarely.

Equations (1)-(7) imply that DR guarantees that it always preserves the specified precision. We will
explicitly add that claim in the text and show that DR always provides the desired precision on the
number Pi with nsd varying from 1 to 8. We will also provide the maximum absolute error on artificial
data of 1 000 000 values spanning [1.0, 2.0) in equal-increment steps of 1e-6.

We have added the following sentence below Eq. 4.

“This condition guarantees that the Digit Rounding algorithm to always preserves a relative error lower
than or equal to half the value of the least significant digit.”

We have also added results of DR algorithm on the number Pi in Table 2:

“Table 2 provides the result of the Digit Rounding algorithm on the value of 1 with specified precisions
nsd varying from 1 to 8 digits. It can be compared to the Bit Grooming results provided in Table 2 in
(Zender, 2016a).”

We also provide the maximum absolute error on artificial data of 1 000 000 values spanning [1.0, 2.0)
in equal-increment steps of 1e-6 in Table 3

“Table 3 provides the maximum absolute error obtained with varying nsd values on an artificial dataset
composed of 1,000,000 values evenly spaced over the interval [1.0, 2.0). This is the same artificial
dataset used in Table 3 in (Zender, 2016a). It shows that Digit Rounding always preserves a relative
error lower than or equal to half the value of the least significant digit, i.e. |s; — ;| < 0.5 x 10%i~nsd_~

p. 16 L13: “Code and data availability: The Digit Rounding software source code and the data are
currently only available upon request to Xavier Delaunay (xavier.delaunay@thalesgroup.com) or to
Flavien Gouillon (Flavien.Gouillon@cnes.fr).” The GMD policy on code and data is here:
https.//www.geoscientific-model-development.net/about/code and data policy.html. This manuscript
provides no code access nor explanation, and no dataset access, and thus appears to violate GMD
policy in these areas.

The code and the datasets will be made publicly available on the CNES gitlab.

The code is now publicly available on CNES GitHub at https://github.com/CNES/Digit_Rounding and
the dataset are available on demand.


https://www.geoscientific-model-development.net/about/code_and_data_policy.html

“The Digit Rounding software source code is available from CNES GitHub at
https://github.com/CNES/Digit Rounding. The datasets are available upon request to Xavier Delaunay
(xavier.delaunay@thalesgroup.com) or to Flavien Gouillon (Flavien.Gouillon@cnes.fr). The
Supplement details the datasets and provides the command lines used for running the compression
tools.”

Common comparisons would help build confidence in your results. It would have been more
synergistic to evaluate the algorithms on at least one of the same datasets as Zender (2016), which
are all publicly available. | am glad the authors used the publicly available NCO executables. Why not
release the DR software in the same spirit so that the geoscience community can use (and possibly
improve) it?

Comparisons with BG will be provided on the same MERRA dataset used in Zender (2016). The DR
software will be released under MIT-style open source license.

We have added results of DR on the same MERRA dataset used in Zender (2016).

“We compare the compression ratio obtained with the Digit Rounding algorithm to that obtained with
the Bit Grooming algorithm for the same meteorological data from MERRA re-analysis studied in
(Zender, 2016a). Table 4 reports the Bit Grooming results extracted from Table 6 in (Zender, 2016a)
and provides the results of the Digit Rounding algorithm. The same lossless compression is employed:
Shuffle and Deflate with level 1 compression. From nsd =7 to nsd = 5, Digit Rounding and Bit
Grooming provide similar compression ratios with a slight advantage for the Bit Grooming algorithm.
However, from nsd = 4 to nsd = 1, the compression ratios obtained with Digit Rounding are clearly
better.”

The DR software is released under LGPL-v3 open source license.

The lossless and lossy compression algorithms analyzed seem like a fairly balanced collection of
those most relevant to GMD readers. Most methods that were omitted are, to my knowledge, either
non-competitive (e.q., Packing) or not user-friendly, e.g., research grade but not widely available (e.qg.,
Layer Packing) and too hard to independently implement.

Table 6 on p. 19 shows the maximum absolute error (MAE) of BG is quite similar to DR, as | would
expect. However, Table 7 on p. 20 shows the maximum absolute error (MAE) of BG is nearly 10x less
than DR. Why are the MAEs similar for dataset s1 and significantly different for dataset s3D? | expect
DR has a greater mean error (and lower SNR) than BG due to the algorithms, yet the difference in
MAEs surprises me. Zender (2016) Table 3 shows that BG is tuned to have an MAE just shy of
violating the precision guarantee. An MAE that is nearly 10x larger seems like it might violate the
precision guarantee.

These results show that BG can sometimes be too conservative. As shown in Table 1 on the value Pi,
BG sometimes preserves more bits in the mantissa than what is strictly necessary to achieve the
required precision. This is what happens on the dataset s3D. On the contrary, DR adapts the
quantization step to each value of the input dataset. Doing so, it can achieve the required precision
while preserving less mantissa bits than DR does. This results both in a higher mean absolute error
and in a higher MAE than BG. This explanation will be added to the text.

Thanks to you remark on the MAE on s1 dataset, it has been observed that DR algorithm was also too
conservative on some values. It has been enhance in order to provide a MAE closer to what was
expected. For this, the value log,;,(m;) is now tabulated with a few values.



“The log,,(m;) value is tabulated. Only 5 tabulated values are used in our implementation, enough to
provide a good precision. The tabulated v values for log,,(m;) are such that v < log,,(m;). They are
provided in the Supplement. This computation slightly underestimates the values for d; but provides a
more conservative quantization, thus guaranteeing the specified number of significant digits.”

The following sentence has also been added in the text:

“Bit Grooming is too conservative. It preserves more mantissa bits than strictly necessary to achieve
the required precision. This behavior is illustrated in Table 1 with the value of 1. In contrast, Digit
Rounding adapts the quantization step to each value of the input dataset. Doing so, it can achieve the
required precision while preserving less mantissa bits than Bit Grooming does. This results both in a
higher maximal absolute error and in a higher mean absolute error than Bit Grooming, but also in a
higher compression ratio.”

The preceding comment is a request to more carefully analyze the underlying cause of the behaviors
reported in the data. The next two comments are to report more results to deepen the analyses and
explain the behavior of DR more robustly.

Please include the maximum absolute error or maximum absolute relative error (which normalizes the
error by the original value) to Tables 5—10.

MeanAE is an important statistic that is complementary to MaxAE. MeanAE is the average absolute
(no compensation between positive and negative) bias in the dataset, and is more familiar and
relevant than SNR to at least some geophysicists. Please consider including MeanAE in Tables 5—10.

As suggested, the maximum absolute error and the mean absolute error (MeanAE) will be added to
the tables allowing deeper analysis of DR behavior.

The maximum absolute error and the mean absolute error have been added to tables 5, 6 and 7.
Tables 9, 12 and 13 provide compression results on CFOSAT and SWOT which are composed of
several different datasets. The maximum absolute error and the mean absolute error could only be
computed variable per variable. We thus now provide the results obtained on the ground_range 5
variable of the CFOSAT dataset in Table 8, the results obtained on the height variable of the SWOT
dataset in Table 10, and the results obtained on the pixel_area variable of the other SWOT dataset in
Table 11.

Zender (2016) and Silver and Zender (2017) consider four primary criteria to evaluate compression
algorithms: Compression Ratio, Accuracy, Speed, and User-friendliness. This manuscript neglects
explicit consideration of the last, though usability seems (in addition to performance) seems to be an
implicit reason why they recommend BG not DR for the “real world” use cases in Sections 5.1 and 5.2.
The manuscript would benefit from a more explicit consideration of usability throughout. Examples
include software availability, flexibility, and complexity of invocation, as well as transparency (will users
have all the necessary software required to read the compressed data?), and instructions to mitigate
these issues for DR.

As for BG, there is no “decompression” associated to DR. DR does not require any software to read
the rounded data. This argument will be added into the text. The reason why BG is recommended
rather than DR for the compression of CFOSAT dataset in section 5.1 is that this dataset is
compressed in absolute error bounded compression mode. DR only works for relative error bounded
compression mode. Nevertheless, some results using DR on this dataset will be provided for
completeness. In section 5.2, BG (in the absolute error bounded compression mode) is recommended



rather than DR for the compression SWOT L2 pixel cloud product. This recommendation is based on
the compression ratio obtained. We will add the maximum absolute error and the mean absolute error
(MeanAE) to Tables 8 to 10 for fairer comparisons. Moreover, we will provide a supplement to the
article with the commands and datasets necessary to reproduce the results.

We have added the following sentences in the text:

“We have developed an HDF5 dynamically loaded filter plugin so as to apply the Digit Rounding
algorithm to NetCDF-4 or HDF5 datasets. It should be noted that data values rounded by the Digit
Rounding algorithm can be read directly: there is no reverse operation to Digit Rounding, and users do
not need any software to read the rounded data.”

Moreover, we have added some results using DR on the CFOSAT dataset for completeness.

The maximum absolute error and the mean absolute error have not been added to Tables 9, 12 and
13, because, as explained in the previous answer, CFOSAT and SWOT dataset are composed of
several different variable.

We also now provide a supplement to the article with the commands and datasets necessary to
reproduce the results.

Tables 1 and 3 follow Tables 1 and 2 of Zender (2016). This should be noted in the text and/or caption
of the tables.

The reference to Zender (2016) will be added in the caption of Tables 1 and 3.
The captions have been modified as follows:

“Table 1: Representation of the value of m in IEEE-754 single-precision binary representation (first
row) and results preserving 4 significant digits with the Bit Grooming algorithm (second row) or
preserving 12 mantissa bits (third row). This table builds on Table 1 in (Zender, 2016a).”

“Table 2: Representation of the value of 1 in IEEE-754 single-precision binary representation (first
row) and results preserving a varying number of significant digits (nsd) with the Digit Rounding
algorithm. This table can be compared to Table 2 in (Zender, 2016a) providing the Bit Grooming
results for 1r.”

It seems like Table 2, the algorithm description, should be a figure rather than a table.
This will be corrected as suggested.

The algorithm description is now provided in Figure 2.

The manuscript is awkward in that it introduces a demonstrably superior lossy compression algorithm
but recommends a different algorithm (BG) for “real world” cases (Section 5), partly because DR is
unavailable in software that potential users have easy access to, and its implementation appears to be
too inflexible to use on generic datasets. The recommendation of BG not DR does attest to the
objectivity of the study, yet it seems to be an unsatisfying conclusion to what was clearly a time-
consuming study. In this sense the manuscript seems premature, since if DR were ‘ready for
primetime” then the authors could have recommended it rather than BG in Section 5. Perhaps the
authors should re-evaluate whether the manuscript is premature, i.e., whether it should both introduce



a new lossy algorithm before it is ready to use in optimized workflows for generic geoscientific data
compression.

As previously answered, the manuscript will be reworked to highlight the main contributions of our
work and focus on the applications to the CFOSAT and the SWOT datasets. The maximum absolute
error and the mean absolute error (MeanAE) will be added to Tables 5 to 10 for fairer comparisons
that will allow mitigating the previous conclusions that were based on the compression ratio only.
Moreover, some results using DR on CFOSAT dataset will be provided for completeness of the
manuscript.

We have added some results using DR on the CFOSAT dataset for completeness, but also maximum
and mean absolute error in the tables (see previous answers).

The conclusion has been reworked to make it clearer that we recommend Decimal Rounding for
absolute error bounded compression of CFOSAT data but Digit Rounding for relative error bounded
compression of SWOT data.

Minor Suggestions

p. 1L22: “well spread”

p. 2L22: DEFLATE

p. 4 L1: maxi is redundant. Just use max.

p. 4 L21: Table 1

p. 9 L7: “declined”?

p. 9 L14: “By default, Sz algorithm embark Deflate.” is awkward.
p. 14 L27-28: These lines are identical

p. 18 L8: “the number di of significant digit number of digits”???
p. 18 L8: “following Eq.” not “following in Eq.”

p. 23 Figure 4: Clarify the meaning of the distinct vertical bars.
Response: we thank you for these suggestions that will help us to improve the manuscript.

All these points have been corrected.



Dear Editor,

Thank you so much for extending our time for the revision of the manuscript. We also like to thank
both reviewers for their thorough review of the manuscript. Below, find the main modifications made to
the manuscript which covers all the remarks.

As suggested by the reviewers, the manuscript has been reworked to focus more on the
application to CFOSAT and SWOT datasets. We have also moved the details concerning the
synthetic datasets in the Supplement which is now provided with the paper.

The term “Bit Grooming” was employed both for the absolute and the relative error bounded
compression modes. But the algorithms are different. In the revised version of the paper we
employ the term “Decimal Rounding” in the absolute error bounded mode and the term “Bit
Grooming” in the relative absolute error bounded mode to remove any ambiguities.

Thanks to a remark from C. Zender, we found that the Digit Rounding algorithm was
sometimes too conservative. We thus slightly modified the implementation. The compression
results reported in the new version of the paper have been obtained with the new version of
the Digit Rounding algorithm.

In the previous version of the paper, we cascaded a call to ncks with a call to h5repack to
perform Bit Grooming followed by Zstandard compression. For fairer comparisons on the
compression speed, we modified our approach and now only employ ncks tool to run Decimal
Rounding and Bit Grooming. However, we could not call Zstandard compression via the ncks
tool, but only Deflate compression. Consequently, we now provide results for Decimal
Rounding, Bit Grooming, Sz and Digit Rounding followed by Deflate compression.

The Digit Rounding software source code is now available from CNES GitHub at
https://github.com/CNES/Digit_Rounding.

We now provide a Supplement which details the datasets and provides the command lines
used for running the compression tools.

The grammar and English of the paper has been dramatically improved by reviews from native

English speakers.



Reply to Anonymous Referee #1

We are grateful to the referee for her/his constructive and thorough criticism and suggestions to our
manuscript. Please, find below a detailed point-by-point reply. Referee’s comments are in blue italic;
our answers are in black and our changes to the manuscript in green.

- This manuscript needs a lot of improvement in terms of the grammar and writing. There are many
awkward phrases and incorrect word choices that need to be improved (a subset are listed below).
The paragraph structures are also in need of modification (many paragraphs contain only 1 or 2
sentences).

We will improve grammar and writing of the manuscript by contacting a native English speaker/writer.
Thank you for pointing out the subset of incorrect word choices. We will also modify the paragraph
structures to avoid too small paragraphs.

The grammar and writing have been improved throughout the manuscript. Short paragraphs have also
been modified.

-Section 2: I'd be helpful to include more detail for the preprocessing algorithms: shuffle and bitshuffle.
Also this section in general needs improvement. It’s a bit "choppy" to read (needs smoother and better
transitions between topics) and feels like more details would be helpful on the methods (especially the
ones that the digit rounding algorithm builds on).

More details will be added on the shuffle and bitshuffle algorithms. More details will also be added on
the bit-grooming and decimal rounding algorithm, algorithm on which the digit rounding algorithm is
built. We will do what is needed to improve this section in general.

Section 2 has been restructured so as to make the reading smoother. Details have been added on the
shuffle and bitshuffle algorithms as well as on the bit-grooming and decimal rounding algorithm.

“The Shuffle algorithm groups all the data samples’ first bytes together, all the second bytes together,
etc. In smooth datasets, or datasets with highly correlated consecutive sample values, this
rearrangement creates long runs of similar bytes, improving the dataset's compression. Bitshuffle
extends the concept of Shuffle to the bit level by grouping together all the data samples’ first bits,
second bits, etc.

The Decimal Rounding algorithm achieves a uniform scalar quantization of the data. The quantization
step is a power of 2 pre-computed so as to preserve a specific number of decimal digits. The Bit
Grooming algorithm creates a bitmask to degrade the least significant bits of the mantissa of IEEE 754
floating-point data. Given a specified total number of significant digits, nsd, the Bit Grooming algorithm
tabulates the number of mantissa bits that has to be preserved to guarantee the specified precision of
nsd digits: to guarantee 1-6 digits of precision, Bit Grooming must retain 5, 8, 11, 15, 18, and 21
mantissa bits respectively. The advantage is that the number of mantissa bits that must be preserved
is computed very quickly. The disadvantage is that this computation is not optimal. In many cases,
more mantissa bits are preserved than strictly necessary.”

-Section 4: Why does using the synthetic data in 4.1 to assess performance make sense - it seems
unrelated to the application area of interest. I'd argue that the metrics used in 4.1 are really minimal
requirements as well. Also take care when referring to "performance” as it is overloaded term...do you
mean speed or effectiveness (it’s used both ways)



The objective of using synthetic data was to control the data parameters, such as the SNR, to be able
to assess the impact of these parameters on the compression ratios. The results are not reported in
this paper which rather focuses on providing a comparison of the compression ratio and speed of
different algorithms. It has also been chosen to present only the minimal set of relevant metrics to
avoid overloading the paper. We will be more rigorous and replace the term “performance” by
“compression ratio” or “compression speed” in the text.

All the occurrences of the term “performance” have been checked and corrected when needed. The
Mean Absolute Error metric has been added to the list of metrics:

‘mean absolute error e,,; to evaluate the mean data degradation. It is defined as the mean of the
pointwise absolute difference between the original and compressed data:
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-fpzip is a fast and effective lossless method that would have been nice to compare (I *think* there is
an fpzip filter available). Also | believe that any hdf5 filter can be accessed through NetCDF4 (see last
sentence in conclusion) - consider contacting the Unidata folks.

Thank you for the suggestion. Indeed a HDF5 filter is accessible for fpzip. However, many lossless
compression algorithms exist. In our paper, we chose to evaluate the most “popular”, i.e. the lossless
compression algorithms the most used in applications. Thank you for pointing this evolution of the
NetCDF-4 library: from version 4.6.0 - January 24, 2018, NetCDF fully supports HDF5 dynamic filters.
The text of the paper will be modified so as to provide the example usage using the new NetCDF-4
features.

An example using the new NetCDF-4 features with nccopy tool has been provided in the supplement
and the conclusion has been modified to remove the last sentence. However, nccopy tool does not
allow yet linking together different filters.

-Comments on doing compression in parallel?

We do not consider running compression algorithm in parallel in this work and will make it clear in the
manuscript. It is a possible extension of this study.

The following sentence has been added in section 4:

“Parallel compression has not been considered in this work.”

-When reading the conclusion, it’s hard to see what the main contributions of this paper are. It’s fairly
well known already that preprocessing of scientific data (e.g., bit shuffle or shuffle) improves lossy
compression. Also the statements in the conclusion aren’t specific to a particular type of data set, but
are presented as more general conclusions.

Given that the effectiveness and performance (speed) of lossy and lossless compression are very
data, application, and variable dependent, the general statements here are not well justified by the
small sample of data in the paper. I'd suggest focusing the paper more heavily on the data in Section
5 (if it’s of interest) and tailoring the discussion in that manner. Or maybe the focus was to be more on
speeds than quality, in which case it’s be important to work to get sz and fpzip working, particularly via
netcdf-4...



Thank you for the suggestion that will help highlighting the main contributions of our work. As
suggested, the paper will be reworked to focus more on the application to the CFOSAT and SWOT
datasets. We will also avoid general statements but attach our conclusions to our application case.

The paper has been reworked to focus more on the application to the CFOSAT and SWOT datasets.
Sz compression has been run on CFOSAT dataset and on some parts of SWOT datasets. The
NetCDF-4 tool nccopy does not allow yet linking together different filters. This restrains its usability
and this is why we prefer using h5repack tool.

Specific items:

-p2, line 20: note that fpzip can also be lossless
Thank you for the remark. Fpzip will be presented both as a lossless and lossy compression algorithm.
The text has been modified as follows:

“Third, some lossyl/lossless compression algorithms, such as FPZIP (Lindstrom and Isenburg, 2006),

-p. 8: discussion of figure 5: is the width of the bars related to the compression levels? (e.g. line 20
statement is unclear)

No. All the bars have the same width. Each vertical bar represents a compression level. For instance,
the 9 compression levels of Deflate are represented by 9 vertical bars. This will be clarified in the text
p.8.

Clarifications have been added to the text:

“The vertical bars represent the results for different compression levels: from 1 to 9 for the Deflate
level dfl_Ivl, from 1 to 22 for Zstandard level zstd_Ivl, and only one level for LZ4.”

-p.8, lines 28-29: Why is this the case? (Add some discussion beyond describing the figure.)

These lower compression/decompression speeds are not well understood and would require further
investigation to be fully understood. It might be related to HDF5 chunking. Indeed, HDF5 split the data
into chunks of small size that are independently compressed. This allows HDF5 to improve partial 1/0
for big datasets but can sometimes reduce the compression/decompression speeds. This discussion
will be added to the text.

The following sentence has been added to the text:

“Further investigations are required to understand why the compression/decompression speeds are
lower, but it might be related to HDF5 chunking.”



-p.8, line 20: | feel like the parameters should be better explained for —filter so that the reader can try
them more easily. For example, what does the "32017" mean? | think that the following 0 is for sz, but
this is not stated either.

We will add the meaning of each parameters. Each HDF5 filter is identified by a unique ID. “32017” is
the identifier of Sz filter. The following “0” is the number of filter parameters. In the case of Sz, the filter
does not have any parameter to set. That is why there are 0 parameters. Sz compressor is configured
via the sz.config file. The same explanations will be added for the other filters used in the paper.

All the command lines have been moved to the Supplement with the explanation above to avoid
overloading the manuscript.

-p. 10, line 6: re: "experiments have shown" - whose or which experiments (cite?)

It is based on our own experiments that haven’t been published. The sentence will be reworked as
follows: “We have found that Shuffle or Bitshuffle preprocessing do not increase the compression ratio
when applied after Sz. We have also found that and Bitshuffle provide lower compression ratio than
Shuffle when applied after Bit Grooming. That is why only Shuffle is applied after Bit Grooming.”

This sentence has been removed since the results have not been published.

-Table 5 : Why is the speed faster for 1d?

As previously, the lower compression/decompression speeds obtained with the dataset s3D are not
well understood and might be related to HDF5 chunking. This discussion will be added to the text.

The following sentence has been added to the text:

“The lower compression/decompression speeds obtained with Sz on the dataset s3D are not well
understood and might be related to HDF5 chunking as previously mentioned.”

-Section 4.4.1, line 21-24: Any idea why you get these results?

Sz performs better on smooth signals since it makes use of a prediction step. The signal s1 being
highly noisy, Sz prediction might often fail. This can explain the lower compression ratio on the signal
s1. On the contrary, Bit-grooming does not makes any prediction. This can explain why it achieves
better compression than Sz on the signal s1. This hypothesis will be added to the text.

The following sentences have been added to the text:

“Sz may perform better on dataset s3D because it is smoother than dataset s1. Indeed, Sz integrates a
prediction step. This prediction might often fail because dataset s1 is very noisy. This may explain the
lower compression ratio for this dataset. Decimal Rounding, however, does not make any predictions,
which may explain why it achieves a better compression than Sz for dataset s1.”

-Section 4.4.1, last sentences: It’s unclear to me what the value of these synthetic data sets is -
especially given the statement on p. 11, line 3, about the dependence on the dataset



As suggested previously, the paper will be reworked to focus more on the application to CFOSAT and
SWOT datasets without drawing general conclusions based on the results obtained on the synthetic
datasets.

We modified the last sentence of this section as follows:

“‘Both Sz and Bit Grooming algorithms seem valuable for compression in absolute error-bounded
compression mode.”

-page 11, line 9-10: I'd include characteristics of the data (e.g., maximum abs. value) earlier in the text
when the two datasets are introduced.

Your suggestion will be taken into account: the characteristics of the data will be introduced in section
4.2

We have added the characteristics of the data in section 4:

“Datasets s1 and s3D were generated, s1 being a noisy sinusoid of 1 dimension with a maximum
absolute value of 118. The data volume of the s1 dataset is 4MB. Dataset s3D is a noisy sinusoid
pulse of 3 dimensions with a maximum absolute value of 145. The data volume of the s3D dataset is
512MB.”

-page 11, line 24: | don’t see relative error mentioned in Table 6 - it seems to just be absolute error

The text will be modified to make it clearer: “...all three algorithms respect the maximum absolute error
of 0.5 which, for the signal s1, corresponds to a relative error of 0.00424.”

The text has been modified as follows:

“... all three algorithms respect the maximum absolute error of 0.5, which corresponds for dataset s1
to a relative error of 0.00424.”

-p.11-12: Need more of a discussion of the results in Figure 7. For 3D, it looks like bit grooming and
digit rounding are similar - | don’t see a clear advantage.

More discussion on the results will be added to the text. For the s3D you are right, there is no clear
advantage. It is written “the Digit Rounding algorithm provides compression performance very closed
to the one of the Bit Grooming algorithm”.

The text has been modified as follows:

“All three algorithms provide similar SNR versus compression ratio results, with a slight advantage for
the Bit Grooming algorithm.”

-p.12, lines 16-17: SZ compression can be controlled with an absolute error bound, so why is the
relative error bound adjusted to get the desired abs. error?

The objective was to see if Sz compression configured with a relative error bound respect the error
bound specified. As the digit rounding and bit-grooming algorithm can only be configured on a number



of significant digits, they can only “produce” absolute error in 0.5, 0.05, 0.005, etc. In order to be able
to compare Sz configured with a relative error bound with those algorithms, we have configured the
relative error bound to obtain a maximum absolute error of 0.5. These explanations will be added to
the text.

The following sentence has been added in the text:

In order to be able to compare Sz configured with a relative error bound with those algorithms, we
configured the relative error bound to obtain a maximum absolute error of 0.5: the pw_relBoundRatio
parameter in Sz was set to 0.00424.

-Section 5.1: It is disappointing not to have SZ results on the real data of interest. Were the SZ authors
contacted? | would think that they could have helped resolve this issue.

Yes, we had some exchanges. The issue is still under investigation.

A more recent version of Sz has been used and results on CFOSAT and SWOT datasets are now
provided.

-p. 15, line 18: "which only a few attributes may be missing" - It's unclear what this means. It's super
helpful to really detail the data being compressed so that one can make sense of the results.

Details on the datasets will be added to the text.

This part of the sentence has been removed has it is not relevant in the frame of this study. Details on
the CFOSAT and SWOT datasets have been added in the Supplement, particularly the precision
required for the compression of each variable.

-p. 14, line 30: Please share more specific information about the precision required by the scientists for
the data. Again, more information is useful for interpreting results.

The configuration and the precision of each variable will be made available.

These details have been added in the Supplement.

-Section 5 seems like it should be the highlight of the paper as here we are seeing the results on the
real data. But it feels like more detail is needed on the data and more discussion of the implications of
the results.

Section 5 will be developed to add more details on the data and more discussion on the results
obtained.

Section 5 has been reworked. It now provides results on particular variables of the CFOSAT and
SWOT datasets. Details on the data have been added in the Supplement.

Typos, etc.:

-abstract, line 7: incorrect use of "imposes”

-p.1, line 22: "quite spread"=> "quite prevalent" or "quite popular", "widely spread" => "widely used"



-p.1., line 26: "reduce significantly" => "significantly reduce"

-p.1. line 27: This sentence (that continues to page 2) is too long.

-p.2, line 3: "can afford for" is awkward

-p2, lines 10-24.: this region is 5 paragraphs

-p.3, lines 3-4: awkwardly worded

-p. 3, line 9: one sentence paragraph

-p.3, line 12: missing "," after "Deflate"

-p.3 line 14: not sure what is meant by "new concurrent”

-p.3, line 13: "widely spread” => "widely used"

-p.3, line 16: awkward sentence: "This allows Deflate achieving rather high compression ratios"
-P.3, section 3: again, there are too many tiny paragraphs

-p.4, line 7: "are of same interest" is awkward

-p.4, line 21: Table number is not given

-p.5, line 15: awkwardly worded

-p.5, line 24: One sentence paragraph

-p.7, section 4.2: define f_s, f_ech

-p.7, line 22: "use embarks" is awkward

-p.8, line 7: "declined"” doesn’t make sense

-p.8, line 14: "embark" - incorrect usage

-p.10, line 10: "This correspond corresponding” needs to be fixed

-p. 10, line 24: Note sure I'd use "performances” here as earlier it was used to indicate speed.
-p. 15, line 21: "ration" => "ratio"

-p.15, line 14: another one sentence paragraph

-p.16, line 9: "Extends to this work" - awkwardly worded

Response: we thank you for highlighting typos that will help us to improve the manuscript.

All these points have been corrected.



Reply to Zender (Referee)

We are grateful to the referee for his constructive and thorough criticism and suggestions to our
manuscript. Please find below a detailed point-by-point reply (referee’s comment in italic).

General Comments

This manuscript presents a new lossy compression algorithm called “Digit Rounding” (DR), and
evaluates its performance against and with other lossy and lossless compression algorithms on
idealized and remote sensing datasets. The manuscript addresses the growing need to archive
meaningful data rather than noise, and to do so reliably and quickly. The study presents an original
advance in lossy compression whose implementation unfortunately hampers its utility. The study is
understandable yet poorly written. This potentially useful study of lossy compression techniques needs
a thorough overhaul before publication.

We will improve the writing of the manuscript by contacting a native English speaker/writer. As
suggested by the Anonymous Referee #1, the paper will be reworked to highlight the main
contributions of our work and focus more on the application to CFOSAT and SWOT datasets.

The grammar and writing have been improved throughout the manuscript and the paper has been
reworked to highlight our main contribution and to focus more on the application to CFOSAT and
SWOT datasets.

Specific Comments

Originality: DR is an improvement on “Bit Grooming” (BG) which | invented as an improvement on “Bit
Shaving’. In that sense | am qualified to comment on its originality. The heart of DR is essentially a
continuous version of BG: Whereas BG fixes the number of bits masked for each specified precision,
and masks these bits for every value, DR recomputes the number of bits masked for each quantized
value to achieve the same precision. BG did not implement the continuous method because | thought
that computing the logarithm of each value would be expensive, inelegant, and yield only marginally
more compression. However, DR cleverly uses the exponent field instead of computing logarithms,
and so deciphers the correct number of bits to mask while avoiding expensive floating point math. This
results in significantly more compressibility that (apparently) incurs no significant speed penalty
(possibly because it compresses better and thus the lossless step is faster?). Hence DR appears to be
a significant algorithmic advance and | congratulate the authors for their insight.

Thank you for your congratulations. They are much appreciated. Indeed, the speed penalty of DR is
compensated by the fact that the lossless step is faster.

In the previous version, we cascaded a call to ncks with a call to h5repack to perform Bit Grooming
followed by Zstandard compression. For fairer comparisons on the compression speed, we modified
our approach and now only employ ncks tool to run Decimal Rounding and Bit Grooming. However,
we could not call Zstandard compression via the ncks tool, but only Deflate compression.
Consequently, we now provide results for Decimal Rounding, Bit Grooming, Sz and Digit Rounding
followed by Deflate compression.

The manuscript stumbles in places due to low quality English, and cries out for more fluent editing. Not
only is the word choice often awkward, but the manuscript is like a continuously choppy sea of
standalone sentences with few well developed paragraphs that swell with meaning then yield gently to
the next idea. GMD readers deserve and expect better.



We will improve the grammar and writing (see first answer). We will also modify the paragraph
structures to avoid too small paragraphs and better take care of the transitions.

The grammar and writing have been improved throughout the manuscript. Short paragraphs have also
been modified and sentence transitions improved.

Does DR guarantee that it will never create a relative error greater than half the value of the least
significant digit? BG chooses the number of digits to mask conservatively, so it can and does
guarantee that it always preserves the specified precision. Equations (1)-(7) imply that DR can make
the same claim, but this claim is never explicitly tested or made. The absence of this guarantee is
puzzling because it would strengthen the confidence of users in the algorithm. However, the
guarantee must be explicitly tested, because it undergirds the premise that the comparison between
DR and BG is fair. In any case, clearly state whether DR ever violates the desired precision, even if
that happens only rarely.

Equations (1)-(7) imply that DR guarantees that it always preserves the specified precision. We will
explicitly add that claim in the text and show that DR always provides the desired precision on the
number Pi with nsd varying from 1 to 8. We will also provide the maximum absolute error on artificial
data of 1 000 000 values spanning [1.0, 2.0) in equal-increment steps of 1e-6.

We have added the following sentence below Eq. 4.

“This condition guarantees that the Digit Rounding algorithm to always preserves a relative error lower
than or equal to half the value of the least significant digit.”

We have also added results of DR algorithm on the number Pi in Table 2:

“Table 2 provides the result of the Digit Rounding algorithm on the value of 1T with specified precisions
nsd varying from 1 to 8 digits. It can be compared to the Bit Grooming results provided in Table 2 in
(Zender, 2016a).”

We also provide the maximum absolute error on artificial data of 1 000 000 values spanning [1.0, 2.0)
in equal-increment steps of 1e-6 in Table 3

“Table 3 provides the maximum absolute error obtained with varying nsd values on an artificial dataset
composed of 1,000,000 values evenly spaced over the interval [1.0, 2.0). This is the same artificial
dataset used in Table 3 in (Zender, 2016a). It shows that Digit Rounding always preserves a relative
error lower than or equal to half the value of the least significant digit, i.e. |s; — §;| < 0.5 x 104i—nsd_”

p. 16 L13: “Code and data availability: The Digit Rounding software source code and the data are
currently only available upon request to Xavier Delaunay (xavier.delaunay@thalesgroup.com) or to
Flavien Gouillon (Flavien.Gouillon@cnes.fr).” The GMD policy on code and data is here:
https.//www.geoscientific-model-development.net/about/code _and_data policy.html. This manuscript
provides no code access nor explanation, and no dataset access, and thus appears to violate GMD
policy in these areas.

The code and the datasets will be made publicly available on the CNES gitlab.

The code is now publicly available on CNES GitHub at https://github.com/CNES/Digit_Rounding and
the dataset are available on demand.



“The Digit Rounding software source code is available from CNES GitHub at
https://github.com/CNES/Digit_Rounding. The datasets are available upon request to Xavier Delaunay
(xavier.delaunay@thalesgroup.com) or to Flavien Gouillon (Flavien.Gouillon@cnes.fr). The
Supplement details the datasets and provides the command lines used for running the compression
tools.”

Common comparisons would help build confidence in your results. It would have been more
synergistic to evaluate the algorithms on at least one of the same datasets as Zender (2016), which
are all publicly available. | am glad the authors used the publicly available NCO executables. Why not
release the DR software in the same spirit so that the geoscience community can use (and possibly
improve) it?

Comparisons with BG will be provided on the same MERRA dataset used in Zender (2016). The DR
software will be released under MIT-style open source license.

We have added results of DR on the same MERRA dataset used in Zender (2016).

“We compare the compression ratio obtained with the Digit Rounding algorithm to that obtained with
the Bit Grooming algorithm for the same meteorological data from MERRA re-analysis studied in
(Zender, 2016a). Table 4 reports the Bit Grooming results extracted from Table 6 in (Zender, 2016a)
and provides the results of the Digit Rounding algorithm. The same lossless compression is employed:
Shuffle and Deflate with level 1 compression. From nsd = 7 to nsd = 5, Digit Rounding and Bit
Grooming provide similar compression ratios with a slight advantage for the Bit Grooming algorithm.
However, from nsd = 4 to nsd = 1, the compression ratios obtained with Digit Rounding are clearly
better.”

The DR software is released under LGPL-v3 open source license.

The lossless and lossy compression algorithms analyzed seem like a fairly balanced collection of
those most relevant to GMD readers. Most methods that were omitted are, to my knowledge, either
non-competitive (e.g., Packing) or not user-friendly, e.g., research grade but not widely available (e.qg.,
Layer Packing) and too hard to independently implement.

Table 6 on p. 19 shows the maximum absolute error (MAE) of BG is quite similar to DR, as | would
expect. However, Table 7 on p. 20 shows the maximum absolute error (MAE) of BG is nearly 10x less
than DR. Why are the MAEs similar for dataset s1 and significantly different for dataset s3D? | expect
DR has a greater mean error (and lower SNR) than BG due to the algorithms, yet the difference in
MAEs surprises me. Zender (2016) Table 3 shows that BG is tuned to have an MAE just shy of
violating the precision guarantee. An MAE that is nearly 10x larger seems like it might violate the
precision guarantee.

These results show that BG can sometimes be too conservative. As shown in Table 1 on the value Pi,
BG sometimes preserves more bits in the mantissa than what is strictly necessary to achieve the
required precision. This is what happens on the dataset s3D. On the contrary, DR adapts the
quantization step to each value of the input dataset. Doing so, it can achieve the required precision
while preserving less mantissa bits than DR does. This results both in a higher mean absolute error
and in a higher MAE than BG. This explanation will be added to the text.

Thanks to you remark on the MAE on s1 dataset, it has been observed that DR algorithm was also too
conservative on some values. It has been enhance in order to provide a MAE closer to what was
expected. For this, the value log,,(m;) is now tabulated with a few values.



“The log,,(m;) value is tabulated. Only 5 tabulated values are used in our implementation, enough to
provide a good precision. The tabulated v values for log,,(m;) are such that v <log,,(m;). They are
provided in the Supplement. This computation slightly underestimates the values for d; but provides a
more conservative quantization, thus guaranteeing the specified number of significant digits.”

The following sentence has also been added in the text:

“Bit Grooming is too conservative. It preserves more mantissa bits than strictly necessary to achieve
the required precision. This behavior is illustrated in Table 1 with the value of 1. In contrast, Digit
Rounding adapts the quantization step to each value of the input dataset. Doing so, it can achieve the
required precision while preserving less mantissa bits than Bit Grooming does. This results both in a
higher maximal absolute error and in a higher mean absolute error than Bit Grooming, but also in a
higher compression ratio.”

The preceding comment is a request to more carefully analyze the underlying cause of the behaviors
reported in the data. The next two comments are to report more results to deepen the analyses and
explain the behavior of DR more robustly.

Please include the maximum absolute error or maximum absolute relative error (which normalizes the
error by the original value) to Tables 5—-10.

MeanAE is an important statistic that is complementary to MaxAE. MeanAE is the average absolute
(no compensation between positive and negative) bias in the dataset, and is more familiar and
relevant than SNR to at least some geophysicists. Please consider including MeanAE in Tables 5—10.

As suggested, the maximum absolute error and the mean absolute error (MeanAE) will be added to
the tables allowing deeper analysis of DR behavior.

The maximum absolute error and the mean absolute error have been added to tables 5, 6 and 7.
Tables 9, 12 and 13 provide compression results on CFOSAT and SWOT which are composed of
several different datasets. The maximum absolute error and the mean absolute error could only be
computed variable per variable. We thus now provide the results obtained on the ground_range_5
variable of the CFOSAT dataset in Table 8, the results obtained on the height variable of the SWOT
dataset in Table 10, and the results obtained on the pixel_area variable of the other SWOT dataset in
Table 11.

Zender (2016) and Silver and Zender (2017) consider four primary criteria to evaluate compression
algorithms: Compression Ratio, Accuracy, Speed, and User-friendliness. This manuscript neglects
explicit consideration of the last, though usability seems (in addition to performance) seems to be an
implicit reason why they recommend BG not DR for the “real world” use cases in Sections 5.1 and 5.2.
The manuscript would benefit from a more explicit consideration of usability throughout. Examples
include software availability, flexibility, and complexity of invocation, as well as transparency (will users
have all the necessary software required to read the compressed data?), and instructions to mitigate
these issues for DR.

As for BG, there is no “decompression” associated to DR. DR does not require any software to read
the rounded data. This argument will be added into the text. The reason why BG is recommended
rather than DR for the compression of CFOSAT dataset in section 5.1 is that this dataset is
compressed in absolute error bounded compression mode. DR only works for relative error bounded
compression mode. Nevertheless, some results using DR on this dataset will be provided for
completeness. In section 5.2, BG (in the absolute error bounded compression mode) is recommended



rather than DR for the compression SWOT L2 pixel cloud product. This recommendation is based on
the compression ratio obtained. We will add the maximum absolute error and the mean absolute error
(MeanAE) to Tables 8 to 10 for fairer comparisons. Moreover, we will provide a supplement to the
article with the commands and datasets necessary to reproduce the results.

We have added the following sentences in the text:

“We have developed an HDF5 dynamically loaded filter plugin so as to apply the Digit Rounding
algorithm to NetCDF-4 or HDF5 datasets. It should be noted that data values rounded by the Digit
Rounding algorithm can be read directly: there is no reverse operation to Digit Rounding, and users do
not need any software to read the rounded data.”

Moreover, we have added some results using DR on the CFOSAT dataset for completeness.

The maximum absolute error and the mean absolute error have not been added to Tables 9, 12 and
13, because, as explained in the previous answer, CFOSAT and SWOT dataset are composed of
several different variable.

We also now provide a supplement to the article with the commands and datasets necessary to
reproduce the results.

Tables 1 and 3 follow Tables 1 and 2 of Zender (2016). This should be noted in the text and/or caption
of the tables.

The reference to Zender (2016) will be added in the caption of Tables 1 and 3.
The captions have been modified as follows:

“Table 1: Representation of the value of 1 in IEEE-754 single-precision binary representation (first
row) and results preserving 4 significant digits with the Bit Grooming algorithm (second row) or
preserving 12 mantissa bits (third row). This table builds on Table 1 in (Zender, 2016a).”

“Table 2: Representation of the value of 1 in IEEE-754 single-precision binary representation (first
row) and results preserving a varying number of significant digits (nsd) with the Digit Rounding
algorithm. This table can be compared to Table 2 in (Zender, 2016a) providing the Bit Grooming
results for 1r.”

It seems like Table 2, the algorithm description, should be a figure rather than a table.
This will be corrected as suggested.

The algorithm description is now provided in Figure 2.

The manuscript is awkward in that it introduces a demonstrably superior lossy compression algorithm
but recommends a different algorithm (BG) for “real world” cases (Section 5), partly because DR is
unavailable in software that potential users have easy access to, and its implementation appears to be
too inflexible to use on generic datasets. The recommendation of BG not DR does attest to the
objectivity of the study, yet it seems to be an unsatisfying conclusion to what was clearly a time-
consuming study. In this sense the manuscript seems premature, since if DR were ‘“ready for
primetime” then the authors could have recommended it rather than BG in Section 5. Perhaps the
authors should re-evaluate whether the manuscript is premature, i.e., whether it should both introduce



a new lossy algorithm before it is ready to use in optimized workflows for generic geoscientific data
compression.

As previously answered, the manuscript will be reworked to highlight the main contributions of our
work and focus on the applications to the CFOSAT and the SWOT datasets. The maximum absolute
error and the mean absolute error (MeanAE) will be added to Tables 5 to 10 for fairer comparisons
that will allow mitigating the previous conclusions that were based on the compression ratio only.
Moreover, some results using DR on CFOSAT dataset will be provided for completeness of the
manuscript.

We have added some results using DR on the CFOSAT dataset for completeness, but also maximum
and mean absolute error in the tables (see previous answers).

The conclusion has been reworked to make it clearer that we recommend Decimal Rounding for
absolute error bounded compression of CFOSAT data but Digit Rounding for relative error bounded
compression of SWOT data.

Minor Suggestions

p. 1L22: “well spread”

p. 2L22: DEFLATE

p. 4 L1: maxi is redundant. Just use max.

p. 4 L21: Table 1

p. 9 L7: “declined”?

p. 9 L14: “By default, Sz algorithm embark Deflate.” is awkward.
p. 14 L27-28: These lines are identical

p. 18 L8: “the number di of significant digit number of digits”???
p. 18 L8: “following Eq.” not “following in Eq.”

p. 23 Figure 4: Clarify the meaning of the distinct vertical bars.
Response: we thank you for these suggestions that will help us to improve the manuscript.

All these points have been corrected.
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Evaluation of lossless and lossy algorithms for the compression of
scientific datasets in NetCDF-4 or HDFS formatted-files
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Abstract. The increasing volume of scientific datasets impeses—enforees-requires the use of compression to reduce the-data

storage ander transmission costs, speeifiealy—especially for the oceanographicyeeeanegraphy or meteorological datasets
generated by Earth observation mission ground segments. These data are mostly produced in NetCDF fermattedfiles.

Indeed, the NetCDF-4/HDFS5 file formats are widely spread-used throughoutin the global scientific community because of

the niee—useful features they offer. Partiewlarhy,—the—HDFS in particular offers the—a dynamically loaded filter plugin
funetionality—allewing—so that users cante write filters;—sueh—as—compression/decompression filters, for example, andte
process the data before reading or writing #-them en-to the-disk. In—+tThis werkstudythis—werlk—we evaluatesevaluate the
performanee—of-lossy and lossless compression/decompression methods through NetCDF-4 and HDFS5 tools on analytical

and real scientific floating-point datasets. We also introduce the Digit Rounding algorithm, a new relative errosbr-bounded
data reduction method inspired by the Bit Grooming algorithm. The Digit Rounding algorithm aHews—offers a high
compression ratio while preserving—keeping a given number of significant digits in the dataset. It achieves a higher
compression ratio than the Bit Grooming algorithm while keepingsimilarwith slightly lower compression speed.

1 Introduction

Ground segments that-processingpreeess scientific mission data are facing challenges due to the ever--increasing resolution
of on-board instruments and the volume of data velame-to_be: processed, stored:proeess;-store and transmittedtransmit. This
is the case for oceanographic and meteorological missions, for instance. Earth observation mission ground segments produce
very large files mostly in NetCDF format, which:-t is-a standard in the oceanography field and gquite-spreadwidely used by
the meteorological community. This file format is widely spread-used throughoutin the global scientific community because
of the-its usefulniee features-it-effers. The fourth version of tsame-thehe NetCDF library, denoted NetCDF-4/HDFS5 (as it is
based on the HDF5 layer), offers ‘Deflate’ and ‘Shuffle’ algorithms asseme native compression features;-namely—Deflate”
and—Shuffle’algorithms. However, the compression performanee-ratio achieved does not fully fulfil-meet the—ground

processing requirements, which are to reduee-significantly reduce the storage and dissemination cost as well as the [/O1O

times between two modules efin the processing chain.
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Faeing-In response to the ever-increasing volume of data, scientists are mere-dispoesedkeen to compress data. However, they
have certain—but—with-—seme requirements: seience—data—are—generallyfloatingpoint—data:—the—both compression and

decompression have to be fast-and-either,lossless;-orlossy-under-depending-on-thesome-conditions. :Lossy compression is

acceptable only if the compression ratios are higher than those of lossless algorithms and if the precision, or data loss, shatt

can be controlled. There e is a trade-

off between the data volume and the accuracy of the compressed data.
Nevertheless, scientists can afferd-foeraccept small losses_if they remain below snderthe data’s noise level-in-the-data. Noise
is indeed-difficult tohardly compressible and of peerlittle interest fortothe scientists, thas-so they do not consider astoss;

data degradationalterations that are-remains under the noise level as a loss (Baker et al., 2016).
_Henee—ilnin order to increase the compression performanee-ratio within the processing chain, ‘clipping’” methods may be

used toa degradeationa—degradation—of the data is—considered—via—theuse—of so-called—clipping”methods—before the
compression. Chipping-These methods allews-increaseinginereasing the compression-performanee— ratio by removing the

least significant digits erbits-in the data. Indeed, at some level, these least significant digits er-bits-may not be scientifically
meaningful in datasets corrupted by noise;and-this-is-particularlytrae for floating—peoint-data.

This paper studies_compression and clipping eld-and-new—methods that can be applied to scientific datasets in order to
maximize the compression perfermanee-ratio while preserving the-scientific data content and the-numerical accuracy. It
focuses on methods that can be applied to scientific datasets, i.e. vectors or matrices of floating--point numbers.

First, lossless compression algorithms can be applied to any kind of data. The standard is the ‘Deflate’Beflate algorithm
(Deutsch, 1996); native in NetCDF-4/HDFS5 libraries. It is widely spread-usedand-implemented in compression tools such as
zip, gzip, and zlib librariesy, and has become-ibrary—ttis a referenee-benchmark for lossless data compression. Recently,

alternatives lossless compression algorithms have emerged. These include-saeh—as Google Snappy, LZ4 (Collet, 2013) or

Zstandard (Collet and Turner, 2016). s+tTo achieve faster

compression than the Deflate algorithm, none of these algorithms use Huffman coding.-

_Second, pre-processing methods such as the-Shuffle, available in HDFS5, or Bitshuffle (Masui et al., 2015) alew-are used to
optimizeingeptimizing the—lossless compression by rearrangingerderingreordering the data bytes or bits intoi a “more

compressible” order.

Third, some lossy/lossless lessy-compression algorithms, such as FPZIP (Lindstrom and Isenburg, 2006), ZFP (Lindstrom,
2014) or Sz (Tao et al, 2017a), are specifically designed for the-eempressien-efscientific data—;
point data—-and alew-can controlling the-data loss.

_Fourth, data reduction methods such as Linear Packing (Caron, 2014a), Layer Packing (Silver and Zender, 2017), Bit
Shaving (Caron, 2014b), and Bit Grooming (Zender, 2016a) introduce—sometosslose some—in—the data content without

and; in particular floating-

necessarily reducing the-dataits volume. Pre-processing methods and lossless compression can then be applied to obtain_a

higher compression ratio.
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This paper focuses on compression methods implemented for NetCDF-4 or HDFS5 files. fndeed—+Thesethese scientific file
formats are widely——spread aeress—among the  oceanographicyeeeanegraphy and  meteorologicalieal
communitiesy.meteorological-community: HDFS offers the-a dynamically loaded filter plugin funetionalitythat—¥ allows
users to writeingwriting—filters;—sueh-as compression/decompression filters_(among others), and; to process the-data before
reading or writing #-them toen the-disk. Consequently, many compression/decompression filters—-—such as Bitshuffle,
Zstandard, LZ4, and Sz—;
aceessibleavailable. On-the-ether-handT;the NetCDF Operator toolkit (NCO) (Zender, 2016b) also offers some compression
features, such as Bbit sShaving, Decimal Roundingbitshaving and Bit Grooming.

have been implemented by members of the HDF5 users® community and are freely

The rest of thisFhis paper is erganized-divided into five mere-sections. Section 2 presents the lossless and lossy compression
schemes for scientific floating--point datasets.-an - Section 3
introduces the Digit Rounding algorithm, which—This-alserithm alters-the-data—in-arelative-error bounded-manner-to-make

them-more-compressibleltisan-alternative;is -an inspired-improvement of by-the Bit Grooming algorithm_that optimizes the

number of mantissa bits preserved. Section 4 defines the performance metrics used in this paper. Section 54 describes the

performance assessment of a selection of lossless and lossy compression methods on synthetic datasets. It presents the

datasets_and ;-the-performanee-metries;—the-compression results_before;and finallyprevidesmaking some recommendations.
Section 65 provides some compression results obtained en-with real CFOSAT and SWOT datasets. EastFinally, section 76

provides our conclusions.

2 Compression algorithms

Compression schemes for scientific floating-—point datasets ean—-be—composed—ofusually entail several steps: a—dataData

reduction-step, a-preprocessing-step, and aand-lossless coding-step. These three steps metheds-can be chained as illustrated

ien Fig. 1.

_The lossless coding step is reversible. It does not intreduce—anyalteration-degradein the data but-while alews-reducing
itsing-the-data volume. It can be implemented by This-step-ean-make-use-eflossless compression algorithms such as Deflate,
Snappy, LZ4 or Zstandard._The preprocessing step is also reversible. It rearrangeserdersreerders the data bytes or bits to
enhance thelossless coding step—performaneeefficiency. It can bemake use of lossless compression implemented by
algorithms such as Shuffle; or Bitshuffle. The data reduction step is not reversible because it entails: data losses—are
introdueedin-thisstep. The strategygoal is to remove irrelevant data such as noise or other scientifically meaningless data.
Data reduction can reduce data volume, dependingDepending on the algorithm useduse—this—step—ean—reduce—thedata
volame. For instance, the Linear Packing and Sz algorithms aHew-reduceingredueing the-data volume, but net-Bbit Shit
shaving and Bit Grooming algorithms do not.
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I+Thisthis paper;—we—chesechoosete cvaluatesevaluate theperformanee—ofthe-lossless compression algorithms Deflate,
LZ4, and Zstandard; Deflate because it is the refereneebenchmark algorithm, L.Z4 because it is a widely--spread-used. very-
high--speed compressor, and Zstandard because it providesis-the-new-eoneurrent-of better results than Deflate; both in terms

ofenr compression ratios and es-of compression/decompression speeds. The

Deflate algorithm make-usesuse ef-1L.Z77 dictionary coding (Ziv and Lempel, 1977) and efHuffman entropy codingereoder
(Huffman, 1952). Both methods exploit different types of redundancies_to enableaHewing—This-allews Deflate to achieve
ingachievingrather-high compression ratios. However, the computational cost of the Huffman coder is high and makes
Deflate compression rather slow.

LZ4 is a dictionary coding algorithm designed to provide high compression/decompression speeds rather than a high
compression ratio. Ferthis:-lit does retthis withoutmakeuse-ef any entropy coder.

Zstandard is a fast lossless compressor offeringachievine high compression ratios. It makes use of dictionary coding
(repcode modelling) and ef-a finite--state entropy coder (tANS) (Duda, 2013). It achieves-offers similar-a compression ratio
similar to that ofthan Deflate coupled with high compression/decompression speeds.

as=Shuffle algorithm-—erBitshuffle: groups tegether-all the data samples’ first bytes together, all the- second bytes together,

ctc.-bytes-of the-data-samples: On-In smooth datasets, or datasets with highly correlated consecutive samples values, this
rearrangementerdering creates long runs of similar bytes, improving the dataset’s compression—ef-the-dataset. Bitshuffle

extends the concept of Shuffle to the bit level by grouping:it-greups together all the data samples’ first bits, second bits, etc.;
bits-of the data-samples:

Last, we evaluate the lossy compression algorithms Sz, Decimal Rounding and Bit Grooming. The Sz algorithm predictss

data samples using an n-layers prediction model and performs an error-control quantization of the data before a-variable

length encoding. Unpredictable data samples are encoded after a binary representation analysis: the insignificant bits are

truncated after a—computation of the smallest number of mantissa bits required to achieve the specified error bound. The

Decimal Rounding algorithm achievesperforms a uniform scalar quantization of the data. The quantization step is a power of

2 pre-computed so as to preserve a specific number of decimal digits.
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The Bit Grooming algorithm creates a bitmask to alter-degrade the least significant bits of the mantissa of IEEE 754 floating-

point data. Given a specified total number of significant digits, nsd, the Bit Grooming algorithm tabulates the number of
mantissa bits that has to be preserved to guaranteeyguaranty the specified precision of nsd digits: to guarantee preserving-1-
6 digits of precision, Bit Grooming must retain 5, 8, 11, 15, 18, and 21 mantissa bits; respectively. The advantage is that the
computation-of-the number of mantissa bits that hastmustete be preserved is computed very quickly. The disadvantage is
that this computationfastfast—Hewever—it is not optimal. In many cases, the-number-efmore mantissa bits are preserved is
higher-than what-weuld-have-been-strictly necessary.

Table Fable-1 provides the-an example en-using the value of m with a specified precision of —nsd = 4 digits. This table

reproduces some of the results extraeted—from Table 1 in (Zender, 2016a). The Bit Grooming algorithm preserves 15

mantissa bits. Table | shows that -where-it-would-have been-enough-to-preserve-only 12 bits_were actually necessary.-

_Optimizing the number of mantissa bits preserved sw-havehas a favorable impact on the compression ratios since it allows
fer-more bits to be zeroed.ingzeroingmore-bitsand thus creating longer sequences of zero bits. InFhus—in the next section,

we propose the Digit Rounding algorithm to overcome this limitation of the Bit Grooming algorithm.

3 The Digit Rounding algorithm

The Digit Rounding algorithm is similar to the Decimal Rounding algorithm in the sense that it computes a quantization
factor ¢, which is a power of 2, in order to set bits to zero in the binary representation of the quantized floating--point value.

But it adapts the quantization factor to each sample value.
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_The Digit Rounding algorithm makes-usesuse-ofa uniform scalar quantization with a-reconstruction at the bins center:

5; = sign(s;) X (l:—zlj + 0.5) X q; (1)
where §; is the quantized value of the-sample value s;. The quantization error is bounded by:

Isi =Sl < qi/2 ()
The number of digits d; before the decimal separator in the-value s; is:

d; = [logyolsi| + 1] 3)

We want to preserve nsd significant digits of the-sample value s. This is approximately equivalent to having a rounding
error of less than half the last tenth digit preserved. The quantization error shall thus be lower than or equal to:
|s; — §;| < 0.5 x 10454 “4)

This condition guarantees that the Digit Rounding algorithm te-always preserves a relative error lower than or equal to half

the value of the least significant digit.

_Combining Eq. (2) and Eq. (4), we look for the highest quantization factor g; such that:

q;/2 < 0.5 x 10%~nsd

or:

log10(q:) < d; —nsd

Moreover, in order to lower the computational cost and increase the-compression efficiency, we leek+ferseck a quantization
factor that is a power of two. This allows bit-masking instead of division, and creates sequences of zero bits-6:

g = 2" (5)

We thus look for the greatest integer p; such that:

p; < (d; — nsd) log,10.

Finally, we take the-value p; such that:

pi = [(d; — nsd) log,10] (6)

The log computation in Eq. (3) is the more computationally inexptensive, but-demanding—Nevertheless; optimization is
possible becauseas only the integer part of the result is useful. The eptimized—ersiontmplementedoptimization consists in

computing the number of digits before the-decimal separator d from the-binary exponent e; and mantissa m; of value s;,

which:+thevalse-s; in binary representation is written:

s; = sign(s;) X 2% xm; (7N

where-The the-mantissa m; is a number between 0.5 and 1. Hence, using Eq. (3) we haveobtain:
d; = |log1o(2% xm;)| + 1 or
d; = le;log(2) +logyo(m)] + 1

The valwe-log,,(m;)_value is tabulated. Only 5 tabulated values are used in our implementation, enough to provide a good

precision. The tabulated values-values v for log;,(m;)_are such that v < log;,(m;). They are provided in the Supplement.
This—computation—thus—guaranteeing—The-nNumber d; of significant digits before the decimal separator in the-sample

6
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value s; is thus approximated with the following equation:As—togm(2)<togyim <0 ;—we—use—thefollowing
S ] on:

d; = |le;logo(2) +v] + 1 (8)

This computation slightly underestimates the values for d; but provides a more conservative quantization, guaranteeing the

specified number of significant digits. —FhisThe optimization slightly decreases the achievable compression ratios in

exchange for a much higherstrongbenefits-on-the compression speed.

Einallym—tTheThe Digit Rounding algorithm is summarized in EisureFable2Fig. 2. We have developed an HDF5
dynamically loaded filter plugin fer-so as to apply the Digit Rounding algorithm i to NetCDF-4 or
HDF5 datasets—formatted-as NetCDE-4-or HDES files. It has-shouldte be noted that data values thathavebeen-rounded by

the Digit Rounding algorithm can be read directly—+read: there is no reverse operation to the-Digit Rounding, and users do not

need any software to read the rounded data.

_Table 23 provides the results of the Digit Rounding algorithm on the value of © with a-specified precisions efnsd-=+4

varying from | to 8 digits. It can be compared to the resultsofthe-Bit Grooming results provided in Table 2 in (Zender,
2016a). For a specified precision of nsd = 4 digits, theThe Digit Rounding algorithm preserves 11 bits in the mantissa and

sets the 12 bit to 1. Compared to the Bit Grooming algorithm, 3 more bits have been set to 0. Table 3 provides the

maximum absolute error obtained with varying nsd values on an artificial dataset composed of 1.-000.-000 values evenly

spaced overa the interval [1.0, 2.0). This is the same artificial dataset as-the-ene-used in Table 3 in (Zender, 2016a). It shows

that Digit Rounding always preserves a relative error lower than or equal to half the value of the least significant digit, i.e.

|s; — §;| < 0.5x 10% ™4 __We compare the compression ratio obtained with the Digit Rounding algorithm to thate

compression-fatio obtained with the Bit Grooming algorithm ea-for the same meteorological data from MERRA re-analysis
studied in (Zender, 2016a). Table 4 reports the Bit Grooming results extracted from Table 6 in (Zender, 2016a) and provides

the results of the Digit Rounding algorithm. In-beth-cases—tThe same lossless compression is employed: Shuffle and Deflate

with level 1 compression. From nsd = 7_to nsd = 5, Digit Rounding and Bit Grooming provide similar compression ratios

with a slight advantage for the Bit Grooming algorithm. However, from nsd = 4 to nsd = 1, the compression ratios
obtained with Digit Rounding are clearly better.

The next—following sections first prevides—the—definesition—of the various performance metrics used hereinafterin—the
remainingof this-paper, then studies the performance of various lossless and lossy compression algorithms———including the

Digit Rounding

~when applied toen both synthetic datasets-and en-—real scientific datasets.
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One of the features required for lossy the-scientific data compression is the-control ef-over the amount of loss, or the

accuracy, of the compressed data. Depending on the data, this accuracy can be expressed by an absolute or a relative error

bound. The maximum absolute error is defined by e/} = max|$; — s; | where the-s; are the samples values of the original

dataset and the-S; are the samples values of the compressed dataset. An absolute error bound specifies the maximum absolute

eITor, €45, allowed between any sample of the original and compressed data: eJ}+* < e,;,s. The maximum relative error is

$i—sji . . . .
defined by e/}* = max |¥| A relative error bound specifies the maximum relative error, e,;, allowed between any
Si

max

sample of the original and compressed data: e,/ < e,.;. The absolute error bound can be useful for data with a unigue

single dynamic range of interest. The relative error bound can be useful for data where both very small-lowvalue and very

high values are pertinent.

A near-tynearly —exhaustive list of metrics for assessing the performance of lossy compression of scientific datasets is

provided in (Tao et al., 2017b). For the sake of conciseness, ithasbeen-chosentopresent-only a few of them are presented in

this paper. The following metrics have-beenwere chosen for this study:

e thecompression ratio CR(F) to evaluate the reduction in size reduetion-as a result of the compression. It is defined

by the ratio of the original file size over the compressed file size:

CR(F) = filesize(Fyrig)
- filesize(Feomp)

e thecompression speed CS(F) and decompression speed DS(F) to evaluate the speed of the compression and efthe

decompression. They are defined by the ratio of the original file size over the compression or decompression time:

ilesize(F,,;
CS(F) _ f ( ortg)
tcomp
ilesize(F,,;
DS(F) — f ( ong)
decomp

The compression speed-and the-decompression speeds are expressed in MB/s. Those compression-and-decompression-speed
reported in this paper have-beenwere obtained on a Dell T1600 with an Intel Xeon E31225 4--cores CPU at 3.1GHz, and a

4GB memory under the RedHat 6.5 (64-—bits) OS with compression and decompression run on a single core. Parallel

compression has not been considered in this work.

The following metrics werechave-been chosen to assess the data degradation of the lossy compression algorithms:

e the-maximum absolute error e+ defined previously. It is used to evaluate the maximum error between the original

and compressed data;
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e the-mean error € to evaluate if any bias is introduced into the compressed data. It is defined as the mean of the

pointwise difference between the original and compressed data:

N-1

__ 1 -

€= NZ(SI' - 5)
=0

e the-mean absolute error e,;,; to evaluate the mean data degradation. It is defined as the mean of the pointwise

absolute difference between the original and compressed data:

1 N-1
€abs = NZ'SL' - §i|
i=0

e SNR to evaluate the signal to compression error ratio. It is defined by the ratio of the signal level over the root mean

square compression error and—¥ is expressed in decibels (dB):

/ ,/%Zliv;olsiz \
\Jﬁzm(si % /

These metrics are used in the next—following sections to evaluate various lossless and lossy compression algorithms,

SNRdB =20 10g10

including the-Digit Rounding.

5 4 Performance assessment en-with synthetic data
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5.14:2 Analytical datasets

Synthetic datasets s1_and s3D_with known statistics have-beenwere generated in order to test the compression algorithms
under variable conditions. :
stbeingis——Dataset 51 _is a noisy sinusoid of 1 dimension with a maximum absolute value of 118. ;The data volume of
the-this dataset is 4MB. Dataset-s3D s

s3D3D—a is a noisy sinusoid pulse of 3 dimensions_with a maximum absolute value of 145. The data volume of this dataset

is 512MB. The Ssupplement further-describes these datasets in greater detail.

10



10

15

20

25

30

4:35.2 Performance assessment of lossless compression methods

The lossless compression algorithms evaluated are Deflate and Zstandard with or without the Shuffle or Bitshuffle
preprocessing step. Mereover—LZ4 is always evaluated but-always-with the Bitshuffle preprocessing step because_it was
imposed in the LZ4 implementation ef Z4-we used.-embarks Bitshuffle:

_We raun arun_lossless compression algorithm using_the hSrepack tool from the HDFS library, #n-version 1.8.19, Deflate

implemented in zlib 1.2.11, Zstandard #n-version 1.3.1 with the corresponding HDFS filter available on the HDF web portal
(http://portal.hdfgroup.org/display/support/Filters), and the implementation of LZ4 and Bitshuffle in the-python package

Bitshuffle-0.3.4. The compression is-was performed by calling the h5repack tool. The Ssupplement provides the command

lines and options that-have-been-used.

Figure-34 and Fig-4 provides the results obtained for the compression and decompression of the-dataset s1 and Fig—5

e—dataset s3D respectively. The vertical bars
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represent the results for different compression levels: from 1 to 9 for the-Deflate level dfl Ivl, from 1 to 22 for Zstandard

level zstd v, and only one level for L.74.

First, it can be observed that theFThe-preprocessing steps Shuffle or Bitshuffle have a_similarly -favorable impact both on the
compression ratio and on the compression/decompression speeds-in-mest-eases.—Shuffle-and Bitshuffle have similareffeets

e son e s el e

Second, the Fhe-eEcompressioneempression levels parameters dfl_Ivl and zstd Ivl have little influence on the compression

ratio. However, the compression/decompression speeds decrease with-inereasingas compression levels_increase, particularly
with Zstandard compression levels.tevek

Third, Fthe compression ratiosratie obtained with Deflate and Zstandard are similar, but the compression speeds of

Zstandard at low compression levels are far higher, but-and the decompression speeds of Zstandard are always higher—and

compression ratio than Shuffle+Deflate or Shuffle+Zstandard, with a compression speeds similar to Shuffle+Deflate or

Shuffle+Zstandard at low compression level parameters dfl Ivl or zstd Ivlare—net—in—al-easesalways—higherthanthe

ed-with Bitshuffle and adard OW-combressionleve 4] Neverthele

_Finally, the compression/decompression speeds obtained with Zstandard and LZ4 for the compression of the-dataset s3D are

by—farmuch lower than thatethe-ene achieved for the compression of the-dataset s1. Further investigations are required to

understand why the compression/decompression speeds are lower, but it—Fhis might be related to HDF5 chunking.

To summarize, FtheseWe-econclade-thatfor results show that thelesslesseempression-ofseientifie dataset-the-preprocessing
by Shuffle or ef Bitshuffle are-is very helpful te-in increasingeinerease the-compression performaneectficiency. Then;They

also show that Zstandard can provide higher compression and decompression speeds than Deflate at low compression
levelstevel. However, on the s3D dataset, we observedebserve that Zstandard compression and decompression speeds are
lower than thoseethe-ene obtained with Deflate. Therefore, Deflate and Zstandard are thus-both optionseptiesn to consider for
the lossless compression of scientific datasets as long as they followdataset-but—always—with the Shuffle or Bitshuffle

preprocessing step.

5.334.4 Performance assessment of lossy compression methods

The lossy compression algorithms evaluated are error-bounded compression algorithms. They can constrain either exbeoth

the maximum absolute error or the maximum relative error, or both. The compression algorithms evaluated are Sz, Decimal

Rrounding, Bit Grooming and the Digit Rounding algorithm introduced in this paper.
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bounded modes. Decimal Rounding allows preserving-a specific number of decimal digits_to be preserved. In this sense, it

bounds the maximum absolute error. The NSB-Bit Grooming algerithm-allows preserving-a specific number of significant
digits_to be preserved.- In this sense, it bounds the maximum relative error. As-Like the the NSB-Bit Grooming algorithm,

the—Digit Rounding algerithm—alewspreservesingpreserving a specific number of significant digits and bounds the

maximum relative error.

We urun-ran Sz in-version +4-+H-12.1.1 using the hSrepack tool and eall-threugh-its-Sz HDFS5 filter plugin, and-applying the

Deflate lossless compression algorithm integrated te—in the Sz software. We wrunran the Decimal Rounding and Bit

Grooming algorithms using NCO #-version 4.7.9, applying Shuffle and Deflate compression in the call to the NCO tool8.

Last, we wrun-ran the Digit Rounding algorithm using the hSrepack tool and custom implantation of the algorithm in an

HDFS5 plugin filter. The Ssupplement provides the command lines and options thathave-been-used.
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4:45.3.1 Performance comparison in the-absolute error--bounded compression mode

This section compares the performance of the absolute error-bounded compression algorithms: Sz and Decimal Rounding.

The results reported were obtained by applying
has-beenwasconfigured with the options SZ BEST SPEED and Gzip BEST SPEED.; Shuffle and Deflate with dflt Ivi=1

are—were applied after the—Decimal Rounding.Zstandard—with—=std-/—5has—been—appliedafter Sz—and Shuffle—and

Table 5 compares the eempression—performanee—results obtained in the-absolute error--bounded compression mode for
eaps = 0.5. This corresponds —eerrespending—to dsd = 0 deetmal-significant decimal digits preserved, or in other words, a

rounding to the nearest integer.

Both Sz and Decimal Rounding Bit-Greeming-algorithms respect the specified maximum absolute error value. Moreover,

none introduces a statistical bias: the mean absolute errors of both algorithms—;-not shown in this table—-are very close to

zero. The errors introduced by these two algorithms are similar. However, it can be shews-seen that DecimalBit-Greoming

Rounding provided a higher compression ratio than Sz en-forthe dataset s1.-whilethe-compression-speedsaresimilar- On
the eentraryother hand, Sz provided aprevide higher compression ratio and-than Bit-Greeminsen-for the-dataset s3D. Sz
may perform better on the-dataset s3D because it is smoother than the-dataset s1. Indeed, Sz integratesmakes—use—of a

prediction step. Fhe-This prediction might often fail because dataset s1 beingis highty-very noisy;-Szprediction-might often
fail. This ean-may explain the lower compression ratio en-for s1 -dataset. Onthe-contrary-Decimal Rounding, however, does

not makes any predictions, which may—This-ean explain why it achieves a better compression than Sz en-forthe dataset s1.

The lower compression/decompression speeds obtained with Sz on the dataset s3D are not well understood and might be

related to HDF5 chunking as previously mentioned.

14
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Figure 56 compares the-performanees—of-Sz and Bit Grooming algorithmsalgerithms in terms of SNR versus compression
ratio. This figure has-beenwas obtained with the following parameters:

e  For the Sz algorithm, the absErrBound parameter is-was successively set to 5e-5, 5e-4, 5e-3, Se-2, Se-1, 5;

e  For the Decimal Rounding Bit-Greeming-algorithm, the dsd parameter is-was successively setto 4, 3,2, 1, 0, -1.

5 On the contrary, en—forthe dataset s3D, Szthe Bit-Groomingalgorithm provides—has a higher SNR than Decimal

Rounding for a given compression ratio. Both-better-compression-performance-than-Sz-but-onlyforlow—compression

(dsd=2or-abslrrBound<5¢-3):

5.3.234:4.2 Performance comparison in the-relative error--bounded compression mode

This section compares the performance of the relative error-bounded compression algorithms: Sz, Bit Grooming, and Digit

Rounding. The results reported have—beenwere obtained by applying Sz configured with the options
SZ DEFAULT_COMPRESSION and Gzip_ BEST_SPEED. Shuffle and Deflate with dflt Ivi=1 have-beenwere applied after

the Bit Grooming and Decimal Rounding algorithms.

significant digits——nsd parameter——in the Bit Grooming and in-the-Digit Rounding algorithms is—was set to 3. As the

maximum absolute value in the s/ dataset is 118, the maximum absolute error should be lower than 0.5. In order to be able to

compare Sz configured with a relative error bound with those algorithms, we configured the relative error bound to obtain a

maximum absolute error of 0.5: the pw relBoundRatio parameter in Sz was set to 0.00424. The results are provided in Table

6. It can be observed that all three algorithms respect the maximum absolute error of 0.5, which corresponds for dataset s1 to

a relative error of 0.00424. On this dataset, Sz provides higher compression ratio and compression speed than the other two

algorithms. Bit Grooming is too conservative. It preserves more mantissa bits than strictly necessary to achieve the required

precision. This behavior is illustrated in Table 1 with the value of w. In contrast, Digit Rounding adapts the quantization step

to each value of the input dataset. Doing so, it can achieve the required precision while preserving less mantissa bits than Bit

15
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Grooming does. This results both in a higher compression ratio but also in higher errors than Bit Grooming. Results obtained
for Bit Grooming with nsd =2 are also provided for completeness. With this parameter, Bit Grooming provides slightly

higher compression ratio and compression speed than Digit Rounding does.

Figure 67 (left) compares the—performanees—o+Sz, Bit Grooming, and Digit Rounding algorithms in terms of SNR versus
compression ratio. This figure has been obtained with the following parameters:
e  For the Sz algorithm, the pw_relBoundRatio parameter is-was successively set to 424e-6-4.24e-5, 4.24¢e-4, 4.24e-3;
424e-2-424e-1;
e  For the Bit Grooming algorithm, the nsd parameter is-was successively set to 6, 5, 4, 3,2, 1;

e For the Digit Rounding algorithm, the nsd parameter is-was successively set to 6, 5,4, 3,2, 1.

TFhe Digit RoundingAll three algorithms provideprevides similar SNR versus better-compression perfermanee-ratios results,

than-Sz-or Bit-Greomingwith a slight advantage for the Bit Grooming algorithm.—At-high-compressionratio, Szprovides
il ; he Dicit | ine aleorithm.
16
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_Figure &7 (left) compares the compression ratio obtained as a function of the-parameter nsd, which is the user--specified
number of significant digitseigit. Even thoughifthe nsd is not a parameter of the Sz algorithm, we made-the-cerrespondence
between-related the pw_relBoundRatio and-to the nsd parameters for the-dataset s1 (i.e. pw_relBoundRatio = 4.24¢™") and
plottedplet the compression ratio obtained with_the Sz algorithm on the same figure.

_It can be seen that, whatever the nsd specified by the user, the compression ratiosratie obtained with the-Digit Rounding are
higher than the compression ratio obtained with the Bit Grooming algorithm. It can also be seen that the
compressionseompression obtained with_the Sz algorithm are even higher.

We now focus on the results obtained withenthe dataset s3D. The number of significant digits——nsd parameter—in the Bit

Grooming and4nthe Digit Rounding algorithms is-was set to 3.

As the maximum absolute value in_the s3D dataset is 145, the pw relBoundRatio parameter in Sz is-was set to 0.00345.

Results are provided in Table 7.

Roundine aleosithm i i Fablo2

mentioned, the Bit Grooming algorithm is too conservative.iswith-ef Thisat is why results obtained with nsd =2 are also

provided. On this dataset, Sz provides higher compression ratio than the other two algorithms but lower compression speed

than Bit Grooming. At nsd = 3, Digit Rounding provides slightly higher compression ratio than Bit Grooming but with lower

compression speed. On

Figure 67 (right) compares_—the-performaneesof-Sz, Bit Grooming, and Digit Rounding algorithms in terms of SNR versus
compression ratio. This figure has been obtained with the following parameters:
e  For the Sz algorithm, the pw_relBoundRatio parameter is-was successively set to_ —6-9e-6-3.456-9e-5,-6-9 3.45¢e-4,
6:93.45¢-3:76-9e-2,6-9e-1

e  For the Bit Grooming algorithm, the nsd parameter is-was successively set to 6, 5, 4, 3,2, 1;

e  For the Digit Rounding algorithm, the nsd parameter is-was successively set to 6, 5,4, 3,2, 1.

For-the-datasets3D;the Bit Grooming and Digit Rounding algorithms provide similar compression ratios, but even higher

compression ratios are obtained with Sz. ale

Figure 78 (right) compares the compression ratio obtained as a function of the parameter-nsd parameter, which is the user-

specified number of significant digitsdigit. As for dataset s1, we made—rclatedthe—ecorrespondence—between—the
17
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pw_relBoundRatio and-to the nsd parameters for the-dataset s3D (i.e. pw_relBoundRatio = 3.45¢456.9¢™) and plottedplot
the compression ratio obtained with the Sz algorithm on the same figure.

_On-the-dataset-s3Dand-wWhatever the nsd specified by the user, the compression ratios obtained with the Digit Rounding
algorithm are higher than the compression ratio obtained with the Bit Grooming algorithm. The compression ratios obtained

with Sz are even higher.-er-Sz:

Those results show that the We-eonclade-thatin-mesteases-Digit Rounding algorithm can be competitive with is-superiorte

the Bit Grooming and Sz algorithms in the-relative error--bounded compression mode. It is thus applied to real scientific

datasets in the next section.

65 Application to scientific datasets

65.1 Application to a CFOSAT dataset

Fhe-CFOSAT is a cooperative program is—earried-eut-threugh-cooperation-between the French and Chinese sSpace aSpaee
Agencies (CNES and CNSA respectively). CFOSAT is designed toaims—at characterizeingeharaecterizing the ocean surfaces

to better model and predict the-ocean states, and improve the-knowledge #-of ocean/atmosphere exchanges. The-CFOSAT
products will help fer-marine and weather forecastingforeeast and will also be used to monitor thefer climate-menitering.

The CFOSAT satellite will carry two scientific payloads——SCAT, a wind scatterometer;; and SWIM, a wave
scatterometer—for the—te—aHew—a joint characterization of ocean surface winds and waves. The SWIM (Surface Wave
Investigation and Monitoring) instrument delivered by CNES is dedicated to the—measuringementmeasurement—of the
directional wave spectrum (density spectrum of wave slopes as a function of direction and wavenumber of the waves). The
CFOSAT LI1A product contains calibrated and geocoded waveformswawvefersa.

Currently, the baseline for the-compression of the CFOSAT L1A product involves a “clipping” method as a data reduction
step, the—with Shuffle preprocessing and Deflate lossless coding with a compression level dfl vl of 3. The
eCompressioneempression with a clipping method“elipping” is likente-a compression in an absolute error--bounded mode.

It defines the least significant digit (Isd) and ‘“clips’“elips” the data to keep only Isd decimal digits. The /sd is defined

specifically for each dataset variable. The full list is provided in the Supplement with all the command lines and parameters

used for running the compression methods described in this section-efthe-dataset.-
We studiedystudy the performanece-ofthe-following alternative-br-compression methods:
e CFOSAT clipping followed by Shuffle and Deflate (dfit Ivl = 3): the baseline for the compression of CFOSAT

datasets:;
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e CFOSAT <*clipping”—_method—followed by Shuffle and Zstandard (with—a—ecompression-evel—zstd vl = 2)
compressionlevelof or2-for highertete-achievefaver compression speeds;

be-followed by Deflate in the absolute error bounded mode;

e Decimal Rounding followed by Shuffle and Deflate (dflt [vi=1);

o—Bit Grooming (nsd = 8) &
ZstandardDeflate (dflt Ivi=1)::

e Digit Rounding (nsd = 8) be-followed by Shuffle and Deflate (dfit vl =1).
We first focused on the ground range 5 variable of the CFOSAT LI1A product. This variable is an array of 18451x3215

values in double precision. The data volume is 452.58-MB (uncompressed). The CFOSAT *“clippingZ method defines an /sd

of 3 for thisat variable. In the-absolute error--bounded mode, Bit GreemingDecimal Rounding ishas-been configured to keep
the same number of decimal digits as CFOSAT *“clipping®: dsd =.3; -en—each variable: nsd = Isd.S7 is configured with

absErrBound = 5e-4. In the-relative error--bounded mode, Bit Grooming and Digit Rounding are configured with nsd = &8

while. The c€ompression results are provided in Table 8.

Compared to the CFOSAT baseline compression, Zstandard compression is more than twice faster while offering a similar

compression ratio. On this dataset, the use of Sz instead of the CFOSAT Clipping method increases the compression ratio by

a factor of 11. Sz prediction step seems to be very efficient on this dataset. Decimal Rounding increases the compression

ratio by a factor of 2.5 “only”, but provides the fastest decompression. In the relative error-bounded mode, Digit Rounding

provides a higher compression ratio than Bit Grooming but lower compression/decompression speeds.

The results for the compression of the fulla CFOSAT L1A product of 7.34GB (uncompressed) are provided in Table 9%.

The maximum absolute error and the mean absolute error are not provided because this dataset contains several variables

compressed with different parameters. —Supplementthebr-Compared to the CFOSAT baseline compression, Zstandard

increases the compression speed efby about 40% while offering a similar compression ratio. It was not possible to apply Sz

compression on the full dataset since Sz configuration file has to be modified to adapt the absErrBound to the Isd defined for

each dataset variable. The way around this entails processing each variable one after the other. Sz provides a compression

ratio almost 3 times higher than the baseline with faster compression and decompression. Decimal Rounding is configured
on a per-variable basis to keep the precision required by the scientists on each variable. Fhe-use-of BitGrooming-instead-of
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the CEFOSAT “Chlipping”method-It increases the compression ratio by a factor of 1.82; with twice faster compression and

decompression compared to the baselinebut-deereases-the-compression-speed-by40%. The compression ratios achieved with

Bit Grooming or Digit Rounding in the relative error-bounded mode are lower. This is not the mode targeted for the
compression of CFOSAT datasets. The usability of Sz being reduced by the fact that the error bound cannot be easily

configured to achieve the precision required variable per variable, our recommendation is to use the Decimal Rounding

algorithm. It achieves faster and more effective compression than CFOSAT Clipping method and bounds the absolute errors.

65.2 Application to SWOT datasets

The Surface Water and Ocean Topography Mission (SWOT) is a partnership between NASA and CNES,. and
continueseentinue the long history of altimetry missions with an innovative instrument known as: KaRin, which is a Ka band
synthetic aperture radar. The launch is foreseen for 2021. SWOT addresses both oceanographicyeeeanegraphy and
hydrologicalyhydretegy communities, accurately measuring with-a-hish-aceuraeythe water level of the-oceanseeean, rivers,
and lakes.

SWOT has two processing modes, efproecessing—and—thusso two different types of products are generated: the—high-
resolution products; dedicated to hydrology, and low--resolution products mostly dedicated to oceanography. The Pixel

Cloud product (called L2 HR PIXC) contains data from the KaRiin instrument’s high-resolution (HR) mode-ef-the KaRln

instriiment. [t contains information on the pixels that are detected as being over water. This product is generated
whenrewhere the HR mask is turned on. The Pixel Cloud product is organized into sub-orbit tiles for each swath and each
pass, and this is an intermediate product between the L1 Single Look Complex products and the L2 lake/river ones. The
product granularity is a tile e£-64 kmé4km long in the along-track direction, and it covers either the left or the-right swath
(~60 kmé60km wide).
The compression performanee-is-was-evaluated-on-tweof two different datasets was evaluated:

e A simplified simulated SWOT L2 HR PIXC pixel cloud product of 460MB (uncompressed);

e A realistic and representative SWOT L2 pixel cloud dataset of 199MB (uncompressed).—in—which—enly—few

The current baseline for the compression of the simplified simulated SWOT L2 pixel cloud product involves the-Shuffle

preprocessing and Deflate lossless coding with a compression level dfl /vl of 4. However, the compression method for the

official SWOT L2 pixel cloud product has not yet been defined. A required precision is defined by the scientists as a number

of significant digits (nsd) for each dataset variable. The full list is provided in the Supplement.

We studied the following lossless or relative error bounded compression methods:

o Shuffle and Deflate (dflt_Ivl = 4): the current baseline for the compression of SWOT datasets:
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o  Shuffle and Zstandard (zstd_[vl = 2) lossless alternative;

e Sz with Deflate in the relative error bounded mode;
e Bit Grooming followed by Shuffle and Deflate (dflt_Ivl=1);
e Digit Rounding followed by Shuffle and Deflate (dflt vl =1).
We first focused on the height variable of the SWOT L2 HR PIXC pixel cloud product. This variable is a list of 1,421,888

values in double precision. The data volume is 10.85MB (uncompressed). A precision of 6 significant digits is required for

this variable (nsd = 6). Sz is configured in the relative error bounded mode with pw_relBoundRatio = 5e-6. Bit Groomin

and Digit Rounding are configured with nsd = 6. The results are provided in Table 10. Compared to the SWOT baseline

compression, Zstandard compression is more than 10 times faster while offering a similar compression ratio. On this dataset,

Digit Rounding provides the highest compression ratio with compression/decompression speeds similar to the one obtained

with Bit Grooming. The lowest errors are obtained with Bit Grooming but with a compression ratio slightly lower than Digit
Rounding. The compression ratio obtained with Sz is even lower.

Next we focused on the pixel area variable of the representative SWOT L2 pixel cloud product. This variable is a list of

1,300,111 values in double precision. The data volume is 9.92MB (uncompressed). A precision of 11 significant digits is

required for this variable (nsd = 11). Sz is configured in the relative error bounded mode with pw relBoundRatio = 5e-9 only

because it cannot achieve higher precision. Bit Grooming and Digit Rounding are configured with nsd = 11. The results are

provided in Table 11. Compared to the SWOT baseline compression, Zstandard compression is more than 7 times faster

while offering a similar compression ratio. Sz provides the highest compression ratio but does not allow achieving the

required precision of 11 digits. Moreover, in this configuration Sz compression is very slow. As for the height variable, Digit

Rounding provides the highest compression ratio with compression/decompression speeds similar to the one obtained with

Bit Grooming. The lowest errors are obtained with Bit Grooming but with a compression ratio lower than Digit Rounding.

Table 12 provides the results of the compression of the full simulated SWOT L2 HR PIXC pixel cloud product. The

maximum absolute error and the mean absolute error are not provided because this dataset contains several variables

compressed with different parameters.
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Compared to the SWOT pretetype-baseline compression, Zstandard increases more-than-S-times-the compression speed by

over 5 times, while offering a similar compression ratio. Sz compression was not applied because it does not allow achieving

the high precision required on some variables. Bit Grooming and Digit Rounding was configured on a per-variable basis to
keep the precision required by the scientists on each variable. Compared to the baseline, Bit Grooming and Fhe-use-ofBit
Groomingin absoluteo atiy or-br-beunded-mode—or-theuse-of the-Digit Rounding algerithm;—inereasesincrease
the compression_respectively by —ratie—by—mere20% and —than—30%_with similar compression speeds and faster

decompression. ;-but-divides-the-compression-speed-by-more-than he-compression-speed—The-decompression-speeds-are

The results for the compression of the representative SWOT L2 pixel cloud product are provided in Table 130.
_Compared to Deflatethe baseline, Zstandard compression is nearly 4 times fasterinereases—by—meore—than2.5-times—the

compression-speed while offering a similar compression ratio. FThe-use-efthe-Bit Grooming increases the compression ratio
by 29% with higher compression speed. And Digit Rounding increases the compression ratio by 34% with slightly lower

compression speed than Bit Grooming. Bit Grooming and Digit Rounding provides the Bit-Greemingalgorithm—in-the

e eendinealessiba e netas hich T hesiost decomprossion-deesmsrasionrpoade e milap Loe allibe celigions
tested. Our recommendation for the compression of this—datasetSWOT datasets is thus to use the Bit-GreemingDigit
Rounding algorithm #a-the-abselute-error—bounded-meode-to achieve high compression, at the price of a lower compression

speed than the lossless solutions, considering that for SWOT the driver is product size-is-a-ésiver, and eonsidering-taking into

account the ratioratien between compression time and processing time.

76 Conclusions

We-have-studiedThis study investigatedevaluated the—performanee—of-lossless and lossy compression algorithms both on

synthetic datasets and on realistic simulated datasets of future sciencetifieseientifie satellites. The compression methods have
beenwere exeented-applied using NetCDF-4 and HDFS5 tools.
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performanee—It has been shown that the impact of Fthe compression level options of Zstandard or Deflate havelower

impaets—on the compression ratio achieved is not significant compared to the impact of the Shuffle or Bitshuffle
preprocessing. However, high compression levels but-can significantly reduce the compression speed. Lew-ecompression

thus-both reasonable options to consider _for the compression of scientific datasets, but must always follow awith Shuffle or

Bitshuffle preprocessing step._It has been shown that Zstandard can speed-up the compression of CFOSAT and SWOT

datasets compared to the baseline solution based on Deflate.

The 1Eossy compression of scientific datasets can be achieved in two different error-—bounded modes: the-absolute and
relative error--bounded. Four algorithms have been studied: Sz, Decimal Rounding, Bit Grooming and Digit Rounding. One
useful feature of the last three is that the accuracy of the compressed data can easily be interpreted: rather than defining an
absolute or a relative error bound, they define the number of significant decimal digits or the number of significant digits.

—In the-absolute error--bounded mode, Sz provide higher

compression ratios than Decimal Rounding on most datasets. However for the compression of real scientific datasets, its

usability is reduced by the fact that only one error bound can be set for all the variables composing the dataset. It cannot be

casily configured to achieve the precision required variable per variable.beth-Sz-and-DecimalBit Grooming-algerithms-are

competitive: This is why we rather recommend the Decimal Rounding algorithm to achieve fast and effective compression of

the CFOSAT dataset. B

In the-relative error-—bounded mode, the Digit Rounding algorithm introduced in this work is—mere—efficientinprovides

higherprovides higher compression ratios effieieney-than the Bit Grooming algorithm from which it derives, but with lower

compression speed. Sz can provide even higher compression ratios but fails achieving the high precision required for some

variables. This is why we rather recommend the Digit Rounding algorithm to achieve relative error bounded compression of

SWOT datasets with a compression ratio 30% higher than the baseline solution for SWOT compression.
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87 Code and data availability

The Digit Rounding software source code is available from CNES GitHub at https://github.com/CNES/Digit Rounding. and
The the-datasets are eurrentlyonlyavailable upon request to Xavier Delaunay (xavier.delaunay@thalesgroup.com) or to te
Flavien Gouillon (Elavien-Geuiont@enes-frFlavien.Gouillon@cnes.fr). The Supplement details the datasets and provides

the command lines used for running the compression tools.
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manuscript. Aurélie Courtois performed most of the compression experiments and generated the analytical datasets. Flavien

Gouillon provided the scientific datasets used in the experiments, supervised the study, and contributed both to its design and

to the writing of the manuscript.
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Table 1: Representation of the value of @ in IEEE-754 single-precision binary representation (first row) and results preserving 4
significant digits with the Bit Grooming algorithm (second row) or preserving 12 mantissa bits (third row)._This table builds
onfellewswith Table 1 in (Zender, 2016a).

Sign Exponent Mantissa Decimal Notes

0 10000000 10010010000111111011011  3.14159265 Exact value of ©

0 10000000 10010010000111100000000 3.14154053 Result of the-Bit Grooming with nsd =4, 15 mantissa bits
preserved

0 10000000  10010010000100000000000 3.14111328 Result preserving only 12 mantissa bits, allows preserving
the 4 significant digits of m_to be preserved.

Table

Fable-23: Representation of the value of 7w in IEEE-754 single-precision binary representation (first row) and results preserving a
varying number of 4-significant digits (nsd) with the Digit Rounding algorithm.-(secend-roew)-_This table can be compared with-to

Table 2 in (Zender, 2016a) providing the Bit Grooming results for ef.

Sign Exponent Mantissa Decimal Notes

0 10000000 10010010000111111011011  3.14159265  Exact value of &

26



0 10000000 10010010000111111011011  3.14159265 nsd =8
0 10000000 10010010000111111011010 3.14159250 nsd =7
0 10000000 10010010000111111010000 3. 14159012 nsd =6
0 10000000 10010010000111110000000 3. 14157104 nsd =5
0 10000000  10010010000100000000000 3.14111328  Result—of —the
. "
Leogitl ”
nsd =4
0 10000000 10010010100000000000000 3. 14453125 nsd =3
0 10000000 10010100000000000000000 3. 15625000 nsd =2
0 10000000  11000000000000000000000 3. 50000000 nsd =1
0 10000000  00000000000000000000000  4.00000000 nsd =0

Table 3: Maximum absolute errors and mean absolute errors of the Digit Rounding algorithm preserving a varying number of

significant digits (nsd) on an artificial dataset composed of 1,-000,-000 values evenly spaced overs the interval [1.0, 2.0).

nsd  Maximum absolute error Mean absolute error Mean error

1 0.4999999999 0.1732423125 -0.0796879687
2 0.0312500000 0.0127722254 -0.0003056211
3 0.0039062500 0.0016125222 -0.0000074545
4 0.0004882812 0.0001983929 -0.0000001013
5 0.0000305176 0.0000125886 -0.0000000017
6 0.0000038147 0.0000015736 -0.0000000002
7 0.0000004768 0.0000001937 0.0000000000

Table 4: Comparison ef-between the compression ratio obtained with the Digit Rounding algorithm te-and the compression ratio

obtained with the Bit Grooming algorithm reported in (Zender, 2016a) on a MERRA dataset. Shuffle and Deflate with level 1

lossless compression is applied. The reference for the CR computation is Deflate (level 5) compressed data size of 244.3MB.

Bit Grooming Digit Rounding
NSD Size (MB) CR (%) Size (MB) CR (%)
=7 2231 91.3 226.1 92.6
6 225.1 92.1 2258 92.4
5 2214 90.6 222.0 90.9
4 2014 824 191.1 78.2
3 1853 75.9 165.1 67.6
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Table 5: Compression performanee-results of the absolute error-bounded compression algorithms Sz and Bit-GreemingDecimal
Rounding inthe-absolute-error-br-bounded-compression-mode-on the-datasets s7 and s3D.

Datasets+ Datasets3H
e Shiufflet Zstd Zstd-(zstd—tvi=5) Shuffle + Zstd
(estd—i=5) Cestd—vi=>5)

absolute
e
SNR(dB)  30.834 30.830 45.9687 45.9689
Cemaprzet SL S0 St Lt
onratio
Compressi 50 54 25 16
on—speed
MB/s)
Dataset Compression method CR CS (MB/s) eqpx Cabs SNR (dB)
sl Sz (absErrBound = 0.5, Gzip BEST SPEED) 5.39 133 0.5 0.2499 30.84




sl Decimal Rounding (dsd = .0, dflt_Ivi=1) 7.5 100 0.5 0.2501 30.83
s3D Sz (absErrBound = 0.5, Gzip_ BEST _SPEED) 12.97 29 0.5 0.2500 45.97
s3D Decimal Rounding (dsd = .0, dflt _IvI=1) 5.56 80 0.5 0.2500 45.97

Table 6: Compression perfermanece-results of the relative error-bounded compression algorithms Sz, Bit Grooming, and Digit
Rounding in-therelative-error—bounded-compression-mode-on the-dataset si.

Dot el Dlondten 000D L e nsd=3
Maximum

Crror

Sl A S S

W 366 3 e

enratto

Ceasrans

onspeed 32 37 40

MB/s)

Compression method CR CS (MB/s) eqhax Cabs SNR (dB)
Sz (pw_relBoundRatio = 0.00424, Gzip BEST SPEED) 5.08 100 0.484 0.199 32.78
Bit Grooming (nsd = 3, dflt Ivi=1) 3.09 57 0.0312 0.0156 54.93
Bit Grooming (nsd = 2, dflt IvI=1) 4.38 57 0.250 0.125 36.54
Digit Rounding (nsd = 3, dflt_Ilvi=1) 4.02 40 0.5 0.195 34.51

Table 7: Compression perfermance-results of Sz, Bit Grooming, and Digit Rounding in the-relative error--bounded compression
mode on the-dataset s3D.

Compression method CR CS (MB/s) egp Cabs SNR (dB
Sz (pw_relBoundRatio = 0.00345, Gzip BEST SPEED) 4.32 26 0.487 0.0737 54.56
Bit Grooming (nsd = 3. dflt_Ivi=1) 2.35 46 0.0625 0.0079 73.96




Bit Grooming (nsd = 2. dflt IvI=1) 3.04 51 0.5 0.0629 55.89
Digit Rounding (nsd = 3, dflt_IvI=1) 2.60 18 0.5 0.0239 58.87
Slsesither L DT enas s enndine

asmaser et 0002 2 e Feel— o2
Maxtnum

abselute 0256 0-0625 05 05

efror

SNRA(dB)  68:06 7396 5589 6394

geﬁw 205 245 330 267

ORFatto

e

onspeed 3 4 15 19

MB/s)

Table 8: Performanee-Compression performaneceresults for the eompression-of-the-ground range 5 variable in the CFOSAT L1A
product.

Compression method CR CS (MB/s) DS (MB/s) eqhax Cabs
CFOSAT “Clipping? + Shuffle + Deflate (3) 2.34 38 (%) 123 1.00e-3 5.00e-4
CFOSAT “Clipping= + Zstd (2) 2.20 108 (*) 84 1.00e-3 5.00e-4
Sz (absErrBound = 1e-3, Gzip BEST SPEED) 26.53 60 42 1.00e-3 4.99¢-4
Decimal Rounding (dsd = .3) + Shuffle + Deflate (1)  5.85 74 187 4.88¢e-4 2.36e-4
Bit Grooming (nsd = 8) + Shuffle + Deflate (1) 4.78 67 190 2.44¢-4 1.22¢-4
Digit Rrounding (nsd = 8) + Shuffle + Deflate (1) 5.83 37 38 4.88¢e-4 2.44e-4

(*) The time taken for the CFOSAT “Clipping? method is not taken into account inte the compression speed computation.

Table 89: Compression pPerformaneeresults for the-ecompression-of- the CFOSAT L1A productpreduets.
s DS
CRCe
(MB/s)yce  (MB/s)Bee
Compression method ) mpressiton  ompressio
sion
) spend Armead
ratie
el el
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5.21 51 (%)
CFOSAT “Clipping” + -Shuffle + -Deflate- (3)
(13 . . 99 64
CFOSAT “Clipping” + -Shuffle
5.38 72 (%)
+ -ZstdZstandard -(2)
Sz (absErrBound, Gzip BEST SPEED) 1545 88
e . | Shiff ] 5 24
L C . | Shis l lard
1268 35
&
Decimal Rounding + Shuffle + Deflate (1) 9.53 101
Bit Grooming (nsd = 8) + Shuffle + Deflate (1) 4.16 75
Digit Rounding (nsd = 8) + Shuffle
4.32 37

+ Deflate ()R

68

r

NN
N oo

|OO
(9}

(*) The time taken for the CFOSAT “Clipping” method is not taken into account inte the compression speed computation.

Table 10: Compression results for the height variable in the simplified simulated SWOT L2 HR PIXC pixel cloud product.

Compression method CR CS (MB/s) DS (MB/s) eqr Cabs
Shuffle + Deflate (4) 1.12 24 212 0 0
Shuffle + Zstd (2) 1.12 271 181 0 0

Sz (pw_relBoundRatio = 5e-6, Gzip BEST _SPEED) 2.06 35 155 3.16e-5 1.19e-7
Bit Grooming (nsd = 6) + Shuffle + Deflate (1) 2.34 33 217 7.58¢-6 2.53e-7
Digit Rounding (nsd = 6) + Shuffle + Deflate (1) 2.38 35 217 3.05e-5 7.95e-7
Table 11: Compression results for the pixel area variable in the representative SWOT L2 pixel cloud product.

Compression method CR CS (MB/s) DS (MB/s) eqr Cabs
Shuffle + Deflate (4) 1.50 32 248 0 0
Shuffle + Zstd (2) 1.50 237 165 0 0

Sz (pw_relBoundRatio = 5¢-9, Gzip BEST_SPEED) 3.24 0.3 165 2.51e-6 4.56e-7
Bit Grooming (nsd = 11) + Shuffle + Deflate (1) 2.11 43 245 1.86¢e-9 3.16e-10




Digit Rounding (nsd = 11) + Shuffle + Deflate (1) 2.40 40 240 3.73e-9 1.86e-9

Table 129: Compression pPerformaneceresults for the compression-of-the-simplified simulated SWOT L2_HR_PIXC pixel cloud
product.
cs DS
CRCe (MB/s)ce  (MB/s)Pee
Compression method RpENEE pmssien eRimseie
epeentie spend ———seed
(MB/s) (MB/s)
Deselipne DOII0 I copne e neion e becle 14.37 107 92
Shuffle + Deflate (4)
T
Shuffle + ZstandardZstd (2) 14.36 589 97
Bit Grooming + Shuffle + Deflate (1) 17.44 141 336
Digit Rounding + Shuffle + Deflate (1) 18.92 100 393
BitG . | Shuffle Defl
AstdAstandard-(2}
)
Table 130: Compression pPerformaneeresults for the eempression-of-the-representative SWOT L2 pixel cloud product.
CS DS

CRCem (MB/s)Ce  (MB/s)Dee

Compression method PFESSIO mpression  ompressio
MB/s) MB/s)
Shuffle + Deflate (42) +91.99
. 3552 25883
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Shuffle+Zstandard-(1)
Shuffle + ZstdZstandard (2)

Bit Grooming + Shuffle + Deflate (1)
Digit Rounding + Shuffle + Deflate (1)

" . | Shisf .

. : . | Shisff
el sl

e . Pt Syl lard 2
RDicit R 5 Shuffle+ 7 ard (2

1.99
2.55
2.65
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Figure 1: Compression chain in-which-appearsshowing the data reduction, pre-processing and lossless coding steps.

Input:

{s;}1-,_ input sequence of samples

Output:

{3} ,_ output sequence of quantized samples

Parameter:

nsd number of significant digits preserved in each sample

Algorithm:

For each input sample s; in {s;}]=,:

1. Get the-binary exponent e; and mantissa m; of value s; according to Eq. (7)

2. Tabulate the-value v for log,,(m;)

3. Compute the approximated number of digits before the decimal separator in the-sample value s;

following Eq. (8

4. Compute the-quantization factor power p; following Eq. (6)
5. _Compute the-quantization factor g; as in Eq. (5)

6. Compute the-quantized value §; as in Eq. (1)

Figure 2: The Digit Rounding algorithm.
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Figure4Figure 3: Performanee-Results obtained for the lossless compression of the s/ dataset with Deflate (dflt), Zstandard (zstd),
Shuffle and Deflate (shuf+dflt), Shuffle and Zstandard (shuf+zstd), Bitshuffle and Zstandard (bshuf+zstd), Bitshuffle and 1.Z4
(bshuf+lz4). Compression ratios (top), cCompression speeds (bottom-_left), and decompression speeds (bottom_-right)._Vertical
5| bars represent the results for different compression levels: from 1 to 9 for Deflate, from 1 to 22 for Zstandard, only one level for LZ4

36



14

0 13 4
5
c
K]
Ve
o
Qo
£
- |||||||||
10 "”"l"" "”"""
S & & N
$ é‘\\' ,oé‘\\' &
4 - 4
:v? 0 % 0
DEJ 1l |||| [l I = I
< 30 Il I I il - 30 -
: ”H “H" ”“ HH : ”N
® o
® 04 | mH || I ||||. e 20 - ||
g S
3 I g
g 10 g 10
£ Q
o} 0
o o)
0- SE-NE
& § & & & &
v & X & RN & <V X RS
»  § N & S
) '06 9 ) \09 AY)

Figure SFigure 4: Performanee—Results obtained for the lossless compression of the s3D dataset with Deflate (dflt), Zstandard
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Figure 56: Comparison of the compression perfermanee-results (SNR vs. compression ratio) of the Sz and Bit GreemingDecimal

Rounding algorithms in the-absolute error-bounded compression mode, on: Compression-performance-obtained-on-the s1 dataset
(left) and s3D dataset (right).
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Figure 67: Comparison of the compression performaneeresults (SNR vs. compression ratio) of the Sz, Bit Grooming and Digit

Rounding algorithms in the-relative error-bounded compression mode-, on the Compressionperformanee-obtained-onthes]
dataset (left) and s3D dataset (right).
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Figure 78: Compression ratio as a function of the user--specified number of significant digitsdigit (nsd) for the Sz, Bit Grooming

and Digit Rounding algorithms, on algerithm-—Coempressionperformance-the ebtained-on-the s/ dataset (left) and s3D dataset
(right).
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